Реферат: Магнитная индукция:. Реферат на тему магнитное поле и электромагнитная индукция


Реферат: Магнитная индукция

МИНИСТЕРСТВО ПУТЕЙ СООБЩЕНИЯ РФ

ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ПУТЕЙ СООБЩЕНИЯ

КАФЕДРА «ФИЗИКА»

Тема:

СИЛА ЛОРЕНЦА.

ЭФФЕКТ ХОЛЛА.

Выполнил: студент группы ИС-02-217

Богатырёв А.Л.

Проверил: Илларионов А.И.

Иркутск-2003

Магнитная индукция. Сила Лоренца.

1. Опыты показывают, что силаFм, действующая со стороны магнитного поля на движущуюся в этом поле заряженную частицу, подчиняется следующим законерностям :

а) силаFMвсегда перпендикулярна вектору скоростиvчастицы;

б) отношениеFM/(|q|v)не зависит ни от зарядаqчастицы, ни от модуля ее скорости;

в) при изменении направления скорости частицы в точкеАполя модуль силыFмизменяется от 0 до максимального значения(Fм)макс, которое зависит не только от|q|v,но также от значения в точкеАсиловой характеристики магнитного поля — вектораВназываемогомагнитной индукциейполя.

По определению, модуль вектораВравен

(1)

Итак, магнитная индукцияВчисленно равна отношению силы,

действующей на заряженную частицу со стороны магнитного поля, к произведению абсолют значения заряда и скорости частицы, если направление скорости частицы таково, что эта сила максимальна. ВекторВнаправлен перпендикулярно вектору силы(Fм)максдействующей на положительно заряженную частицу(q>0), и вектору скоростиvчастицы так, что из конца вектораВвращение по кратчайшему расстоянию от направления силы(Fм)макск направлению скоростиvвидно происходящим против часовой стрелки. Иначе говоря, векторы(Fм)макс,vиВобразуют правую тройку

Магнитное поле называетсяоднородным,если во всех его точках векторы магнитной индукции одинаковы как по модулю, так и по направлению. В противном случае магнитное поле называетсянеоднородным.

2. Для графического изображениястационарного,т. е. не изменяющегося со временем, магнитного поля пользуются методом

линий магнитной индукции.

Линиями магнитной индукции(силовыми линиями магнитного поля) называются линии, проведенные в магнитном поле так, что в каждой точке поля касательная к линии магнитной индукции совпадает с направлением вектораВв этой точке поля.

Линии магнитной индукции проще всего наблюдать с помощью мелких

Игольчатых железных опилок, которые намагничиваются в исследуемом поле и ведут себя подобно маленьким магнитным стрелкам (свободная магнитная стрелка разворачивается в магнитном поле так, чтобы ось стрелки, соединяющая ее южный полюс с северным, совпадала с направлениемВ).

3. Вид линий магнитной индукции простейших магнитных полей показан

на рис. Из рис.б—гвидно, что эти линии охватывают проводник с током, создающий поле. Вблизи проводника они лежат в плоскостях, перпендикулярных проводнику.

Направление линий индукции определяется поправилу буравчика: если ввинчивать буравчик по направлению вектора плотности тока в проводнике, то направление движения рукоятки буравчика укажет направление линий магнитной индукции.

Линии индукции магнитного по­ля

тока ни в каких точках не могут обрываться, т. е. ни начинаться, ни кончаться: они либо замкнуты (рис.б, в, г),либо бесконечно навиваются на некоторую поверхность, всюду плотно заполняя ее, но никогда не возвращаясь вторично в любую точку поверхности.

Для сравнения магнитного поля с электростатическим полезно

напомнить, что линии напряженности электростатического поля разомкнуты. Они начинаются на положительных зарядах, оканчиваются на отрицательных и вблизи от заряженного проводника направлены перпендикулярно его поверхности.

Из сопоставления рис.аигвидно, что магнитное поле вне соленоида,

длинной катушки с током, подобно магнитному полю полосового магнита. Северный полюс магнита совпадает с тем концом соленоида, из которого ток в витках виден идущим против часовой стрелки. Линии магнитной индукции постоянного магнита выходят из его северного полюса и входят в южный. На первый взгляд кажется, что здесь имеется полная аналогия с линиями напряженности электростатического поля, причем полюсы магнита играют роль магнитных «зарядов» (магнитных масс), создающих магнитное поле. Однако опыты показали, что, разрезая постоянный магнит на части, нельзя разделить его полюсы, т. е. нельзя получить магнит либо с одним северным, либо с одним южным полюсом. Каждая сколь угодно малая часть постоянного магнита всегда имеет оба полюса. Следовательно, в отличие от электрических зарядов свободных магнитных «зарядов» в природе не существует. Нет их и в полюсах постоянных магнитов. Поэтому линии магнитной индукции не могут обрываться на полюсах.

Полная аналогия между магнитными полями полосовых магнитов и

соленоидов позволила французскому физику А. Амперу высказать (1821 — 1822) гипотезу о том, что магнитные свойства постоянных магнитов обусловлены существующими в них микротоками. О природе и характере этих микротоков Ампер ничего не мог сказать, так как в то время учение о строении вещества находилось еще в начальной стадии. Лишь после открытия электрона и выяснения строения атомов и молекул, т. е. спустя почти 100 лет, гипотеза Ампера была блестяще подтверждена и легла в основу современных представлений о магнитных свойствах вещества. Гипотетические микротоки Ампера получили простое и наглядное истолкование: они связаны с движением электронов в атомах, молекулах и ионах.

4. По формуле (1) можно найти силу, действующую со стороны

магнитного поля на движущуюся в нем заряженную частицу, только если скорость частицыvперпендикулярна векторуВ. В общем случае эта сила равна

(2)

На рис. показаны взаимные расположения векторовv,ВиFMдля положительного и отрицательного зарядов частицы. Модуль силы равен

гдеа — угол между векторамиvиВ.

СилаFMнаправлена перпендикулярно скоростиvзаряженной частицы и

сообщает частице только нормальное ускорение. Иными словами, силаFMне совершает работы и вызывает лишь искривление траектории частицы. Поэтому при движении свободной заряженной частицы в магнитном поле ее кинетическая энергия не изменяется.

5. Если на движущуюся частицу с электрическим зарядомq

одновременно действуют и магнитное, и электрическое поля, то результирующая силаF, называемаясилой Лоренца, равна сумме двух составляющих — электрической и магнитной:

(3)

гдеЕ- напряженность электрического поля. Иногда под силой Лоренца понимают только магнитную составляющую силы F.

Разделение силы ЛоренцаFна электрическую и магнитную

составляющие относительно, т. е. эти составляющие зависят от выбора инерциальной системы отсчета. Дело в том, что при переходе от одной инерциальной системы отсчета к другой изменяются не только скоростьvзаряженной частицы, но также и силовые характеристикиЕиВполей. Соответственно разделение электромагнитного поля на электрическое и магнитное поля тоже относительно.

Эффект Холла.

1. Американский физик Э. Холл провел эксперимент (1879), в котором

пропускал

постоянный токIчерез пластинкуМ, изготовленную из золота, и измерял разность потенциаловмежду противолежащими точкамиАиСна верхней и нижней гранях. Эти точки лежат в одном и том же поперечном сечении проводникаМ.Поэтому, как и следовало ожидать, оказалось, что. Когда пластина с током была помещена в однородное магнитное поле, перпендикулярное ее боковым граням, то потенциалы точекАиСстали разными. Это явление получило название эффекта Холла. Было установлено, что разность потенциаловмежду точкамиАиСпропорциональна силе токаI, индукцииВи обратно пропорциональна ширинеbпла­стинки, т. е.

(4)

гдеRпостоянная Холла.

Дальнейшие исследования показали, что эффект Холла наблюдается во

всех проводниках полупроводниках независимо от их материала. Изменение направления тока или вектораВна противоположное вызывает изменение знака разности потенциаловЧисловое значение постоянной ХоллаRзависит от материала пластинкиМ,причем этот коэффициент для одних веществ положителен, а для других отрицателен.

