Лекция № 7.
МОЛЕКУЛЯРНОЕ СТРОЕНИЕ
И функциональные компоненты клеточных мембран
Основные термины
Клеточные мембраны
Липиды
Глицерофосфолипиды
Сфинголипиды
Гликосфинголипиды
Холестерол
Амфифильный
Простагландины
Фосфоинозитол
Интегральные белки
Трансмембранные однократно-пересекающие белки
Трансмембранные многократно-пересекающие белки
Периферический белок
Строение мембраны
Значение мембран в функционировании клеток
Различия между мембранами
Эта лекция посвящена структурным и функциональным свойствам клеточных мембран, в частности плазматической мембраны. Существует более 200 типов клеток человеческого организма, и существуют также различные типы плазматических мембран. Мембрана принимает множество форм в зависимости от структурной и функциональной роли клетки.
Основные клеточные органеллы и их функции. Представлены лишь главные функции, выполняемые каждой органеллой. Как правило, в органеллах происходит гораздо больше процессов и реакции
Органелла или фракция | Маркер | Основные функции |
Ядро | ДНК | Хромосомы Место синтеза РНК на матрице ДНК (транскрипция) |
Митохондрия | Глутаматдегидрогеназа | Цикл лимонной кислоты, окислительное фосфорилирование |
Рибосома | Высокое содержание РНК | Место синтеза белка (трансляция с мРНК на белок) |
Эндоплазматический ретикулум | Глюкозо-6-фосфатаза | Рибосомы, связанные с мембраной, — главное место синтеза белка Синтез различных липидов Окисление многих ксенобиотиков (цитохром P450) |
Лизосома | Кислая фосфатаза | Место расположения многих гидролаз (ферментов, катализирующих реакции распада) |
Плазматическаямембрана | Nа+-К+-АТФаза 5’-нуклеотидаза | Транспорт молекул внутрь клетки и наружу Межклеточные адгезия и взаимодействие |
Аппарат Гольджи | Галактозилтрансфераза | Внутриклеточная сортировка (компартментализация) белков Реакции гликозилирования Реакции сульфатирования |
Пероксисома | Каталаза Оксидаза мочевой кислоты | Разрушение определенных жирных кислот и аминокислот Производство и расщепление перекиси водорода |
Цитоскелет | Нет специфических ферментных маркеров | Микрофиламенты, микротрубочки, промежуточные филаменты |
Цитозоль | Лактатдегидрогеназа | Ферменты гликолиза и синтеза жирных кислот |
Плазматической мембранойназывается барьер, который окружает цитоплазму, определяя границы клетки. Однако мы знаем, что мембрана служит не только барьером между цитозолем и внеклеточной средой, но содержит молекулы, которые передают сигналы с наружной стороны клетки в цитоплазму и к внутриклеточным органеллам.
Белки и липиды
Все клеточные мембраны представляют собой сложную смесь белков и липидов. Существуют три важных принципа строения мембраны.
1. Мембраны не однородны.Мембраны, окружающие внутриклеточные органеллы, и плазматическая мембрана отличаются по составу.
2. Многие компоненты мембран находятся в состоянии непрерывного движения.Мембрана напоминает постоянно меняющуюся мозаику. Некоторые части мембраны изменяются быстрее, чем другие.
3. Компоненты мембран чрезвычайно асимметричны.Между наружным и внутренним слоями мембран имеется различие по относительному количеству и качественному составу липидов. Белки располагаются среди липидов асимметрично и имеют хорошо различимые вне- и внутриклеточные домены.
При исследовании клетки под световым микроскопоммы можем видеть ее край, ограниченный плазматической мембраной. Однако этот уровень изучения мембран непозволяет увидеть некоторые важные вариации в ее структуре.
Важнейшие функции мембран
Мембраны контролируют состав внутриклеточной среды.Основная функция мембраны — формирование вокруг цитоплазмы барьера, который избирательно пропускает молекулы, входящие в клетку и выходящие из нее. В значительной степени такое поведение мембраны обусловлено непроницаемостью ее липидов для воды и других гидрофильных молекул. В мембране находятся белки, которые образуют каналы и поры, принимающие участие в высокоизбирательном транспорте молекул через мембрану.
Мембраны обеспечивают и облегчают межклеточную и внутриклеточную передачу информации.Мембрана — это место, где молекулярная информация воспринимается, преобразуется и передается далее в клетку.
Строение и сборка мембран
Локализация синтеза
Синтез белка происходит в основном в двух местах: в цитозоле и на мембране эндоплазматического ретикулума (ЭР). Белки, которые высвобождаются в цитоплазму для дальнейшего пребывания во внутренней среде клетки, синтезируются на рибосомах,локализованных в цитозоле.Фактически все рибосомы располагаются в цитозоле; однако, до того как они соединятся с мРНК, рибосомы существуют в виде двух основных рибосомных субъединиц, рибонуклеопротеиновых комплексовс константами седиментации 40S и 60S.
После выхода мРНК в цитоплазму через поры ядерной мембраны образуется начальный комплекс, состоящий из рибосомной 40S субъединицы и мРНК. Как только данный комплекс сформируется, к нему присоединяется рибосомная субъединица 60S, в результате образуется функциональная рибосома, которая немедленно начинает транслировать на мРНК полипептид.
Если рибосома встречает нуклеотидную последовательность, кодирующую аминокислотную цепь, сигнализирующую, что транслируемый белок является мембранным или секретируемым, то трансляция прекращается до встраивания начального конца белка в эндоплазматический ретикулум (сигнальная гипотеза).
Результаты исследований синтеза белка (в том числе синтеза на полирибосомах, ассоциированных с ЭР, — «мембрано-связанных рибосомах»), показали, что все интегральные белкисинтезируются на мембране ЭР, включая белки плазматической мембраны. На рисунке показаны клеточные органеллы, участвующие в синтезе и процессинге белка.
Липиды мембрантакже синтезируются на ЭР и переносятся в плазматическую мембрану. Процесс переноса белков и липидов из ЭР к плазматической мембране осуществляется транспортными пузырьками.
Важным следствием синтеза компонентов плазматической мембраны на ЭР является тот факт, что эти компоненты транспортируются в форме готовых мембран, т.е. в мембранных пузырьках.Таким образом, важно помнить, что мембраны происходят только из предсуществующих мембран. Мембраны органелл клетки имеют сходное строение; однако по белково-липидному составу они значительно отличаются от плазматической мембраны и друг от друга.
Глицерофосфолипиды
(Фосфоглицериды)
Фосфоглицериды — основный класс липидов биологических мембран. Как указывает их название, фосфоглицериды состоят из молекулы глицерола, две гидроксильные группы которого этерифицированы жирными кислотами, а третья — остатком фосфорной кислоты, этерифицированной спиртом. Большая часть полярных липидов имеет сходное строение с небольшими отклонениями.
Жирные ацильные цепи отличаются по структуре, особенно в расположении двойных связей, которые определяют свойства белково-липидного бислоя. Атомы углерода, образующие двойные связи, не могут свободно вращаться, поэтому они занимают фиксированную позицию и создают изгибы в углеводородной цепи. Эти изгибы предотвращают плотную упаковку липидных «хвостов», что влияет на вязкость или текучесть мембраны.
Протяженность ацильных цепей также имеет биологическое значение: более короткие цепи упакованы в менее жесткие структуры, и это способствует уменьшению вязкости мембраны. Таким образом, и длина ацильной цепи, и число двойных связей играют важную роль в изменении текучести мембраны.
Сфинголипиды
Наиболее распространенные сфинголипиды - это церамиды. Миелин, липидное вещество, окружающее и изолирующее многие нервные волокна, состоит в основном из сфингомиелина.
Холестерол
Холестерол — третий основной класс мебранных липидов. Этот стероид выполняет в мембране многочисленные функции.
Внедрение гидрофобной части молекулы холестерола между гидрофобными доменами других липидов приводит к менее плотной «упаковке» ненасыщенных ацильных цепей, что придает внутренней части бислоя меньшую вязкость, то есть делает ее более текучей. Снижение вязкости способствует латеральному перемещению липидов в плоскости липидного бислоя.
Противоположный эффект - ОН-группа «цементирует» гидрофильные части мембраны, что делает мембрану менее проницаемой для небольших молекул.
В подвижной мембране могут возникать полости, облегчающие движение через мембрану мелких водорастворимых молекул, например, глюкозы. Холестерол способствует более плотной упаковке мембраны в области гидрофильных доменов.
Хотя молекулы холестерола могут легко перескакивать (flip-flop) между слоями, они обычно скапливаются в наружном слое, тем самым утолщая слой.
Фосфоинозитиды
Фосфоинозитиды — еще один важный класс мембранных липидов. Липиды этого семейства непосредственно участвуют в передаче некоторых сигналов в клетку с использованием двух высокоактивных молекул:
1. Фосфорилированного инозитола. Это - небольшие гидрофильные молекулы которые связываются с внутренними рецепторами, и открывают кальциевые каналы и пропускают ионы кальция в цитозоль.
2. Диацилглицерин (DAG). Используется для интерпретации поступающих сигналов и реакции на них клетки, что крайне важно для жизненных процессов клетки.
Белково-липидная мозаика
Белки составляют приблизительно 50% от массы большинства клеточных мембран.
Крупное открытие в области взаимодействия мембранных белков и липидов сделали д-р Джон Зингер (Jon Singer) и его студент Гарт Николсон (Garth Nicholson), показавшие, что большая часть мембранных белков погружена в мембрану почти перпендикулярно (Singer and Nicholson, 1972). В результате была предложена модель мембраны типа белково-липидной мозаики (жидкостно-мозаичная модель).
Периферические белки
Как указывалось выше, периферические мембранные белки, в отличие от интегральных, не погружены в липидный бислой и не соединены с ним ковалентно. Они удерживаются в основном сильными ионными взаимодействиями. Более того, периферические белки тесно ассоциированы с интегральными белками в мембране так называемыми белок-белковымивзаимодействиями. Приведем два важнейших периферических белка.
●Спектрин, который находится на внутренней поверхности клетки
●Фибронектин, локализованный на наружной поверхности мембраны.
Специализация мембран
Трансмембранные домены
Трансмембранные домены рецепторов можно разделить на две группы. Первое, очень большое семейство рецепторов, пронизывает мембрану семь раз. Это свойство настолько характерно для членов семейства, что их называют «семь раз пересекающими рецепторами», или «серпантинными» рецепторами. Другое важное свойство этих политопных рецепторов — использование ими белков семейства внутриклеточных тримерных гуанозинтрифосфатаз (ГТФазы) (G-белков) в качестве начального эффектор-активирующего субстрата.
β2-адренергический рецептор и родопсин с их трансмембранными доменами, пересекающими мембрану семь раз, представлены на рисунке.
По общей структуре все члены семейства серпантинных рецепторов похожи, однако все они отличаются друг от друга по способности связывать различные классы лигандов.
Лекция № 7.
МОЛЕКУЛЯРНОЕ СТРОЕНИЕ
и функциональные компоненты клеточных мембран
Основные термины
Клеточные мембраны
Липиды
Глицерофосфолипиды
Сфинголипиды
Гликосфинголипиды
Холестерол
Амфифильный
Простагландины
Фосфоинозитол
Интегральные белки
Трансмембранные однократно-пересекающие белки
Трансмембранные многократно-пересекающие белки
Периферический белок
Строение мембраны
cyberpedia.su
План.
1. Организация мембран. Транспорт веществ через мембраны. Ионный канал. Структура ионного канала.
2. Центральный механизм регуляции дыхания. Дыхательный центр. Опишите путь, проходимый молекулой кислорода при диффузии из альвеолы в эритроциты.
3. Нефрон – структурно-функциональная единица почки. Образование клубочкового фильтрата
4. Функциональные связи гипоталамуса с гипофизом. Роль гипофиза в регуляции деятельности эндокринных желез. Опишите регуляцию функций яичек у мужчин.
5. Проблема локализации функций в коре большого мозга
1. Организация мембран. Транспорт веществ через мембраны. Ионный канал. Структура ионного канала.
Согласно современным представлениям, биологические мембраны образуют наружную оболочку всех животных клеток и формируют многочисленные внутриклеточные органеллы. Наиболее характерным структурным признаком является то, что мембраны всегда образуют замкнутые пространства, и такая микроструктурная организация мембран позволяет им выполнять важнейшие функции.
Строение и функции клеточных мембран.
1.Барьерная функция выражается в том, что мембрана при помощи соответствующих механизмов участвует в создании концентрационных градиентов, препятствуя свободной диффузии. При этом мембрана принимает участие в механизмах электрогенеза. К ним относятся механизмы создания потенциала покоя, генерация потенциала действия, механизмы распространения биоэлектрических импульсов по однородной и неоднородной возбудимым структурам.
2.Регуляторная функция клеточной мембраны заключается в тонкой регуляции внутриклеточного содержимого и внутриклеточных реакций за счет рецепции внеклеточных биологически активных веществ, что приводит к изменению активности ферментных систем мембраны и запуску механизмов вторичных «месенджеров» («посредников»).
3.Преобразование внешних стимулов неэлектрической природы в электрические сигналы (в рецепторах).
4.Высвобождение нейромедиаторов в синаптических окончаниях.
Современными методами электронной микроскопии была определена толщина клеточных мембран (6—12 нм). Химический анализ показал, что мембраны в основном состоят из липидов и белков, количество которых неодинаково у разных типов клеток. Сложность изучения молекулярных механизмов функционирования клеточных мембран обусловлена тем, что при выделении и очистке клеточных мембран нарушается их нормальное функционирование. В настоящее время можно говорить о нескольких видах моделей клеточной мембраны, среди которых наибольшее распространение получила жидкостно-мозаичная модель.
Согласно этой модели, мембрана представлена бислоем фосфолипидных молекул, ориентированных таким образом, что гидрофобные концы молекул находятся внутри бислоя, а гидрофильные направлены в водную фазу. Такая структура идеально подходит для образования раздела двух фаз: вне- и внутриклеточной.
В фосфолипидном бислое интегрированы глобулярные белки, полярные участки которых образуют гидрофильную поверхность в водной фазе. Эти интегрированные белки выполняют различные функции, в том числе рецепторную, ферментативную, образуют ионные каналы, являются мембранными насосами и переносчиками ионов и молекул.
Некоторые белковые молекулы свободно диффундируют в плоскости липидного слоя; в обычном состоянии части белковых молекул, выходящие по разные стороны клеточной мембраны, не изменяют своего положения.
Особая морфология клеточных мембран определяет их электрические характеристики, среди которых наиболее важными являются емкость и проводимость.
Емкостные свойства в основном определяются фосфолипидным бислоем, который непроницаем для гидратированных ионов и в то же время достаточно тонок (около 5 нм), чтобы обеспечивать эффективное разделение и накопление зарядов, и электростатическое взаимодействие катионов и анионов. Кроме того, емкостные свойства клеточных мембран являются одной из причин, определяющих временные характеристики электрических процессов, протекающих на клеточных мембранах.
Проводимость (g) — величина, обратная электрическому сопротивлению и равная отношению величины общего трансмембранного тока для данного иона к величине, обусловившей его трансмембранной разности потенциалов.
Через фосфолипидный бислой могут диффундировать различные вещества, причем степень проницаемости (Р), т. е. способность клеточной мембраны пропускать эти вещества, зависит от разности концентраций диффундирующего вещества по обе стороны мембраны, его растворимости в липидах и свойств клеточной мембраны. Скорость диффузии для заряженных ионов в условиях постоянного поля в мембране определяется подвижностью ионов, толщиной мембраны, распределением ионов в мембране. Для неэлектролитов проницаемость мембраны не влияет на ее проводимость, поскольку неэлектролиты не несут зарядов, т. е. не могут переносить электрический ток.
Проводимость мембраны является мерой ее ионной проницаемости. Увеличение проводимости свидетельствует об увеличении количества ионов, проходящих через мембрану.
Строение и функции ионных каналов. Ионы Na+, K+, Са2+, Сl- проникают внутрь клетки и выходят наружу через специальные, заполненные жидкостью каналы. Размер каналов довольно мал (диаметр 0,5—0,7 нм). Расчеты показывают, что суммарная площадь каналов занимает незначительную часть поверхности клеточной мембраны.
Функцию ионных каналов изучают различными способами. Наиболее распространенным является метод фиксации напряжения, или «voltage-clamp» Сущность метода заключается в том, что с помощью специальных электронных систем в процессе опыта изменяют и фиксируют на определенном уровне мембранный потенциал. При этом измеряют величину ионного тока, протекающего через мембрану. Если разность потенциалов постоянна, то в соответствии с законом Ома величина тока пропорциональна, проводимости ионных каналов. В ответ на ступенчатую деполяризацию открываются те или иные каналы, соответствующие ионы входят в клетку по электрохимическому градиенту, т. е. возникает ионный ток, который деполяризует клетку. Это изменение регистрируется с помощью управляющего усилителя и через мембрану пропускается электрический ток, равный по величине, но противоположный по направлению мембранному ионному току. При этом трансмембранная разность потенциалов не изменяется. Совместное использование метода фиксации потенциала и специфических блокаторов ионных каналов привело к открытию различных типов ионных каналов в клеточной мембране.
В настоящее время установлены многие типы каналов для различных ионов. Одни из них весьма специфичны, вторые, кроме основного иона, могут пропускать и другие ионы.
Изучение функции отдельных каналов возможно методом локальной фиксации потенциала «path-clamp»; Стеклянный микроэлектрод (микропипетка) заполняют солевым раствором, прижимают к поверхности мембраны и создают небольшое разрежение. При этом часть мембраны подсасывается к микроэлектроду. Если в зоне присасывания оказывается ионный канал, то регистрируют активность одиночного канала. Система раздражения и регистрации активности канала мало отличается от системы фиксации напряжения.
Ток через одиночный ионный канал имеет прямоугольную форму и одинаков по амплитуде для каналов различных типов. Длительность пребывания канала в открытом состоянии имеет вероятностный характер, но зависит от величины мембранного потенциала. Суммарный ионный ток определяется вероятностью нахождения в открытом состоянии в каждый конкретный период времени определенного числа каналов.
Наружная часть канала сравнительно доступна для изучения, исследование внутренней части представляет значительные трудности. П. Г. Костюком был разработан метод внутриклеточного диализа, который позволяет изучать функцию входных и выходных структур ионных каналов без применения микроэлектродов. Оказалось, что часть ионного канала, открытая во внеклеточное пространство, по своим функциональным свойствам отличается от части канала, обращенной во внутриклеточную среду.
Именно ионные каналы обеспечивают два важных свойства мембраны: селективность и проводимость.
Селективность, или избирательность, канала обеспечивается его особой белковой структурой. Большинство каналов являются электроуправляемыми, т. е. их способность проводить ионы зависит от величины мембранного потенциала. Канал неоднороден по своим функциональным характеристикам, особенно это касается белковых структур, находящихся у входа в канал и у его выхода (так называемые воротные механизмы).
2. Центральный механизм регуляции дыхания. Дыхательный центр. Опишите путь, проходимый молекулой кислорода при диффузии из альвеолы в эритроциты.
