Средства мультимедиа. Реферат на тему мультимедиа системы компьютер и музыка


Мультимедиа система компьютера

ВВЕДЕНИЕМультимедиа (multimedia) - это современная компьютерная информационная технология, позволяющая объединить в компьютерной системе текст, звук, видеоизображение, графическое изображение и анимацию(мультипликацию). Мультимедиа - это сумма технологий, позволяющих компьютеру вводить, обрабатывать, хранить, передавать и отображать (выводить) такие типы данных как текст, графика, анимация, оцифрованные неподвижные изображения, видео, звук и речь.

Для построения мультимедиа системы необходима дополнительная аппаратная поддержка: аналого-цифровые и цифро-аналоговые преобразователи для перевода аналоговых аудио и видео сигналов в цифровой эквивалент и обратно, видеопроцессоры для преобразования обычных телевизионных сигналов к виду, воспроизводимому электронно-лучевой трубкой дисплея, декодеры для взаимного преобразования телевизионных стандартов, специальные интегральные схемы для сжатия данных в файлы допустимых размеров и так далее. Все оборудование отвечающее за звук объединяются в так называемые звуковые карты, а за видео в видео карты. Дальше рассматривается подробно и в отдельности об устройстве и характеристиках звуковых карт, стандартах сжатия звука и некотором специализированном программном обеспечении.

С течением времени перечень задач выполняемых на ПК вышел за рамки просто использования электронных таблиц или текстовых редакторов. Компакт - диски со звуковыми файлами, подготовка мультимедиа презентаций, проведение видео конференций и телефонные средства, а также игры и прослушивание аудио CD для всего этого необходимо чтобы звук стал неотъемлемой частью ПК. Для этого необходима звуковая карта Рис.2.

Мы все уже привыкли к тому, что современный персональный компьютер может издавать весьма разнообразные звуки. Вначале они могли только гудеть и пищать на разные лады, затем появились программы, произносящие вполне отчетливые слова и играющие отдаленное подобие музыки, слушаемой через водосточную трубу; компьютерные игры довольно быстро научились даже при помощи встроенного громкоговорителя (рис.1) издавать что-то вроде выстрелов и взрывов. А теперь повсеместное распространение недорогих звуковых карт позволило воспроизводить с их помощью любые теоретически возможные звуки. Однако в большинстве случаев мы с вами слышим только те звуки, которые были, как говорится, заложены при разработке той или иной программы, а между тем многим хочется гораздо большего. Все это вполне возможно - при наличии требуемых аппаратных средств и/или программ, а главное - знаний о способах извлечения нужных звуков из такого вроде бы немузыкального устройства, как компьютер, так как компьютер по первоначальному определению это устройство для хранения, обработки и передачи информации.

Рис.1.

Встроенный динамик PC-Speaker. 

Рис.2.

Мультимедийный комплекс.

                                                           

Компьютеры не задумывались своими создателями как устройства для занятий музыкой. Их изначальное предназначение типично для любой полезной машины - освободить человека от тяжелой и монотонной работы. В данном случае речь идет об умственной деятельности рутинного характера, связанной с громоздкими вычислениями и сортировкой большого количества данных. Просто так уж случилось, что многие профессионалы в разных сферах, любящие и хорошо понимающие то, чем они занимаются, сумели воспользоваться присущей вычислительным машинам универсальностью и использовать ее для пользы своего дела. Легендарный Макс Мэтьюз из Bell Laboratories начал заниматься машинным синтезом звука еще в 60-е годы, когда компьютер занимал целый этаж, и вряд ли вызывал у большинства музыкантов прилив творческого вдохновения. Видимо, создатель программы Music 4 достаточно хорошо представлял, что ему нужно от жизни и от вычислительной машины.

Целью курсовой работы является закрепление и углубление теоретических знаний и приобретение практических навыков по изучаемой дисциплине и смежным дисциплинам.

Задача данной курсовой работы – рассказать о наиболее известных программах для работы со звуком, об их преимуществах, показать простоту работы с профессиональным программным обеспечением. Научиться работать с наиболее популярным музыкальным программным обеспечением.

1. ОБЗОР ЗВУКОВЫХ ВОЗМОЖНОСТЕЙ ПК1.1. Возможности встроенного динамика (PC-Speaker)Представим себе батарейку, которая через регулятор (для удобства - прямолинейный, а не круглый) подключена к динамику акустической системы. При перемещении регулятора диффузор динамика будет аналогично перемещаться между своим нейтральным положением и точкой максимального отклонения, в точности повторяя движения ползунка и изменение электрического тока в цепи. В таком случае говорят, что имеет место аналоговая передача звука, которая используется почти во всей звуковой аппаратуре. Таким образом, перемещая ползунок с нужной скоростью, мы можем заставить динамик издать любой нужный нам звук - вся проблема только в скорости перемещения ползунка.

В компьютерах, как известно, используется цифровой принцип передачи информации: электрические сигналы могут принимать только два состояния - 0 и 1, что соответствует минимальному и максимальному уровням напряжения. Графики электрических сигналов при этом даже отдаленно не напоминают, например, график изменения яркости картинки на мониторе или траекторию перемещения мыши, поскольку аналоговые сигналы закодированы в цифровых. Подключив динамик к выходу цифровой схемы, мы можем привести его диффузор только в одно из двух возможных положений; если теперь переключать цифровой сигнал со звуковой частотой - мы услышим знакомое гудение или писк разной высоты. Именно так и было реализовано управление встроенным динамиком в самых первых персональных компьютерах, таким же оно осталось и в их современных моделях - программа либо программирует генератор импульсов на их повторение с нужной частотой, либо сама переключает цифровой сигнал на динамике. Изменяя частоту следования импульсов, можно повышать или понижать тон звука, однако более приятных звуков таким способом извлечь невозможно. Такой способ управления называется частотной модуляцией (ЧМ/FM).

Однако кое-что все-таки можно сделать, вспомнив, что диффузор динамика имеет инерцию и из-за нее не может перемещаться со скоростью, сравнимой со скоростью изменения цифровых сигналов в компьютере. Если подать на него цифровой сигнал из равномерно меняющихся 0 и 1 с частотой более 20 килогерц - диффузор будет излучать неслышимый ультразвук, сила которого будет очень быстро падать с ростом частоты, и уже на нескольких десятках килогерц диффузор практически перестанет двигаться. Однако если изменение между 0 и 1 будет неравномерным, то диффузор уже не сможет оставаться на месте, однако и не будет колебаться в точном соответствии с цифровым сигналом. Можно сказать, что удержание одного из уровней на выходе схемы ускоряет движение диффузора в выбранном направлении, а смена уровня на противоположный - тормозит его, а при удержании нового уровня в течение длительного времени диффузор начнет двигаться в противоположном направлении. Этот способ управления называется широтно-импульсной модуляцией (ШИМ).

Таким образом, если достаточно искусно переключать цифровые уровни на схеме управления динамиком, то в принципе из него можно получить произвольные и чистые звуки. Однако на практике это возможно лишь при условии точного знания момента инерции диффузора, параметров усилителя мощности и очень высокой (в идеале - бесконечной) точности управления сменой уровней. Поэтому описанный метод получил довольно ограниченное применение - для имитации выстрелов и взрывов в играх, простейшего синтеза речи или воспроизведения очень низкокачественной музыки.1.2. Преобразователи АЦП и ЦАПНаиболее естественным способом "подружить" цифровой компьютер с его "рваной" импульсной системой передачи информации, и непрерывный реальный мир является использование преобразователей аналоговых сигналов в цифровые и обратно, которые и называются аналогово-цифровыми и цифро-аналоговыми преобразователями - АЦП и ЦАП. Первый получает непрерывный аналоговый сигнал и постоянно выдает поток цифровых сигналов, второй действует наоборот. При этом говорят, что АЦП кодирует аналоговый сигнал, а ЦАП - декодирует его. В англоязычной литературе используются обозначения ADC и DAC, а также codec (coder/decoder).

Для преобразования в цифровой код аналоговый сигнал приходится подвергать дискретизации - разбиению на фиксированные участки во времени и на ряд фиксированных величин - по уровню. Каждый элементарный участок сигнала кодируется одним числом, величина которого пропорциональна среднему уровню сигнала на этом участке; такое число называется отсчетом. Числа появляются на выходе АЦП синхронно с изменением сигнала на входе; точность преобразования будет тем выше, чем выше частота следования отсчетов и чем больше используется фиксированных значений уровня. Частота следования отсчетов называется частотой дискретизации, а диапазон значений отсчета определяется разрядностью его двоичного представления.