2. Эффект Холла можно объяснить следующим образом. Пусть токIв

пластинкеМобусловлен упорядоченным движением частиц носителей зарядовq.Еслиих концентрация,асредняя скорость их упорядоченного движенияv, то сила тока

(5)

гдеS=abплощадь поперечного сечения пластинки, avxпроекция вектораvна осьОХ,проведенную в направлении вектораjплотности тока. Если заряд частиц, образующих ток,q>0, то их скоростьvсовпадает с направлением тока иvx=v.Если же зарядq<0,то скоростьvпротивоположна по направлению векторуjиvx= —v<0,ноqvx=|q|v>0.

На частицу, движущуюся в магнитном поле с индукциейВ, действует

магнитная составляющая силы ЛоренцаFM=q[vB]. При указанных направлениях тока в пластинкеМи вектораВсилаFMнаправлена вверх (вдоль положительного направле­ния осиOZ).Под действием силыFMчастицы должны отклоняться к верхней грани пластинки, так что на верхней грани будет избыток зарядов того же знака, что иq,а на нижней избыток зарядов противоположного знака. В результате этого в пластинке возникнет поперечное электрическое поле, направленное сверху вниз, если зарядыqположительны, и снизу вверх, если они отрицательны. Пусть напряженность образовавшегося кулоновского поля будетЕ. СилаqЕ,действующая со стороны поперечного электрического поля на зарядq,направлена в сторону, противоположную силеFM.В случае установившегося состояния сила Лоренца (3), действующая на носитель зарядаq,равна нулю:

откуда напряженность установившегося поперечного электрического поля (поля Холла)

(6)

ВекторЕнаправлен вдоль осиOZ,а его проекция на эту ось равна

(7)

Соответственно разность потенциалов между точкамиАиСравна

Подставив сюда выражение для vхиз (5), окончательно найдем

(8)

Таким образом, полученный результат совпадает с экспериментальной формулой (4).

3. Из сравнения (8) и (5) следует, что постоянная Холла

(9)

Отсюда видно, что знак постоянной Холла совпадает со знаком зарядаqчастиц, обусловливающих проводимость данного материала. Поэтому на основании измерения постоянной Холла для полупроводника можно судить о природе его проводимости: еслиR<0,то проводимость электронная, еслиR>0,то дырочная. Если в полупроводнике одновременно осуществляются оба типа проводимости, то по знаку постоянной Холла можно судить о том, какой из них является преобладающим.

С помощью постоянной Холла можно также определить концентрацию

носителей заряда, если характер проводимости и их заряд известны (например, для металлов):

(10)

Так, для одновалентных металлов оказалось, что концентрация электронов проводимости совпадает с концентрацией атомов.

Зная постоянную Холла для электронного проводника, можно оценить

значениесредней длины свободного пробега электронов.

гдееит— абсолютное значение заряда электрона и его масса;— средняя скорость теплового движения электронов в проводнике;— удельная электрическая проводимость. Оказалось, что средняя длина свободного пробега электронов в металлах достигает сотен межузельных расстояний:м.

Литература, используемая в реферате:

Детлаф А. А. Курс физики: Учеб. пособие для втузов/ А. А. Детлаф, Б. М. Яворский.- 4-е изд., испр.- М.: Высш. шк., 2002.- 718 с.: ил.

Кикоин А. К. Молекулярная физика: Учеб. пособ. для студентов физ. спец. вузов/ А. К. Кикоин, И. К. Кикоин.- 2-е изд., перераб.- М.: Наука, 1976.- 480 с.: ил.

Иванов Б. Н. Законы физики: Учеб. пособ. для подгот. отделений вузов/ Б. Н. Иванов.- М.: Высш. шк., 1986.- 335 с.: ил.

Савельев И. В. Курс физики: Учеб. пособ. для вузов/ И. В. Савельев.- М.: Наука, 1986.- Т.2.

superbotanik.net

Магнитное поле. Электромагнитная индукция

285. Магнитное поле - это вид материи, которая порождается движущимися электрическими зарядами и обнаруживается по действию на движущиеся электрические заряды с некоторой силой.

286. Индукция магнитного поля - это физическая величина, равная отношению максимального вращательного момента сил, действующего на рамку с током, помещённую в магнитное поле, к произведению силы тока в рамке на площадь, ограниченную этой рамкой.

Магнитная индукция измеряется в тесла (Тл)

Второй вариант определения. Индукция магнитного поля - это физическая величина, численно равная отношению максимальной силы, действующей на прямой проводник с током, помещённый в магнитное поле, к произведению силы тока в проводнике на его длину.

287. За направление вектора индукции магнитного поля В принимают направление положительной нормали к рамке с током, помещённой в магнитное поле, при её свободном расположении в этом поле. Направление положительной нормали связано с направлением тока в контуре правилом правого винта.

288. Правило правого винта: винт располагаем так, чтобы при его вворачивании в плоскость рамки вращение головки совпадало с направлением тока в рамке. При этом направление острия винта указывает направление вектора индукции магнитного поля.

289. Во втором определении направление вектора B задаётся правилом левой руки. Левую руку располагаем так, чтобы четыре вытянутых пальца были направлены по направлению тока в проводнике, большой, отогнутый на 900, палец совпадал с направлением максимальной силы, действующей на проводник, тогда вектор индукции магнитного поля будет перпендикулярен ладони.

290. Магнитный момент контура - это величина, равная произведению силы тока в контуре на площадь, ограниченную этим контуром.

где I - сила тока в контуре, S - площадь ограниченная контуром.

Вектор магнитного момента совпадает по направлению с вектором положительной нормали к контуру, которая связана с направлением тока в контуре правилом правого винта.

291. Закон Ампера: Сила, действующая на проводник с током, помещённый в магнитное поле, равна произведению модуля вектора индукции магнитного поля на силу тока в проводнике, на длину проводника и на синус угла между направлением тока и вектором индукции магнитного поля.

292. Направление силы Ампера можно определить по правилу левой руки: левую руку располагаем так, чтобы вектор индукции магнитного поля был перпендикулярен ладони, четыре пальца были направлены по направлению тока, тогда, отогнутый на 90 градусов большой палец покажет направление силы Ампера.

293. Силовая линия магнитного поля это линия, касательная к которой в любой точке совпадает по направлению с вектором В индукции магнитного поля в этой точке.

294. Сила Лоренца: на электрический заряд, движущийся в магнитном поле со скоростью V, действует сила, модуль которой равен произведению величины этого заряда q, на модуль скорости его движения V, на модуль вектора индукции магнитного поля B и на синус угла между вектором скорости и вектором индукции магнитного поля.

295. Направление силы Лоренца можно определить по правилу левой руки: левую руку располагаем так, чтобы вектор индукции магнитного поля В был перпендикулярен ладони, четыре пальца были направлены по направлению вектора скорости v положительно заряженной частицы, тогда отогнутый на 90 градусов большой палец покажет направление силы Лоренца.

Если частица имеет отрицательный заряд, то вытянутые пальцы левой руки следует направить против направления вектора скорости v.

296. Радиус окружности, по которой со скоростью v, перпендикулярной В, движется в магнитном поле заряженная частица

297. Период обращения частицы – это время, затрачиваемое частицей на один полный оборот.

298. Магнитная проницаемость - это число, показывающее, во сколько раз индукция магнитного поля в веществе больше или меньше, чем в вакууме.

299. Ферромагнетики - это вещества, магнитная проницаемость которых значительно больше 1 и составляет сотни и даже тысячи единиц. Типичными представителями ферромагнетиков являются: железо, никель, кобальт и их сплавы.

300. Домены - это области в ферромагнетике размером порядка 10-5 см, имеющие собственные магнитные поля. В отсутствии внешнего магнитного поля магнитные поля доменов ориентированы произвольно, поэтому кусок ферромагнетика не намагничен. При помещении ферромагнетика во внешнее магнитное поле магнитные поля доменов ориентируются по внешнему полю. Их поля складываются и кусок ферромагнетика намагничивается, приобретая собственное магнитное поле, которое, в свою очередь, складывается с внешним магнитным полем, усиливая его в сотни и даже тысячи раз.