Дыхание регулируется нервным и гуморальным путем. Дыхательный центр находится в продолговатом мозге, содержит два отдела: центр вдоха и центр выдоха. При выдохе легкие спадаются и возбуждаются рецепторы, находящиеся в альвеолах. Возникшие возбуждения передаются по нервам в дыхательный центр, в отдел вдоха. Этот отдел приходит в возбужденное состояние и посылает импульсы в спинной мозг, а оттуда импульсы поступают к наружным межреберным мышцам и диафрагме. Они сокращаются и вызывают расширение грудной клетки - происходит вдох. Теперь отдел вдох не получает раздражения и не посылает возбуждения. Дыхательные мышцы расслабляются, грудная клетка спадает и происходит выдох. Вдох порождает выдох.
Процесс дыхания слагается из трех основных фаз: внешнее дыхание (обмен газов между внешней средой и кровью), транспорт газов кровью и внутреннее (тканевое) дыхание (обмен газов между кровью и тканями). Внешнее дыхание, функцию которого выполняют органы дыхательной системы, осуществляется различными способами.
Согласованность, ритмичность сокращений и расслаблений дыхательных мышц обусловлены поступающими к ним по нервам импульсами от дыхательного центра продолговатого мозга. И.М. Сеченов в 1882 г. установил, что примерно через каждые 4 сек, в дыхательном центре автоматически возникают возбуждения, обеспечивающие чередование вдоха и выдоха. Дыхательный центр изменяет глубину и частоту дыхательных движений, обеспечивая оптимальное содержание газов в крови. Гуморальная регуляция дыхания состоит в том, что повышение концентрации углекислого газа в крови возбуждает дыхательный центр - частота и глубина дыхания увеличиваются, а уменьшение СО2 понижает возбудимость дыхательного центра - частота и глубина дыхания уменьшаются.
Дыхательный центр
Под дыхательным центром следует понимать совокупность нейронов специфических (дыхательных) ядер продолговатого мозга, способных генерировать дыхательный ритм.
В нормальных (физиологических) условиях дыхательный центр получает афферентные сигналы от периферических и центральных хеморецепторов, сигнализирующих соответственно о парциальном давлении О2 в крови и концентрации Н+ во внеклеточной жидкости мозга. В период бодрствования деятельность дыхательного центра регулируется дополнительными сигналами, исходящими из различных структур ЦНС. У человека это, например, структуры, обеспечивающие речь. Речь (пение) может в значительной степени отклонить от нормального уровень газов крови, даже снизить реакцию дыхательного центра на гипоксию или гиперкапнию. Афферентные сигналы от хеморецепторов тесно взаимодействуют с другими афферентными стимулами дыхательного центра, но, в конечном счете, химический, или гуморальный, контроль дыхания всегда доминирует над нейрогенным. Например, человек произвольно не может бесконечно долго задерживать дыхание из-за нарастающих во время остановки дыхания гипоксии и гиперкапнии.
Дыхательный центр выполняет две основные функции в системе дыхания: моторную, или двигательную, которая проявляется в виде сокращения дыхательных мышц, и гомеостатическую, связанную с изменением характера дыхания при сдвигах содержания О2 и СО2 во внутренней среде организма.
Двигательная функция дыхательного центра заключается в генерации дыхательного ритма и его паттерна. Под генерацией дыхательного ритма понимают генерацию дыхательным центром вдоха и его прекращение (переход в экспирацию). Под паттерном дыхания следует понимать длительность вдоха и выдоха, величину дыхательного объема, минутного объема дыхания. Моторная функция дыхательного центра адаптирует дыхание к метаболическим потребностям организма, приспосабливает дыхание в поведенческих реакциях (поза, бег и др.), а также осуществляет интеграцию дыхания с другими функциями ЦНС.
Гомеостатическая функция дыхательного центра поддерживает нормальные величины дыхательных газов (O2, CO2) и рН в крови и внеклеточной жидкости мозга, регулирует дыхание при изменении температуры тела, адаптирует дыхательную функцию к условиям измененной газовой среды, например при пониженном и повышенном барометрическом давлении.
В организме газообмен О2 и СО2 через альвеолярно-капиллярную мембрану происходит с помощью диффузии. Диффузия О2 и СО2 через аэрогематический барьер зависит от следующих факторов: вентиляции дыхательных путей; смешивания и диффузии газов в альвеолярных протоках и альвеолах; смешивания и диффузии газов через аэрогематический барьер, мембрану эритроцитов и плазму альвеолярных капилляров; химической реакции газов с различными компонентами крови, и, наконец, от перфузии кровью легочных капилляров.
Диффузия газов через альвеолярно-капиллярную мембрану легких осуществляется в два этапа. На первом этапе диффузионный перенос газов происходит по концентрационному градиенту через тонкий аэрогематический барьер, на втором — происходит связывание газов в крови легочных капилляров, объем которой составляет 80—150 мл, при толщине слоя крови в капиллярах всего 5—8 мкм и скорости кровотока около 0,1 мм*с-1. После преодоления аэрогематического барьера газы диффундируют через плазму крови в эритроциты.
Значительным препятствием на пути диффузии О2 является мембрана эритроцитов. Плазма крови практически не препятствует диффузии газов в отличие от альвеолярно-капиллярной мембраны и мембраны эритроцитов
3.Нефрон – структурно-функциональная единица почки. Образование клубочкового фильтра.
В каждой почке у человека содержится около 1 млн функциональных единиц — нефронов, в которых происходит образование мочи. Каждый нефрон начинается почечным, или мальпигиевым, тельцем — двустенной капсулой клубочка (капсула Шумлянского—Боумена), внутри которой находится клубочек капилляров. Внутренняя поверхность капсулы выстлана эпителиальными клетками; образующаяся полость между висцеральным и париетальным листками капсулы переходит в просвет проксимального извитого канальца. Особенностью клеток этого канальца является наличие щеточной каемки — большого количества микроворсинок, обращенных в просвет канальца. Следующий отдел нефрона — тонкая нисходящая часть петли нефрона (петли Генле). Ее стенка образована низкими, плоскими эпителиальными клетками. Нисходящая часть петли может опускаться глубоко в мозговое вещество, где каналец изгибается на 180°, и поворачивает в сторону коркового вещества почки, образуя восходящую часть петли нефрона. Она может включать тонкую и всегда имеет толстую восходящую часть, которая поднимается до уровня клубочка своего же нефрона, где начинается дистальный извитой каналец. Этот отдел канальца обязательно прикасается к клубочку между приносящей и выносящей артериолами в области плотного пятна. Клетки толстого восходящего отдела петли Генле и дистального извитого канальца лишены щеточной каемки, в них много митохондрий и увеличена поверхность базальной плазматической мембраны за счет складчатости. Конечный отдел нефрона — короткий связующий каналец, впадает в собирательную трубку. Начинаясь в корковом веществе почки, собирательные трубки проходят через мозговое вещество и открываются в полость почечной лоханки. Диаметр капсулы клубочка около 0,2 мм, общая длина канальцев одного нефрона достигает 35—50 мм. Исходя из особенностей структуры и функции почечных канальцев, различают следующие сегменты нефрона: 1) проксимальный, в состав которого входят извитая и прямая части проксимального канальца; 2) тонкий отдел петли нефрона, включающий нисходящую и тонкую восходящую части петли; 3) дистальный сегмент, образованный толстым восходящим отделом петли нефрона, дистальным извитым канальцем и связующим отделом. Канальцы нефрона соединены с собирательными трубками: в процессе эмбриогенеза они развиваются самостоятельно, но в сформировавшейся почке собирательные трубки функционально близки дистальному сегменту нефрона.
В почке функционирует несколько типов нефронов: суперфициальные (поверхностные), интракортикальные и юкстамедуллярные. Различие между ними заключается в локализации в почке, величине клубочков (юкстамедуллярные крупнее суперфициальных), глубине расположения клубочков и проксимальных канальцев в корковом веществе почки (клубочки юкстамедуллярных нефронов лежат у границы коркового и мозгового вещества) и в длине отдельных участков нефрона, особенно петель нефрона. Суперфициальные нефроны имеют короткие петли, юкстамедуллярные, напротив, длинные, спускающиеся во внутреннее мозговое вещество почки. Характерна строгая зональность распределения канальцев внутри почки
Большое функциональное значение имеет зона почки, в которой расположен каналец, независимо от того, находится ли он в корковом или мозговом веществе. В корковом веществе находятся почечные клубочки, проксимальные и дистальные отделы канальцев, связующие отделы. В наружной полоске наружного мозгового вещества находятся нисходящие и толстые восходящие отделы петель нефронов, собирательные трубки; во внутреннем мозговом веществе располагаются тонкие отделы петель нефронов и собирательные трубки. Расположение каждой из частей нефрона в почке чрезвычайно важно и определяет форму участия тех или иных нефронов в деятельности почки, в частности в осмотическом концентрировании мочи.
Клубочковая фильтрация
Мысль о фильтрации воды и растворенных веществ как первом этапе мочеобразования была высказана в 1842 г. немецким физиологом К. Людвигом. В 20-х годах XX столетия американскому физиологу А. Ричардсу в прямом эксперименте удалось подтвердить это предположение — с помощью микроманипулятора пунктировать микропипеткой клубочковую капсулу и извлечь из нее жидкость, действительно оказавшуюся ультрафильтратом плазмы крови.
Ультрафильтрация воды и низкомолекулярных компонентов из плазмы крови происходит через клубочковый фильтр. Этот фильтрационный барьер почти непроницаем для высокомолекулярных веществ. Процесс ультрафильтрации обусловлен разностью между гидростатическим давлением крови, гидростатическим давлением в капсуле клубочка и онкотическим давлением белков плазмы крови. Общая поверхность капилляров клубочка больше общей поверхности тела человека и достигает 1,5 м2 на 100 г массы почки. Фильтрующая мембрана (фильтрационный барьер), через которую проходит жидкость из просвета капилляра в полость капсулы клубочка, состоит из трех слоев: эндотелиальных клеток капилляров, базальной мембраны и эпителиальных клеток висцерального (внутреннего) листка капсулы— подоцитов.
Клетки эндотелия, кроме области ядра, очень истончены, толщина цитоплазмы боковых частей клетки менее 50 нм; в цитоплазме имеются круглые или овальные отверстия (поры) размером 50—100 нм, которые занимают до 30 % поверхности клетки. При нормальном кровотоке наиболее крупные белковые молекулы образуют барьерный слой на поверхности пор эндотелия и затрудняют движение через них альбуминов, ограничивая тем самым прохождение форменных элементов крови и белков через эндотелий. Другие компоненты плазмы крови и вода могут свободно достигать базальной мембраны.
Базальная мембрана является одной из важнейших составных частей фильтрующей мембраны клубочка. У человека толщина базальной мембраны 250—400 нм. Эта мембрана состоит из трех слоев — центрального и двух периферических. Поры в базальной мембране препятствуют прохождению молекул диаметром больше 6 нм.
Наконец, важную роль в определении размера фильтруемых веществ играют щелевые мембраны между «ножками» подоцитов. Эти эпителиальные клетки обращены в просвет капсулы почечного клубочка и имеют отростки — «ножки», которыми прикрепляются к базальной мембране. Базальная мембрана и щелевые мембраны между этими «ножками» ограничивают фильтрацию веществ, диаметр молекул которых больше 6,4 нм (т. е. не проходят вещества, радиус молекулы которых превышает 3,2 нм). Поэтому в просвет нефрона свободно проникает инулин (радиус молекулы 1,48 нм, молекулярная масса около 5200), может фильтроваться лишь 22 % яичного альбумина (радиус молекулы 2,85 нм, молекулярная масса 43500), 3 % гемоглобина (радиус молекулы 3,25 нм, молекулярная масса 68 000)и меньше 1 % сывороточного альбумина (радиус молекулы 3,55 нм, молекулярная масса 69 000).
Прохождению белков через клубочковый фильтр препятствуют отрицательно заряженные молекулы — полианионы, входящие в состав вещества базальной мембраны, и сиалогликопротеиды в выстилке, лежащей на поверхности подоцитов и между их «ножками». Ограничение для фильтрации белков, имеющих отрицательный заряд, обусловлено размером пор клубочкового фильтра и их электронегативностью. Таким образом, состав клубочкового фильтрата зависит от свойств эпителиального барьера и базальной мембраны. Естественно, размер и свойства пор фильтрационного барьера вариабельны, поэтому в обычных условиях в ультрафильтрате обнаруживаются лишь следы белковых фракций, характерных для плазмы крови. Прохождение достаточно крупных молекул через поры зависит не только от их размера, но и конфигурации молекулы, ее пространственного соответствия форме поры.
4. Функциональные связи гипоталамуса с гипофизом. Роль гипофиза в регуляции деятельности эндокринных желез. Опишите регуляцию функций яичек у мужчин.
Гипоталамус и гипофиз является Центральным звеном эндокринной системы.
Особое место в эндокринной системе занимает гипоталамо-гипофизарная система. Гипоталамус в ответ на нервные импульсы оказывает стимулирующее или тормозящее действие на переднюю долю гипофиза. Через гипофизарные гормоны гипоталамус регулирует функцию периферических желез внутренней секреции. Так, например, происходит стимуляция тиреотропного гормона (ТТГ) гипофиза, а последний, в свою очередь, стимулирует секрецию щитовидной железой тиреоидных гормонов. В связи с этим принято говорить о единых функциональных системах: гипоталамус - гипофиз - щитовидная железа, гипоталамус - гипофиз - надпочечники
Выпадение каждого из компонентов гормональной регуляции из общей системы нарушает единую цепь регуляции функций организма и приводит к развитию различных патологических состояний.
В гипофизе выделяют переднюю (аденогипофиз) и заднюю (нейрогипофиз) доли. У многих животных представлена также промежуточная доля (pars intermedia), однако у человека она практически отсутствует. В аденогипофизе вырабатывается 6 гормонов, из них 4 являются тропными (адренокортикотропный гормон, или кортикотропин, тиреотропный гормон, или тиреотропин и 2 гонадотропина — фолликулостимулирующий и лютеинизирующий гормоны), а 2 — эффекторными (соматотропный гормон, или соматотропин, и пролактин). В нейрогипофизе происходит депонирование окситоцина и антидиуретического гормона (вазопрессин). Синтез этих гормонов осуществляется в супраоптическом и паравентрикулярном ядрах гипоталамуса. Нейроны, составляющие эти ядра, имеют длинные аксоны, которые в составе ножки гипофиза образуют гипоталамо-гипофизарный тракт и достигают задней доли гипофиза. Синтезированные в гипоталамусе окситоцин и вазопрессин доставляются в нейрогипофиз путем аксонального транспорта с помощью специального белка-переносчика, получившего название «нейрофизин».
Гормоны аденогипофиза. Адренокортикотропный гормон, или кортикотропин. Основной эффект этого гормона выражается в стимулирующем действии на образование глюкокортикоидов в пучковой зоне коркового вещества надпочечников. В меньшей степени выражено влияние гормона на клубочковую и сетчатую зоны. Кортикотропин ускоряет стероидогенез и усиливает пластические процессы (биосинтез белка, нуклеиновых кислот), что приводит к гиперплазии коркового вещества надпочечников. Оказывает также вненадпочечниковое действие, проявляющееся в стимуляции процессов липолиза, анаболическом влиянии, усилении пигментации. Влияние на пигментацию обусловлено частичным совпадением аминокислотных цепей кортикотропина и меланоцитостимулирующего гормона.
Выработка кортикотропина регулируется кортиколиберином гипоталамуса.
Тиреотропный гормон, или тиреотропин. Под влиянием тиреотропина стимулируется образование в щитовидной железе тироксина и трийодтиронина. Тиреотропин увеличивает секреторную активность тиреоцитов за счет усиления в них пластических процессов (синтез белка, нуклеиновых кислот) и увеличенного поглощения кислорода. В результате ускоряются практически все стадии биосинтеза гормонов щитовидной железы. Под влиянием тиреотропина активируется работа «йодного насоса», усиливаются процессы йодирования тирозина. Кроме того, увеличивается активность протеаз, расщепляющих тиреоглобулин, что способствует высвобождению активного тироксина и трийодтиронина в кровь. Выработка тиреотропина регулируется тиреолиберином гипоталамуса.
Гонадотропные гормоны, или гонадотропины. В аденогипофизе вырабатывается 2 гонадотропина — фолликулостимулирующий (ФСГ) и лютеинизирующий (ЛГУ). ФСГ действует на фолликулы яичников, ускоряя их созревание и подготовку к овуляции. Под влиянием ЛГ происходит разрыв стенки фолликула (овуляция) и образуется желтое тело. ЛГ стимулирует выработку прогестерона в желтом теле. Оба гормона влияют также на мужские половые железы. ЛГ действует на яички, ускоряя выработку тестостерона в интерстициальных клетках — гландулоцитах (клетки Лейдига). ФСГ действует на клетки семенных канальцев, усиливая в них процессы сперматогенеза. Регуляция секреции гонадотропинов осуществляется гипоталамическим гонадолиберином. Существенное значение имеет также механизм отрицательной обратной связи — секреция обоих гормонов тормозится при повышенном содержании эстрогенов и прогестерона в крови; выработка ЛГ уменьшается при увеличении продукции тестостерона.
Соматотропный гормон, или соматотропин. Является гормоном, специфическое действие которого проявляется в усилении процессов роста и физического развития. Органами-мишенями для него являются кости, а также образования, богатые соединительной тканью, — мышцы, связки, сухожилия, внутренние органы. Стимуляция процессов роста осуществляется за счет анаболического действия соматотропина. Последнее проявляется в усилении транспорта аминокислот в клетку, ускорении процессов биосинтеза белка и нуклеиновых кислот. Одновременно происходит торможение реакций, связанных с распадом белка. Вероятной причиной этого эффекта является наблюдающаяся под действием соматотропина усиленная мобилизация жира из жировых депо с последующим использованием жирных кислот в качестве основного источника энергии. В связи с этим определенное количество белка сберегается от энергетических трат, поэтому скорость катаболизма белков снижается. Поскольку в этой ситуации процессы синтеза белка преобладают над процессами его распада, в организме происходит задержка азота (положительный азотистый баланс). Благодаря анаболическому действию соматотропин стимулирует активность остеобластов и способствует интенсивному образованию белковой матрицы кости. Кроме того, усиливаются также процессы минерализации костной ткани, в результате чего в организме происходит задержка кальция и фосфора.
Пролактин. Эффекты этого гормона заключаются в следующем:
1) усиливаются пролиферативные процессы в молочных железах, и ускоряется их рост;
2) усиливаются процессы образования и выделения молока. Секреция пролактина возрастает во время беременности и стимулируется рефлекторно при кормлении грудью. Благодаря специфическому действию на молочную железу пролактин называют маммотропным гормоном;
3) увеличивается реабсорбция натрия и воды в почках, что имеет значение для образования молока. В этом отношении он является синергистом альдостерона;
4) стимулируются образование желтого тела и выработка им прогестерона.
Продукция пролактина регулируется посредством выработки в гипоталамусе пролактостатина и пролактолиберина.
Гормоны нейрогипофиза. Антидиуретический гормон (АДГ). В общем виде действие АДГ сводится к двум основным эффектам:
1) стимулируется реабсорбция воды в дистальных канальцах почек. В результате увеличивается объем циркулирующей крови, повышается АД, снижается диурез и возрастает относительная плотность мочи. В результате усиленного обратного всасывания воды снижается осмотическое давление межклеточной жидкости. 2) в больших дозах АДГ вызывает сужение артериол, что приводит к увеличению АД. Развитию гипертензии способствует также наблюдающееся под влиянием АДГ повышение чувствительности сосудистой стенки к констрикторному действию катехоламинов. В связи с тем, что введение АДГ приводит к повышению АД, этот гормон получил также название «вазопрессин». Однако поскольку эффект вазоконстрикции возникает только при действии больших доз АДГ, то считают, что в физиологических условиях значимость его вазоконстрикторного влияния невелика. С другой стороны, развитие вазоконстрикции может иметь существенное адаптивное значение при некоторых патологических состояниях, например при острой кровопотере, сильных болевых воздействиях, поскольку в этих условиях в крови может присутствовать большое количество АДГ.