Выбор частоты дискретизации важен в первую очередь для передачи частотного диапазона сигнала - при слишком низкой частоте звук становится глухим и неразборчивым. Чаще всего для хорошей передачи звука достаточно частоты, вдвое большей максимальной частоты исходного сигнала, хотя для достижения высокого качества используется трех - пятикратное превышение. А разрядность влияет прежде всего на количество искажений и шумов, вносимых в звук - при недостаточной точности отсчетов звук становится резким и неприятным, как внутри металлической трубы.

В популярных сейчас бытовых проигрывателях компакт-дисков используется частота дискретизации 44.1 кГц и отсчеты в 16 двоичных разрядов (65536 фиксированных уровней). В цифровых телефонных линиях применяется 8-разрядная (256 уровней) оцифровка на 8 кГц, а в студийных системах обработки звука - 24-разрядная (16777216 уровней) с частотой 96 кГц. Понятно, что с ростом частоты дискретизации и разрядности отсчета растет и объем данных, занимаемый звуком. Например, один компакт-диск вмещает 74 минуты стереозвучания, однако при записи на нем звука в монофоническом телефонном формате время непрерывного звучания составит более суток.

Самый простой ЦАП делается при помощи так называемой резистивной матрицы, когда все разряды двоичного числа, представляющего отсчет, через резисторы с различным сопротивлением сводятся в одну точку, причем сопротивление резисторов падает с ростом старшинства разрядов двоичного числа. Таким образом, изменение старшего разряда из 0 в 1 и наоборот будет вносить в линию максимальное изменение напряжения, а то же самое в младшем разряде - минимальное, и в случае 8 разрядов разница составит в точности 256 раз. При последовательном переборе всех чисел от 0 до 255 сигнал на выходе будет ступенчато изменяться от нуля до максимума - в 256 раз более плавно, чем простой цифровой переход от 0 к 1.

Лет десять назад на компьютерах IBM PC подобные 8-разрядные ЦАП делались при помощи параллельного порта принтера, имеющего как раз 8 линий данных, а при использовании дополнительных линий управления - и более качественный 12-разрядный. Выводя из программы в порт отсчеты с нужной скоростью, можно получить достаточно чистый звук, сравнимый по качеству с телефоном или дешевым магнитофоном.

Сейчас выпускается широчайший ассортимент звуковых адаптеров, или карт, для всех видов персональных компьютеров, а во многих моделях они являются компонентом системной платы. Современный звуковой адаптер содержит 16-разрядные стереофонические ЦАП и АЦП, работающие на частоте 5..48 кГц, которые передают и получают цифровой звук по каналам прямого доступа к памяти (DMA), без прямого участия программ, которым остается только вовремя забирать готовый оцифрованный фрагмент с АЦП, или подавать очередной цифровой фрагмент на ЦАП. Многие адаптеры могут записывать и воспроизводить звук одновременно, и программа при должном быстродействии может синхронно воспроизводить записанный звук в уже обработанном виде.

1.3. Процессоры DSP (Digital Signal Processing)В принципе DSP (Рис.3) нужен чтобы разгрузить центральный процессор (CPU) компьютера, да и вообще поменьше от него зависеть. Это делает работу платы устойчивей и позволяет избежать многих проблем совместимости с разными компьютерами.

Обработка цифрового звука - отдельная и весьма обширная область, которая, по 

Рис.3.

Процессор-DSP.сути, сводится к выполнению над числами-отсчетами тех же математических операций, которые в аналоговых устройствах выполняются электронными схемами. Например, усилению или ослаблению соответствует умножение или деление отсчетов, смешиванию двух сигналов - попарное сложение их отсчетов, фазовому сдвигу - задержка одних отсчетов относительно других. Единственная проблема состоит в том, что для выполнения сложных преобразований вроде фильтрования или модуляции требуется очень большое число элементарных числовых операций, которое рядовой компьютер не в состоянии делать синхронно с поступающим сигналом (как говорят - в реальном времени). В таких случаях либо применяются специальные цифровые сигнальные процессоры (DSP), либо обработка проводится основным процессором, но после предварительной записи звука в память или на жесткий диск, с воспроизведением оттуда после окончания обработки. Эта так называемая нелинейная обработка занимает больше времени и не позволяет тут же слышать результат, однако никак не ограничена по сложности и глубине воздействия на звук.

Частным случаем обработки является простой монтаж фонограмм, с которым постоянно сталкиваются операторы самых различных звуковых студий. То, что на обычном магнитофоне делается за минуты, часы и дни путем многократной перезаписи с ленты на ленту, даже на самом простом компьютере занимает считанные секунды или часы, благодаря полному визуальному контролю и точности вплоть до одного цифрового отсчета (при 44.1 кГц - 23 мкс).

Однако компьютер способен не только сохранить и воспроизвести однажды записанный в него звук, даже после цифровой обработки - он может создавать совершенно новые звуки при помощи аппаратного или программного синтеза. Простейший метод синтеза состоит в генерации серии отсчетов и циклическом их воспроизведении, в результате чего получается периодический (тональный) звуковой сигнал. Например, при воспроизведении значений функции sin (x), вычисленных с некоторым шагом в границах периода, получается чистый синусоидальный звуковой сигнал с мягким звучанием и четкой музыкальной высотой; при усложнении вычислительной функции звуковые колебания будут повторять ее график - с точностью до параметров оцифровки и погрешностей ЦАП. График можно и нарисовать прямо на экране при помощи мыши; при этом плавному графику будут соответствовать более мягкие, глухие звуки, а крутому - более резкие, яркие и звонкие.

Если взять какой-либо физический процесс, приводящий к появлению звука - разряд молнии, шум ветра или колебания скрипичных струн - то всегда можно разработать достаточно точную математическую модель этого явления, которая сведется к системе уравнений. Решая эти уравнения, можно получить график звуковых колебаний, возникающих в этом процессе, и затем воспроизвести их. Подобным образом был получен предполагаемый звук московского Царь-Колокола при помощи только его наружных измерений и структурного анализа сплава. Этот метод физического моделирования - самый точный для имитации реальных звуков, однако он же - самый трудоемкий и длительный.1.4. Частотная модуляция (FM)Другой, более простой, метод синтеза состоит в генерации синусоидального сигнала, частота которого управляется другими генераторами таких же сигналов - это разновидность частотной модуляции (англ. FM). В результате получается сигнал весьма сложной структуры, тембр которого может меняться в чрезвычайно широких пределах. При достаточном количестве управляющих друг другом генераторов (так называемых операторов) и точном подборе их параметров можно не только синтезировать необычные звуки, но и достаточно точно имитировать звуки природы и музыкальных инструментов. Однако на практике количество операторов не превышает десяти, и разумное управление даже таким небольшим их числом сильно затруднено. В большинстве звуковых адаптеров есть аппаратный FM-синтезатор с двумя или четырьмя операторами, при помощи которого можно синтезировать различные шумы, стуки и звоны, однако для имитации музыкальных инструментов он в силу своей простоты совершенно непригоден. 1.5. Таблично-волновой метод синтеза звуков (Wave table)Наиболее распространенный сейчас метод синтеза музыкальных звуков - таблично-волновой (wave table - WT). Он заключается в записи характерных фрагментов звучания реальных инструментов - начального и среднего по времени всего звучания ноты - и использования их для синтеза всех прочих звуков, издаваемых этими инструментами. Записанные фрагменты образуют основной тембр инструмента, а различные приемы обработки в реальном времени - изменение частоты, амплитуды, добавление гармоник или их фильтрация - придают тембру оттенки и динамику, свойственные различным приемам игры. Для повышения достоверности имитации берется больше образцов (англ. samples) звучания и выполняется больше работы по их обработке во время синтеза; в простейшем случае таблично-волновой метод вырождается в так называемый сэмплерный, при котором звучание инструмента записывается и воспроизводится целиком от начала до конца. Пионером в реализации WT-синтеза стала в 1984 году фирма Ensoning. Вскоре WT-синтезаторы стали производить такие известные фирмы, как Emu, Korg, Roland и Yamaha.

В качестве образцов звучаний в таблично-волновом и сэмплерном методах могут использоваться и результаты других методов синтеза или обработки. Например, многие модные сейчас "электронные" звучания получены путем сложной обработки различных ударных звуков, звука падения капель и даже скрежета ржавого железа. Путем намеренного огрубления, внесения искажений и дополнительных призвуков изначально мягкие звуки делаются более резкими и пронзительными (яркий пример - дисторшн или овердрайв для гитары), а изначально звонкие и яркие - смягчаются и выравниваются. При помощи даже сравнительно простых операций вроде суммирования сигналов с фазовым сдвигом можно получать совершенно не похожие на оригиналы звуки.