301. Парамагнетики - вещества, в которых вектор магнитной индукции собственного магнитного поля имеет одинаковое направление с вектором индукции намагничивающего поля.

302. Диамагнетики - вещества, в которых вектор индукции собственного магнитного поля направлен противоположно вектору магнитной индукции намагничивающего поля.

303. Электромагнитная индукция - это явление возникновения индукционного тока в замкнутом проводнике при изменении магнитного поля, пересекающего контур, ограниченный этим проводником.

304. Магнитный поток Ф - это скалярная величина, равная произведению модуля вектора индукции магнитного поля B на площадь поверхности S, которую пересекает магнитное поле, и на косинус угла между вектором нормали к контуру и вектором индукции магнитного поля.

Магнитный поток измеряется в веберах (Вб).

305. Поток вектора индукции магнитного поля замкнутого контура через площадь, ограниченную этим контуром прямо пропорционален силе тока в этом контуре

где L - индуктивность контура.

306. Индуктивность контура (катушки) - это величина, численно равная отношению потока вектора индукции магнитного поля через площадь, ограниченную этим контуром, к силе тока, протекающему по контуру и создающему это магнитное поле.

Единица индуктивности - генри (Гн). 1 Гн – это индуктивность такого проводника (катушки индуктивности), в котором ток силой в 1 А создаёт поток магнитной индукции в 1 Вб. 1 Тл - это индукция такого магнитного поля, которое будучи перпендикулярным к площадке в 1 м2 создаёт через неё поток в 1 Вб.

307. Закон Фарадея: ЭДС индукции, возникающая в контуре, прямо пропорциональна скорости изменения магнитного потока, пересекающего площадь, ограниченную этим контуром.

308. Правило Ленца: индукционный ток всегда имеет такое направление, при котором, изменение созданного им магнитного потока противодействует изменению магнитного потока , вызывающего этот ток.

309. ЭДС индукции на концах проводника, движущегося в магнитном поле, равна

где - угол между вектором В и вектором v движения проводника; В - модуль вектора индукции магнитного поля, l - длина проводника.

310. Самоиндукция - это явление возникновения ЭДС индукции в проводящем контуре при изменении в нем силы тока.

311. Закон самоиндукции: ЭДС самоиндукции, возникающая в электрической цепи при изменении тока в той же цепи, прямо пропорциональна скорости изменения силы тока.

где L - индуктивность электрической це­пи (катушки индуктивности).

312. Гипотеза Максвелла: во всех случаях, когда электрическое поле изменяется со временем, оно порождает магнитное поле.

313. Электромагнитное поле - это совокупность переменного электрического поля и неразрывно связанного с ним переменного магнитного поля.

314. Вихревым электрическим полем называют поле, которое порождается изменяющимся магнитным полем. Линии напряжённости вихревого электри­ческого поля замкнутые. Работа по перемещению электрического заряда по замкнутому контуру в таком поле не равна нулю.

315. Энергия магнитного поля может быть вычислена по формуле:

где L - индуктивность, I - сила тока.

316. Колебательный контур - электрическая цепь, состоящая из включенных последовательно конденсатора емкостью С, катушки индуктивностью L и резистора сопротивлением R, в которой могут возникать электромагнитные колебания.

317. Идеальный колебательный контур- это электрическая цепь, состоящая из конденсатора и катушки индуктивности. Конденсатор в колебательном контуре служит для накапливания электрических зарядов, а катушка индуктивности - для создания переменной ЭДС самоиндукции, которая периодически перезаряжает конденсатор. В результате в колебательном контуре возникает периодическое изменение заряда и напряжения на обкладках конденсатора, силы тока и напряжения на ка­тушке индуктивности и т.д., т.е. возникают электромагнитные колебания.

318. Период колебаний в колебательном контуре определяется по формуле

где L - индуктивность, С - электроёмкость. За механизм возникновения электромагнитных колебаний ответственно явление самоиндукции.

319. Полная электромагнитная энергия контура в любой момент времени

где Im - максимальная сила тока, Um - максимальное напряжение на конденсаторе.

320. Резонансом в электрическом колебательном контуре называется явление резкого возрастания амплитуды вынужденных электрических колебаний (напряжения U, силы тока I, напряжённости электрического поля Е, заряда конденсатора q и т.д.) при совпадении частоты внешнего переменного напряжения с собственной частотой колебательного контура.

321. Условие резонанса в колебательном контуре - индуктивное сопротивление равно емкостному, т.е.

где р - резонансная частота, L - индуктивность, С - ёмкость.

322. Электромагнитная волна - это процесс распространения в пространстве переменного электрического и, неразрывно связанного с ним, переменного магнитного полей. Электромагнитные волны распространяются в вакууме со скоростью 300 000 км/с. В веществе эта скорость меньше.

323. Свойства электромагнитных волн:

1) они отражаются от проводящих поверхностей;

2) на границе диэлектриков частично отражаются, а частично преломляются во второй диэлектрик;

3) им присущи явления интерференции и дифракции;

4) им присуще явление поляризации.

324. Модуляция - это процесс изменения по определённому закону амплитуды, частоты или фазы гармонических колебаний для внесения в колебательный процесс определённой информации.

325. Детектирование - это процесс выделения низкочастотных модулирующих сигналов из модулированных высокочастотных колебаний.

326. Переменным называется электрический ток, сила и направление которого изменяется с течением времени. Наибольшее распространение получил электрический ток, сила и напряжение которого изменяются по гармоническому закону.

327. Под действующим значением силы (напряжения, ЭДС) переменного тока подразумевают такое значение силы (напряжения, ЭДС) постоянного тока, при пропускании которого через проводник, в последнем выделяется такое же количество теплоты, что и при пропускании переменного тока.

328. Действующее или эффективное значение силы переменного тока, напряжения и ЭДС связаны с их максимальными значениями формулами:

329. ЭДС индукции, возникающая при вращении рамки в однородном магнитном поле

где В - индукция магнитного поля, S - площадь рамки, N - число витков в рамке, - угловая скорость вращения рамки, t - время. Максимальная ЭДС индукции

330. Индуктивное сопротивление

331. Емкостное сопротивление

332. Импеданс (полное сопротивление) электрической цепи при синусоидальных напряжениях и токе)

333. Закон Ома для цепи переменного тока

или

где Im и Um - амплитудные значения силы тока и напряжения. Iд и Uд - действующие значения силы тока и напряжения.

334. Мощность переменного тока:

335. Коэффициент мощности:

336. Трансформатором называют электротехническое устройство, служащее для увеличения или уменьшения напряжения переменного тока. В основе работы трансформатора лежит явление электромагнитной индукции.

337. Коэффициентом трансформации называется величина, равная отношению числа витков во вторичной обмотке трансформатора к числу витков в первичной или отношению напряжения на вторичной обмотке к напряжению на первичной обмотке.

Если k<1, то трансформатор понижающий, а если k>1, то трансформатор повышающий.

Оптика

338. Свет - это электромагнитные волны, длина волны которых лежит в диапазоне от 4,510-7м до 810-7м. Как и все электромагнитные волны, свет распространяется в вакууме со скоростью 300 000 км/с.

339. Геометрическая оптика - раздел оптики, в котором законы распространения света рассматриваются на основе представления о световых лучах.

340. Световой луч - линия, вдоль которой распространяется энергия световых электромагнитных волн.

341. Оптически однородная среда - среда, для которой показатель преломления везде одинаков.

342. Закон прямолинейного распространения света: свет в оптически однородной среде рраспространяется прямолинейно.

343. Скорость света в веществе связана со скоростью света в вакууме соотношением:

где n - абсолютный показатель преломления для этого вещества.

344. Закон отражения света: луч падающий, луч отражённый и перпендикуляр, опущенный в точку падения к границе раздела сред, лежат в одной плоскости. Угол падения равен углу отражения.

345. Закон преломления: луч падающий, луч преломлённый и перпендикуляр, опущенный в точку падения к границе раздела сред, лежат в одной плоскости. Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред и называется относительным показателем преломления второй среды относительно первой (n21 )

где - угол падения, - угол преломления. Углы падения и преломления отсчитываются от перпендикуляра к границе раздела сред.