Окситоцин. Эффекты этого гормона реализуются главным образом в двух направлениях:
1) окситоцин вызывает сокращение гладкой мускулатуры матки. Установлено, что при удалении гипофиза у животных родовые схватки становятся длительными и малоэффективными. Таким образом, окситоцин является гормоном, обеспечивающим нормальное протекание родового акта (отсюда произошло и его название — от лат. oxy — сильный, tokos — роды). Адекватное проявление этого эффекта возможно при условии достаточной концентрации в крови эстрогенов, которые усиливают чувствительность матки к окситоцину;
2) окситоцин принимает участие в регуляции процессов лактации. Он усиливает сокращение миоэпителиальных клеток в молочных железах и тем самым способствует выделению молока.
Содержание окситоцина в крови возрастает в конце беременности, в послеродовом периоде. Кроме того, его продукция стимулируется рефлекторно при раздражении соска в процессе грудного вскармливания.
Мужские половые железы. В мужских половых железах (яички) происходят процессы сперматогенеза и образование мужских половых гормонов — андрогенов. Сперматогенез осуществляется за счет деятельности сперматогенных эпителиальных клеток, которые содержатся в семенных канальцах. Выработка андрогенов происходит в интерстициальных клетках — гландулоцитах (клетки Лейдига), локализующихся в интерстиции между семенными канальцами и составляющих примерно 20% от общей массы яичек. Небольшое количество мужских половых гормонов вырабатывается также в сетчатой зоне коркового вещества надпочечников. К андрогенам относится несколько стероидных гормонов, наиболее важным из которых является тестостерон. Продукция этого гормона определяет адекватное развитие мужских первичных и вторичных половых признаков (маскулинизирующий эффект). Под влиянием тестостерона в период полового созревания увеличиваются размеры полового члена и яичек, появляется мужской тип оволосения, меняется тональность голоса. Кроме того, тестостерон усиливает синтез белка (анаболический эффект), что приводит к ускорению процессов роста, физического развития, увеличению мышечной массы. Тестостерон влияет на процессы формирования костного скелета — он ускоряет образование белковой матрицы кости, усиливает отложение в ней солей кальция. В результате увеличиваются рост, толщина и прочность кости. При гиперпродукции тестостерона ускоряется обмен веществ, в крови возрастает количество эритроцитов.
Механизм действия тестостерона обусловлен его проникновением внутрь клетки, превращением в более активную форму (дигидротестостерон) и дальнейшим связыванием с рецепторами ядра и органелл, что приводит к изменению процессов синтеза белка и нуклеиновых кислот. Секреция тестостерона регулируется лютеинизирующим гормоном аденогипофиза, продукция которого возрастает в период полового созревания. При увеличении содержания в крови тестостерона по механизму отрицательной обратной связи тормозится выработка лютеинизирующего гормона. Уменьшение продукции обоих гонадотропных гормонов — фолликулостимулирующего и лютеинизирующего, происходит также при ускорении процессов сперматогенеза.
У мальчиков в возрасте до 10—11 лет в яичках обычно отсутствуют активные гландулоциты (клетки Лейдига), в которых вырабатываются андрогены. Однако секреция тестостерона в этих клетках происходит во время внутриутробного развития и сохраняется у ребенка в течение первых недель жизни. Это связано со стимулирующим действием хорионического гонадотропина, который продуцируется плацентой.
Недостаточная секреция мужских половых гормонов приводит к развитию евнухоидизма, основными проявлениями которого являются задержка развития первичных и вторичных половых признаков, диспропорциональность костного скелета (несоразмерно длинные конечности при относительно небольших размерах туловища), увеличение отложения жира на груди, в нижней части живота и на бедрах. Нередко отмечается увеличение молочных желез (гинекомастия). Недостаток мужских половых гормонов приводит также к определенным нервно-психическим изменениям, в частности к отсутствию влечения к противоположному полу и утрате других типичных психофизиологических черт мужчины.
5. Проблема локализации функций в коре большого мозга.
Высшим отделом ЦНС является кора большого мозга (кора больших полушарий). Она обеспечивает совершенную организацию поведения животных на основе врожденных и приобретенных в онтогенезе функций.
Кора большого мозга имеет следующие морфофункциональные особенности:
— многослойность расположения нейронов;
— модульный принцип организации;
— соматотопическая локализация рецептирующих систем;
— экранность, т. е. распределение внешней рецепции на плоскости нейронального поля коркового конца анализатора;
— зависимость уровня активности от влияния подкорковых структур и ретикулярной формации;
— наличие представительства всех функций нижележащих структур ЦНС;
— цитоархитектоническое распределение на поля;
— наличие в специфических проекционных сенсорных и моторной системах вторичных и третичных полей с ассоциативными функциями;
— наличие специализированных ассоциативных областей;
— динамическая локализация функций, выражающаяся в возможности компенсаций функций утраченных структур;
— перекрытие в коре большого мозга зон соседних периферических рецептивных полей;
— возможность длительного сохранения следов раздражения;
— реципрокная функциональная взаимосвязь возбудительных и тормозных состояний;
— способность к иррадиации возбуждения и торможения;
— наличие специфической электрической активности.
Глубокие борозды делят каждое полушарие большого мозга на лобную, височную, теменную, затылочную доли и островок. Островок расположен в глубине сильвиевой борозды и закрыт сверху частями лобной и теменной долей мозга.
Кора большого мозга делится на древнюю (archicortex), старую (paleocortex) и новую (neocortex). Древняя кора наряду с другими функциями имеет отношение к обонянию и обеспечению взаимодействия систем мозга. Старая кора включает поясную извилину, гиппокамп. У новой коры наибольшее развитие величины, дифференциации функций отмечается у человека. Толщина новой коры колеблется от 1,5 до 4,5 мм и максимальна в передней центральной извилине.
Функции отдельных зон новой коры определяются особенностями ее структурно-функциональной организации, связями с другими структурами мозга, участием в восприятии, хранении и воспроизведении информации при организации и реализации поведения, регуляции функций сенсорных систем, внутренних органов.
Особенности структурно-функциональной организации коры большого мозга обусловлены тем, что в эволюции происходила кортикализация функций, т. е. передача коре большого мозга функций нижележащих структур мозга. Однако эта передача не означает, что кора берет на себя выполнение функций других структур. Ее роль сводится к коррекции возможных нарушений функций взаимодействующих с ней систем, более совершенного, с учетом индивидуального опыта, анализа сигналов и организации оптимальной реакции на эти сигналы, формирование в своих и в других заинтересованных структурах мозга памятных следов о сигнале, его характеристиках, значении и характере реакции на него. В дальнейшем, по мере автоматизации реакция начинает выполняться подкорковыми структурами.
Общая площадь коры большого мозга человека около 2200 см2, число нейронов коры превышает 10 млрд. В составе коры имеются пирамидные, звездчатые, веретенообразные нейроны.
Клеточный состав коры по разнообразию морфологии, функции, формам связи не имеет себе равных в других отделах ЦНС. Нейронный состав, распределение нейронов по слоям в разных областях коры различны, что позволило выделить в мозге человека 53 цитоархитектонических поля. Разделение коры большого мозга на цитоархитектонические поля более четко формируется по мере совершенствования ее функции в филогенезе.
Наличие структурно различных полей предполагает и разное их функциональное предназначение. В коре большого мозга выделяют сенсорные, моторные и ассоциативные области.
Сенсорные области
Корковые концы анализаторов имеют свою топографию и на них проецируются определенные афференты проводящих систем. Корковые концы анализаторов разных сенсорных систем перекрываются. Помимо этого, в каждой сенсорной системе коры имеются полисенсорные нейроны, которые реагируют не только на «свой» адекватный стимул, но и на сигналы других сенсорных систем.
Кожная рецептирующая система, таламокортикальные пути проецируются на заднюю центральную извилину. Здесь имеется строгое соматотопическое деление. На верхние отделы этой извилины проецируются рецептивные поля кожи нижних конечностей, на средние — туловища, на нижние отделы — руки, головы.
На заднюю центральную извилину в основном проецируются болевая и температурная чувствительность. В коре теменной доли (поля 5 и 7), где также оканчиваются проводящие пути чувствительности, осуществляется более сложный анализ: локализация раздражения, дискриминация, стереогноз.
При повреждениях коры более грубо страдают функции дистальных отделов конечностей, особенно рук.
Зрительная система представлена в затылочной доле мозга: поля 17, 18, 19. Центральный зрительный путь заканчивается в поле 17; он информирует о наличии и интенсивности зрительного сигнала. В полях 18 и 19 анализируются цвет, форма, размеры, качества предметов. Поражение поля 19 коры большого мозга приводит к тому, что больной видит, но не узнает предмет (зрительная агнозия, при этом утрачивается также цветовая память).
Слуховая система проецируется в поперечных височных извилинах (извилины Гешля), в глубине задних отделов латеральной (сильвиевой) борозды (поля 41, 42, 52). Именно здесь заканчиваются аксоны задних бугров четверохолмий и латеральных коленчатых тел.
Обонятельная система проецируется в области переднего конца гиппокампальной извилины (поле 34). Кора этой области имеет не шести-, а трехслойное строение. При раздражении этой области отмечаются обонятельные галлюцинации, повреждение ее ведет к аносмии (потеря обоняния).
Вкусовая система проецируется в гиппокампальной извилине по соседству с обонятельной областью коры (поле 43).
Моторные области
Впервые Фритч и Гитциг (1870) показали, что раздражение передней центральной извилины мозга (поле 4) вызывает двигательную реакцию. В то же время признано, что двигательная область является анализаторной.
В передней центральной извилине зоны, раздражение которых вызывает движение, представлены по соматотопическому типу, но вверх ногами: в верхних отделах извилины — нижние конечности, в нижних — верхние.
Спереди от передней центральной извилины лежат премоторные поля 6 и 8. Они организуют не изолированные, а комплексные, координированные, стереотипные движения. Эти поля также обеспечивают регуляцию тонуса гладкой мускулатуры, пластический тонус мышц через подкорковые структуры.
В реализации моторных функций принимают участие также вторая лобная извилина, затылочная, верхнетеменная области.
Двигательная область коры, как никакая другая, имеет большое количество связей с другими анализаторами, чем, видимо, и обусловлено наличие в ней значительного числа полисенсорных нейронов.
Ассоциативные области
Все сенсорные проекционные зоны и моторная область коры занимают менее 20% поверхности коры большого мозга . Остальная кора составляет ассоциативную область. Каждая ассоциативная область коры связана мощными связями с несколькими проекционными областями. Считают, что в ассоциативных областях происходит ассоциация разносенсорной информации. В результате формируются сложные элементы сознания.
Ассоциативные области мозга у человека наиболее выражены в лобной, теменной и височной долях.
Каждая проекционная область коры окружена ассоциативными областями. Нейроны этих областей чаще полисенсорны, обладают большими способностями к обучению. Так, в ассоциативном зрительном поле 18 число нейронов, «обучающихся» условнорефлекторной реакции на сигнал, составляет более 60% от числа фоновоактивных нейронов. Для сравнения: таких нейронов в проекционном поле 17 всего 10—12%.
Повреждение поля 18 приводит к зрительной агнозии. Больной видит, обходит предметы, но не может их назвать.
Полисенсорность нейронов ассоциативной области коры обеспечивает их участие в интеграции сенсорной информации, взаимодействие сенсорных и моторных областей коры.
В теменной ассоциативной области коры формируются субъективные представления об окружающем пространстве, о нашем теле. Это становится возможным благодаря сопоставлению соматосенсорной, проприоцептивной и зрительной информации.
Лобные ассоциативные поля имеют связи с лимбическим отделом мозга и участвуют в организации программ действия при реализации сложных двигательных поведенческих актов.
Первой и наиболее характерной чертой ассоциативных областей коры является мультисенсорность их нейронов, причем сюда поступает не первичная, а достаточно обработанная информация с выделением биологической значимости сигнала. Это позволяет формировать программу целенаправленного поведенческого акта.
Вторая особенность ассоциативной области коры заключается в способности к пластическим перестройкам в зависимости от значимости поступающей сенсорной информации.
Третья особенность ассоциативной области коры проявляется в длительном хранении следов сенсорных воздействий. Разрушение ассоциативной области коры приводит к грубым нарушениям обучения, памяти. Речевая функция связана как с сенсорной, так и с двигательной системами. Корковый двигательный центр речи расположен в заднем отделе третьей лобной извилины (поле 44) чаще левого полушария и был описан вначале Даксом (1835), а затем Брока (1861).
Слуховой центр речи расположен в первой височной извилине левого полушария (поле 22). Этот центр был описан Вернике (1874). Моторный и слуховой центры речи связаны между собой мощным пучком аксонов.
Речевые функции, связанные с письменной речью, — чтение, письмо — регулируются ангулярной извилиной зрительной области коры левого полушария мозга (поле 39).
При поражении моторного центра речи развивается моторная афазия; в этом случае больной понимает речь, но сам говорить не может. При поражении слухового центра речи больной может говорить, излагать устно свои мысли, но не понимает чужой речи, слух сохранен, но больной не узнает слов. Такое состояние называется сенсорной слуховой афазией. Больной часто много говорит (логорея), но речь его неправильная (аграмматизм), наблюдается замена слогов, слов (парафазии).
Поражение зрительного центра речи приводит к невозможности чтения, письма.
Изолированное нарушение письма — аграфия, возникает также в случае расстройства функции задних отделов второй лобной извилины левого полушария.
В височной области расположено поле 37, которое отвечает за запоминание слов. Больные с поражениями этого поля не помнят названия предметов. Они напоминают забывчивых людей, которым необходимо подсказывать нужные слова. Больной, забыв название предмета, помнит его назначения, свойства, поэтому долго описывает их качества, рассказывает, что делают этим предметом, но назвать его не может. Например, вместо слова «галстук» больной, глядя на галстук, говорит: «это то, что надевают на шею и завязывают специальным узлом, чтобы было красиво, когда идут в гости».
Распределение функций по областям мозга не является абсолютным. Установлено, что практически все области мозга имеют полисенсорные нейроны, т. е. нейроны, реагирующие на различные раздражения. Например, при повреждении поля 17 зрительной области его функцию могут выполнять поля 18 и 19. Кроме того, разные двигательные эффекты раздражения одного и того же двигательного пункта коры наблюдаются в зависимости от текущей моторной деятельности.
Если операцию удаления одной из зон коры провести в раннем детском возрасте, когда распределение функций еще не жестко закреплено, функция утраченной области практически полностью восстанавливается, т. е. в коре имеются проявления механизмов динамической локализации функций, позволяющих компенсировать функционально и анатомически нарушенные структуры.
Литература:
Учебная литература для студентов медицинских вузовФизиология человека под редакцией В.М.Покровского, Г.Ф.Коротько
www.referatmix.ru
1
План.
1. Организация мембран. Транспорт веществ через мембраны. Ионный канал. Структура ионного канала.
2. Центральный механизм регуляции дыхания. Дыхательный центр. Опишите путь, проходимый молекулой кислорода при диффузии из альвеолы в эритроциты.
3. Нефрон - структурно-функциональная единица почки. Образование клубочкового фильтрата
4. Функциональные связи гипоталамуса с гипофизом. Роль гипофиза в регуляции деятельности эндокринных желез. Опишите регуляцию функций яичек у мужчин.
5. Проблема локализации функций в коре большого мозга
1. Организация мембран. Транспорт веществ через мембраны. Ионный канал. Структура ионного канала.
Согласно современным представлениям, биологические мембраны образуют наружную оболочку всех животных клеток и формируют многочисленные внутриклеточные органеллы. Наиболее характерным структурным признаком является то, что мембраны всегда образуют замкнутые пространства, и такая микроструктурная организация мембран позволяет им выполнять важнейшие функции.
Строение и функции клеточных мембран.
1.Барьерная функция выражается в том, что мембрана при помощи соответствующих механизмов участвует в создании концентрационных градиентов, препятствуя свободной диффузии. При этом мембрана принимает участие в механизмах электрогенеза. К ним относятся механизмы создания потенциала покоя, генерация потенциала действия, механизмы распространения биоэлектрических импульсов по однородной и неоднородной возбудимым структурам.
2.Регуляторная функция клеточной мембраны заключается в тонкой регуляции внутриклеточного содержимого и внутриклеточных реакций за счет рецепции внеклеточных биологически активных веществ, что приводит к изменению активности ферментных систем мембраны и запуску механизмов вторичных «месенджеров» («посредников»).
3.Преобразование внешних стимулов неэлектрической природы в электрические сигналы (в рецепторах).
4.Высвобождение нейромедиаторов в синаптических окончаниях.
Современными методами электронной микроскопии была определена толщина клеточных мембран (6--12 нм). Химический анализ показал, что мембраны в основном состоят из липидов и белков, количество которых неодинаково у разных типов клеток. Сложность изучения молекулярных механизмов функционирования клеточных мембран обусловлена тем, что при выделении и очистке клеточных мембран нарушается их нормальное функционирование. В настоящее время можно говорить о нескольких видах моделей клеточной мембраны, среди которых наибольшее распространение получила жидкостно-мозаичная модель.
Согласно этой модели, мембрана представлена бислоем фосфолипидных молекул, ориентированных таким образом, что гидрофобные концы молекул находятся внутри бислоя, а гидрофильные направлены в водную фазу. Такая структура идеально подходит для образования раздела двух фаз: вне- и внутриклеточной.
В фосфолипидном бислое интегрированы глобулярные белки, полярные участки которых образуют гидрофильную поверхность в водной фазе. Эти интегрированные белки выполняют различные функции, в том числе рецепторную, ферментативную, образуют ионные каналы, являются мембранными насосами и переносчиками ионов и молекул.
Некоторые белковые молекулы свободно диффундируют в плоскости липидного слоя; в обычном состоянии части белковых молекул, выходящие по разные стороны клеточной мембраны, не изменяют своего положения.
Особая морфология клеточных мембран определяет их электрические характеристики, среди которых наиболее важными являются емкость и проводимость.
Емкостные свойства в основном определяются фосфолипидным бислоем, который непроницаем для гидратированных ионов и в то же время достаточно тонок (около 5 нм), чтобы обеспечивать эффективное разделение и накопление зарядов, и электростатическое взаимодействие катионов и анионов. Кроме того, емкостные свойства клеточных мембран являются одной из причин, определяющих временные характеристики электрических процессов, протекающих на клеточных мембранах.
Проводимость (g) -- величина, обратная электрическому сопротивлению и равная отношению величины общего трансмембранного тока для данного иона к величине, обусловившей его трансмембранной разности потенциалов.
Через фосфолипидный бислой могут диффундировать различные вещества, причем степень проницаемости (Р), т. е. способность клеточной мембраны пропускать эти вещества, зависит от разности концентраций диффундирующего вещества по обе стороны мембраны, его растворимости в липидах и свойств клеточной мембраны. Скорость диффузии для заряженных ионов в условиях постоянного поля в мембране определяется подвижностью ионов, толщиной мембраны, распределением ионов в мембране. Для неэлектролитов проницаемость мембраны не влияет на ее проводимость, поскольку неэлектролиты не несут зарядов, т. е. не могут переносить электрический ток.