В последнее время все большее число звуковых адаптеров оснащается таблично-волновыми синтезаторами, возможности которых приближаются к профессиональным синтезаторам, используемым на музыкальной сцене. Все они содержат заранее заданный стандартный набор звуков мелодических и ударных инструментов, что позволяет им более-менее похоже исполнять одни и те же музыкальные произведения в нотной форме, а некоторые вдобавок позволяют использовать дополнительные - готовые или самостоятельно созданные - наборы звуков. Все синтезаторы предоставляют возможности по управлению артикуляцией, амплитудной и частотной модуляцией звучания, а наиболее развитые позволяют "на ходу" в широких пределах менять спектр звука, создавать эффекты реверберации, хорового звучания, вращения звука и т.п.

Управляются компьютерные синтезаторы, как и их "старшие братья", при помощи специального музыкального цифрового интерфейса MIDI. Внутри компьютера он представляет собой просто расширение нотной системы записи музыки с дополнительными командами для управления ее исполнением; вдобавок к этому большинство звуковых адаптеров содержит внешний MIDI-интерфейс, к которому можно подключить любое количество клавишных или модульных музыкальных синтезаторов, блоков обработки звука, датчиков, систем освещения и т.п. Компьютер в этом случае выступает в роли "мозгового центра", управляющего всем этим электронным зверинцем - как дома или на дискотеке, так и в профессиональной музыкальной, театральной студии или в концертном зале. В этих областях персональные компьютеры обосновались так же давно и прочно, как в лабораториях математиков и физиков; но самое главное состоит в том, что многие вещи, которые еще недавно были возможны лишь на очень сложной и дорогой аппаратуре, становятся доступны каждому, у кого есть современный персональный компьютер со звуковым адаптером - даже самым простым и дешевым. Достаточно научиться его правильно применять - и для вас уже не будет ничего принципиально невозможного в мире звука.

2. ВАЖНЕЙШИЕ ПАРАМЕТРЫ ЗВУКОВЫХ КАРТ2.1. ОбзорДля получения приемлемого качества записи компьютерной музыки необходимо пользоваться аппаратурой, способной его обеспечить. Число различных моделей звуковых карт составляет несколько десятков. А если учитывать еще и различные версии одних и тех же устройств, то при покупке карты приходится выбирать почти из сотни наименований. Не всякая звуковая карта способна на большее, чем озвучивание компьютерных игр. Конечно, принадлежность звуковой карты к продукции известных фирм является веской причиной того, что именно ее следует выбрать, это скажется в дальнейшем на надежности работы. К важнейшим параметрам относятся, в первую очередь:

> метод синтеза музыкальных звуков, реализованный в синтезаторе звуковой карты;

> разрядность АЦП/ЦАП звуковой карты;

> диапазон частот дискретизации;

> отношение сигнал/шум;

> динамический диапазон.

В современных звуковых картах по-прежнему применяется частотный синтез звуков (FM-синтез), но это делается в основном в целях обеспечения поддержки старых игр. Основным методом синтеза в настоящее время является волновой метод, или, как его еще называют, метод волновых таблиц (WT-синтез).

После первого же сравнения звучания MIDI-инструментов в FM и WT вариантах можно решить для себя, что FM-инструменты не стоят того, чтобы тратить на них время. Поэтому дальше речь пойдет только о WT-синтезаторах звуковых карт.2.2. Разрядность звуковой картыРазрядность звуковой карты существенно влияет на качество звука. Однако перед тем как перейти к более детальному обсуждению этого вопроса, следует пояснить, что речь идет о разрядности АЦП и ЦАП. Звуковые карты двойного назначения имеют в своем составе одновременно два функционально независимых узла: WT-синтезатор и устройство оцифровки звуковых сигналов, поступающих с внешнего источника. В каждый из узлов входит как минимум по одному ЦАП. В устройстве оцифровки, кроме того, имеется АЦП. В недавнем прошлом прямое указание на разрядность звуковой карты содержалось в ее названии в виде числа 16. Тем самым изготовители подчеркивали, что в их продукции качество цифрового звука как бы соответствует качеству звука лазерного проигрывателя, а не какой-нибудь там 8-битной карты. В дальнейшем 16 разрядов в ЦАП/АЦП стали нормой, а числа «32» или «64» в названиях стали означать совсем другое — максимальное количество одновременно звучащих голосов синтезатора звуковой карты (полифонию).

Некоторые высококачественные звуковые карты оборудованы 18-битными и даже 24-битными ЦАП/АЦП. Звуковые редакторы, работая с любыми звуковыми картами, в том числе и 16-битными, в процессе преобразований отсчетов сигнала используют арифметику с разрядностью двоичного представления числа, превышающей 16. Это позволяет уменьшить погрешность, накапливающуюся в процессе выполнения сложных алгоритмов обработки, которая в противном случае проявлялась бы как искажение звука.

Почему же столь важно наличие большого числа разрядов в устройствах ЦАП и АЦП? Дело заключается в том, что непрерывный (аналоговый) сигнал преобразуется в цифровой с некоторой погрешностью. Эта погрешность тем больше, чем меньше уровней квантования сигнала, т. е. чем дальше отстоят друг от друга допустимые значения квантованного сигнала. Число уровней квантования, в свою очередь, зависит от разрядности АЦП/ЦАП. Погрешности, возникающие в результате замены аналогового сигнала рядом квантованных по уровню отсчетов, можно рассматривать как его искажения, вызванные воздействием помехи. Эту помеху принято образно называть шумом квантования. Шум квантования представляет собой разность соответствующих значений реального и квантованного по уровню сигналов.

В случае превышения сигналом значения самого верхнего уровня квантования («старшего» кванта), а так же в случае, когда значение сигнала оказывается меньше нижнего уровня квантования («младшего» кванта), т. е. при ограничении сигнала, возникают искажения, более заметные по сравнению с шумом квантования. Для исключения искажений этого типа динамические диапазоны сигнала и АЦП должны соответствовать друг другу: значения сигнала должны располагаться между уровнями, соответствующими младшему и старшему квантам.

При записи внешних источников звука это достигается с помощью регулировки их уровня, кроме того, применяется сжатие (компрессия) динамического диапазона, о которой речь пойдет ниже.

В звуковых редакторах существует операция нормализации амплитуды сигнала. После ее применения наименьшее значение сигнала станет равным верхнему уровню младшего кванта, а наибольшее — нижнему уровню старшего. Таким образом, от ограничения сигнал сверху и снизу будет защищен промежутками, шириной в один квант. Разумеется, если при записи уже имело место ограничение амплитуды, то нормализация не избавит сигнал от искажения.

Приемлемым считается 16-разрядное представление сигнала, являющееся в настоящее время стандартным для воспроизведения звука, записанного в цифровой форме. С точки зрения снижения уровня шумов квантования дальнейшее увеличение разрядности АЦП нецелесообразно, т. к. уровень шумов, возникших по другим причинам (тепловые шумы, а также импульсные помехи, генерируемые элементами схем компьютера и распространяющиеся либо по цепям питания, либо в виде электромагнитных волн), все равно оказывается значительно выше, чем —96дБ.

Однако увеличение разрядности АЦП обусловлено еще одним фактором — стремлением расширить его динамический диапазон. Динамический диапазон это максимальное и минимальное значения сигнала, который может быть преобразован в цифровую форму без искажения и потери информации. Минимальный сигнал не может быть меньше, чем напряжение, соответствующее одному кванту, а максимальный — не должен превышать величины напряжения, соответствующего N квантам. Поэтому динамический диапазон для 16-разрядного АЦП составляет 96 дБ, для 18-разрядного— 108 дБ, для 20-разрядного— 120 дБ. Иными словами, для записи звучания некоторого источника звука, динамический диапазон которого составляет 120 дБ, требуется двадцатиразрядный АЦП. Если такого нет, а имеется только шестнадцатиразрядный, то динамический диапазон звука должен быть сжат на 24 дБ: со 120 дБ до 96 дБ.

В принципе, существуют методы и устройства сжатия (компрессии) динамического диапазона звука. Но то, что они проделывают со звуком, как ни смягчай формулировки, все равно искажает его. Именно поэтому так важно для оцифровки звука использовать АЦП, имеющий максимальное количество разрядов. Владелец 16-битной звуковой карты может убедиться в отсутствии особых причин для расстройства: динамические диапазоны большинства источников звука вполне соответствуют динамическому диапазону такой звуковой карты. Кроме того, 18-битное или 20-битное представление сигнала применяется только на этапе обработки звука. Конечная аудиопродукция (CD и DAT) реализуется в 16-битном формате.