346. Предельным углом полного внутреннего отражения называется такой угол падения из среды с большим показателем преломления на границу его раздела со средой с меньшим показателем преломления, при котором угол преломления равен 900.

347. Полное отражение может наблюдаться только при переходе луча света из среды с большим показателем преломления в среду с меньшим показателем преломления. Закон преломления для этого случая принимает вид:

где пр - предельный угол полного отражения; n1 - показатель преломления среды, из которой луч света падает на границу раздела сред; n2 - показатель преломления среды, в которую переходит преломлённый луч.

348. Абсолютный показатель преломления - это число, показывающее во сколько раз скорость света в вакууме больше, чем в данном веществе.

где с - скорость света в вакууме, v - скорость света в веществе.

349. Относительным показателем преломления n21 называется отношение абсолютного показателя второй среды к абсолютному показателю преломления первой среды. Относительный показатель преломления показывает, во сколько раз скорость света во второй среде меньше, чем в первой.

350. Линза - это прозрачное тело, ограниченное с двух сторон сферическими поверхностями или сферической поверхностью и плоскостью.

351. Собирающая линза - это линза, у которой середина толще, чем края.

352. Рассеивающая линза - это линза, у которой края толще , чем середина.

353. Главная оптическая ось линзы - это прямая линия, проведённая через центры сферических поверхностей, ограничивающих линзу.

354. Оптический центр линзы - точка, лежащая на главной оптической оси и обладающая тем свойством, что лучи, проходящие через нее, не преломляются.

355. Фокусом линзы называется точка, в которой пересекаются лучи, пущенные параллельно главной оптической оси.

356. Формула тонкой линзы:

где d - расстояние от предмета до линзы; f - расстояние от линзы до изображения; F - расстояние от линзы до фокуса (фокусное расстояние). Для рассеивающей линзы формула тонкой линзы имеет вид

357. Величина обратная фокусному расстоянию называется оптической силой линзы.

Оптическая сила линзы измеряется в диоптриях (дптр.) Оптическая сила рассеивающей линзы отрицательна. 1 дптр - это оптическая сила линзы с фокусным расстоянием 1 м.

358. Оптическая сила тонкой линзы

где n - относительный показатель преломления линзы, R1 и R2 – радиусы кривизны поверхностей (R>0 для выпуклой поверхности, R<0 для вогнутой).

359. Увеличением линзы называется отношение линейного размера изображения к линейному размеру предмета

где Н - размер изображения, h - размер предмета.

360. Для построения изображения в линзах используются свойства трёх лучей:

1) Луч, идущий от точки параллельно главной оптической оси, после преломления в линзе проходит через её второй фокус;

2) Луч, проходящий через оптический центр линзы, не преломляется.

3) Луч, прошедший через первый фокус линзы, после преломления в ней, идёт параллельно главной оптической оси.

Если линза рассеивающая, то после преломления в ней, луч параллельный главной оптической оси, будет отклоняться к её краю так, что его продолжение пройдёт через фокус.

studfiles.net

Доклад - Магнитная индукция - Физика

МИНИСТЕРСТВО ПУТЕЙ СООБЩЕНИЯ РФ

ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ПУТЕЙ СООБЩЕНИЯ

КАФЕДРА «ФИЗИКА»

Тема:

СИЛА ЛОРЕНЦА.

ЭФФЕКТ ХОЛЛА.

Выполнил: студент группы ИС-02-217

Богатырёв А.Л.

Проверил: Илларионов А.И.

Иркутск-2003

Магнитная индукция. Сила Лоренца.

1. Опыты показывают, что сила F м, действующая со стороны магнитного поля на движущуюся в этом поле заряженную частицу, подчиняется следующим законерностям :

а) сила FM всегда перпендикулярна вектору скорости v частицы;

б) отношение FM /(| q | v ) не зависит ни от заряда q частицы, ни от модуля ее скорости;

в) при изменении направления скорости частицы в точке А поля модуль силы F м изменяется от 0 до максимального значения ( F м )макс, которое зависит не только от | q | v, но также от значения в точке А силовой характеристики магнитного поля — вектора В называемого магнитной индукцией поля.

По определению, модуль вектора В равен

(1)

Итак, магнитная индукция В численно равна отношению силы,

действующей на заряженную частицу со стороны магнитного поля, к произведению абсолют значения заряда и скорости частицы, если направление скорости частицы таково, что эта сила максимальна. Вектор В направлен перпендикулярно вектору силы ( F м )макс действующей на положительно заряженную частицу ( q > 0), и вектору скорости v частицы так, что из конца вектора В вращение по кратчайшему расстоянию от направления силы ( F м )макс к направлению скорости v видно происходящим против часовой стрелки. Иначе говоря, векторы ( F м )макс, v и В образуют правую тройку

Магнитное поле называется однородным, если во всех его точках векторы магнитной индукции одинаковы как по модулю, так и по направлению. В противном случае магнитное поле называется неоднородным .

2. Для графического изображения стационарного, т. е. не изменяющегося со временем, магнитного поля пользуются методом

линий магнитной индукции.

Линиями магнитной индукции (силовыми линиями магнитного поля) называются линии, проведенные в магнитном поле так, что в каждой точке поля касательная к линии магнитной индукции совпадает с направлением вектора В в этой точке поля.

Линии магнитной индукции проще всего наблюдать с помощью мелких

Игольчатых железных опилок, которые намагничиваются в исследуемом поле и ведут себя подобно маленьким магнитным стрелкам (свободная магнитная стрелка разворачивается в магнитном поле так, чтобы ось стрелки, соединяющая ее южный полюс с северным, совпадала с направлением В ).

3. Вид линий магнитной индукции простейших магнитных полей показан

на рис. Из рис. б — г видно, что эти линии охватывают проводник с током, создающий поле. Вблизи проводника они лежат в плоскостях, перпендикулярных проводнику.

Направление линий индукции определяется по правилу буравчика: если ввинчивать буравчик по направлению вектора плотности тока в проводнике, то направление движения рукоятки буравчика укажет направление линий магнитной индукции.

Линии индукции магнитного по­ля

тока ни в каких точках не могут обрываться, т. е. ни начинаться, ни кончаться: они либо замкнуты (рис. б, в, г), либо бесконечно навиваются на некоторую поверхность, всюду плотно заполняя ее, но никогда не возвращаясь вторично в любую точку поверхности.

Для сравнения магнитного поля с электростатическим полезно

напомнить, что линии напряженности электростатического поля разомкнуты. Они начинаются на положительных зарядах, оканчиваются на отрицательных и вблизи от заряженного проводника направлены перпендикулярно его поверхности.

Из сопоставления рис. а и г видно, что магнитное поле вне соленоида,

длинной катушки с током, подобно магнитному полю полосового магнита. Северный полюс магнита совпадает с тем концом соленоида, из которого ток в витках виден идущим против часовой стрелки. Линии магнитной индукции постоянного магнита выходят из его северного полюса и входят в южный. На первый взгляд кажется, что здесь имеется полная аналогия с линиями напряженности электростатического поля, причем полюсы магнита играют роль магнитных «зарядов» (магнитных масс), создающих магнитное поле. Однако опыты показали, что, разрезая постоянный магнит на части, нельзя разделить его полюсы, т. е. нельзя получить магнит либо с одним северным, либо с одним южным полюсом. Каждая сколь угодно малая часть постоянного магнита всегда имеет оба полюса. Следовательно, в отличие от электрических зарядов свободных магнитных «зарядов» в природе не существует. Нет их и в полюсах постоянных магнитов. Поэтому линии магнитной индукции не могут обрываться на полюсах.