Проводимость мембраны является мерой ее ионной проницаемости. Увеличение проводимости свидетельствует об увеличении количества ионов, проходящих через мембрану.
Строение и функции ионных каналов. Ионы Na+, K+, Са2+, Сl- проникают внутрь клетки и выходят наружу через специальные, заполненные жидкостью каналы. Размер каналов довольно мал (диаметр 0,5--0,7 нм). Расчеты показывают, что суммарная площадь каналов занимает незначительную часть поверхности клеточной мембраны.
Функцию ионных каналов изучают различными способами. Наиболее распространенным является метод фиксации напряжения, или «voltage-clamp» Сущность метода заключается в том, что с помощью специальных электронных систем в процессе опыта изменяют и фиксируют на определенном уровне мембранный потенциал. При этом измеряют величину ионного тока, протекающего через мембрану. Если разность потенциалов постоянна, то в соответствии с законом Ома величина тока пропорциональна, проводимости ионных каналов. В ответ на ступенчатую деполяризацию открываются те или иные каналы, соответствующие ионы входят в клетку по электрохимическому градиенту, т. е. возникает ионный ток, который деполяризует клетку. Это изменение регистрируется с помощью управляющего усилителя и через мембрану пропускается электрический ток, равный по величине, но противоположный по направлению мембранному ионному току. При этом трансмембранная разность потенциалов не изменяется. Совместное использование метода фиксации потенциала и специфических блокаторов ионных каналов привело к открытию различных типов ионных каналов в клеточной мембране.
В настоящее время установлены многие типы каналов для различных ионов. Одни из них весьма специфичны, вторые, кроме основного иона, могут пропускать и другие ионы.
Изучение функции отдельных каналов возможно методом локальной фиксации потенциала «path-clamp»; Стеклянный микроэлектрод (микропипетка) заполняют солевым раствором, прижимают к поверхности мембраны и создают небольшое разрежение. При этом часть мембраны подсасывается к микроэлектроду. Если в зоне присасывания оказывается ионный канал, то регистрируют активность одиночного канала. Система раздражения и регистрации активности канала мало отличается от системы фиксации напряжения.
Ток через одиночный ионный канал имеет прямоугольную форму и одинаков по амплитуде для каналов различных типов. Длительность пребывания канала в открытом состоянии имеет вероятностный характер, но зависит от величины мембранного потенциала. Суммарный ионный ток определяется вероятностью нахождения в открытом состоянии в каждый конкретный период времени определенного числа каналов.
Наружная часть канала сравнительно доступна для изучения, исследование внутренней части представляет значительные трудности. П. Г. Костюком был разработан метод внутриклеточного диализа, который позволяет изучать функцию входных и выходных структур ионных каналов без применения микроэлектродов. Оказалось, что часть ионного канала, открытая во внеклеточное пространство, по своим функциональным свойствам отличается от части канала, обращенной во внутриклеточную среду.
Именно ионные каналы обеспечивают два важных свойства мембраны: селективность и проводимость.
Селективность, или избирательность, канала обеспечивается его особой белковой структурой. Большинство каналов являются электроуправляемыми, т. е. их способность проводить ионы зависит от величины мембранного потенциала. Канал неоднороден по своим функциональным характеристикам, особенно это касается белковых структур, находящихся у входа в канал и у его выхода (так называемые воротные механизмы).
2. Центральный механизм регуляции дыхания. Дыхательный центр. Опишите путь, проходимый молекулой кислорода при диффузии из альвеолы в эритроциты.
Дыхание регулируется нервным и гуморальным путем. Дыхательный центр находится в продолговатом мозге, содержит два отдела: центр вдоха и центр выдоха. При выдохе легкие спадаются и возбуждаются рецепторы, находящиеся в альвеолах. Возникшие возбуждения передаются по нервам в дыхательный центр, в отдел вдоха. Этот отдел приходит в возбужденное состояние и посылает импульсы в спинной мозг, а оттуда импульсы поступают к наружным межреберным мышцам и диафрагме. Они сокращаются и вызывают расширение грудной клетки - происходит вдох. Теперь отдел вдох не получает раздражения и не посылает возбуждения. Дыхательные мышцы расслабляются, грудная клетка спадает и происходит выдох. Вдох порождает выдох.
Процесс дыхания слагается из трех основных фаз: внешнее дыхание (обмен газов между внешней средой и кровью), транспорт газов кровью и внутреннее (тканевое) дыхание (обмен газов между кровью и тканями). Внешнее дыхание, функцию которого выполняют органы дыхательной системы, осуществляется различными способами.
Согласованность, ритмичность сокращений и расслаблений дыхательных мышц обусловлены поступающими к ним по нервам импульсами от дыхательного центра продолговатого мозга. И.М. Сеченов в 1882 г. установил, что примерно через каждые 4 сек, в дыхательном центре автоматически возникают возбуждения, обеспечивающие чередование вдоха и выдоха. Дыхательный центр изменяет глубину и частоту дыхательных движений, обеспечивая оптимальное содержание газов в крови. Гуморальная регуляция дыхания состоит в том, что повышение концентрации углекислого газа в крови возбуждает дыхательный центр - частота и глубина дыхания увеличиваются, а уменьшение СО2 понижает возбудимость дыхательного центра - частота и глубина дыхания уменьшаются.
Дыхательный центр
Под дыхательным центром следует понимать совокупность нейронов специфических (дыхательных) ядер продолговатого мозга, способных генерировать дыхательный ритм.
В нормальных (физиологических) условиях дыхательный центр получает афферентные сигналы от периферических и центральных хеморецепторов, сигнализирующих соответственно о парциальном давлении О2 в крови и концентрации Н+ во внеклеточной жидкости мозга. В период бодрствования деятельность дыхательного центра регулируется дополнительными сигналами, исходящими из различных структур ЦНС. У человека это, например, структуры, обеспечивающие речь. Речь (пение) может в значительной степени отклонить от нормального уровень газов крови, даже снизить реакцию дыхательного центра на гипоксию или гиперкапнию. Афферентные сигналы от хеморецепторов тесно взаимодействуют с другими афферентными стимулами дыхательного центра, но, в конечном счете, химический, или гуморальный, контроль дыхания всегда доминирует над нейрогенным. Например, человек произвольно не может бесконечно долго задерживать дыхание из-за нарастающих во время остановки дыхания гипоксии и гиперкапнии.
Дыхательный центр выполняет две основные функции в системе дыхания: моторную, или двигательную, которая проявляется в виде сокращения дыхательных мышц, и гомеостатическую, связанную с изменением характера дыхания при сдвигах содержания О2 и СО2 во внутренней среде организма.
Двигательная функция дыхательного центра заключается в генерации дыхательного ритма и его паттерна. Под генерацией дыхательного ритма понимают генерацию дыхательным центром вдоха и его прекращение (переход в экспирацию). Под паттерном дыхания следует понимать длительность вдоха и выдоха, величину дыхательного объема, минутного объема дыхания. Моторная функция дыхательного центра адаптирует дыхание к метаболическим потребностям организма, приспосабливает дыхание в поведенческих реакциях (поза, бег и др.), а также осуществляет интеграцию дыхания с другими функциями ЦНС.
Гомеостатическая функция дыхательного центра поддерживает нормальные величины дыхательных газов (O2, CO2) и рН в крови и внеклеточной жидкости мозга, регулирует дыхание при изменении температуры тела, адаптирует дыхательную функцию к условиям измененной газовой среды, например при пониженном и повышенном барометрическом давлении.
В организме газообмен О2 и СО2 через альвеолярно-капиллярную мембрану происходит с помощью диффузии. Диффузия О2 и СО2 через аэрогематический барьер зависит от следующих факторов: вентиляции дыхательных путей; смешивания и диффузии газов в альвеолярных протоках и альвеолах; смешивания и диффузии газов через аэрогематический барьер, мембрану эритроцитов и плазму альвеолярных капилляров; химической реакции газов с различными компонентами крови, и, наконец, от перфузии кровью легочных капилляров.
Диффузия газов через альвеолярно-капиллярную мембрану легких осуществляется в два этапа. На первом этапе диффузионный перенос газов происходит по концентрационному градиенту через тонкий аэрогематический барьер, на втором -- происходит связывание газов в крови легочных капилляров, объем которой составляет 80--150 мл, при толщине слоя крови в капиллярах всего 5--8 мкм и скорости кровотока около 0,1 мм*с-1. После преодоления аэрогематического барьера газы диффундируют через плазму крови в эритроциты.
Значительным препятствием на пути диффузии О2 является мембрана эритроцитов. Плазма крови практически не препятствует диффузии газов в отличие от альвеолярно-капиллярной мембраны и мембраны эритроцитов
3.Нефрон - структурно-функциональная единица почки. Образование клубочкового фильтра.
В каждой почке у человека содержится около 1 млн функциональных единиц -- нефронов, в которых происходит образование мочи. Каждый нефрон начинается почечным, или мальпигиевым, тельцем -- двустенной капсулой клубочка (капсула Шумлянского--Боумена), внутри которой находится клубочек капилляров. Внутренняя поверхность капсулы выстлана эпителиальными клетками; образующаяся полость между висцеральным и париетальным листками капсулы переходит в просвет проксимального извитого канальца. Особенностью клеток этого канальца является наличие щеточной каемки -- большого количества микроворсинок, обращенных в просвет канальца. Следующий отдел нефрона -- тонкая нисходящая часть петли нефрона (петли Генле). Ее стенка образована низкими, плоскими эпителиальными клетками. Нисходящая часть петли может опускаться глубоко в мозговое вещество, где каналец изгибается на 180°, и поворачивает в сторону коркового вещества почки, образуя восходящую часть петли нефрона. Она может включать тонкую и всегда имеет толстую восходящую часть, которая поднимается до уровня клубочка своего же нефрона, где начинается дистальный извитой каналец. Этот отдел канальца обязательно прикасается к клубочку между приносящей и выносящей артериолами в области плотного пятна. Клетки толстого восходящего отдела петли Генле и дистального извитого канальца лишены щеточной каемки, в них много митохондрий и увеличена поверхность базальной плазматической мембраны за счет складчатости. Конечный отдел нефрона -- короткий связующий каналец, впадает в собирательную трубку. Начинаясь в корковом веществе почки, собирательные трубки проходят через мозговое вещество и открываются в полость почечной лоханки. Диаметр капсулы клубочка около 0,2 мм, общая длина канальцев одного нефрона достигает 35--50 мм. Исходя из особенностей структуры и функции почечных канальцев, различают следующие сегменты нефрона: 1) проксимальный, в состав которого входят извитая и прямая части проксимального канальца; 2) тонкий отдел петли нефрона, включающий нисходящую и тонкую восходящую части петли; 3) дистальный сегмент, образованный толстым восходящим отделом петли нефрона, дистальным извитым канальцем и связующим отделом. Канальцы нефрона соединены с собирательными трубками: в процессе эмбриогенеза они развиваются самостоятельно, но в сформировавшейся почке собирательные трубки функционально близки дистальному сегменту нефрона.
В почке функционирует несколько типов нефронов: суперфициальные (поверхностные), интракортикальные и юкстамедуллярные. Различие между ними заключается в локализации в почке, величине клубочков (юкстамедуллярные крупнее суперфициальных), глубине расположения клубочков и проксимальных канальцев в корковом веществе почки (клубочки юкстамедуллярных нефронов лежат у границы коркового и мозгового вещества) и в длине отдельных участков нефрона, особенно петель нефрона. Суперфициальные нефроны имеют короткие петли, юкстамедуллярные, напротив, длинные, спускающиеся во внутреннее мозговое вещество почки. Характерна строгая зональность распределения канальцев внутри почки
Большое функциональное значение имеет зона почки, в которой расположен каналец, независимо от того, находится ли он в корковом или мозговом веществе. В корковом веществе находятся почечные клубочки, проксимальные и дистальные отделы канальцев, связующие отделы. В наружной полоске наружного мозгового вещества находятся нисходящие и толстые восходящие отделы петель нефронов, собирательные трубки; во внутреннем мозговом веществе располагаются тонкие отделы петель нефронов и собирательные трубки. Расположение каждой из частей нефрона в почке чрезвычайно важно и определяет форму участия тех или иных нефронов в деятельности почки, в частности в осмотическом концентрировании мочи.
Клубочковая фильтрация
Мысль о фильтрации воды и растворенных веществ как первом этапе мочеобразования была высказана в 1842 г. немецким физиологом К. Людвигом. В 20-х годах XX столетия американскому физиологу А. Ричардсу в прямом эксперименте удалось подтвердить это предположение -- с помощью микроманипулятора пунктировать микропипеткой клубочковую капсулу и извлечь из нее жидкость, действительно оказавшуюся ультрафильтратом плазмы крови.
Ультрафильтрация воды и низкомолекулярных компонентов из плазмы крови происходит через клубочковый фильтр. Этот фильтрационный барьер почти непроницаем для высокомолекулярных веществ. Процесс ультрафильтрации обусловлен разностью между гидростатическим давлением крови, гидростатическим давлением в капсуле клубочка и онкотическим давлением белков плазмы крови. Общая поверхность капилляров клубочка больше общей поверхности тела человека и достигает 1,5 м2 на 100 г массы почки. Фильтрующая мембрана (фильтрационный барьер), через которую проходит жидкость из просвета капилляра в полость капсулы клубочка, состоит из трех слоев: эндотелиальных клеток капилляров, базальной мембраны и эпителиальных клеток висцерального (внутреннего) листка капсулы-- подоцитов.
Клетки эндотелия, кроме области ядра, очень истончены, толщина цитоплазмы боковых частей клетки менее 50 нм; в цитоплазме имеются круглые или овальные отверстия (поры) размером 50--100 нм, которые занимают до 30 % поверхности клетки. При нормальном кровотоке наиболее крупные белковые молекулы образуют барьерный слой на поверхности пор эндотелия и затрудняют движение через них альбуминов, ограничивая тем самым прохождение форменных элементов крови и белков через эндотелий. Другие компоненты плазмы крови и вода могут свободно достигать базальной мембраны.
Базальная мембрана является одной из важнейших составных частей фильтрующей мембраны клубочка. У человека толщина базальной мембраны 250--400 нм. Эта мембрана состоит из трех слоев -- центрального и двух периферических. Поры в базальной мембране препятствуют прохождению молекул диаметром больше 6 нм.
Наконец, важную роль в определении размера фильтруемых веществ играют щелевые мембраны между «ножками» подоцитов. Эти эпителиальные клетки обращены в просвет капсулы почечного клубочка и имеют отростки -- «ножки», которыми прикрепляются к базальной мембране. Базальная мембрана и щелевые мембраны между этими «ножками» ограничивают фильтрацию веществ, диаметр молекул которых больше 6,4 нм (т. е. не проходят вещества, радиус молекулы которых превышает 3,2 нм). Поэтому в просвет нефрона свободно проникает инулин (радиус молекулы 1,48 нм, молекулярная масса около 5200), может фильтроваться лишь 22 % яичного альбумина (радиус молекулы 2,85 нм, молекулярная масса 43500), 3 % гемоглобина (радиус молекулы 3,25 нм, молекулярная масса 68 000)и меньше 1 % сывороточного альбумина (радиус молекулы 3,55 нм, молекулярная масса 69 000).
Прохождению белков через клубочковый фильтр препятствуют отрицательно заряженные молекулы -- полианионы, входящие в состав вещества базальной мембраны, и сиалогликопротеиды в выстилке, лежащей на поверхности подоцитов и между их «ножками». Ограничение для фильтрации белков, имеющих отрицательный заряд, обусловлено размером пор клубочкового фильтра и их электронегативностью. Таким образом, состав клубочкового фильтрата зависит от свойств эпителиального барьера и базальной мембраны. Естественно, размер и свойства пор фильтрационного барьера вариабельны, поэтому в обычных условиях в ультрафильтрате обнаруживаются лишь следы белковых фракций, характерных для плазмы крови. Прохождение достаточно крупных молекул через поры зависит не только от их размера, но и конфигурации молекулы, ее пространственного соответствия форме поры.
4. Функциональные связи гипоталамуса с гипофизом. Роль гипофиза в регуляции деятельности эндокринных желез. Опишите регуляцию функций яичек у мужчин.
Гипоталамус и гипофиз является Центральным звеном эндокринной системы.
Особое место в эндокринной системе занимает гипоталамо-гипофизарная система. Гипоталамус в ответ на нервные импульсы оказывает стимулирующее или тормозящее действие на переднюю долю гипофиза. Через гипофизарные гормоны гипоталамус регулирует функцию периферических желез внутренней секреции. Так, например, происходит стимуляция тиреотропного гормона (ТТГ) гипофиза, а последний, в свою очередь, стимулирует секрецию щитовидной железой тиреоидных гормонов. В связи с этим принято говорить о единых функциональных системах: гипоталамус - гипофиз - щитовидная железа, гипоталамус - гипофиз - надпочечники
Выпадение каждого из компонентов гормональной регуляции из общей системы нарушает единую цепь регуляции функций организма и приводит к развитию различных патологических состояний.
В гипофизе выделяют переднюю (аденогипофиз) и заднюю (нейрогипофиз) доли. У многих животных представлена также промежуточная доля (pars intermedia), однако у человека она практически отсутствует. В аденогипофизе вырабатывается 6 гормонов, из них 4 являются тропными (адренокортикотропный гормон, или кортикотропин, тиреотропный гормон, или тиреотропин и 2 гонадотропина -- фолликулостимулирующий и лютеинизирующий гормоны), а 2 -- эффекторными (соматотропный гормон, или соматотропин, и пролактин). В нейрогипофизе происходит депонирование окситоцина и антидиуретического гормона (вазопрессин). Синтез этих гормонов осуществляется в супраоптическом и паравентрикулярном ядрах гипоталамуса. Нейроны, составляющие эти ядра, имеют длинные аксоны, которые в составе ножки гипофиза образуют гипоталамо-гипофизарный тракт и достигают задней доли гипофиза. Синтезированные в гипоталамусе окситоцин и вазопрессин доставляются в нейрогипофиз путем аксонального транспорта с помощью специального белка-переносчика, получившего название «нейрофизин».
Гормоны аденогипофиза. Адренокортикотропный гормон, или кортикотропин. Основной эффект этого гормона выражается в стимулирующем действии на образование глюкокортикоидов в пучковой зоне коркового вещества надпочечников. В меньшей степени выражено влияние гормона на клубочковую и сетчатую зоны. Кортикотропин ускоряет стероидогенез и усиливает пластические процессы (биосинтез белка, нуклеиновых кислот), что приводит к гиперплазии коркового вещества надпочечников. Оказывает также вненадпочечниковое действие, проявляющееся в стимуляции процессов липолиза, анаболическом влиянии, усилении пигментации. Влияние на пигментацию обусловлено частичным совпадением аминокислотных цепей кортикотропина и меланоцитостимулирующего гормона.
Выработка кортикотропина регулируется кортиколиберином гипоталамуса.