После того как мы немного разобрались с разрядностью звуковой карты, пришло время поговорить о частоте дискретизации.2.3. Частота дискретизации В процессе работы АЦП происходит не только квантование сигнала по уровню, но и его дискретизация во времени. Сигнал, непрерывно изменяющийся во времени, заменяют рядом отсчетов этого сигнала. Обычно отсчеты сигнала берутся через одинаковые промежутки времени. Интуитивно ясно, что если отсчеты отстоят друг от друга на слишком большие интервалы, то при дискретизации может произойти потеря информации: если важные изменения сигнала произойдут не в те моменты, когда были взяты отсчеты, они могут быть «пропущены» преобразователем. Получается, что отсчеты следует брать с максимальной частотой. Естественным пределом служит быстродействие преобразователя. Кроме того, чем больше отсчетов приходится на единицу времени, тем больший размер памяти необходим для хранения информации.

Проблема отыскания разумного компромисса между частотой взятия отсчетов сигнала и расходованием ресурсов трактов преобразования и передачи информации возникла задолго до того, как на свет появились первые звуковые карты. В результате исследований было сформулировано правило, которое в отечественной научно-технической литературе принято называть теоремой Котельникова [Котельников В.А. Теория потенциальной помехоустойчивости.— М., Госэнергоиздат, 1956].

Если поставить перед собой задачу обойтись без формул и использования серьезных научных терминов типа «система ортогональных функций», то суть теоремы Котельникова можно объяснить следующим образом. Сигнал, представленный последовательностью дискретных отсчетов, можно вновь преобразовать в исходный (непрерывный) вид без потери информации только в том случае, если интервал между соседними отсчетами не превышает половины периода самого высокочастотного колебания, содержащегося в спектре сигнала.

Из сказанного следует, что восстановить без искажений можно только сигнал, спектр которого ограничен некоторой частотой F. Теоретически все реальные сигналы имеют бесконечные спектры. Для того чтобы при дискретизации избежать искажений, вызванных этим обстоятельством, сигнал вначале пропускают через фильтр, подавляющий в нем все частоты, которые превышают заданное значение Fmax и лишь затем производят дискретизацию. Согласно теореме Котельникова частота, с которой следует брать отсчеты, составляет Fд = 2Fmax Теорема получена для идеализированных условий. Если учесть некоторые реальные свойства сигналов и устройств преобразования, то частоту дискретизации следует выбирать с некоторым запасом по сравнению со значением, полученным из предыдущего выражения.

В стандарте CD частота дискретизации равна 44,1 кГц. Для цифровых звуковых магнитофонов стандартная частота дискретизации составляет 48 кГц. Звуковые карты, как правило, способны работать в широком диапазоне частот дискретизации. Важно, чтобы максимальное значение частоты дискретизации было не менее 44,1 кГц, в противном случае качества звучания CD достичь не удастся. Следует различать частоту дискретизации в АЦП/ЦАП, предназначенных для оцифровки внешних сигналов, и частоту дискретизации в ЦАП WT-синтезатора звуковой карты. Значение последней может не совпадать с указанными стандартными значениями.2.4. Дуплекс и наличие цифрового выходаДовольно часто изготовители, доказывая преимущество своих звуковых карт, подчеркивают еще два обстоятельства:

> наличие у звуковой карты выхода, на котором информация представлена в цифровой форме;

> наличие дуплексного режима прямого доступа к памяти.

Действительно, если звуковая карта имеет выход, на который сигналы поступают не в аналоговой (после ЦАП), а в цифровой форме, то это позволяет уменьшить искажения, связанные с дополнительными преобразованиями при дальнейшей цифровой обработке сигнала вне звуковой карты. Это становится актуальным при записи композиции на CD или DAT.

Так, например, в звуковых картах SB AWE32, AWE64 имеется разъем интерфейса S/PDIF (Sony/Philips Digital Interface Format - формат цифрового интерфейса фирм Sony и Philips), который предназначен для передачи звуковых сигналов от WT-синтезатора в цифровой форме, Но не следует забывать, что S/PDIF представляет собой лишь упрощенный вариант профессионального студийного интерфейса AES/EBU (Audio Engineers Society/European Broadcast Union), разработанного Европейским радиовещательным союзом.

Для разгрузки центрального процессора работа АЦП/ЦАП звуковых карт организуется в режиме прямого доступа к памяти [Direct Memory Access — DMA). Полный дуплекс [Full-Duplex) означает способность звуковой карты одновременно воспроизводить и записывать звук. Для этого требуется поддержка звуковой картой одновременно двух каналов DMA. Для звуковых карт семейства AWE возможна организация одного 16-ти разрядного и одного 8-ми разрядного каналов. По одному из них возможна запись, а по другому воспроизведение. Это ограничение затрудняет работу с программами многоканального монтажа и сведения, а также подготовку материала для записи CD на том же компьютере, на котором установлена звуковая карта.3. ОСНОВНЫЕ ТЕХНОЛОГИИ ЗВУКА НА КОМПЬЮТЕРЕ3.1. Что такое MIDI-технологияПоявившаяся в начале восьмидесятых годов MIDI-технология вскоре получила новый импульс в связи с широким распространением персональных компьютеров.

Миди файл представляет собой список ссылок на звуки в WT синтезаторе звуковой карты, и список команд, таких как тональность, продолжительность, скорость звука и т.д.

Основными недостатками MIDI считаются низкая скорость передачи информации, узкий диапазон изменения параметров и ограниченная сфера применения. В то время как одно из главных ее достоинств — небольшой объем файлов — в последнее время уже потеряло решающее значение: цены на пишущие CD-приводы и “болванки” для записи становятся все доступнее. А с появлением широких возможностей по использованию при создании музыки готовых, заранее записанных музыкальных фраз с CD-качеством (всякие “лупы”, “сэмплы” и т.п.) многие “артисты” вообще решили, что таких проблем, как обучение нотной грамоте, владению инструментом, MIDI-технология и пр. для них не существует.

Однако если принять во внимание, что MIDI-технология изначально предназначалась не для записи или воспроизведения музыки, а только лишь для управления на некоем расстоянии (в пространстве и времени) синтезаторами, звуковыми модулями и прочими “железными” ящиками, то многие претензии к ней будут сняты. Это все равно, что упрекать виолончель за плохое звучание во флейтовом регистре.

Итак, чтобы закончить мысль о достоинствах и недостатках MIDI, сделаем несколько предварительных выводов. Во-первых, MIDI-технология остаётся ведущей в компьютерной и аппаратно-студийной области. Во-вторых, она совершенствуется, учитывает новые требования и новые технические возможности. Об этом говорит последовательное появление стандартов GM, GS и XG. В-третьих, идея оказалась настолько удачной, что MIDI-технология вовлекает в сферу своего влияния все новые и новые области, для которых она и не предназначалась, — управление магнитофонами, устройствами звуковой обработки, микшерскими пультами (не говоря уже о мультимедийных продуктах и компьютерных играх).

В музыкальном обучении качество звучания уже не играет столь значительной роли, как в звукозаписи или концертной деятельности. Зато возможность воспроизводить изучаемый опус в любом темпе и (тут вокалисты и духовики должны затаить дыхание) в любой тональности делают MIDI-технологию незаменимой в музыкальных школах и училищах. Смешно сказать, но для этого достаточен 286-й компьютер со звуковой картой за 40 долл. Я думаю, недалеко то время, когда некий аппарат, подобными характеристиками станет распространенней метронома. А вместо толстых нотных сборников люди будут покупать дискеты с этюдами Черни или Шопена.3.1.1. Описание MIDI-интерфейса.MIDI — Musical Instrument Digital Interface — компьютерный протокол (иногда говорят — язык), предназначенный для связи одного музыкального устройства с другим. Оба эти устройства должны обладать любого вида микропроцессором или программой, которые поддерживают MIDI-протокол.

Рис.4.

Пример использования MIDI.Пример использования MIDI: На синтезаторе вы можете играть ноты, выбирать новый тембр инструмента, менять громкость, но сам он сейчас не звучит. Все перечисленные действия передаются по MIDI-кабелю (красного цвета) в виде команд на звуковой модуль. Последний выполняет все эти действия (звучат сыгранные ноты, меняется тембр и громкость) и выдает звук через обычные динамики. Красная стрелка показывает направление потока MIDI-сообщений (Рис.4).