Полная аналогия между магнитными полями полосовых магнитов и

соленоидов позволила французскому физику А. Амперу высказать (1821 — 1822) гипотезу о том, что магнитные свойства постоянных магнитов обусловлены существующими в них микротоками. О природе и характере этих микротоков Ампер ничего не мог сказать, так как в то время учение о строении вещества находилось еще в начальной стадии. Лишь после открытия электрона и выяснения строения атомов и молекул, т. е. спустя почти 100 лет, гипотеза Ампера была блестяще подтверждена и легла в основу современных представлений о магнитных свойствах вещества. Гипотетические микротоки Ампера получили простое и наглядное истолкование: они связаны с движением электронов в атомах, молекулах и ионах.

4. По формуле (1) можно найти силу, действующую со стороны

магнитного поля на движущуюся в нем заряженную частицу, только если скорость частицы v перпендикулярна вектору В. В общем случае эта сила равна

(2)

На рис. показаны взаимные расположения векторов v, В и FM для положительного и отрицательного зарядов частицы. Модуль силы равен

где а — угол между векторами v и В .

Сила FM направлена перпендикулярно скорости v заряженной частицы и

сообщает частице только нормальное ускорение. Иными словами, сила FM не совершает работы и вызывает лишь искривление траектории частицы. Поэтому при движении свободной заряженной частицы в магнитном поле ее кинетическая энергия не изменяется.

5. Если на движущуюся частицу с электрическим зарядом q

одновременно действуют и магнитное, и электрическое поля, то результирующая сила F, называемая силой Лоренца, равна сумме двух составляющих — электрической и магнитной:

(3)

где Е — напряженность электрического поля. Иногда под силой Лоренца понимают только магнитную составляющую силы F.

Разделение силы Лоренца F на электрическую и магнитную

составляющие относительно, т. е. эти составляющие зависят от выбора инерциальной системы отсчета. Дело в том, что при переходе от одной инерциальной системы отсчета к другой изменяются не только скорость v заряженной частицы, но также и силовые характеристики Е и В полей. Соответственно разделение электромагнитного поля на электрическое и магнитное поля тоже относительно.

Эффект Холла.

1. Американский физик Э. Холл провел эксперимент (1879), в котором

пропускал

постоянный ток I через пластинку М, изготовленную из золота, и измерял разность потенциалов между противолежащими точками А и С на верхней и нижней гранях. Эти точки лежат в одном и том же поперечном сечении проводника М . Поэтому, как и следовало ожидать, оказалось, что . Когда пластина с током была помещена в однородное магнитное поле, перпендикулярное ее боковым граням, то потенциалы точек А иС стали разными. Это явление получило название эффекта Холла. Было установлено, что разность потенциалов между точками А и С пропорциональна силе тока I, индукции В и обратно пропорциональна ширине b пла­стинки, т. е.

(4)

где R постоянная Холла.

Дальнейшие исследования показали, что эффект Холла наблюдается во

всех проводниках полупроводниках независимо от их материала. Изменение направления тока или вектора В на противоположное вызывает изменение знака разности потенциалов Числовое значение постоянной Холла R зависит от материала пластинки М , причем этот коэффициент для одних веществ положителен, а для других отрицателен.

2. Эффект Холла можно объяснить следующим образом. Пусть ток I в

пластинке М обусловлен упорядоченным движением частиц носителей зарядов q . Еслиих концентрация , асредняя скорость их упорядоченного движения v, то сила тока

(5)

где S = ab площадь поперечного сечения пластинки, avx проекция вектора v на ось ОХ, проведенную в направлении вектора j плотности тока. Если заряд частиц, образующих ток, q > 0, то их скорость v совпадает с направлением тока и vx = v . Если же заряд q <0, то скорость v противоположна по направлению вектору j и vx = — v <0, но qvx =| q | v >0.

На частицу, движущуюся в магнитном поле с индукцией В, действует

магнитная составляющая силы Лоренца FM = q [ vB ]. При указанных направлениях тока в пластинке М и вектора В сила FM направлена вверх (вдоль положительного направле­ния оси OZ ). Под действием силы FM частицы должны отклоняться к верхней грани пластинки, так что на верхней грани будет избыток зарядов того же знака, что и q , а на нижней избыток зарядов противоположного знака. В результате этого в пластинке возникнет поперечное электрическое поле, направленное сверху вниз, если заряды q положительны, и снизу вверх, если они отрицательны. Пусть напряженность образовавшегося кулоновского поля будет Е. Сила q Е , действующая со стороны поперечного электрического поля на заряд q , направлена в сторону, противоположную силе FM . В случае установившегося состояния сила Лоренца (3), действующая на носитель заряда q , равна нулю:

откуда напряженность установившегося поперечного электрического поля (поля Холла)

(6)

Вектор Е направлен вдоль оси OZ , а его проекция на эту ось равна

(7)

Соответственно разность потенциалов между точками А иС равна

Подставив сюда выражение для vх из (5), окончательно найдем

(8)

Таким образом, полученный результат совпадает с экспериментальной формулой (4).

3. Из сравнения (8) и (5) следует, что постоянная Холла

(9)

Отсюда видно, что знак постоянной Холла совпадает со знаком заряда q частиц, обусловливающих проводимость данного материала. Поэтому на основании измерения постоянной Холла для полупроводника можно судить о природе его проводимости: если R <0, то проводимость электронная, если R >0, то дырочная. Если в полупроводнике одновременно осуществляются оба типа проводимости, то по знаку постоянной Холла можно судить о том, какой из них является преобладающим.

С помощью постоянной Холла можно также определить концентрацию

носителей заряда, если характер проводимости и их заряд известны (например, для металлов):

(10)

Так, для одновалентных металлов оказалось, что концентрация электронов проводимости совпадает с концентрацией атомов.

Зная постоянную Холла для электронного проводника, можно оценить

значение средней длины свободного пробега электронов.

где е и т — абсолютное значение заряда электрона и его масса; — средняя скорость теплового движения электронов в проводнике; — удельная электрическая проводимость. Оказалось, что средняя длина свободного пробега электронов в металлах достигает сотен межузельных расстояний: м.

Литература, используемая в реферате:

Детлаф А. А. Курс физики: Учеб. пособие для втузов/ А. А. Детлаф, Б. М. Яворский.- 4-е изд., испр.- М.: Высш. шк., 2002.- 718 с.: ил.

Кикоин А. К. Молекулярная физика: Учеб. пособ. для студентов физ. спец. вузов/ А. К. Кикоин, И. К. Кикоин.- 2-е изд., перераб.- М.: Наука, 1976.- 480 с.: ил.

Иванов Б. Н. Законы физики: Учеб. пособ. для подгот. отделений вузов/ Б. Н. Иванов.- М.: Высш. шк., 1986.- 335 с.: ил.

Савельев И. В. Курс физики: Учеб. пособ. для вузов/ И. В. Савельев.- М.: Наука, 1986.- Т.2.

www.ronl.ru

Реферат : Электромагнитная индукция

Электромагнитная индукция

Электродинамическое взаимодействие

«Если какой-нибудь заряд переместился из одной точки в другую, то, очевидно, силы, действующие со стороны этого заряда на другие заряды, изменятся. При непрерывном движении заряда эти силы также должны меняться непрерывно; однако, если распространение действия заряда совершается с конечной скоростью, это изменение будет отставать от перемещения заряда, что приводит к значительным усложнениям теории действия электрических сил. Чтобы учесть специфические эффекты, возникающие при наличии движущихся зарядов, вводится дополнительная характеристика, которую мы и назвали индукцией магнитного поля. Введение этой характеристики позволяет существенно упростить всю теорию электрических явлений и не задумываться о том, что электрическое воздействие распространяется в пространстве с конечной скоростью. Так как приходится пользоваться двумя понятиями: напряженностью электрического поля и индукцией магнитного поля, - то явления, которые мы будем в дальнейшем изучать, получили общее название электромагнитные явления. Таким образом, известные еще из школьного курса магнитные силы представляют не что иное, как проявление электрических действий, вызванных движущимися зарядами. В природе не существует никаких особых магнитных зарядов, а есть только электрические заряды двух типов, условно называемые положительными и отрицательными. В заключение заметим, что в выражении для силы Лоренца не случайно стоит коэффициент с. Его значение соответствует скорости света в вакууме, а это как раз та самая максимальная скорость, с которой может распространяться электрическое поле заряда, возникшего в данной точке пространства.»