Тиреотропный гормон, или тиреотропин. Под влиянием тиреотропина стимулируется образование в щитовидной железе тироксина и трийодтиронина. Тиреотропин увеличивает секреторную активность тиреоцитов за счет усиления в них пластических процессов (синтез белка, нуклеиновых кислот) и увеличенного поглощения кислорода. В результате ускоряются практически все стадии биосинтеза гормонов щитовидной железы. Под влиянием тиреотропина активируется работа «йодного насоса», усиливаются процессы йодирования тирозина. Кроме того, увеличивается активность протеаз, расщепляющих тиреоглобулин, что способствует высвобождению активного тироксина и трийодтиронина в кровь. Выработка тиреотропина регулируется тиреолиберином гипоталамуса.
Гонадотропные гормоны, или гонадотропины. В аденогипофизе вырабатывается 2 гонадотропина -- фолликулостимулирующий (ФСГ) и лютеинизирующий (ЛГУ). ФСГ действует на фолликулы яичников, ускоряя их созревание и подготовку к овуляции. Под влиянием ЛГ происходит разрыв стенки фолликула (овуляция) и образуется желтое тело. ЛГ стимулирует выработку прогестерона в желтом теле. Оба гормона влияют также на мужские половые железы. ЛГ действует на яички, ускоряя выработку тестостерона в интерстициальных клетках -- гландулоцитах (клетки Лейдига). ФСГ действует на клетки семенных канальцев, усиливая в них процессы сперматогенеза. Регуляция секреции гонадотропинов осуществляется гипоталамическим гонадолиберином. Существенное значение имеет также механизм отрицательной обратной связи -- секреция обоих гормонов тормозится при повышенном содержании эстрогенов и прогестерона в крови; выработка ЛГ уменьшается при увеличении продукции тестостерона.
Соматотропный гормон, или соматотропин. Является гормоном, специфическое действие которого проявляется в усилении процессов роста и физического развития. Органами-мишенями для него являются кости, а также образования, богатые соединительной тканью, -- мышцы, связки, сухожилия, внутренние органы. Стимуляция процессов роста осуществляется за счет анаболического действия соматотропина. Последнее проявляется в усилении транспорта аминокислот в клетку, ускорении процессов биосинтеза белка и нуклеиновых кислот. Одновременно происходит торможение реакций, связанных с распадом белка. Вероятной причиной этого эффекта является наблюдающаяся под действием соматотропина усиленная мобилизация жира из жировых депо с последующим использованием жирных кислот в качестве основного источника энергии. В связи с этим определенное количество белка сберегается от энергетических трат, поэтому скорость катаболизма белков снижается. Поскольку в этой ситуации процессы синтеза белка преобладают над процессами его распада, в организме происходит задержка азота (положительный азотистый баланс). Благодаря анаболическому действию соматотропин стимулирует активность остеобластов и способствует интенсивному образованию белковой матрицы кости. Кроме того, усиливаются также процессы минерализации костной ткани, в результате чего в организме происходит задержка кальция и фосфора.
Пролактин. Эффекты этого гормона заключаются в следующем:
1) усиливаются пролиферативные процессы в молочных железах, и ускоряется их рост;
2) усиливаются процессы образования и выделения молока. Секреция пролактина возрастает во время беременности и стимулируется рефлекторно при кормлении грудью. Благодаря специфическому действию на молочную железу пролактин называют маммотропным гормоном;
3) увеличивается реабсорбция натрия и воды в почках, что имеет значение для образования молока. В этом отношении он является синергистом альдостерона;
4) стимулируются образование желтого тела и выработка им прогестерона.
Продукция пролактина регулируется посредством выработки в гипоталамусе пролактостатина и пролактолиберина.
Гормоны нейрогипофиза. Антидиуретический гормон (АДГ). В общем виде действие АДГ сводится к двум основным эффектам:
1) стимулируется реабсорбция воды в дистальных канальцах почек. В результате увеличивается объем циркулирующей крови, повышается АД, снижается диурез и возрастает относительная плотность мочи. В результате усиленного обратного всасывания воды снижается осмотическое давление межклеточной жидкости. 2) в больших дозах АДГ вызывает сужение артериол, что приводит к увеличению АД. Развитию гипертензии способствует также наблюдающееся под влиянием АДГ повышение чувствительности сосудистой стенки к констрикторному действию катехоламинов. В связи с тем, что введение АДГ приводит к повышению АД, этот гормон получил также название «вазопрессин». При этом поскольку эффект вазоконстрикции возникает только при действии больших доз АДГ, то считают, что в физиологических условиях значимость его вазоконстрикторного влияния невелика. С другой стороны, развитие вазоконстрикции может иметь существенное адаптивное значение при некоторых патологических состояниях, например при острой кровопотере, сильных болевых воздействиях, поскольку в этих условиях в крови может присутствовать большое количество АДГ.
Окситоцин. Эффекты этого гормона реализуются главным образом в двух направлениях:
1) окситоцин вызывает сокращение гладкой мускулатуры матки. Установлено, что при удалении гипофиза у животных родовые схватки становятся длительными и малоэффективными. Таким образом, окситоцин является гормоном, обеспечивающим нормальное протекание родового акта (отсюда произошло и его название -- от лат. oxy -- сильный, tokos -- роды). Адекватное проявление этого эффекта возможно при условии достаточной концентрации в крови эстрогенов, которые усиливают чувствительность матки к окситоцину;
2) окситоцин принимает участие в регуляции процессов лактации. Он усиливает сокращение миоэпителиальных клеток в молочных железах и тем самым способствует выделению молока.
Содержание окситоцина в крови возрастает в конце беременности, в послеродовом периоде. Кроме того, его продукция стимулируется рефлекторно при раздражении соска в процессе грудного вскармливания.
Мужские половые железы. В мужских половых железах (яички) происходят процессы сперматогенеза и образование мужских половых гормонов -- андрогенов. Сперматогенез осуществляется за счет деятельности сперматогенных эпителиальных клеток, которые содержатся в семенных канальцах. Выработка андрогенов происходит в интерстициальных клетках -- гландулоцитах (клетки Лейдига), локализующихся в интерстиции между семенными канальцами и составляющих примерно 20% от общей массы яичек. Небольшое количество мужских половых гормонов вырабатывается также в сетчатой зоне коркового вещества надпочечников. К андрогенам относится несколько стероидных гормонов, наиболее важным из которых является тестостерон. Продукция этого гормона определяет адекватное развитие мужских первичных и вторичных половых признаков (маскулинизирующий эффект). Под влиянием тестостерона в период полового созревания увеличиваются размеры полового члена и яичек, появляется мужской тип оволосения, меняется тональность голоса. Кроме того, тестостерон усиливает синтез белка (анаболический эффект), что приводит к ускорению процессов роста, физического развития, увеличению мышечной массы. Тестостерон влияет на процессы формирования костного скелета -- он ускоряет образование белковой матрицы кости, усиливает отложение в ней солей кальция. В результате увеличиваются рост, толщина и прочность кости. При гиперпродукции тестостерона ускоряется обмен веществ, в крови возрастает количество эритроцитов.
Механизм действия тестостерона обусловлен его проникновением внутрь клетки, превращением в более активную форму (дигидротестостерон) и дальнейшим связыванием с рецепторами ядра и органелл, что приводит к изменению процессов синтеза белка и нуклеиновых кислот. Секреция тестостерона регулируется лютеинизирующим гормоном аденогипофиза, продукция которого возрастает в период полового созревания. При увеличении содержания в крови тестостерона по механизму отрицательной обратной связи тормозится выработка лютеинизирующего гормона. Уменьшение продукции обоих гонадотропных гормонов -- фолликулостимулирующего и лютеинизирующего, происходит также при ускорении процессов сперматогенеза.
У мальчиков в возрасте до 10--11 лет в яичках обычно отсутствуют активные гландулоциты (клетки Лейдига), в которых вырабатываются андрогены. При этом секреция тестостерона в этих клетках происходит во время внутриутробного развития и сохраняется у ребенка в течение первых недель жизни. Это связано со стимулирующим действием хорионического гонадотропина, который продуцируется плацентой.
Недостаточная секреция мужских половых гормонов приводит к развитию евнухоидизма, основными проявлениями которого являются задержка развития первичных и вторичных половых признаков, диспропорциональность костного скелета (несоразмерно длинные конечности при относительно небольших размерах туловища), увеличение отложения жира на груди, в нижней части живота и на бедрах. Нередко отмечается увеличение молочных желез (гинекомастия). Недостаток мужских половых гормонов приводит также к определенным нервно-психическим изменениям, в частности к отсутствию влечения к противоположному полу и утрате других типичных психофизиологических черт мужчины.
5. Проблема локализации функций в коре большого мозга.
Высшим отделом ЦНС является кора большого мозга (кора больших полушарий). Она обеспечивает совершенную организацию поведения животных на основе врожденных и приобретенных в онтогенезе функций.
Кора большого мозга имеет следующие морфофункциональные особенности:
-- многослойность расположения нейронов;
-- модульный принцип организации;
-- соматотопическая локализация рецептирующих систем;
-- экранность, т. е. распределение внешней рецепции на плоскости нейронального поля коркового конца анализатора;
-- зависимость уровня активности от влияния подкорковых структур и ретикулярной формации;
-- наличие представительства всех функций нижележащих структур ЦНС;
-- цитоархитектоническое распределение на поля;
-- наличие в специфических проекционных сенсорных и моторной системах вторичных и третичных полей с ассоциативными функциями;
-- наличие специализированных ассоциативных областей;
-- динамическая локализация функций, выражающаяся в возможности компенсаций функций утраченных структур;
-- перекрытие в коре большого мозга зон соседних периферических рецептивных полей;
-- возможность длительного сохранения следов раздражения;
-- реципрокная функциональная взаимосвязь возбудительных и тормозных состояний;
-- способность к иррадиации возбуждения и торможения;
-- наличие специфической электрической активности.
Глубокие борозды делят каждое полушарие большого мозга на лобную, височную, теменную, затылочную доли и островок. Островок расположен в глубине сильвиевой борозды и закрыт сверху частями лобной и теменной долей мозга.
Кора большого мозга делится на древнюю (archicortex), старую (paleocortex) и новую (neocortex). Древняя кора наряду с другими функциями имеет отношение к обонянию и обеспечению взаимодействия систем мозга. Старая кора включает поясную извилину, гиппокамп. У новой коры наибольшее развитие величины, дифференциации функций отмечается у человека. Толщина новой коры колеблется от 1,5 до 4,5 мм и максимальна в передней центральной извилине.
Функции отдельных зон новой коры определяются особенностями ее структурно-функциональной организации, связями с другими структурами мозга, участием в восприятии, хранении и воспроизведении информации при организации и реализации поведения, регуляции функций сенсорных систем, внутренних органов.
Особенности структурно-функциональной организации коры большого мозга обусловлены тем, что в эволюции происходила кортикализация функций, т. е. передача коре большого мозга функций нижележащих структур мозга. При этом эта передача не означает, что кора берет на себя выполнение функций других структур. Ее роль сводится к коррекции возможных нарушений функций взаимодействующих с ней систем, более совершенного, с учетом индивидуального опыта, анализа сигналов и организации оптимальной реакции на эти сигналы, формирование в своих и в других заинтересованных структурах мозга памятных следов о сигнале, его характеристиках, значении и характере реакции на него. В дальнейшем, по мере автоматизации реакция начинает выполняться подкорковыми структурами.
Общая площадь коры большого мозга человека около 2200 см2, число нейронов коры превышает 10 млрд. В составе коры имеются пирамидные, звездчатые, веретенообразные нейроны.
Клеточный состав коры по разнообразию морфологии, функции, формам связи не имеет себе равных в других отделах ЦНС. Нейронный состав, распределение нейронов по слоям в разных областях коры различны, что позволило выделить в мозге человека 53 цитоархитектонических поля. Разделение коры большого мозга на цитоархитектонические поля более четко формируется по мере совершенствования ее функции в филогенезе.
Наличие структурно различных полей предполагает и разное их функциональное предназначение. В коре большого мозга выделяют сенсорные, моторные и ассоциативные области.
Сенсорные области
Корковые концы анализаторов имеют свою топографию и на них проецируются определенные афференты проводящих систем. Корковые концы анализаторов разных сенсорных систем перекрываются. Помимо этого, в каждой сенсорной системе коры имеются полисенсорные нейроны, которые реагируют не только на «свой» адекватный стимул, но и на сигналы других сенсорных систем.
Кожная рецептирующая система, таламокортикальные пути проецируются на заднюю центральную извилину. Здесь имеется строгое соматотопическое деление. На верхние отделы этой извилины проецируются рецептивные поля кожи нижних конечностей, на средние -- туловища, на нижние отделы -- руки, головы.
На заднюю центральную извилину в основном проецируются болевая и температурная чувствительность. В коре теменной доли (поля 5 и 7), где также оканчиваются проводящие пути чувствительности, осуществляется более сложный анализ: локализация раздражения, дискриминация, стереогноз.
При повреждениях коры более грубо страдают функции дистальных отделов конечностей, особенно рук.
Зрительная система представлена в затылочной доле мозга: поля 17, 18, 19. Центральный зрительный путь заканчивается в поле 17; он информирует о наличии и интенсивности зрительного сигнала. В полях 18 и 19 анализируются цвет, форма, размеры, качества предметов. Поражение поля 19 коры большого мозга приводит к тому, что больной видит, но не узнает предмет (зрительная агнозия, при всём этом утрачивается также цветовая память).
Слуховая система проецируется в поперечных височных извилинах (извилины Гешля), в глубине задних отделов латеральной (сильвиевой) борозды (поля 41, 42, 52). Именно здесь заканчиваются аксоны задних бугров четверохолмий и латеральных коленчатых тел.
Обонятельная система проецируется в области переднего конца гиппокампальной извилины (поле 34). Кора этой области имеет не шести-, а трехслойное строение. При раздражении этой области отмечаются обонятельные галлюцинации, повреждение ее ведет к аносмии (потеря обоняния).
Вкусовая система проецируется в гиппокампальной извилине по соседству с обонятельной областью коры (поле 43).
Моторные области
Впервые Фритч и Гитциг (1870) показали, что раздражение передней центральной извилины мозга (поле 4) вызывает двигательную реакцию. В то же время признано, что двигательная область является анализаторной.
В передней центральной извилине зоны, раздражение которых вызывает движение, представлены по соматотопическому типу, но вверх ногами: в верхних отделах извилины -- нижние конечности, в нижних -- верхние.
Спереди от передней центральной извилины лежат премоторные поля 6 и 8. Они организуют не изолированные, а комплексные, координированные, стереотипные движения. Эти поля также обеспечивают регуляцию тонуса гладкой мускулатуры, пластический тонус мышц через подкорковые структуры.
В реализации моторных функций принимают участие также вторая лобная извилина, затылочная, верхнетеменная области.
Двигательная область коры, как никакая другая, имеет большое количество связей с другими анализаторами, чем, видимо, и обусловлено наличие в ней значительного числа полисенсорных нейронов.
Ассоциативные области
Все сенсорные проекционные зоны и моторная область коры занимают менее 20% поверхности коры большого мозга . Остальная кора составляет ассоциативную область. Каждая ассоциативная область коры связана мощными связями с несколькими проекционными областями. Считают, что в ассоциативных областях происходит ассоциация разносенсорной информации. В результате формируются сложные элементы сознания.
Ассоциативные области мозга у человека наиболее выражены в лобной, теменной и височной долях.
Каждая проекционная область коры окружена ассоциативными областями. Нейроны этих областей чаще полисенсорны, обладают большими способностями к обучению. Так, в ассоциативном зрительном поле 18 число нейронов, «обучающихся» условнорефлекторной реакции на сигнал, составляет более 60% от числа фоновоактивных нейронов. Для сравнения: таких нейронов в проекционном поле 17 всего 10--12%.
Повреждение поля 18 приводит к зрительной агнозии. Больной видит, обходит предметы, но не может их назвать.
Полисенсорность нейронов ассоциативной области коры обеспечивает их участие в интеграции сенсорной информации, взаимодействие сенсорных и моторных областей коры.
В теменной ассоциативной области коры формируются субъективные представления об окружающем пространстве, о нашем теле. Это становится возможным благодаря сопоставлению соматосенсорной, проприоцептивной и зрительной информации.
Лобные ассоциативные поля имеют связи с лимбическим отделом мозга и участвуют в организации программ действия при реализации сложных двигательных поведенческих актов.
Первой и наиболее характерной чертой ассоциативных областей коры является мультисенсорность их нейронов, причем сюда поступает не первичная, а достаточно обработанная информация с выделением биологической значимости сигнала. Это позволяет формировать программу целенаправленного поведенческого акта.
Вторая особенность ассоциативной области коры заключается в способности к пластическим перестройкам в зависимости от значимости поступающей сенсорной информации.
Третья особенность ассоциативной области коры проявляется в длительном хранении следов сенсорных воздействий. Разрушение ассоциативной области коры приводит к грубым нарушениям обучения, памяти. Речевая функция связана как с сенсорной, так и с двигательной системами. Корковый двигательный центр речи расположен в заднем отделе третьей лобной извилины (поле 44) чаще левого полушария и был описан вначале Даксом (1835), а затем Брока (1861).
Слуховой центр речи расположен в первой височной извилине левого полушария (поле 22). Этот центр был описан Вернике (1874). Моторный и слуховой центры речи связаны между собой мощным пучком аксонов.
Речевые функции, связанные с письменной речью, -- чтение, письмо -- регулируются ангулярной извилиной зрительной области коры левого полушария мозга (поле 39).
При поражении моторного центра речи развивается моторная афазия; в этом случае больной понимает речь, но сам говорить не может. При поражении слухового центра речи больной может говорить, излагать устно свои мысли, но не понимает чужой речи, слух сохранен, но больной не узнает слов. Такое состояние называется сенсорной слуховой афазией. Больной часто много говорит (логорея), но речь его неправильная (аграмматизм), наблюдается замена слогов, слов (парафазии).
Поражение зрительного центра речи приводит к невозможности чтения, письма.
Изолированное нарушение письма -- аграфия, возникает также в случае расстройства функции задних отделов второй лобной извилины левого полушария.
В височной области расположено поле 37, которое отвечает за запоминание слов. Больные с поражениями этого поля не помнят названия предметов. Они напоминают забывчивых людей, которым необходимо подсказывать нужные слова. Больной, забыв название предмета, помнит его назначения, свойства, поэтому долго описывает их качества, рассказывает, что делают этим предметом, но назвать его не может. Например, вместо слова «галстук» больной, глядя на галстук, говорит: «это то, что надевают на шею и завязывают специальным узлом, чтобы было красиво, когда идут в гости».
Распределение функций по областям мозга не является абсолютным. Установлено, что практически все области мозга имеют полисенсорные нейроны, т. е. нейроны, реагирующие на различные раздражения. Например, при повреждении поля 17 зрительной области его функцию могут выполнять поля 18 и 19. Кроме того, разные двигательные эффекты раздражения одного и того же двигательного пункта коры наблюдаются в зависимости от текущей моторной деятельности.
Если операцию удаления одной из зон коры провести в раннем детском возрасте, когда распределение функций еще не жестко закреплено, функция утраченной области практически полностью восстанавливается, т. е. в коре имеются проявления механизмов динамической локализации функций, позволяющих компенсировать функционально и анатомически нарушенные структуры.
Литература:
Учебная литература для студентов медицинских вузовФизиология человека под редакцией В.М.Покровского, Г.Ф.Коротько
referatwork.ru
План.
1. Организация мембран. Транспорт веществ через мембраны. Ионный канал. Структура ионного канала.
2. Центральный механизм регуляции дыхания. Дыхательный центр. Опишите путь, проходимый молекулой кислорода при диффузии из альвеолы в эритроциты.