Цель MIDI — управлять работой музыкального устройства не с его панели или клавиатуры, а на расстоянии (по MIDI-кабелю) — с другого устройства. Для этого второе устройство передает первому последовательность управляющих команд, которые называются MIDI-сообщениями.

www.coolreferat.com

Реферат на тему Мультимедиа - стр.11

рованный язык, однако приложения можно разрабатывать и без применения программирования. Управляющие элементы на экране отображаются в виде гипертекста и графических гиперссылок. Formula Graphics имеет программируемую двух- и трехмерную графику и используется также для разработки приложений с анимацией и игровых программ. Разработанные мультимедиа-приложения могут быть проиграны с гибкого диска, CD-ROM, непосредственно через Интернет или внедрены в Web-страницу. . HyperMethod Российская авторская система HyperMethod работает под Windows 95/98/NT. Она позволяет создавать самые разнообразные мультимедиа-приложения и по своим функциональным возможностям приближается к программе Macromedia Director. Поддерживает распространенные форматы звуковых и видеофайлов, а также возможность контролируемой покадровой анимации. Обеспечивает быстрое создание гипертекстовых приложений, а совместимость с HTML позволяет создавать приложения для Интернета. Имеет собственный язык сценариев. Новые возможности, добавленные в последней версии, делают ее привлекательной как для новичков, так и для профессионалов. ЭТАПЫ РАЗРАБОТКИ ПРОЕКТА План, по которому следует действовать при создания мультимедийного продукта с помощью программных средств. I этап - выбор темы и описание проблемы; II этап - анализ объекта; III этап - разработка сценария и синтез модели; IV этап - форма представления информации и выбор программных продуктов; V этап - синтез компьютерной модели объекта Процесс создания мультимедийного продукта Процесс создания мультимедиа-информационных систем может рассматриваться как состоящий из двух основных фаз: • фазы проектирования • фазы реализации Фаза проектирования 1. Проектирование концептуальной модели сценария для мультимедиа- информационной системы. 2. Проектирование медиа-зависимых представлений информации. 3. Проектирование информационных структур. 4. Проектирование медиа-комбинаций и синхронизаций (звук - видео) 5. Проектирование структур узел-связь (ссылки) 6. Проектирование информационных топологий (общая среда) 7. Проектирование интерфейса пользователя 8. Проектирование пользовательского интерфейса Проектирование методов навигации Фаза реализации Реализация должна сопровождаться инструментами и методами создания. 1. Первичная интеграция a) Создание фрагментов b) Создание структуры 2. Полная интеграция мультимедиа-продукта монтаж, т.е. соединение всех элементов в единый продукт, в соответствии с определенной структурой и заданными средствами навигации. 3. Производство мультимедиа-продукта ( определяется носителем ) 4. Распространение мультимедиа-продукта МУЛЬТИМЕДИЙНЫЙ КОМПЬЮТЕР «Мультимедийный компьютер» – это такой компьютер, на котором мультимедийные приложения могут в полной мере реализовать все свои возможности. Мультимедийный компьютер должен уметь многое: отображать на экране монитора графическую и видео-информацию, анимацию, воспроизводить с высоким качеством различное звуковое сопровождение, музыку, в ом числе и с музыкальных компакт-дисков, и многое другое… Аппаратный состав мультимедийного компьютера Обычно под набором комплектующих, объединенных понятием «мультимедийный компьютер», понимают следующий их состав: . Корпус с блоком питания . Системная (материнская) плата . Центральный процессор . Оперативная память . Видеоадаптер . Монитор . Накопитель на жестких дисках . Клавиатура . Мышь . Дисковод CD-ROM . Дисковод гибких дисков . Звуковая карта . Дисковод DVD . Модем . Телевизионный и УКВ тюнер Не так давно корпорация Intel и Microsoft при участии других грандов компьютерной индустрии подготовили спецификацию компьютера PC 99. Этот стандарт определяет типы систем персональных компьютеров, предназначенных для выполнения определенных функций (см. Приложение). Рассмотрим класс «Entertainment PC» (развлекательный или мультимедийный компьютер). С точки зрения этапов развития аппаратной части компьютера наибольший интерес вызывают следующие требования: . Полный отказ от интерфейса шины ISA . Все компоненты системной (материнской) платы должны соответствовать спецификации Plug-and-Play . Порты COM и LPT рекомендуется использовать только для подключения принтеров . Интерфейсы IDE/ATA и ATAPI для внешних накопителей подлежат замене на IEEE1394 . Для модемов рекомендуется интерфейс USB . Для сканеров и других устройств ввода изображений рекомендуется использовать интерфейсы SCSI или IEEE1394 . Для звуковых карт возможны интерфейсы USB или PCI . Графические адаптеры допустимы только с интерфейсом AGP или PCI . Подключать мышь и клавиатуру рекомендуется через интерфейс USB или PS/2 Впервые в спецификации отражены требования к разрешению и другим параметрам мониторов. Требования, приводимые в PC 2001, направлены на создание компьютеров под управлением Windows Me, Windows 2000 Professional, Window XP предназначенных для работы с типичными Windows-приложениями. Естественно, речь идет не о базовых аппаратных требованиях, предъявляемых операционными системами, а об оптимальных. Впервые PC 2002 не содержит классических рекомендаций — указываются только минимальные требования! Все то, что было из лучших побуждений рекомендовано в PC 99, либо стало требованием в PC 2001, либо безжалостно удалено. Основная идея PC 2001 — сделать стандартом де-юре требования инициативы Intel Easy PC, направленной на превращение компьютера в несложный, надежный и стабильно работающий бытовой прибор. «Лейтмотив» Easy PC — отказ от шины ISA, быстрая загрузка и интеллектуальное управление питанием. Безусловно, это далеко не полный список идей Easy PC, однако он дает довольно четкое представление. Особенность PC 2001 — отсутствие жесткого разделения ПК на классы. В частности из текста исключены упоминания об Office PC, Consumer PC и Entertainment PC, которые были четко специфицированы в PC 99. Теперь все, что не является Workstation (рабочей станцией) и Mobile (ноутбуком), попадает под категорию PC System. В PC 2001 происходит полный отказ от шины ISA, а также признаются устаревшими ее производные – PS/2, COM, LPT, FDD. Последний пункт означает, сто 3,5-дюймовые дисководы флоппи-дисков либо исчезнут как класс, либо перейдут на новый интерфейс, вероятнее всего на USB. Причем сам USB должен эволюционировать до уровня спецификации 2.0, где скорость передачи данных достигает 480 Мбит/с. Программный состав мультимедийного компьютера Даже самый современный компьютер не будет работать без программного обеспечения. Как уже говорилось, мультимедийное программное обеспечение можно условно разделить на прикладную часть (мультимедиа-энциклопедии, компьютерные инры, аудио и видеоплееры и т.п.) и специализированную, к которой можно отнести программы, предназначенные для создания прикладных программ (профессиональные графические редакторы, редакторы 3D-графики, звуковые редакторы и т.д.) Рассмотрим основные части программного обеспечения мультимедиа-компьютера: . Операционная система . Прикладные мультимедийные приложения Операционная система За последние несколько лет мультимедийные приложения стали одним из наиболее быстро растущих сегментов рынка программного обеспечения. Большинство современных компьютеров продаются с установленными приводами CD- ROM, звуковыми картами и мощными графическими адаптерами. Чтобы иметь возможность воспользоваться всеми этими аппаратными средствами поддержки мультимедиа на компьютере должна быть установлена операционная система, поддерживающая все эти устройства. Наиболее ярким примером является ОС Microsoft Windows 98 или Windows Millenium. Архитектурные решения в мультимедийном расширении Windows 9х позволяют воспроизводить оцифрованное видео, аудио, MIDI. Windows 9x – это 32-разрядная операционная система с поддержкой приоритетной многозадачности и многопоточности. Благодаря этому достигается более качественное воспроизведение информации от различных источников, а большое число встроенных драйверов мультимедийных устройств в значительной степени облегчают работу на современных компьютерах различной конфигурации. Прикладные мультимедийные приложения К прикладным можно отнести мультимедийные приложения, с которыми непосредственно работает обычный пользователь мультимедийного компьютера. В первую очередь это компьютерные игры. Также сюда можно отнести мультимедиа- энциклопедии, видео и аудиоплееры, программы для создания и просмотра презентаций и многие другие. Таким образом, мультимедийный компьютер – это компьютер, обеспечивающий полнофункциональную работу мультимедийных программ, то есть имеющий возможность воспроизводить различные звуки, музыку и видеоданные, просматривать графические изображения. ЗАКЛЮЧЕНИЕ На сегодняшний день мультимедийные технологии прочно укрепились во многих сферах деятельности. Множество программистов, сц
скачать работу
Мультимедиа

referat.resurs.kz

Реферат Средства мультимедиа

ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ

ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кибернетический факультет

Кафедра Вычислительной Техники

Реферат на тему:

СРЕДСТВА МУЛЬТИМЕДИА

Дисциплина:

Организация ЭВМ и систем

Выполнил:

студент группы

ЭВМ-94-1

Островский М.С.