Основы физики. Л.А.Грибов, Н.И.Прокофьев. 1995. С.250. (§7.1)

Т.е. в выражении для силы Лоренца (система СГС) коэффициент с - это скорость распространения изменений (смещений) электрического поля, которые в виде токов смещения сопровождают движение зарядов. Из выражения видно, что если бы изменения поля распространялись мгновенно, то никакой силы Лоренца (релятивистского эффекта) не возникало бы.

«... возникновение магнитного поля является чисто релятивистским эффектом, следствием наличия в природе предельной скорости с, равной скорости света в вакууме. Если бы эта скорость была бесконечной (соответственно и скорость распространения взаимодействий), никакого магнетизма вообще не существовало бы.»

Электромагнетизм. И.Е.Иродов. 2000. С.225.

Магнитное поле можно рассматривать как релятивистский эффект (эффект движения), связанный с запаздыванием распространения электрического смещения поля, т.е. магнитные поля представляют распространяющиеся электрические смещения поля. Согласно формуле преобразования полей B = 0[vD], магнитные поля - это движущиеся электрические потоки. Таким образом, магнитную энергию можно трактовать как кинетическую энергию движущихся электрических потоков Wм = Mэv2 sin2a, где Mэ - масса электрического потока, v - скорость движения, a - угол между направлением движения и вектором D.

« B = -[vE]/c2 »

Электромагнетизм. И.Е.Иродов. 2000. С.227.

«Магнитное поле как релятивистский эффект. До сих пор мы рассматривали магнитное поле как реальность, пользуясь для его обнаружения магнитной стрелкой. В §7.1 говорилось, что движущиеся заряды взаимодействуют между собой не так, как неподвижные: сказывается запаздывание передачи воздействия одного из них на другой через посредство электрических полей. Однако подробно этот вопрос не рассматривался. Постоянные магнитные поля создаются постоянными токами. Картина получается стационарной, и, казалось бы, никакого запаздывания учитывать не надо.»

Основы физики. Л.А.Грибов, Н.И.Прокофьев. 1995. С.298.

«Всякое возмущение в пространстве распространяется со скоростью не выше скорости света. В частности, электрическое поле при смещении точечного заряда не просто переместится вместе с зарядом, как в случае бесконечно большой скорости распространения поля, а меняется более сложным образом. Возникают эффекты, связанные с запаздыванием появления поля на больших расстояниях от заряда, которые могут быть описаны введением индукции магнитного поля.»

Основы физики. Л.А.Грибов, Н.И.Прокофьев. 1995. С.300.

При движении заряда возникают эффекты, связанные с запаздыванием распространения электрического смещения поля, т.е. в пространстве возникают распространяющиеся со скоростью света смещения поля.

Сегодня уже не вызывает сомнения тот факт, что магнитных зарядов не существует, а магнитное поле возникает как чисто релятивистский эффект, но еще недостаточно рассмотрен сам механизм его возникновения. Постараюсь наглядно, насколько это возможно, описать электродинамические процессы, протекающие при движении электрических зарядов.

Возмущения поля не распространяются мгновенно, для возникновения возмущения требуется определенное время. При движении заряда возмущение поля (электрическое смещение), возникая в том месте, куда переместился заряд, и одновременно исчезая в том месте, откуда он переместился, образует в пространстве объемные токи электрического смещения, которые имеют обратное направление. Примеры расчетов обратных токов смещения приведены в учебниках.

«Пример. Точечный заряд q движется равномерно и прямолинейно с нерелятивистской скоростью v. Найти вектор плотности тока смещения в точке P, находящейся на расстоянии r от заряда на прямой, перпендикулярной его траектории и проходящей через заряд. Решение. jсм = -qv/4r3.»

Электромагнетизм. И.Е.Иродов. 2000. С.302.

Например, за пределами радиуса r от движущегося точечного заряда течет обратный ток смещения:

Iсм = -qv/2r.

Т.е., если заряд в 1 Кл движется со скоростью 2 м/с, то за пределами радиуса в 1 м течет обратный ток смещения силой в 1 А, плотность же обратного тока смещения на расстоянии 1 м равна 0.16 А/м2. Знак минус в формуле означает, что ток смещения течет в обратном направлении. Впереди же и позади движущегося заряда текут прямые токи смещения, их плотность: jсм = qv/2r3. Полный ток равен сумме тока проводимости и тока смещения. При этом ток смещения возникает независимо от того, движется ли заряд самостоятельно или, например, по проводнику, где ток смещения распространяется в пространстве за пределами проводника и, если рядом находится другой проводник, то в нем обратный ток смещения будет переходить в ток проводимости - это явление называется электромагнитной индукцией.

«... ток смещения по своей сути - это изменяющееся со временем электрическое поле.»

Курс физики. Т.И.Трофимова. 1998. С.250.

Поэтому для тока смещения, как и для поля, действует принцип суперпозиции (для любого тока действует принцип суперпозиции), т.е., если движутся несколько зарядов, то их обратные токи смещения складываются в пространстве согласно принципу суперпозиции. Например, электромагнитная волна представляет периодически изменяющееся поле (переменный ток смещения) - сложение волн происходит согласно принципу суперпозиции.

При движении заряда в пространстве изменяется электрическое смещение поля, т.е. образуется вихревое электрическое поле - переменный ток смещения. При постоянном направленном движении электрических зарядов происходит суперпозиция токов смещения, которые представляют непрерывно распространяющиеся возмущения поля, и в окружающем пространстве возникает постоянный обратный ток смещения. Например, плотность обратного постоянного тока смещения вокруг тонкого прямого провода бесконечной длины:

jсм = -I/2r2,

где r - расстояние от оси провода, I - постоянный ток в проводе.

«... каждый заряд возбуждает поле, совершенно не зависящее от наличия других зарядов.»

Общий курс физики. Электричество. Д.В.Сивухин. 1996. Т.3. Ч.2. С.204.

Что отражает принцип суперпозиции полей - полевых потоков. Т.е. независимо от того движется заряд самостоятельно или, например, в проводнике, всегда в окружающем пространстве вместе с ним движется электрический поток (поток электрического смещения), представляющий обратный ток электрического смещения.

«Ток смещения входит в Максвелла уравнения на равных правах с током, обусловленным движением зарядов.»

Физический энциклопедический словарь. ЭЛЕКТРИЧЕСКИЙ ТОК.

«Ток смещения, в отличие от тока проводимости, не сопровождается выделением теплоты.»

Справочник по физике. Б.М.Яворский, А.А.Детлаф. 1996. С.290.

Т.е. электрический ток смещения течет без сопротивления, так как вакуум представляет идеальный диэлектрик. Электрическая напряженность поля возникает только при изменении тока смещения как вихревое электрическое поле.

Иногда ошибочно считается, что ток смещения всегда связан с вихревым электрическим полем, но это неверно, так как, если ток смещения постоянный, вихревое электрическое поле отсутствует. Вихревое электрическое поле - это вихревой поток электрического смещения поля, т.е. переменный ток смещения. Рассмотрим такой пример: если между обкладками конденсатора поместить рамку, а в конденсаторе на какой-то период времени стабилизировать ток, сделав его постоянным, то кругового тока в рамке при любом ее положении не будет, несмотря на то, что между обкладками конденсатора будет течь постоянный ток смещения (будет постоянное магнитное поле). Таким образом, вихревое электрическое поле возникает при изменении плотности тока смещения, например, когда ток смещения между обкладками конденсатора возрастает или уменьшается, т.е. отсутствие вихревого электрического поля не говорит о том, что ток смещения отсутствует. С другой стороны, возникновение вихревого электрического поля всегда указывает на то, что в пространстве изменяется плотность тока смещения. Например, возникновение вихревого электрического поля при включении и выключении электромагнита говорит о том, что ток смещения при включении возрастает, а при выключении уменьшается. В период, когда магнитное поле не изменяется, плотность тока смещения также не изменяется и, соответственно, нет вихревого электрического поля, поэтому постоянное магнитное поле не действует на покоящиеся электрические заряды.