3. Нефрон – структурно-функциональная единица почки. Образование клубочкового фильтрата
4. Функциональные связи гипоталамуса с гипофизом. Роль гипофиза в регуляции деятельности эндокринных желез. Опишите регуляцию функций яичек у мужчин.
5. Проблема локализации функций в коре большого мозга
1. Организация мембран. Транспорт веществ через мембраны. Ионный канал. Структура ионного канала.
Согласно современным представлениям, биологические мембраны образуют наружную оболочку всех животных клеток и формируют многочисленные внутриклеточные органеллы. Наиболее характерным структурным признаком является то, что мембраны всегда образуют замкнутые пространства, и такая микроструктурная организация мембран позволяет им выполнять важнейшие функции.
Строение и функции клеточных мембран.
1.Барьерная функция выражается в том, что мембрана при помощи соответствующих механизмов участвует в создании концентрационных градиентов, препятствуя свободной диффузии. При этом мембрана принимает участие в механизмах электрогенеза. К ним относятся механизмы создания потенциала покоя, генерация потенциала действия, механизмы распространения биоэлектрических импульсов по однородной и неоднородной возбудимым структурам.
2.Регуляторная функция клеточной мембраны заключается в тонкой регуляции внутриклеточного содержимого и внутриклеточных реакций за счет рецепции внеклеточных биологически активных веществ, что приводит к изменению активности ферментных систем мембраны и запуску механизмов вторичных «месенджеров» («посредников»).
3.Преобразование внешних стимулов неэлектрической природы в электрические сигналы (в рецепторах).
4.Высвобождение нейромедиаторов в синаптических окончаниях.
Современными методами электронной микроскопии была определена толщина клеточных мембран (6—12 нм). Химический анализ показал, что мембраны в основном состоят из липидов и белков, количество которых неодинаково у разных типов клеток. Сложность изучения молекулярных механизмов функционирования клеточных мембран обусловлена тем, что при выделении и очистке клеточных мембран нарушается их нормальное функционирование. В настоящее время можно говорить о нескольких видах моделей клеточной мембраны, среди которых наибольшее распространение получила жидкостно-мозаичная модель.
Согласно этой модели, мембрана представлена бислоем фосфолипидных молекул, ориентированных таким образом, что гидрофобные концы молекул находятся внутри бислоя, а гидрофильные направлены в водную фазу. Такая структура идеально подходит для образования раздела двух фаз: вне- и внутриклеточной.
В фосфолипидном бислое интегрированы глобулярные белки, полярные участки которых образуют гидрофильную поверхность в водной фазе. Эти интегрированные белки выполняют различные функции, в том числе рецепторную, ферментативную, образуют ионные каналы, являются мембранными насосами и переносчиками ионов и молекул.
Некоторые белковые молекулы свободно диффундируют в плоскости липидного слоя; в обычном состоянии части белковых молекул, выходящие по разные стороны клеточной мембраны, не изменяют своего положения.
Особая морфология клеточных мембран определяет их электрические характеристики, среди которых наиболее важными являются емкость и проводимость.
Емкостные свойства в основном определяются фосфолипидным бислоем, который непроницаем для гидратированных ионов и в то же время достаточно тонок (около 5 нм), чтобы обеспечивать эффективное разделение и накопление зарядов, и электростатическое взаимодействие катионов и анионов. Кроме того, емкостные свойства клеточных мембран являются одной из причин, определяющих временные характеристики электрических процессов, протекающих на клеточных мембранах.
Проводимость (g) — величина, обратная электрическому сопротивлению и равная отношению величины общего трансмембранного тока для данного иона к величине, обусловившей его трансмембранной разности потенциалов.
Через фосфолипидный бислой могут диффундировать различные вещества, причем степень проницаемости (Р), т. е. способность клеточной мембраны пропускать эти вещества, зависит от разности концентраций диффундирующего вещества по обе стороны мембраны, его растворимости в липидах и свойств клеточной мембраны. Скорость диффузии для заряженных ионов в условиях постоянного поля в мембране определяется подвижностью ионов, толщиной мембраны, распределением ионов в мембране. Для неэлектролитов проницаемость мембраны не влияет на ее проводимость, поскольку неэлектролиты не несут зарядов, т. е. не могут переносить электрический ток.
Проводимость мембраны является мерой ее ионной проницаемости. Увеличение проводимости свидетельствует об увеличении количества ионов, проходящих через мембрану.
Строение и функции ионных каналов. Ионы Na+, K+, Са2+, Сl- проникают внутрь клетки и выходят наружу через специальные, заполненные жидкостью каналы. Размер каналов довольно мал (диаметр 0,5—0,7 нм). Расчеты показывают, что суммарная площадь каналов занимает незначительную часть поверхности клеточной мембраны.
Функцию ионных каналов изучают различными способами. Наиболее распространенным является метод фиксации напряжения, или «voltage-clamp» Сущность метода заключается в том, что с помощью специальных электронных систем в процессе опыта изменяют и фиксируют на определенном уровне мембранный потенциал. При этом измеряют величину ионного тока, протекающего через мембрану. Если разность потенциалов постоянна, то в соответствии с законом Ома величина тока пропорциональна, проводимости ионных каналов. В ответ на ступенчатую деполяризацию открываются те или иные каналы, соответствующие ионы входят в клетку по электрохимическому градиенту, т. е. возникает ионный ток, который деполяризует клетку. Это изменение регистрируется с помощью управляющего усилителя и через мембрану пропускается электрический ток, равный по величине, но противоположный по направлению мембранному ионному току. При этом трансмембранная разность потенциалов не изменяется. Совместное использование метода фиксации потенциала и специфических блокаторов ионных каналов привело к открытию различных типов ионных каналов в клеточной мембране.
В настоящее время установлены многие типы каналов для различных ионов. Одни из них весьма специфичны, вторые, кроме основного иона, могут пропускать и другие ионы.
Изучение функции отдельных каналов возможно методом локальной фиксации потенциала «path-clamp»; Стеклянный микроэлектрод (микропипетка) заполняют солевым раствором, прижимают к поверхности мембраны и создают небольшое разрежение. При этом часть мембраны подсасывается к микроэлектроду. Если в зоне присасывания оказывается ионный канал, то регистрируют активность одиночного канала. Система раздражения и регистрации активности канала мало отличается от системы фиксации напряжения.
Ток через одиночный ионный канал имеет прямоугольную форму и одинаков по амплитуде для каналов различных типов. Длительность пребывания канала в открытом состоянии имеет вероятностный характер, но зависит от величины мембранного потенциала. Суммарный ионный ток определяется вероятностью нахождения в открытом состоянии в каждый конкретный период времени определенного числа каналов.
Наружная часть канала сравнительно доступна для изучения, исследование внутренней части представляет значительные трудности. П. Г. Костюком был разработан метод внутриклеточного диализа, который позволяет изучать функцию входных и выходных структур ионных каналов без применения микроэлектродов. Оказалось, что часть ионного канала, открытая во внеклеточное пространство, по своим функциональным свойствам отличается от части канала, обращенной во внутриклеточную среду.
Именно ионные каналы обеспечивают два важных свойства мембраны: селективность и проводимость.
Селективность, или избирательность, канала обеспечивается его особой белковой структурой. Большинство каналов являются электроуправляемыми, т. е. их способность проводить ионы зависит от величины мембранного потенциала. Канал неоднороден по своим функциональным характеристикам, особенно это касается белковых структур, находящихся у входа в канал и у его выхода (так называемые воротные механизмы).
2. Центральный механизм регуляции дыхания. Дыхательный центр. Опишите путь, проходимый молекулой кислорода при диффузии из альвеолы в эритроциты.
Дыхание регулируется нервным и гуморальным путем. Дыхательный центр находится в продолговатом мозге, содержит два отдела: центр вдоха и центр выдоха. При выдохе легкие спадаются и возбуждаются рецепторы, находящиеся в альвеолах. Возникшие возбуждения передаются по нервам в дыхательный центр, в отдел вдоха. Этот отдел приходит в возбужденное состояние и посылает импульсы в спинной мозг, а оттуда импульсы поступают к наружным межреберным мышцам и диафрагме. Они сокращаются и вызывают расширение грудной клетки - происходит вдох. Теперь отдел вдох не получает раздражения и не посылает возбуждения. Дыхательные мышцы расслабляются, грудная клетка спадает и происходит выдох. Вдох порождает выдох.
Процесс дыхания слагается из трех основных фаз: внешнее дыхание (обмен газов между внешней средой и кровью), транспорт газов кровью и внутреннее (тканевое) дыхание (обмен газов между кровью и тканями). Внешнее дыхание, функцию которого выполняют органы дыхательной системы, осуществляется различными способами.
Согласованность, ритмичность сокращений и расслаблений дыхательных мышц обусловлены поступающими к ним по нервам импульсами от дыхательного центра продолговатого мозга. И.М. Сеченов в 1882 г. установил, что примерно через каждые 4 сек, в дыхательном центре автоматически возникают возбуждения, обеспечивающие чередование вдоха и выдоха. Дыхательный центр изменяет глубину и частоту дыхательных движений, обеспечивая оптимальное содержание газов в крови. Гуморальная регуляция дыхания состоит в том, что повышение концентрации углекислого газа в крови возбуждает дыхательный центр - частота и глубина дыхания увеличиваются, а уменьшение СО2 понижает возбудимость дыхательного центра - частота и глубина дыхания уменьшаются.
Дыхательный центр
Под дыхательным центром следует понимать совокупность нейронов специфических (дыхательных) ядер продолговатого мозга, способных генерировать дыхательный ритм.
В нормальных (физиологических) условиях дыхательный центр получает афферентные сигналы от периферических и центральных хеморецепторов, сигнализирующих соответственно о парциальном давлении О2 в крови и концентрации Н+ во внеклеточной жидкости мозга. В период бодрствования деятельность дыхательного центра регулируется дополнительными сигналами, исходящими из различных структур ЦНС. У человека это, например, структуры, обеспечивающие речь. Речь (пение) может в значительной степени отклонить от нормального уровень газов крови, даже снизить реакцию дыхательного центра на гипоксию или гиперкапнию. Афферентные сигналы от хеморецепторов тесно взаимодействуют с другими афферентными стимулами дыхательного центра, но, в конечном счете, химический, или гуморальный, контроль дыхания всегда доминирует над нейрогенным. Например, человек произвольно не может бесконечно долго задерживать дыхание из-за нарастающих во время остановки дыхания гипоксии и гиперкапнии.
Дыхательный центр выполняет две основные функции в системе дыхания: моторную, или двигательную, которая проявляется в виде сокращения дыхательных мышц, и гомеостатическую, связанную с изменением характера дыхания при сдвигах содержания О2 и СО2 во внутренней среде организма.
Двигательная функция дыхательного центра заключается в генерации дыхательного ритма и его паттерна. Под генерацией дыхательного ритма понимают генерацию дыхательным центром вдоха и его прекращение (переход в экспирацию). Под паттерном дыхания следует понимать длительность вдоха и выдоха, величину дыхательного объема, минутного объема дыхания. Моторная функция дыхательного центра адаптирует дыхание к метаболическим потребностям организма, приспосабливает дыхание в поведенческих реакциях (поза, бег и др.), а также осуществляет интеграцию дыхания с другими функциями ЦНС.
Гомеостатическая функция дыхательного центра поддерживает нормальные величины дыхательных газов (O2, CO2) и рН в крови и внеклеточной жидкости мозга, регулирует дыхание при изменении температуры тела, адаптирует дыхательную функцию к условиям измененной газовой среды, например при пониженном и повышенном барометрическом давлении.
В организме газообмен О2 и СО2 через альвеолярно-капиллярную мембрану происходит с помощью диффузии. Диффузия О2 и СО2 через аэрогематический барьер зависит от следующих факторов: вентиляции дыхательных путей; смешивания и диффузии газов в альвеолярных протоках и альвеолах; смешивания и диффузии газов через аэрогематический барьер, мембрану эритроцитов и плазму альвеолярных капилляров; химической реакции газов с различными компонентами крови, и, наконец, от перфузии кровью легочных капилляров.
Диффузия газов через альвеолярно-капиллярную мембрану легких осуществляется в два этапа. На первом этапе диффузионный перенос газов происходит по концентрационному градиенту через тонкий аэрогематический барьер, на втором — происходит связывание газов в крови легочных капилляров, объем которой составляет 80—150 мл, при толщине слоя крови в капиллярах всего 5—8 мкм и скорости кровотока около 0,1 мм*с-1. После преодоления аэрогематического барьера газы диффундируют через плазму крови в эритроциты.
Значительным препятствием на пути диффузии О2 является мембрана эритроцитов. Плазма крови практически не препятствует диффузии газов в отличие от альвеолярно-капиллярной мембраны и мембраны эритроцитов
3.Нефрон – структурно-функциональная единица почки. Образование клубочкового фильтра.
В каждой почке у человека содержится около 1 млн функциональных единиц — нефронов, в которых происходит образование мочи. Каждый нефрон начинается почечным, или мальпигиевым, тельцем — двустенной капсулой клубочка (капсула Шумлянского—Боумена), внутри которой находится клубочек капилляров. Внутренняя поверхность капсулы выстлана эпителиальными клетками; образующаяся полость между висцеральным и париетальным листками капсулы переходит в просвет проксимального извитого канальца. Особенностью клеток этого канальца является наличие щеточной каемки — большого количества микроворсинок, обращенных в просвет канальца. Следующий отдел нефрона — тонкая нисходящая часть петли нефрона (петли Генле). Ее стенка образована низкими, плоскими эпителиальными клетками. Нисходящая часть петли может опускаться глубоко в мозговое вещество, где каналец изгибается на 180°, и поворачивает в сторону коркового вещества почки, образуя восходящую часть петли нефрона. Она может включать тонкую и всегда имеет толстую восходящую часть, которая поднимается до уровня клубочка своего же нефрона, где начинается дистальный извитой каналец. Этот отдел канальца обязательно прикасается к клубочку между приносящей и выносящей артериолами в области плотного пятна. Клетки толстого восходящего отдела петли Генле и дистального извитого канальца лишены щеточной каемки, в них много митохондрий и увеличена поверхность базальной плазматической мембраны за счет складчатости. Конечный отдел нефрона — короткий связующий каналец, впадает в собирательную трубку. Начинаясь в корковом веществе почки, собирательные трубки проходят через мозговое вещество и открываются в полость почечной лоханки. Диаметр капсулы клубочка около 0,2 мм, общая длина канальцев одного нефрона достигает 35—50 мм. Исходя из особенностей структуры и функции почечных канальцев, различают следующие сегменты нефрона: 1) проксимальный, в состав которого входят извитая и прямая части проксимального канальца; 2) тонкий отдел петли нефрона, включающий нисходящую и тонкую восходящую части петли; 3) дистальный сегмент, образованный толстым восходящим отделом петли нефрона, дистальным извитым канальцем и связующим отделом. Канальцы нефрона соединены с собирательными трубками: в процессе эмбриогенеза они развиваются самостоятельно, но в сформировавшейся почке собирательные трубки функционально близки дистальному сегменту нефрона.
В почке функционирует несколько типов нефронов: суперфициальные (поверхностные), интракортикальные и юкстамедуллярные. Различие между ними заключается в локализации в почке, величине клубочков (юкстамедуллярные крупнее суперфициальных), глубине расположения клубочков и проксимальных канальцев в корковом веществе почки (клубочки юкстамедуллярных нефронов лежат у границы коркового и мозгового вещества) и в длине отдельных участков нефрона, особенно петель нефрона. Суперфициальные нефроны имеют короткие петли, юкстамедуллярные, напротив, длинные, спускающиеся во внутреннее мозговое вещество почки. Характерна строгая зональность распределения канальцев внутри почки
Большое функциональное значение имеет зона почки, в которой расположен каналец, независимо от того, находится ли он в корковом или мозговом веществе. В корковом веществе находятся почечные клубочки, проксимальные и дистальные отделы канальцев, связующие отделы. В наружной полоске наружного мозгового вещества находятся нисходящие и толстые восходящие отделы петель нефронов, собирательные трубки; во внутреннем мозговом веществе располагаются тонкие отделы петель нефронов и собирательные трубки. Расположение каждой из частей нефрона в почке чрезвычайно важно и определяет форму участия тех или иных нефронов в деятельности почки, в частности в осмотическом концентрировании мочи.
Клубочковая фильтрация
Мысль о фильтрации воды и растворенных веществ как первом этапе мочеобразования была высказана в 1842 г. немецким физиологом К. Людвигом. В 20-х годах XX столетия американскому физиологу А. Ричардсу в прямом эксперименте удалось подтвердить это предположение — с помощью микроманипулятора пунктировать микропипеткой клубочковую капсулу и извлечь из нее жидкость, действительно оказавшуюся ультрафильтратом плазмы крови.
Ультрафильтрация воды и низкомолекулярных компонентов из плазмы крови происходит через клубочковый фильтр. Этот фильтрационный барьер почти непроницаем для высокомолекулярных веществ. Процесс ультрафильтрации обусловлен разностью между гидростатическим давлением крови, гидростатическим давлением в капсуле клубочка и онкотическим давлением белков плазмы крови. Общая поверхность капилляров клубочка больше общей поверхности тела человека и достигает 1,5 м2 на 100 г массы почки. Фильтрующая мембрана (фильтрационный барьер), через которую проходит жидкость из просвета капилляра в полость капсулы клубочка, состоит из трех слоев: эндотелиальных клеток капилляров, базальной мембраны и эпителиальных клеток висцерального (внутреннего) листка капсулы— подоцитов.
Клетки эндотелия, кроме области ядра, очень истончены, толщина цитоплазмы боковых частей клетки менее 50 нм; в цитоплазме имеются круглые или овальные отверстия (поры) размером 50—100 нм, которые занимают до 30 % поверхности клетки. При нормальном кровотоке наиболее крупные белковые молекулы образуют барьерный слой на поверхности пор эндотелия и затрудняют движение через них альбуминов, ограничивая тем самым прохождение форменных элементов крови и белков через эндотелий. Другие компоненты плазмы крови и вода могут свободно достигать базальной мембраны.
Базальная мембрана является одной из важнейших составных частей фильтрующей мембраны клубочка. У человека толщина базальной мембраны 250—400 нм. Эта мембрана состоит из трех слоев — центрального и двух периферических. Поры в базальной мембране препятствуют прохождению молекул диаметром больше 6 нм.
Наконец, важную роль в определении размера фильтруемых веществ играют щелевые мембраны между «ножками» подоцитов. Эти эпителиальные клетки обращены в просвет капсулы почечного клубочка и имеют отростки — «ножки», которыми прикрепляются к базальной мембране. Базальная мембрана и щелевые мембраны между этими «ножками» ограничивают фильтрацию веществ, диаметр молекул которых больше 6,4 нм (т. е. не проходят вещества, радиус молекулы которых превышает 3,2 нм). Поэтому в просвет нефрона свободно проникает инулин (радиус молекулы 1,48 нм, молекулярная масса около 5200), может фильтроваться лишь 22 % яичного альбумина (радиус молекулы 2,85 нм, молекулярная масса 43500), 3 % гемоглобина (радиус молекулы 3,25 нм, молекулярная масса 68 000)и меньше 1 % сывороточного альбумина (радиус молекулы 3,55 нм, молекулярная масса 69 000).