1996 г.

мультимедиа — это интерактивные системы, обеспечивающие ра­боту с непод­вижными изображениями и движущимся видео, анимированной компьютерной графикой и текстом, речью и высококачественным звуком.

Появление систем мультимедиа, безусловно, производит революционные изменения в таких областях, как образование, компьютерный тренинг, во многих сферах профессиональной деятельности, науки, искусства, в компьютерных играх и т.д.

Появление систем мультимедиа подготовлено как с требованиями прак­тики, так и с развитием тео­рии. Однако, резкий рывок в этом направлении, произошедший в этом направлении за последние несколько лет, обеспечен прежде всего развитием технических и системных средств. Это и прогресс в развитии ПЭВМ: резко возросшие объем памяти, быстродействие, графиче­ские возможности, характеристики внешней памяти, и достижения в об­ласти видеотехники, лазерных дисков — аналоговых и CD-ROM, а также их массовое внедрение. Важную роль сыграла так же разработка методов быстрого и эффективного сжатия / развертки данных.

Современный мультимедиа–ПК в полном “вооружении” напоминает домашний стереофонический Hi–Fi комплекс, объединенный с дисплеем–те­левизором. Он укомплектован активными стереофоническими колонками, микрофоном и дисководом для оптических компакт–дисков CD–ROM (CD — Compact Disc, компакт–диск; ROM — Read only Memory, память только для считывания). Кроме того, внутри компьютера укрыто новое для ПК устройство — аудиоадаптер, по­зволивший перейти к прослушиванию чистых стереофонических звуков че­рез акустические колонки с встроенными усилителями.

Рассмотрим некоторые технические вопросы, касающиеся мультимедиа. Основная проблема, из которой “растут” все основные — совместная обработка разнородных данных: цифровых и аналоговых, “живого”видео и неподвижных изображений и т.п. В компьютере все дан­ные хранятся в цифровой форме, в то время как теле-, видео- и большин­ство аудиоаппаратуры имеет дело с аналоговым сигналом. Однако выходные устройства компьютера — мониторы и динамики имеют анало­говый выход. Поэтому простейший и наиболее дешевый путь построения первых систем мультимедиа состоял в стыковке разнородной аппаратуры с компьютером, предоставлении компьютеру возможностей управления этими устройствами, совмещении выходных сигналов компьютера и видео- и аудиоустройств и обеспечении их нормальной совместной работы. Даль­нейшее развитие мультимедиа происходит в направлении объедине­ния разнородных типов данных в цифровой форме на одной среде-носителе, в рамках одной системы.

ВИДЕО

При смешении сигналов основные проблемы возникают с видео–изоб­ражением. Различные ТВ–стандарты, существующие в мире (NTSC, PAL, SE­CAM), применение разных мониторов и видеоконтроллеров диктует разнообразие подходов в разрешении возникающих проблем. Однако в лю­бом случае требуется синхронизация двух изображений, для чего служит устройствогенлок (genlock).С его помощью на экране монитора могут быть совмещены изображение, сгенерированное компьютером (анимированная или неподвижная графика, текст, титры), и “живое” видео.Если добавить еще одно устройство — кодер (encoder), компьютерное изо­бражение может быть преобразовано в форму ТВ–сигнала и записано на ви­деопленку. "Настольные видео–студии”, являющиеся одним из примеров применения систем мультимедиа, позволяют готовить совмещенные видео–компьютерные клипы, титры для видеофильмов, помогают при монтаже кинофильмов.

Системы такого рода не позволяют как-то обрабатывать или редак­тировать само аналоговое изображение. Для того, чтобы это стало воз­можным, его необходимо оцифровать и ввести в память компьютера. Для этого служат так называемые платы захвата (capture board, frame grab­bers). Оцифровка аналоговых сигналов порождает огромные массивы дан­ных. Так, кадр стандарта NTSC (525 строк), преобразованный платой типа Truevision, превращается в компьютерное изображение с разрешением 512x482 пиксель. Если каждая точка представлена 8 битами, то для хранения всей картинки требуется около 250 Кбайт памяти, причем падает качество изображения, так как обеспечивается только 256 различных цветов. Считается, что для адекватной передачи исходного изображения требуется 16 млн. оттенков, поэтому используется 24-битовый формат хранения цветной картинки, а необходимый размер памяти возрастает. Оцифрованный кадр может затем быть изменен, отредактирован обычным графическим редактором, могут быть убраны или добавлены детали, изменены цвета, масштабы, добавлены спецэффекты, типа мозаики, инверсии и т.д. Естественно, интерактивная экранная обработка возможна лишь в пределах разрешения, обеспечиваемого данным конкретным видеоадаптером. Обработанные кадры могут быть записаны на диск в каком–либо графическом формате и затем использоваться в качестве реалистического неподвижного фона для компьютерной анимации. Возможна также покадровая обработка исходного изображения и вывод обратно на видеопленку для создания псевдореалистического мультфильма.

Запись последовательности кадров в цифровом виде требует от компьютера больших объемов внешней памяти: частота кадров в американском ТВ–стандарте NTSC — 30кадров/с (PAL, SECAM — 25 кадров/с), так что для запоминания одной секунды полноцветного полноэкранного видео требуется 20–30 Мбайт, а оптический диск емкостью 600 Мбайт вместит менее полминуты изображения. Но последовательность кадров недостаточно только запомнить, ее надо еще вывести на экран в соответствующем темпе. Подобной скоростью передачи информации — около 30 Мбайт / с — не обладает ни одно из существующих внешних запоминающих устройств. Чтобы выводить на экран компьютера оцифрованное видео, приходится идти на уменьшение объема передаваемых данных, (вывод уменьшенного изображения в небольшом окне, снижение частоты кадровой развертки до 10–15 кадров / с, уменьшение числа бит / пиксель), что, в свою очередь приводит к ухудшению качества изображения.

Более радикально обе проблемы — памяти и пропускной способности — решаются с помощью методов сжатия / развертки данных, которые позволяют сжимать информацию перед записью на внешнее устройство, а затем считывать и разворачивать в реальном режиме времени при выводе на экран. Так, для движущихся видео–изображений существующие адаптивные разностные алгоритмы могут сжимать данные с коэффициентом порядка 100:1— 160:1, что позволяет разместить на CD–ROM около часа полноценного озвученного видео. Работа этих алгоритмов основана на том, что обычно последующий кадр отличается от предыдущего лишь некоторыми деталями, поэтому, взяв какой–то кадр за базовый, для следующих можно хранить только относительные изменения. При значительных изменениях кадра, например, при монтажной склейке, наезде или панорамировании камеры, автоматически выбирается новый базовый кадр. Для статических изображений коэффициент сжатия, естественно, ниже — порядка 20–30:1. Для аудиоданных применяют свои методы компрессии.

Существует симметричная и асимметричная схемы сжатия данных. При асимметричной схеме информация сжимается в автономном режиме (т.е. одна секунда исходного видео сжимается в течение нескольких секунд или даже минут мощными параллельными компьютерами и помещается на внешний носитель, например CD–ROM. На машинах пользователей устанавливаются сравнительно дешевые платы декодирования, обеспечивающие воспроизведение информации мультимедиа в реальном времени. Использование такой схемы увеличивает коэффициент сжатия, улучшает качество изображения, однако пользователь лишен возможности разрабатывать собственные продукты мультимедиа. При симметричной схеме сжатие и развертка происходят в реальном времени на машине пользователя, благодаря чему за персональными компьютерами и в этом случае сохраняется их основополагающее достоинство: с их помощью любой пользователь имеет возможность производить собственную продукцию, в том числе и коммерческую, не выходя из дома. Правда, при симметричной схеме несколько падает качество изображения: появляются “смазанные” цвета, картинка как бы расфокусируется. С развитием технологии эта проблема постепенно уходит, однако пока иногда предпочитают смешанную схему, при которой разработчик продукта готовит, отлаживает и испытывает продукт мультимедиа на своей машине с симметричной схемой, а затем “полуфабрикат” в стандартном формате отсылается на фирму, где его подвергают сжатию на мощном компьютере, с использованием более совершенных алгоритмов и помещают результирующий продукт на CD–ROM.