Введение Максвеллом тока смещения не только позволило предсказать существование электромагнитных волн, но и дало возможность понять физическую сущность электромагнитных явлений, т.е. наглядно представить электродинамику процессов, протекающих в полевой материи, так как любые изменения поля всегда связаны с токами смещения. Таким образом, линиями электрического тока смещения можно достаточно наглядно представить электродинамику полевых процессов. В книгах по электродинамике хотя и говорится, что при движении зарядов в окружающем пространстве текут токи смещения, но, к сожалению, ни одного рисунка, наглядно изображающего этот процесс, так и не удалось найти.

Рассмотрим токи смещения, возникающие при движении электрических зарядов.

<-- Обратный ток электрического смещения

Движущийся положительный заряд ---->

<-- Обратный ток электрического смещения

На рисунке знаком (+) обозначена область, куда переместился положительный заряд и где возникает возмущение (электрическое смещение поля), т.е. распространяется положительное электрическое возмущение поля. Знаком (-) обозначена область, где раньше был заряд и где исчезает возмущение, т.е. распространяется отрицательное возмущение. Обратные токи смещения, образованные распространением двух разноименных областей возмущения, возникающих при движении заряда, изображены линиями токов смещения, стрелки - направление токов как векторная сумма распространяющихся возмущений от двух разноименных областей. Надо заметить, что ток смещения "стекает" в (-)-область, хотя возмущение распространяется из (-)-области (аналогия с током проводимости, где отрицательно заряженные электроны движутся в одну сторону, но принято считать, что ток течет в обратном направлении). Распространение возмущения из (+)-области совпадает с направлением тока смещения. Токи смещения, порожденные движущимися зарядами, как и возмущения поля, распространяются в пространстве независимо от источников с одной и той же скоростью, равной скорости света, поэтому для них действует принцип суперпозиции, т.е. надо отдельно рассматривать каждый движущийся заряд, а потом суммировать все токи смещения, которые их сопровождают, на основе принципа суперпозиции. При движении цепочки зарядов поперечные токи смещения, имеющие встречное направление, взаимонейтрализуются, образуя постоянный обратный ток смещения, при этом также взаимонейтрализуется электрическая напряженность поля, связанная с токами смещения.

<-- Обратные токи смещения

Движущиеся заряды --->

<-- Обратные токи смещения

<-- Обратный ток смещения

Ток проводимости --->

<-- Обратный ток смещения

Ток проводимости представляет собой движение зарядов, поэтому в окружающем пространстве, согласно принципу суперпозиции, возникает обратный ток смещения, создаваемый движущимися зарядами. Когда ток течет по витку, то в окружающем пространстве возникает круговой ток смещения, имеющий обратное направление. При изменении тока смещения образуется вихревое электрическое поле. Если рядом с витком тока расположить, например, сверхпроводящий контур, то в нем за счет обратного объемного тока электрического смещения синхронно, но в обратном направлении возникает индукционный ток.

«... вихревое поле без каких бы то ни было добавочных сил может вызвать непрерывное течение электричества по замкнутым проводам. Это течение и наблюдается в виде индукционных токов.»

Общий курс физики. Электричество. Д.В.Сивухин. 1996. Т.3. Ч.1. С.252.

Также самоиндукция связана с обратными токами смещения, с запаздыванием распространения возмущений. При остановке зарядов обратные токи смещения, еще некоторое время продолжая течь (как возмущения поля), воздействуют на заряды.

Чтобы не задумываться о том, что электрическое воздействие (возмущение) распространяется в пространстве с конечной скоростью, вводятся линии магнитной индукции и рассматривается взаимодействие с ними электрических токов. Линии магнитной индукции не являются силовыми линиями (линиями действия силы), например, направление вектора магнитной силы, возникающей между параллельными проводниками с постоянным током, не совпадает с направлением линий магнитной индукции. Также в данном примере видно, что магнитное поле не является вихревым, так как у вихревых полей работа сил при движении по замкнутой линии может быть отлична от нуля, что является признаком вихревого поля. Вихревые поля могут возбуждать вихревые электрические токи. Таким образом, постоянное магнитное поле является соленоидальным, но не вихревым.

«Прямая, вдоль которой направлена сила, называется линией действия силы.»

Физическая энциклопедия. СИЛА.

«Работа сил вихревого электрического поля при движении электрического заряда по замкнутой линии может быть отлична от нуля.»

Физика. О.Ф.Кабардин. 1991. С.189.

Работа сил вихревого электрического поля или вихревого магнитного поля при движении электрического заряда или магнита по замкнутой линии может быть отлична от нуля. Например, в электромагнитных волнах электрические и магнитные потоки являются вихревыми.

«... магнитное же поле - соленоидальное.»

Электромагнетизм. И.Е.Иродов. 2000. С.170.

«... ускоритель, использующий вихревое магнитное поле.»

Физическая энциклопедия. БЕТАТРОН.

Магнитное поле, хотя соленоидально, но не всегда является вихревым. Надо заметить, что некоторые авторы книг по электродинамике путают соленоидальные поля с вихревыми, индукционные линии с силовыми. У электрического поля, действительно, индукционные линии совпадают с силовыми, но это никак не относится к магнитному полю, где индукционные линии не всегда совпадают с силовыми линиями действия поля.

Также по линиям магнитной индукции, например, невозможно определить направление силы, действующей на покоящийся электрический заряд в момент включения электромагнита в случае, когда магнит и заряд находятся в покое, т.е. по линиям магнитной индукции невозможно определить направление силы, действующей на покоящийся заряд в переменном магнитном поле. Представляя магнитное поле линиями токов смещения, таких проблем не возникает. По силе, действующей на покоящийся электрический заряд в момент включения электромагнита, можно определить направление тока смещения в конкретной точке магнитного поля. Изменение любого электрического тока всегда связано с электрической напряженностью.

«Магнитное поле, непостоянное во времени, оказывает силовое действие на покоящиеся электрические заряды и приводит их в движение; ...»

Физический энциклопедический словарь. МАГНИТНОЕ ПОЛЕ.

Данное правило по сути является неверным, так как не учитываются токи смещения (магнитное поле вообще не действует на покоящиеся заряды). Правильной же является такая формулировка: переменное магнитное поле представляет переменный ток электрического смещения, который проявляется как вихревое электрическое поле и оказывает силовое действие на покоящиеся электрические заряды. Например, если покоящийся заряд находится в центре соленоида, то при включении или выключении тока в соленоиде на заряд не действует сила, несмотря на то, что изменяется поток магнитной индукции, так как в центре соленоида ток смещения отсутствует и, соответственно, отсутствует вихревое электрическое поле. Достаточно взглянуть на примеры в учебниках, из которых видно, что ток смещения в центре соленоида отсутствует.

«Пример. Найти плотность тока смещения как функцию расстояния r от оси соленоида.»

Электромагнетизм. И.Е.Иродов. 2000. С.303.

Таким образом, в центре соленоида переменное магнитное поле не оказывает силового действия на покоящиеся электрические заряды и не приводит их в движение. Ось соленоида - это "мертвая" линия магнитного поля, вокруг которой текут электрические токи смещения. Такая "мертвая" линия имеется у любого магнита.

Для примера рассмотрим также другой эксперимент, где электромагнитная индукция возникает "без магнитного поля".

В центральной точке между двумя электромагнитами, где магнитное поле, согласно принципу суперпозиции полей, равно нулю, установлен пробный электрический заряд.

[N] (+) [S]

[N] и [S] - полюса двух электромагнитов, (+) - пробный положительный электрический заряд.

Если электромагниты выключать по отдельности, то на заряд будет действовать сила, направленная вверх.

«Электромагнитная индукция - возникновение электрического поля, электрического тока или электрической поляризации при изменении во времени магнитного поля или при движении материальных сред в магнитном поле.»

Физическая энциклопедия. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ.

«... изменяющееся во времени магнитное поле порождает электрическое поле ...»

Курс физики. Т.И.Трофимова. 1998. С.248.