Прохождению белков через клубочковый фильтр препятствуют отрицательно заряженные молекулы — полианионы, входящие в состав вещества базальной мембраны, и сиалогликопротеиды в выстилке, лежащей на поверхности подоцитов и между их «ножками». Ограничение для фильтрации белков, имеющих отрицательный заряд, обусловлено размером пор клубочкового фильтра и их электронегативностью. Таким образом, состав клубочкового фильтрата зависит от свойств эпителиального барьера и базальной мембраны. Естественно, размер и свойства пор фильтрационного барьера вариабельны, поэтому в обычных условиях в ультрафильтрате обнаруживаются лишь следы белковых фракций, характерных для плазмы крови. Прохождение достаточно крупных молекул через поры зависит не только от их размера, но и конфигурации молекулы, ее пространственного соответствия форме поры.
4. Функциональные связи гипоталамуса с гипофизом. Роль гипофиза в регуляции деятельности эндокринных желез. Опишите регуляцию функций яичек у мужчин .
Гипоталамус и гипофиз является Центральным звеном эндокринной системы.
Особое место в эндокринной системе занимает гипоталамо-гипофизарная система. Гипоталамус в ответ на нервные импульсы оказывает стимулирующее или тормозящее действие на переднюю долю гипофиза. Через гипофизарные гормоны гипоталамус регулирует функцию периферических желез внутренней секреции. Так, например, происходит стимуляция тиреотропного гормона (ТТГ) гипофиза, а последний, в свою очередь, стимулирует секрецию щитовидной железой тиреоидных гормонов. В связи с этим принято говорить о единых функциональных системах: гипоталамус - гипофиз - щитовидная железа, гипоталамус - гипофиз - надпочечники
Выпадение каждого из компонентов гормональной регуляции из общей системы нарушает единую цепь регуляции функций организма и приводит к развитию различных патологических состояний.
В гипофизе выделяют переднюю (аденогипофиз) и заднюю (нейрогипофиз) доли. У многих животных представлена также промежуточная доля (pars intermedia), однако у человека она практически отсутствует. В аденогипофизе вырабатывается 6 гормонов, из них 4 являются тропными (адренокортикотропный гормон, или кортикотропин, тиреотропный гормон, или тиреотропин и 2 гонадотропина — фолликулостимулирующий и лютеинизирующ
ий гормоны), а 2 — эффекторными (соматотропный гормон, или соматотропин, и пролактин). В нейрогипофизе происходит депонирование окситоцина и антидиуретического гормона (вазопрессин). Синтез этих гормонов осуществляется в супраоптическом и паравентрикулярном ядрах гипоталамуса. Нейроны, составляющие эти ядра, имеют длинные аксоны, которые в составе ножки гипофиза образуют гипоталамо-гипофизарный тракт и достигают задней доли гипофиза. Синтезированные в гипоталамусе окситоцин и вазопрессин доставляются в нейрогипофиз путем аксонального транспорта с помощью специального белка-переносчика, получившего название «нейрофизин».Гормоны аденогипофиза. Адренокортикотропный гормон, или кортикотропин. Основной эффект этого гормона выражается в стимулирующем действии на образование глюкокортикоидов в пучковой зоне коркового вещества надпочечников. В меньшей степени выражено влияние гормона на клубочковую и сетчатую зоны. Кортикотропин ускоряет стероидогенез и усиливает пластические процессы (биосинтез белка, нуклеиновых кислот), что приводит к гиперплазии коркового вещества надпочечников. Оказывает также вненадпочечниковое действие, проявляющееся в стимуляции процессов липолиза, анаболическом влиянии, усилении пигментации. Влияние на пигментацию обусловлено частичным совпадением аминокислотных цепей кортикотропина и меланоцитостимулирующего гормона.
Выработка кортикотропина регулируется кортиколиберином гипоталамуса.
Тиреотропный гормон, или тиреотропин. Под влиянием тиреотропина стимулируется образование в щитовидной железе тироксина и трийодтиронина. Тиреотропин увеличивает секреторную активность тиреоцитов за счет усиления в них пластических процессов (синтез белка, нуклеиновых кислот) и увеличенного поглощения кислорода. В результате ускоряются практически все стадии биосинтеза гормонов щитовидной железы. Под влиянием тиреотропина активируется работа «йодного насоса», усиливаются процессы йодирования тирозина. Кроме того, увеличивается активность протеаз, расщепляющих тиреоглобулин, что способствует высвобождению активного тироксина и трийодтиронина в кровь. Выработка тиреотропина регулируется тиреолиберином гипоталамуса.
Гонадотропные гормоны, или гонадотропины. В аденогипофизе вырабатывается 2 гонадотропина — фолликулостимулирующий (ФСГ) и лютеинизирующий (ЛГУ). ФСГ действует на фолликулы яичников, ускоряя их созревание и подготовку к овуляции. Под влиянием ЛГ происходит разрыв стенки фолликула (овуляция) и образуется желтое тело. ЛГ стимулирует выработку прогестерона в желтом теле. Оба гормона влияют также на мужские половые железы. ЛГ действует на яички, ускоряя выработку тестостерона в интерстициальных клетках — гландулоцитах (клетки Лейдига). ФСГ действует на клетки семенных канальцев, усиливая в них процессы сперматогенеза. Регуляция секреции гонадотропинов осуществляется гипоталамическим гонадолиберином. Существенное значение имеет также механизм отрицательной обратной связи — секреция обоих гормонов тормозится при повышенном содержании эстрогенов и прогестерона в крови; выработка ЛГ уменьшается при увеличении продукции тестостерона.
Соматотропный гормон, или соматотропин . Является гормоном, специфическое действие которого проявляется в усилении процессов роста и физического развития. Органами-мишенями для него являются кости, а также образования, богатые соединительной тканью, — мышцы, связки, сухожилия, внутренние органы. Стимуляция процессов роста осуществляется за счет анаболического действия соматотропина. Последнее проявляется в усилении транспорта аминокислот в клетку, ускорении процессов биосинтеза белка и нуклеиновых кислот. Одновременно происходит торможение реакций, связанных с распадом белка. Вероятной причиной этого эффекта является наблюдающаяся под действием соматотропина усиленная мобилизация жира из жировых депо с последующим использованием жирных кислот в качестве основного источника энергии. В связи с этим определенное количество белка сберегается от энергетических трат, поэтому скорость катаболизма белков снижается. Поскольку в этой ситуации процессы синтеза белка преобладают над процессами его распада, в организме происходит задержка азота (положительный азотистый баланс). Благодаря анаболическому действию соматотропин стимулирует активность остеобластов и способствует интенсивному образованию белковой матрицы кости. Кроме того, усиливаются также процессы минерализации костной ткани, в результате чего в организме происходит задержка кальция и фосфора.
Пролактин. Эффекты этого гормона заключаются в следующем:
1) усиливаются пролиферативные процессы в молочных железах, и ускоряется их рост;
2) усиливаются процессы образования и выделения молока. Секреция пролактина возрастает во время беременности и стимулируется рефлекторно при кормлении грудью. Благодаря специфическому действию на молочную железу пролактин называют маммотропным гормоном;
3) увеличивается реабсорбция натрия и воды в почках, что имеет значение для образования молока. В этом отношении он является синергистом альдостерона;
4) стимулируются образование желтого тела и выработка им прогестерона.
Продукция пролактина регулируется посредством выработки в гипоталамусе пролактостатина и пролактолиберина.
Гормоны нейрогипофиза . Антидиуретический гормон (АДГ). В общем виде действие АДГ сводится к двум основным эффектам:
1) стимулируется реабсорбция воды в дистальных канальцах почек. В результате увеличивается объем циркулирующей крови, повышается АД, снижается диурез и возрастает относительная плотность мочи. В результате усиленного обратного всасывания воды снижается осмотическое давление межклеточной жидкости. 2) в больших дозах АДГ вызывает сужение артериол, что приводит к увеличению АД. Развитию гипертензии способствует также наблюдающееся под влиянием АДГ повышение чувствительности сосудистой стенки к констрикторному действию катехоламинов. В связи с тем, что введение АДГ приводит к повышению АД, этот гормон получил также название «вазопрессин». Однако поскольку эффект вазоконстрикции возникает только при действии больших доз АДГ, то считают, что в физиологических условиях значимость его вазоконстрикторного влияния невелика. С другой стороны, развитие вазоконстрикции может иметь существенное адаптивное значение при некоторых патологических состояниях, например при острой кровопотере, сильных болевых воздействиях, поскольку в этих условиях в крови может присутствовать большое количество АДГ.
Окситоцин . Эффекты этого гормона реализуются главным образом в двух направлениях:
1) окситоцин вызывает сокращение гладкой мускулатуры матки. Установлено, что при удалении гипофиза у животных родовые схватки становятся длительными и малоэффективными. Таким образом, окситоцин является гормоном, обеспечивающим нормальное протекание родового акта (отсюда произошло и его название — от лат. oxy — сильный, tokos — роды). Адекватное проявление этого эффекта возможно при условии достаточной концентрации в крови эстрогенов, которые усиливают чувствительность матки к окситоцину;
2) окситоцин принимает участие в регуляции процессов лактации. Он усиливает сокращение миоэпителиальных клеток в молочных железах и тем самым способствует выделению молока.
Содержание окситоцина в крови возрастает в конце беременности, в послеродовом периоде. Кроме того, его продукция стимулируется рефлекторно при раздражении соска в процессе грудного вскармливания.
Мужские половые железы. В мужских половых железах (яички) происходят процессы сперматогенеза и образование мужских половых гормонов — андрогенов. Сперматогенез осуществляется за счет деятельности сперматогенных эпителиальных клеток, которые содержатся в семенных канальцах. Выработка андрогенов происходит в интерстициальных клетках — гландулоцитах (клетки Лейдига), локализующихся в интерстиции между семенными канальцами и составляющих примерно 20% от общей массы яичек. Небольшое количество мужских половых гормонов вырабатывается также в сетчатой зоне коркового вещества надпочечников. К андрогенам относится несколько стероидных гормонов, наиболее важным из которых является тестостерон. Продукция этого гормона определяет адекватное развитие мужских первичных и вторичных половых признаков (маскулинизирующий эффект). Под влиянием тестостерона в период полового созревания увеличиваются размеры полового члена и яичек, появляется мужской тип оволосения, меняется тональность голоса. Кроме того, тестостерон усиливает синтез белка (анаболический эффект), что приводит к ускорению процессов роста, физического развития, увеличению мышечной массы. Тестостерон влияет на процессы формирования костного скелета — он ускоряет образование белковой матрицы кости, усиливает отложение в ней солей кальция. В результате увеличиваются рост, толщина и прочность кости. При гиперпродукции тестостерона ускоряется обмен веществ, в крови возрастает количество эритроцитов.
Механизм действия тестостерона обусловлен его проникновением внутрь клетки, превращением в более активную форму (дигидротестостерон) и дальнейшим связыванием с рецепторами ядра и органелл, что приводит к изменению процессов синтеза белка и нуклеиновых кислот. Секреция тестостерона регулируется лютеинизирующим гормоном аденогипофиза, продукция которого возрастает в период полового созревания. При увеличении содержания в крови тестостерона по механизму отрицательной обратной связи тормозится выработка лютеинизирующего гормона. Уменьшение продукции обоих гонадотропных гормонов — фолликулостимулирующего и лютеинизирующего, происходит также при ускорении процессов сперматогенеза.
У мальчиков в возрасте до 10—11 лет в яичках обычно отсутствуют активные гландулоциты (клетки Лейдига), в которых вырабатываются андрогены. Однако секреция тестостерона в этих клетках происходит во время внутриутробного развития и сохраняется у ребенка в течение первых недель жизни. Это связано со стимулирующим действием хорионического гонадотропина, который продуцируется плацентой.
Недостаточная секреция мужских половых гормонов приводит к развитию евнухоидизма, основными проявлениями которого являются задержка развития первичных и вторичных половых признаков, диспропорциональность костного скелета (несоразмерно длинные конечности при относительно небольших размерах туловища), увеличение отложения жира на груди, в нижней части живота и на бедрах. Нередко отмечается увеличение молочных желез (гинекомастия). Недостаток мужских половых гормонов приводит также к определенным нервно-психическим изменениям, в частности к отсутствию влечения к противоположному полу и утрате других типичных психофизиологических черт мужчины.
5. Проблема локализации функций в коре большого мозга .
Высшим отделом ЦНС является кора большого мозга (кора больших полушарий). Она обеспечивает совершенную организацию поведения животных на основе врожденных и приобретенных в онтогенезе функций.
Кора большого мозга имеет следующие морфофункциональные особенности:
— многослойность расположения нейронов;
— модульный принцип организации;
— соматотопическая локализация рецептирующих систем;
— экранность, т. е. распределение внешней рецепции на плоскости нейронального поля коркового конца анализатора;
— зависимость уровня активности от влияния подкорковых структур и ретикулярной формации;
— наличие представительства всех функций нижележащих структур ЦНС;
— цитоархитектоническое распределение на поля;
— наличие в специфических проекционных сенсорных и моторной системах вторичных и третичных полей с ассоциативными функциями;
— наличие специализированных ассоциативных областей;
— динамическая локализация функций, выражающаяся в возможности компенсаций функций утраченных структур;
— перекрытие в коре большого мозга зон соседних периферических рецептивных полей;
— возможность длительного сохранения следов раздражения;
— реципрокная функциональная взаимосвязь возбудительных и тормозных состояний;
— способность к иррадиации возбуждения и торможения;
— наличие специфической электрической активности.
Глубокие борозды делят каждое полушарие большого мозга на лобную, височную, теменную, затылочную доли и островок. Островок расположен в глубине сильвиевой борозды и закрыт сверху частями лобной и теменной долей мозга.
Кора большого мозга делится на древнюю (archicortex), старую (paleocortex) и новую (neocortex). Древняя кора наряду с другими функциями имеет отношение к обонянию и обеспечению взаимодействия систем мозга. Старая кора включает поясную извилину, гиппокамп. У новой коры наибольшее развитие величины, дифференциации функций отмечается у человека. Толщина новой коры колеблется от 1,5 до 4,5 мм и максимальна в передней центральной извилине.
Функции отдельных зон новой коры определяются особенностями ее структурно-функциональной организации, связями с другими структурами мозга, участием в восприятии, хранении и воспроизведении информации при организации и реализации поведения, регуляции функций сенсорных систем, внутренних органов.
Особенности структурно-функциональной организации коры большого мозга обусловлены тем, что в эволюции происходила кортикализация функций, т. е. передача коре большого мозга функций нижележащих структур мозга. Однако эта передача не означает, что кора берет на себя выполнение функций других структур. Ее роль сводится к коррекции возможных нарушений функций взаимодействующих с ней систем, более совершенного, с учетом индивидуального опыта, анализа сигналов и организации оптимальной реакции на эти сигналы, формирование в своих и в других заинтересованных структурах мозга памятных следов о сигнале, его характеристиках, значении и характере реакции на него. В дальнейшем, по мере автоматизации реакция начинает выполняться подкорковыми структурами.
Общая площадь коры большого мозга человека около 2200 см2, число нейронов коры превышает 10 млрд. В составе коры имеются пирамидные, звездчатые, веретенообразные нейроны.
Клеточный состав коры по разнообразию морфологии, функции, формам связи не имеет себе равных в других отделах ЦНС. Нейронный состав, распределение нейронов по слоям в разных областях коры различны, что позволило выделить в мозге человека 53 цитоархитектонических поля. Разделение коры большого мозга на цитоархитектонические поля более четко формируется по мере совершенствования ее функции в филогенезе.
Наличие структурно различных полей предполагает и разное их функциональное предназначение. В коре большого мозга выделяют сенсорные, моторные и ассоциативные области.
Сенсорные области
Корковые концы анализаторов имеют свою топографию и на них проецируются определенные афференты проводящих систем. Корковые концы анализаторов разных сенсорных систем перекрываются. Помимо этого, в каждой сенсорной системе коры имеются полисенсорные нейроны, которые реагируют не только на «свой» адекватный стимул, но и на сигналы других сенсорных систем.
Кожная рецептирующая система, таламокортикальные пути проецируются на заднюю центральную извилину. Здесь имеется строгое соматотопическое деление. На верхние отделы этой извилины проецируются рецептивные поля кожи нижних конечностей, на средние — туловища, на нижние отделы — руки, головы.
На заднюю центральную извилину в основном проецируются болевая и температурная чувствительность. В коре теменной доли (поля 5 и 7), где также оканчиваются проводящие пути чувствительности, осуществляется более сложный анализ: локализация раздражения, дискриминация, стереогноз.
При повреждениях коры более грубо страдают функции дистальных отделов конечностей, особенно рук.
Зрительная система представлена в затылочной доле мозга: поля 17, 18, 19. Центральный зрительный путь заканчивается в поле 17; он информирует о наличии и интенсивности зрительного сигнала. В полях 18 и 19 анализируются цвет, форма, размеры, качества предметов. Поражение поля 19 коры большого мозга приводит к тому, что больной видит, но не узнает предмет (зрительная агнозия, при этом утрачивается также цветовая память).
Слуховая система проецируется в поперечных височных извилинах (извилины Гешля), в глубине задних отделов латеральной (сильвиевой) борозды (поля 41, 42, 52). Именно здесь заканчиваются аксоны задних бугров четверохолмий и латеральных коленчатых тел.
Обонятельная система проецируется в области переднего конца гиппокампальной извилины (поле 34). Кора этой области имеет не шести-, а трехслойное строение. При раздражении этой области отмечаются обонятельные галлюцинации, повреждение ее ведет к аносмии (потеря обоняния).
Вкусовая система проецируется в гиппокампальной извилине по соседству с обонятельной областью коры (поле 43).
Моторные области
Впервые Фритч и Гитциг (1870) показали, что раздражение передней центральной извилины мозга (поле 4) вызывает двигательную реакцию. В то же время признано, что двигательная область является анализаторной.
В передней центральной извилине зоны, раздражение которых вызывает движение, представлены по соматотопическому типу, но вверх ногами: в верхних отделах извилины — нижние конечности, в нижних — верхние.
Спереди от передней центральной извилины лежат премоторные поля 6 и 8. Они организуют не изолированные, а комплексные, координированные, стереотипные движения. Эти поля также обеспечивают регуляцию тонуса гладкой мускулатуры, пластический тонус мышц через подкорковые структуры.
В реализации моторных функций принимают участие также вторая лобная извилина, затылочная, верхнетеменная области.
Двигательная область коры, как никакая другая, имеет большое количество связей с другими анализаторами, чем, видимо, и обусловлено наличие в ней значительного числа полисенсорных нейронов.
Ассоциативные области
Все сенсорные проекционные зоны и моторная область коры занимают менее 20% поверхности коры большого мозга . Остальная кора составляет ассоциативную область. Каждая ассоциативная область коры связана мощными связями с несколькими проекционными областями. Считают, что в ассоциативных областях происходит ассоциация разносенсорной информации. В результате формируются сложные элементы сознания.
Ассоциативные области мозга у человека наиболее выражены в лобной, теменной и височной долях.
Каждая проекционная область коры окружена ассоциативными областями. Нейроны этих областей чаще полисенсорны, обладают большими способностями к обучению. Так, в ассоциативном зрительном поле 18 число нейронов, «обучающихся» условнорефлекторной реакции на сигнал, составляет более 60% от числа фоновоактивных нейронов. Для сравнения: таких нейронов в проекционном поле 17 всего 10—12%.
Повреждение поля 18 приводит к зрительной агнозии. Больной видит, обходит предметы, но не может их назвать.