В настоящее время целый ряд фирм активно ведет разработку алгоритмов сжатия видеоинформации, стремясь достичь коэффициента сжатия порядка 200:1 и выше. В основе наиболее эффективных алгоритмов лежат различные адаптивные варианты: DCT (Discrete Cosine Transform, дискретное косинус–преобразование), DPCM (Differential Pulse Code Modulation, разностная импульсно–кодовая модуляция), а также фрактальные методы. Алгоритмы реализуются аппаратно — в виде специальных микросхем, или “firmware” — записанной в ПЗУ программы, либо чисто программно.

Разностные алгоритмы сжатия применимы не только к видео–изображениям, но и к компьютерной графике, что дает возможность применять на обычных персональных компьютерах новый для них вид анимации, а именно покадровую запись рисованных мультфильмов большой продолжительности. Эти мультфильмы могут хранится на диске, а при воспроизведении считываться, распаковываться и выдаваться на экран в реальном времени, обеспечивая те же необходимые для плавного изображения 25–30 кадров в секунду.

При использовании специальных видео–адаптеров (видеобластеров) мультимедиа–ПК становятся центром бытовой видео–системы, конкурирующей с самым совершенным телевизором.

Новейшие видеоадаптеры имеют средства связи с источниками телевизионных сигналов и встроенные системы захвата кадра (компрессии / декомпрессии видеосигналов) в реальном масштабе времени, т.е. практически мгновенно. Видеоадаптеры имеют быструю видеопамятьот 2 до 4 Мбайт и специальные графические ускорители процессоры. Это позволяет получать до 30–50 кадров в секунду и обеспечить вывод подвижных полноэкранных изображений.

АУДИО

Любой мультимедиа–ПК имеет в своем составе плату–аудиоадаптер. Для чего она нужна? С легкой руки фирмы Creative Labs (Сингапур), назвавшей свои первые аудиоадаптеры звонким словом Sound Blaster, эти устройства часто именуются “саундбластерами”. Аудиоадаптер дал компьютеру не только стереофоническое звучание, но и возможность записи на внешние носители звуковых сигналов. Как уже было сказано ранее, дисковые накопители ПК совсем не подходят для записи обычных (аналоговых) звуковых сигналов, так как рассчитаны для записи только цифровых сигналов, которые практически не искажаются при их передаче по линиям связи.

Аудиоадаптер имеет аналого–цифровой преобразователь (АЦП), периодически определяющий уровень звукового сигнала и превращающий этот отсчет в цифровой код. Он и записывается на внешний носитель уже как цифровой сигнал.

Цифровые выборки реального звукового сигнала хранятся в памяти компьютера (например, в виде WAV–файлов). Считанный с диска цифровой сигнал подается на цифро–аналоговый преобразователь (ЦАП), который преобразует цифровые сигналы в аналоговые. После фильтрации их можно усилить и подать на акустические колонки для воспроизведения. Важными параметрами аудиоадаптера являются частота квантования звуковых сигналов и разрядность квантования.

Частоты квантования показывают, сколько раз в секунду берутся выборки сигнала для преобразования в цифровой код. Обычно они лежат в пределах от 4–5 КГц до 45–48 КГц.

Разрядность квантования характеризует число ступеней квантования и изменяется степенью числа 2. Так, 8–разрядные аудиоадаптеры имеют 28=256 степеней, что явно недостаточно для высококачественного кодирования звуковых сигналов. Поэтому сейчас применяются в основном 16-разрядные аудиоадаптеры, имеющие 216 =65536 ступеней квантования — как у звукового компакт–диска.

Таблица 1.

Частотный диапазон

Вид сигнала

Частота квантования

400 – 3500 Гц

Речь (едва разборчива)

5.5 КГц

250 – 5500 Гц

Речь (среднее качество)

11.025 КГц

40 – 10000 Гц

Качество звучания УКВ–приемника

22.040 КГц

20 – 20000 Гц

Звук высокого качества

44.100 КГц

Другой способ воспроизведения звука заключается в его синтезе. При поступлении на синтезатор некоторой управляющей информации по ней формируется соответствующий выходной сигнал. Современные аудиоадаптеры синтезируют музыкальные звуки двумя способами: методом частотной модуляции FM (Frequency Modulation)и с помощью волнового синтеза (выбирая звуки из таблицы звуков, Wave Table). Второй способ обеспечивает более натуральное звучание.

Частотный синтез (FM) появился в 1974 году (PC–Speaker). В 1985 году появился AdLib, который, используя частотную модуляцию, был способен играть музыку. Новая звуковая карта SoundBlaster уже могла записывать и воспроизводить звук. Стандартный FM–синтез имеет средние звуковые характеристики, поэтому на картах устанавливаются сложные системы фильтров против возможных звуковых помех.

Суть технологии WT–синтеза состоит в следующем. На самой звуковой карте устанавливается модуль ПЗУ с “зашитыми” в него образцами звучания настоящих музыкальных инструментов — сэмплами, а WT–процессор с помощью специальных алгоритмов даже по одному тону инструмента воспроизводит все его остальные звуки. Кроме того многие производители оснащают свои звуковые карты модуляторами ОЗУ, так что есть возможность не только записывать произвольные сэмплы, но и подгружать новые инструменты.

Кстати, управляющие команды для синтеза звука могут поступать на звуковую карту не только от компьютера, но и от другого, например, MIDI (Musical Instruments Digital Interface)устройства. Собственно MIDI определяет протокол передачи команд по стандартному интерфейсу. MIDI–сообщение содержит ссылки на ноты, а не запись музыки как таковой. В частности, когда звуковая карта получает подобное сообщение, оно расшифровывается (какие ноты каких инструментов должны звучать) и отрабатывается на синтезаторе. В свою очередь компьютер может через MIDI управлять различными“интеллектуальными” музыкальными инструментами с соответствующим интерфейсом.

Для электронных синтезаторов обычно указывается число одновременно звучащих инструментов и их общее число (от 20 до 32). Также важна и программная совместимость аудиоадаптера с типовыми звуковыми платформами (SoundBlaster, Roland, AdLib, Microsoft Sound System, Gravis Ultrasoundи др.).

В качестве примера рассмотрим состав узлов одного из мощных аудиоадаптеров — SoundBlaster AWE 32 Value. Он содержит два микрофонных малошумящих усилителя с автоматической регулировкой усиления для сигналов, поступающих от микрофона, два линейных усилителя для сигналов, поступающих с линии, с проигрывателя звуковых дисков или музыкального синтезатора. Кроме того, сюда входят программно–управляемый электронный микшер, обеспечивающий смешение сигналов от различных источников и регулировку их уровня и стереобаланса, 20-голосый синтезатор музыкальных звуков частотной модуляции FM, программно управляемый волновой (табличный) синтезатор музыкальных звуков и звуковых эффектов (16 каналов, 32 голоса, 128 инструментов), аналого–цифровой 16-разрядный преобразователь для превращения аналогового сигнала с выхода микшера в цифровой сигнал, систему сжатия цифровой информации с возможностью применения расширенного звукового процессора ASP. Наконец, аудиоадаптер имеет цифро–аналоговый преобразователь (ЦАП) для превращения цифровых сигналов, несущих информацию о звуке, в аналоговый сигнал, адаптивный электронный фильтр на выходе ЦАП, снижающий помехи от квантования сигнала, двухканальный усилитель мощности по 4 Вт на канал с ручным и программно–управляемым регулятором громкости и MIDI–разъем для подключения музыкальных инструментов.

Как видно из этого перечня, аудиоадаптер — достаточно сложное техническое устройство, построенное на основе использования последних достижений в аналоговой и цифровой аудиотехнике.

В новейшие звуковые карты входит цифровой сигнальный процессор DSP (Digital Signal Processor)или расширенный сигнальный процессор ASP (Advanced Signal Processor). Они используют совершенные алгоритмы для цифровой компрессии и декомпрессии звуковых сигналов, для расширения базы стереозвука, создания эха и обеспечения объемного (квадрофонического) звучания. Программа поддержки ASP QSound поставляетсябесплатно фирмой Intel на CD-ROM “Software Developer CD”. Важно отметить, что процессор ASP используется при обычных двухканальных стереофонических записи и воспроизведении звука. Его применение не загружает акустические тракты мультимедиа компьютеров.