Полисенсорность нейронов ассоциативной области коры обеспечивает их участие в интеграции сенсорной информации, взаимодействие сенсорных и моторных областей коры.
В теменной ассоциативной области коры формируются субъективные представления об окружающем пространстве, о нашем теле. Это становится возможным благодаря сопоставлению соматосенсорной, проприоцептивной и зрительной информации.
Лобные ассоциативные поля имеют связи с лимбическим отделом мозга и участвуют в организации программ действия при реализации сложных двигательных поведенческих актов.
Первой и наиболее характерной чертой ассоциативных областей коры является мультисенсорность их нейронов, причем сюда поступает не первичная, а достаточно обработанная информация с выделением биологической значимости сигнала. Это позволяет формировать программу целенаправленного поведенческого акта.
Вторая особенность ассоциативной области коры заключается в способности к пластическим перестройкам в зависимости от значимости поступающей сенсорной информации.
Третья особенность ассоциативной области коры проявляется в длительном хранении следов сенсорных воздействий. Разрушение ассоциативной области коры приводит к грубым нарушениям обучения, памяти. Речевая функция связана как с сенсорной, так и с двигательной системами. Корковый двигательный центр речи расположен в заднем отделе третьей лобной извилины (поле 44) чаще левого полушария и был описан вначале Даксом (1835), а затем Брока (1861).
Слуховой центр речи расположен в первой височной извилине левого полушария (поле 22). Этот центр был описан Вернике (1874). Моторный и слуховой центры речи связаны между собой мощным пучком аксонов.
Речевые функции, связанные с письменной речью, — чтение, письмо — регулируются ангулярной извилиной зрительной области коры левого полушария мозга (поле 39).
При поражении моторного центра речи развивается моторная афазия; в этом случае больной понимает речь, но сам говорить не может. При поражении слухового центра речи больной может говорить, излагать устно свои мысли, но не понимает чужой речи, слух сохранен, но больной не узнает слов. Такое состояние называется сенсорной слуховой афазией. Больной часто много говорит (логорея), но речь его неправильная (аграмматизм), наблюдается замена слогов, слов (парафазии).
Поражение зрительного центра речи приводит к невозможности чтения, письма.
Изолированное нарушение письма — аграфия, возникает также в случае расстройства функции задних отделов второй лобной извилины левого полушария.
В височной области расположено поле 37, которое отвечает за запоминание слов. Больные с поражениями этого поля не помнят названия предметов. Они напоминают забывчивых людей, которым необходимо подсказывать нужные слова. Больной, забыв название предмета, помнит его назначения, свойства, поэтому долго описывает их качества, рассказывает, что делают этим предметом, но назвать его не может. Например, вместо слова «галстук» больной, глядя на галстук, говорит: «это то, что надевают на шею и завязывают специальным узлом, чтобы было красиво, когда идут в гости».
Распределение функций по областям мозга не является абсолютным. Установлено, что практически все области мозга имеют полисенсорные нейроны, т. е. нейроны, реагирующие на различные раздражения. Например, при повреждении поля 17 зрительной области его функцию могут выполнять поля 18 и 19. Кроме того, разные двигательные эффекты раздражения одного и того же двигательного пункта коры наблюдаются в зависимости от текущей моторной деятельности.
Если операцию удаления одной из зон коры провести в раннем детском возрасте, когда распределение функций еще не жестко закреплено, функция утраченной области практически полностью восстанавливается, т. е. в коре имеются проявления механизмов динамической локализации функций, позволяющих компенсировать функционально и анатомически нарушенные структуры.
Литература:
Учебная литература для студентов медицинских вузовФизиология человека под редакцией В.М.Покровского, Г.Ф.Коротько
www.litsoch.ru
- функционально активные поверхностные структуры толщиной в несколько молекулярных слоев, ограничивающие цитоплазму и большинство органелл клетки, а также образующие единую внутриклеточную систему канальцев, складок, замкнутых областей.
Биологические мембраны имеются во всех клетках. Их значение определяется важностью функций, которые они выполняют в процессе нормальной жизнедеятельности, а также многообразием заболеваний и патологических состояний, возникающих при различных нарушениях мембранных функций и проявляющихся практически на всех уровнях организации — от клетки и субклеточных систем до тканей, органов и организма в целом.
Мембранные структуры клетки представлены поверхностной (клеточной, или плазматической) и внутриклеточными (субклеточными) мембранами. Название внутриклеточных (субклеточных) мембран обычно зависит от названия ограничиваемых или образуемых ими структур. Так, различают митохондриальные, ядерные, лизосомные мембраны, мембраны пластинчатого комплекса аппарата Гольджи, эндоплазматического ретикулума, саркоплазматического ретикулума и др. (см. Клетка).Толщина биологических мембран — 7—10 нм, но их общая площадь очень велика, например, в печени крысы она составляет несколько сот квадратных метров.
Химический состав и строение биологических мембран. Состав М.б. зависит от их типа и функций, однако основными составляющими являются Липиды и Белки, а также Углеводы(небольшая, но чрезвычайно важная часть) и вода (более 20% общего веса).
Липиды. В составе М.б. обнаружены липиды трех классов: фосфолипиды, гликолипиды и стероиды. В мембранах животных клеток более 50% всех липидов составляют фосфолипиды — глицерофосфолипиды (фосфатидилхолин, фосфатидилэтаноламин, фосфатидилсерин, фосфатидилинозит) и сфингофосфолипиды (производные церамида, сфингомиелин). Гликолипиды представлены цереброзидами, сульфатидами и ганглиозидами, а стероиды — в основном холестерином (около 30%). В липидных компонентах М.б. содержатся разнообразные жирные кислоты, однако в мембранах животных клеток преобладают пальмитиновая, олеиновая и стеариновая кислоты. Основную структурную роль в биологических мембранах играют фосфолипиды. Они обладают выраженной способностью формировать двухслойные структуры (бислои) при смешивании с водой, что обусловлено химической структурой фосфолипидов, молекулы которых состоят из гидрофильной части — «головки» (остаток фосфорной кислоты и присоединенная к нему полярная группа, например холин) и гидрофобной части — «хвоста» (как правило, две жирно-кислотные цепи). В водной среде фосфолипиды бислоя расположены таким образом, что жирно-кислотные остатки обращены внутрь бислоя и, следовательно, изолированы от окружающей среды, а гидрофильные «головки» —наоборот, наружу. Липидный бислои представляет собой динамичную структуру: образующие его липиды могут вращаться, двигаться в латеральном направлении и даже переходить из слоя в слой (флип-флоп переход). Такое строение липидного бислоя легло в основу современных представлений о структуре М.б. и определяет некоторые важные свойства М.б., например способность служить барьером и не пропускать молекулы веществ, растворенных в воде (рис.). Нарушение структуры бислоя может привести к нарушению барьерной функции мембран.
Холестерин в составе М.б. играет роль модификатора бислоя, придавая ему определенную жесткость за счет увеличения плотности «упаковки» молекул фосфолипидов.
Гликолипиды несут разнообразные функции: отвечают за рецепцию некоторых биологически активных веществ, участвуют в дифференцировке ткани, определяют видовую специфичность.
Белки биологических мембран исключительно разнообразны. Молекулярная масса их в большинстве своем составляет 25 000 — 230 000.
Белки могут взаимодействовать с липидным бислоем за счет электростатических и (или) межмолекулярных сил. Они сравнительно легко могут быть удалены из мембраны. К такому типу белков относят цитохром с (молекулярная масса около 13 000), обнаруживаемый на наружной поверхности внутренней мембраны митохондрий.
Эти белки называются периферическими, или наружными. Для других белков, получивших название интегральных, или внутренних, характерно то, что одна или несколько полипептидных цепей оказываются погруженными в бислои или пересекают его, иногда не один раз (например, гликофорин, транспортные АТФ-азы, бактериородопсин). Часть белка, контактирующая с гидрофобной частью липидного бислоя, имеет спиральное строение и состоит из неполярных аминокислот, в силу чего между этими компонентами белков и липидов происходит гидрофобное взаимодействие. Полярные группы гидрофильных аминокислот непосредственно взаимодействуют с примембранными слоями, как с одной, так и с другой стороны бислоя. Молекулы белков, как и молекулы липидов, находятся в динамическом состоянии, для них также характерна вращательная, латеральная и вертикальная подвижность. Она является отражением не только их собственной структуры, но и функциональной активности. что в значительной степени определяется вязкостью липидного бислоя, которая, в свою очередь, зависит от состава липидов, относительного содержания и вида ненасыщенных жирно-кислотных цепей. Этим объясняется узкий температурный диапазон функциональной активности мембраносвязанных белков.
Белки мембран выполняют три основные функции: каталитическую (ферменты), рецепторную и структурную. Однако такое разграничение достаточно условно, и в ряде случаев один и тот же белок может выполнять и репепторную и ферментную функции (например, инсулин).
Число мембранных ферментов (Ферменты) в клетке достаточно велико, однако их распределение в различных типах М.б. неодинаково. Некоторые ферменты (маркерные) присутствуют только в мембранах определенного типа (например, Na, К-АТФ-аза, 5-нуклеотидаза, аденилатциклаза — в плазматической мембране; цитохром Р-450, НАДФН-дегидрогеназа, цитохром в5 — в мембранах эндоплазматического ретикулума; моноаминоксидаза — в наружной мембране митохондрий, а цитохром С-оксидаза, сукцинат-дегидрогеназа — во внутренней; кислая фосфатаза — в мембране лизосом).
Рецепторные белки, специфически связывая низкомолекулярные вещества (многие гормоны, медиаторы), обратимо меняют свою форму. Эти изменения запускают внутри клетки ответные химические реакции. Таким способом клетка принимает различные сигналы, поступающие из внешней среды.
К структурным белкам относят белки цитоскелета, прилегающие к цитоплазматической стороне клеточной мембраны. В комплексе с микротрубочками и микрофиламентами цитоскелета они обеспечивают противодействие клетки изменению ее объема и создают эластичность. В эту же группу включают ряд мембранных белков, функции которых не установлены.
Углеводы в биологических мембранах находятся в соединении с белками (гликопротеины) и липидами (гликолипиды). Углеводные цепи белков представляют собой олиго- или полисахаридные структуры, в состав которых входят глюкоза, галактоза, нейраминовая кислота, фукоза и манноза. Углеводные компоненты М.б. открываются в основном во внеклеточную среду, образуя на поверхности клеточных мембран множество ветвистых образований, являющихся фрагментами гликолипидов или гликопротеидов. Их функции связаны с контролем за межклеточным взаимодействием, поддержанием иммунного статуса клетки, обеспечением стабильности белковых молекул в М.б. Многие рецепторные белки содержат углеводные компоненты. Примером могут служить антигенные детерминанты групп крови, представленные гликолипидами и гликопротеинами.
Функции биологических мембран. Барьерная функция. Для клеток и субклеточных частиц М.б. служат механическим барьером, отделяющим их от внешнего пространства. Функционирование клетки часто сопряжено с наличием значительных механических градиентов на ее поверхности преимущественно вследствие осмотического и гидростатического давления. Основную нагрузку в этом случае несет клеточная стенка, главными структурными элементами которой у высших растений являются целлюлоза, пектин и экстепин, а у бактерий — муреин (сложный полисахарид-пептид). В клетках животных необходимость в жесткой оболочке отсутствует. Некоторую жесткость этим клеткам придают особые белковые структуры цитоплазмы, примыкающие к внутренней поверхности плазматической мембраны.
Перенос веществ через М.б. сопряжен с такими важнейшими биологическими явлениями, как внутриклеточный гомеостаз ионов, биоэлектрические потенциалы, возбуждение и проведение нервного импульса, запасание и трансформация энергии и т.п. (см.Биоэнергетика). Различают пассивный и активный транспорт (перенос) нейтральных молекул, воды и ионов через М.б. Пассивный транспорт не связан с затратами энергии, он осуществляется путем диффузии по концентрационным, электрическим или гидростатическим градиентам. Активный транспорт осуществляется против градиентов, связан с затратой энергии (преимущественно энергии гидролиза АТФ) и сопряжен с работой специализированных мембранных систем (мембранных насосов). Различают несколько видов транспорта. Если вещество транспортируется через мембрану независимо от наличия и переноса других соединений, то такой вид транспорта называют юнипортом. Если перенос одного вещества сопряжен с транспортом другого, то говорят о котранспорте, причем однонаправленный перенос называется симпортом, а противоположно направленный — антипортом. В особую группу выделяют перенос веществ путем экзо- и пиноцитоза.
Пассивный перенос может осуществляться путем простой диффузии через липидный бислои мембраны, а также через специализированные образования — каналы. Путем диффузии через мембрану проникают в клетку незаряженные молекулы, хорошо растворимые в липидах, в т.ч. многие яды и лекарственные средства, а также кислород и углекислый газ. Каналы представляют собой липопротеиновые структуры, пронизывающие мембраны. Они служат для переноса определенных ионов и могут находиться в открытом или закрытом состоянии. Проводимость канала зависит от мембранного потенциала, что играет важную роль в механизме генерации и проведения нервного импульса.
В ряде случаев перенос вещества совпадает с направлением градиента, но существенно превосходит по скорости простую диффузию. Этот процесс называют облегченной диффузией; он происходит с участием белков-переносчиков. Процесс облегченной диффузии не нуждается в энергии. Этим способом транспортируются сахара, аминокислоты, азотистые основания. Такой процесс происходит, например, при всасывании сахаров из просвета кишечника клетками эпителия.
Перенос молекул и ионов против электрохимического градиента (активный транспорт) связан со значительными затратами энергии. Часто градиенты достигают больших величин. например, концентрационный градиент водородных ионов на плазматической мембране клеток слизистой оболочки желудка составляет 106, градиент концентрации ионов кальция на мембране саркоплазматического ретикулума — 104, при этом потоки ионов против градиента значительны. В результате затраты энергии на транспортные процессы достигают, например, у человека, более 1/3 всей энергии метаболизма. В плазматических мембранах клеток различных органов обнаружены системы активного транспорта ионов натрия и калия — натриевый насос. Эта система перекачивает натрий из клетки и калий в клетку (антипорт) против их электрохимических градиентов. Перенос ионов осуществляется основным компонентом натриевого насоса — Na+, К+-зависимой АТФ-азой за счет гидролиза АТФ. На каждую гидролизующуюся молекулу АТФ транспортируется три иона натрия и два иона калия. Существуют два типа Са2+-АТФ-аз. Одна из них обеспечивает выброс ионов кальция из клетки в межклеточную среду, другая — аккумуляцию кальция из клеточного содержимого во внутриклеточное депо. Обе системы способны создавать значительный градиент иона кальция. К+, Н+-АТФ-аза обнаружена в слизистой оболочке желудка и кишечника. Она способна транспортировать Н+ через мембрану везикул слизистой оболочки при гидролизе АТФ. В микросомах слизистой оболочки желудка лягушки найдена аниончувствительная АТФ-аза, способная при гидролизе АТФ осуществлять антипорт бикарбоната и хлорида.
Изложенные механизмы транспорта различных веществ через клеточные мембраны имеют место и в случае их транспорта через эпителий ряда органов (кишечника, почек, легких), который осуществляется через слой клеток (монослой в кишечнике и нефронах), а не через единичную клеточную мембрану. Такой транспорт называют трансцеллюлярным, или трансэпителиальным. Характерной особенностью клеток, например эпителиоцитов кишечника и канальцев нефронов, является то, что апикальная и базальная их мембраны различаются по проницаемости, величине мембранного потенциала и транспортной функции.
Способность генерировать биоэлектрические потенциалы и проводить возбуждение. Возникновение биоэлектрических потенциалов связано с особенностями строения биологических мембран и с деятельностью их транспортных систем, создающих неравномерное распределение ионов по обе стороны мембраны (см. Биоэлектрические потенциалы, Возбуждение).
Процессы трансформации и запасания энергии протекают в специализированных М.б. и занимают центральное место в энергетическом обеспечении живых систем. Два основных процесса энергообразования — фотосинтез и тканевое дыхание — локализованы в мембранах внутриклеточных органелл высших организмов, а у бактерий — в клеточной (плазматической) мембране (см. Дыхание тканевое). Фотосинтезирующие мембраны преобразуют энергию света в энергию химических соединений, запасая ее в форме сахаров — основного химического источника энергии для гетеротрофных организмов. При дыхании энергия органических субстратов освобождается в процессе переноса электронов по цепи окислительно-восстановительных переносчиков и утилизируется в процессе фосфорилирования АДФ неорганическим фосфатом с образованием АТФ. Мембраны, осуществляющие фосфорилирование, сопряженное с дыханием, называют сопрягающими (внутренние мембраны митохондрий, клеточные мембраны некоторых аэробных бактерий, мембраны хроматофоров фотосинтезирующих бактерий).
Метаболические функции мембран определяются двумя факторами: во-первых, связью большого числа ферментов и ферментативных систем с мембранами, во-вторых, способностью мембран физически разделять клетку на отдельные отсеки, отграничивая друг от друга метаболические процессы, протекающие в них. Метаболические системы не остаются при этом полностью изолированными. В мембранах, разделяющих клетку, имеются специальные системы, обеспечивающие избирательное поступление субстратов, выделение продуктов, а также движение соединений, обладающих регуляторным действием.
Клеточная рецепция и межклеточные взаимодействия. Под этой формулировкой объединен весьма обширный и разнообразный набор важных функций клеточных мембран, определяющих взаимодействие клетки с окружающей средой и формирование многоклеточного организма как единого целого. Молекулярно-мембранные аспекты клеточной рецепции и межклеточных взаимодействий касаются прежде всего иммунных реакций, гормонального контроля роста и метаболизма, закономерностей эмбрионального развития.
Нарушения структуры и функции биологических мембран. Разнообразие типов М.б., их полифункциональность и высокая чувствительность к внешним условиям порождают необыкновенное разнообразие структурно-функциональных нарушений мембран, возникающих при многих неблагоприятных воздействиях и сопряженных с огромным числом конкретных заболеваний организма как целого. Все это разнообразие нарушений достаточно условно можно подразделить на транспортные, функционально-метаболические и структурные. В общем виде охарактеризовать последовательность возникновения этих нарушений не представляется возможным, и в каждом конкретном случае требуется детальный анализ для выяснения первичного звена в цепи развития структурно-функциональных нарушений мембран. Нарушение транспортных функций мембран, в частности увеличение проницаемости мембран, — общеизвестный универсальный признак повреждения клетки. Нарушением транспортных функций (например, у человека) обусловлено более 20 так называемых транспортных болезней, среди которых почечная глюкозурия, цистинурия, нарушение всасывания глюкозы, галактозы и витамина В12, наследственный сфероцитоз и др. Среди функционально-метаболических нарушений М.б. центральными являются изменения процессов биосинтеза, а также многообразные отклонения в энергообеспечении живых систем. В наиболее общем виде следствием этих процессов является нарушение состава и физико-химических свойств мембран, выпадение отдельных звеньев метаболизма и его извращение, а также снижение уровня жизненно важных энергозависимых процессов (активного транспорта ионов, процессов сопряженного транспорта, функционирования сократительных систем и т.д.). Повреждения ультраструктурной организации М.б. выражаются в чрезмерном везикулообразовании, увеличении поверхности плазматических мембран за счет образования пузырей и отростков, слиянии разнородных клеточных мембран, образовании микропор и локальных структурных дефектов.
megaobuchalka.ru