НОСИТЕЛИ ИНФОРМАЦИИ

Важной проблемой мультимедиа является обеспечение адекватных средств доставки, распространения мультимедиа–информации. Носители должны вмещать огромные объемы разнородной информации, позволять быстрый доступ к отдельным ее компонентам, качественное их воспроизведение, и при этом быть достаточно дешевым, компактным и надежным. Эта проблема получила достойное решение лишь с появлением оптических дисков различных типов. В первых системах мультимедиа были использованы аналоговые диски — их обычно называют “видеодисками”. Диаметр этих дисков 12 или 8 дюймов. Известны 12–дюймовые диски стандарта LV (Laser Vision), поддерживаемого Sony, Philips и Pioneer.

Информация записывается на лазерный диск по спирали, каждый виток этой спирали называется дорожкой. Существуют 2 способа записи информации на лазерные диски — CAV (Constant Angular Velocity, с постоянной угловой скоростью) и CLV (Constant Linear Velocity, с постоянной линейной скоростью). При записи CLV диски вмещают по 1 часу видео на каждой из сторон (диски CLV называют также “долгоиграющими”), однако их интерактивные возможности ограничены, поэтому они в системах мультимедиа используются редко, чаще применяются при записи фильмов.

Диск CAV вмещает на каждой дорожке один видеокадр (точнее, два полукадра, содержащие четные и нечетные строки кадра — телевизор работает в интерлейсном режиме, попеременно высвечивая четные и нечетные строки каждого кадра). Диск вращается с постоянной скоростью 30 об / с, обеспечивая необходимые для NTSC 30 кадров / с. Каждая из сторон диска имеет 54000 дорожек, т.е. вмещает 30 минут видео NTSC (диски для PAL — 37 минут). Каждый кадр имеет свой номер, или адрес, по номеру возможен прямой доступ к любому кадру. Кадры могут трактоваться как неподвижные изображения — для этого после завершения считывания дорожки устройство не переходит на следующую, а вновь считывает ту же самую); возможно также проигрывание с разными скоростями и в обратном направлении. Вместе с изображением записываются две звуковые дорожки, доступные, впрочем, только при просмотре кадров в режиме видео. Информацию на диске можно разбить на “части” — до 80 частей на каждой из сторон. Управляющая информация — номера кадров, номера частей — помещается в “бланковых” (невидимых) частях кадров.

Промежуточный, “аналого–цифровой” формат лазерных дисков — LVROM, или AIV (Advanced Interactive Video, улучшенное интерактивное видео) — позволяет сочетать на одном диске аналоговое видео с цифровым звуком и данными.

Наконец, существуют разные типы чисто цифровых дисков: CD–ROM, WORM, стираемые. CD–ROM, как и цифровые аудио–компакт–диски CD–DA (Compact Disc — Digital Audio) имеют диаметр 5.25 дюйма; они вмещают 500–600 Мбайт информации и являются сейчас наиболее массовым цифровым средством доставки мультимедиа–информации.

Таблица 2.

Формат

Описание

CD–Audio

Старейший формат компакт–дисков. Почти все дисководы CD–ROM могут проигрывать звуковые компакт–диски.

CD–Interactive

Собственный формат Philips для “интерактивных”, в основном, игровых компакт–дисков для домашних проигрывателей.

CD–ROM / XA

Сочетает сжатые данные и звук, а так же смешанный режим, записываются с чередованием для более ровного воспроизведения. Лучший формат для мультимедиа.

Mixed mode

Комбинация звука в формате Red Book и данных CD–ROM. Первая дорожка должна содержать данные, за ней могут следовать дорожки CD–Audio.

CD–Plus

Сходен с режимом Mixed mode, отличие — предотвращение обращения звукового проигрывателя к дорожкам с данными во избежание повреждения динамиков.

ISO–9660

Стандартный формат и структура каталогов для CD–ROM.

HFS (Hierarhical File Structure)

Формат данных, разработанный для Macintosh.

Hybrid discs

Содержит системы HFS и ISO.

Photo CD

Разработан фирмой Kodak для записи фотографий высокого качества. Для воспроизведения необходимо устройство CD–ROM / XA или CD–Interactive.

Video CD

Видеоинформация в формате MPEG–1 и звук. Стандарт предназначен для воспроизведения фильмов.

CD–ROM диск — кружок из прозрачной пластмассы, поликарбоната, на одной из поверхностей которого нанесен тонкий светоотражающий слой. Этот серебристый слой хорошо виден с тыльной стороны прозрачного диска. В нем имеются микроскопические углубления — питы, созданные в процессе его копирования с оригинала.

Типичная длина пита 0.8 – 3.2 мкм, ширина 0.4 мкм, глубина 0.12 мкм, а расстояние между отдельными дорожками 1.6 мкм. На одном дюйме (2.54 см) поверхности диска размещается 16 тыс. дорожек (для сравнения — на одном дюйме магнитного диска помещается только 96 дорожек). Благодаря столь малым размерам питов обычный CD–ROM вмещает огромный объем информации — порядка 700 Мбайт. Новые типы дисков имеют на порядок больший объем и допускают запись информации пользователем.

Рабочей является только одна поверхность диска CD–ROM. Она защищена толстым слоем лака, на который обычно наносится красочная этикетка. В проигрывателе диск обращен этой стороной наружу. Противоположная (тыльная) сторона используется для считывания лазерным лучом. Луч проходит сквозь нее, так как основа диска — прозрачная пластмасса. Толщина диска 1.2 мм, внешний диаметр 120 мм, диаметр внутреннего отверстия 15 мм.

В проигрывателе имеется электродвигатель со следящей систе, мой, обеспечивающей точное считывание дорожки лазерным лучом и неизменную линейную скорость считывания. Поэтому скорость вращения диска непостоянна и изменяется от 500 об. / мин. для внутренней части диска, с которой начинается считывание, до 200 об. / мин. для внешней. Специальный оптико–электронный блок имеет устройства для стабилизации излучения лазера, автоматической фокусировки, слежения за дорожкой при биении диска и выбора треков диска для считывания.

Для считывания информации с CD–ROM используется полупроводниковый диод с фокусирующей и следящей оптической системой. Внутренняя поверхность диска, на которую кладут диск на подставку (в кассету) дисковода, находится не в фокусе оптической системы лазерного излучателя. Диаметр светового пятна от лазера, создающего сходящийся конус света, порядка 1 мм. Поэтому умеренные загрязнения нерабочей поверхности, например, пылинки на ней, отпечатки пальцев и даже небольшие царапины практически не влияют на воспроизведение. В отличие от привычных жестких магнитных дисков, диски CD–ROM можно заменять в считанные секунды. А ведь один диск CD–ROM по емкости равен примерно 500–м обычным гибким дискам формата 3.5“ на 1.44 Мбайт. Экономия на дискетах является немаловажным достоинством мультимедиа.

Проигрыватели компьютерных компакт–дисков, обычно называемые CD–ROM–драйвами, бывают двух типов: внешние (со своим корпусом) и внутренние — встраиваемые в системный блок компьютера. Последние напоминают накопители на гибких магнитных 5.25–дюймовых дискетах и имеют одинаковые с ним размеры.

На передней панели дисковода CD–ROM обычно имеется кнопка Ejectдля выброса или плавного выдвижения поддона, индикатор Busy (занято),гнездо для подключения стереотелефонов и регулятор громкости, используемый при проигрывании звуковых дисков.

Полноценное “вооружение” мультимедиа–ПК требует подключения к нему множества внешних устройств: аудио– и видеоадаптеров, телевизионных и радио–тюнеров, дисководов CD–ROM, джойстиков, клавиатуры MIDI и т.д. Все они обслуживаются массой программных утилит — драйверов и нередко конфликтуют друг с другом. В этой связи крупные разработчики ПК объединили усилия в создании стандарта Plug and Play (включай и играй). Этот стандарт — обширный комплекс программных и аппаратных средств по полностью автоматической настройке конфигурации компьютера в соответствии с используемым с ним оборудованием.

Технология PnP (или Plug’n’Play) предполагает, что достаточно включить компьютер, как все аппаратные и программные средства автоматически оптимально настроятся и станут работать без сбоев и конфликтов.

ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА:

  1. С. Новосельцев “Мультимедиа — синтез трех стихий”. Компьютер–Пресс, 7’91.

  2. В. Дьяконов “Мультимедиа–ПК”. Домашний Компьютер, 1’96.

  3. “Звуковые платы” — по материалам зарубежной прессы, Copmuter Review, 7’96

nreferat.ru


Смотрите также