При одновременном выключении электромагнитов на заряд также будет действовать сила, направленная вверх, хотя магнитное поле в точке, где находится заряд, всегда будет оставаться равным нулю. Т.е. в точке, где находится заряд, магнитное поле не изменяется и всегда равно нулю, но тогда почему на заряд действует сила? Парадокс с электромагнитной индукцией можно объяснить присутствием токов смещения, которые текут в одном направлении и складываются согласно принципу суперпозиции. Обнаружить токи смещения можно по силе действующей на заряд в момент включения или выключения электромагнита. Данный пример показывает, что переменный ток смещения, действует на покоящийся электрический заряд даже в тех точках поля, где нет магнитной индукции. В приведенном примере электромагниты можно заменить на постоянные магниты, которые раздвигаются симметрично относительно покоящегося заряда. Также можно привести и другие примеры, например, возникновение индукционного тока внутри трубки, по которой течет переменный ток, хотя магнитная индукция внутри трубки отсутствует. Т.е., рассматривая переменные магнитные поля, необходимо учитывать не только магнитную индукцию, но и токи смещения.

«Если провод имеет вид трубки, то снаружи индукция B определяется формулой (6.18), а внутри - магнитное поле отсутствует.»

Электромагнетизм. И.Е.Иродов. 2000. С.165.

Магнитное поле внутри провода, имеющего вид трубки, отсутствует, но индукционный ток возникает, т.е. изменяющийся ток смещения проявляется как вихревое электрическое поле. Плотность обратного постоянного тока смещения в центре прямого провода бесконечной длины, имеющего вид трубки:

jсм = -I/2r2,

где r - радиус провода, I - постоянный ток в проводе.

В пространстве вокруг магнита (в магнитном поле) непрерывно текут токи электрического смещения, которые можно обнаружить, например, как вихревые электрические поля при включении и выключении электромагнита, так как вихревые электрические поля представляют переменные (вихревые) потоки электрического смещения, а это есть переменные токи электрического смещения.

У магнитного поля между обкладками конденсатора линии магнитной индукции имеют противоположное направление. Например, сверхпроводящий контур между обкладками конденсатора имеет противоположное направление тока, так как токи смещения между обкладками конденсатора "прямые", а не "обратные".

.-->--. .--<--. .-->--.

| | | | | | | |

| | | | | | | |

`--<--' | `-->--' | `--<--'

------>----| |---->------

.--<--. | .-->--. | .--<--.

| | | | | | | |

| | | | | | | |

`-->--' `--<--' `-->--'

Надо заметить, что вихревое электрическое поле между обкладками конденсатора возникает только в момент изменения тока, а в тот период времени, когда ток смещения постоянный, вихревое электрическое поле отсутствует и в контуре круговой ток не возникает, поэтому между током смещения и круговым током в контуре имеется сдвиг фаз, если контур не сверхпроводящий.

Также направление линий магнитной индукции между обкладками конденсатора можно определить по повороту рамки (контура с током), если синхронно подать переменный ток на конденсатор и рамку. При одновременном изменении тока момент силы в рамке сохраняет свое направление. В процессе заряда и разряда конденсатора по его обкладкам течет электрический ток; зная, что проводники притягиваются, когда направление тока совпадает, можно представить, как развернутся рамки с током между обкладками конденсатора - ориентация рамок указывает направление линий магнитной индукции. На рисунке показано, как развернутся рамки с током, стрелки - направление токов.

.--<--. | .-->--. | .--<--.

| | | | | | | |

| | /\ | | \/ | |

`-->--' | `--<--' | `-->--'

------>-----| |----->------

.-->--. | .--<--. | .-->--.

| | \/ | | /\ | |

| | | | | | | |

`--<--' | `-->--' | `--<--'

Во многих случаях магнитное поле удобнее представлять линиями электрического тока смещения или как движущиеся электрические потоки, тем самым из-за наглядности уменьшается вероятность технических ошибок. Например, в учебной литературе направление линий магнитной индукции между обкладками конденсатора изображено неправильно - в обратную сторону. Видимо, за всю историю магнетизма на самом деле никто экспериментально не проверил направление линий магнитной индукции между обкладками конденсатора (не было практической необходимости, хотя проверить не сложно). Надо заметить, что направление магнитной индукции между обкладками конденсатора можно просто определить по правилу возникновения магнитной индукции: если ладонь левой руки расположить так, чтобы четыре пальца указывали направление движения электрического потока, а вектор D входил в ладонь, тогда отставленный большой палец укажет направление вектора B (B = 0[vD]). Т.е., чтобы определить направление линий магнитной индукции, достаточно рассмотреть движение электрических потоков, связанных с зарядами, которые движутся в обкладках конденсатора. Остается надеяться, что авторы книг по электродинамике учтут замечания и исправят обнаруженные ошибки.

Рассмотрим еще один пример. Возьмем два цилиндра, один из которых имеет электрический заряд, а другой представляет собой постоянный магнит. Если закрепить их на одной оси, проходящей через центр цилиндров, как изображено на рисунке, и начать вращать (синхронно и в одном направлении), то в зависимости от направления вращения цилиндры будут либо притягиваться, либо отталкиваться, так как заряженный цилиндр будет своим вращением создавать круговой электрический ток и, соответственно, магнитное поле. Нарушение симметрии между правым и левым вращением относительно полевого пространства позволяет построить электромагнитный датчик, измеряющий направление и скорость вращения.

.-------. .-------.

| + + + | | |

===| + + + |===| S N |===

| + + + | | |

`-------' `-------'

Надо заметить, что для уравновешивания электрического притяжения магнит можно поместить симметрично между двумя разноименно заряженными цилиндрами.

.-------. .-------. .-------.

| + + + | | | | - - - |

===| + + + |===| S N |===| - - - |===

| + + + | | | | - - - |

`-------' `-------' `-------'

Или, наоборот, заряженный цилиндр можно поместить симметрично между двумя магнитами.

.-------. .-------. .-------.

| | | + + + | | |

===| N S |===| + + + |===| S N |===

| | | + + + | | |

`-------' `-------' `-------'

Вращательное движение магнита, в отличие от прямолинейного движения, не создает вихревого электрического поля, т.е. между вращающимися цилиндрами возникает только сила Лоренца, по которой можно определить направление и скорость вращения. При одновременном прямолинейном движении возникающая сила Лоренца между магнитом и зарядом уравновешивается вихревым электрическим полем, которое создает движущийся магнит, образуя в пространстве изменяющееся магнитное поле (изменяющийся магнитный поток). При вращательном же движении цилиндрического магнита с осью вращения, проходящей через полюса, вихревое электрическое поле не возникает, так как магнитное поле в пространстве не изменяется. На этом принципе могут действовать различные конструкции автономных электромагнитных датчиков вращения относительно полевого пространства, для которых не нужны внешние ориентиры, например, такие датчики могут быть использованы в космосе.

Переменное магнитное поле всегда связано с переменным током смещения, который проявляется в виде вихревого электрического поля, поэтому:

«... переменные электрические и магнитные поля не могут существовать друг без друга ...»

Энциклопедия элементарной физики. ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ.

«Вихревая составляющая электрического поля возникает при изменении во времени магнитного поля: ...»

Физическая энциклопедия. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ.

Изменение плотности тока электрического смещения проявляется как вихревое электрическое смещение (электрическая напряженность).

«В частности, электрическое поле, создаваемое системой неподвижных зарядов, является чисто потенциальным. Электрическое поле излучения, в том числе поле в поперечных электромагнитных волнах, является чисто вихревым.»

Физическая энциклопедия. НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ.

Потоки электрического смещения поля измеряются в кулонах, поэтому распространяющиеся изменения поля (движущиеся потоки) представляют собой ток смещения. Потоки бывают постоянные (электростатические поля), переменные и вихревые. Вихревое электрическое поле - это вихревой поток электрического смещения поля, что представляет переменный ток смещения. Постоянное магнитное поле - это постоянный ток смещения, не представляющий вихревое электрическое поле, поэтому оно не действует на покоящиеся электрические заряды; распространяющиеся изменения электрического поля (движущиеся потоки) являются постоянными - ток смещения постоянный. Замкнутый постоянный ток смещения, так же как и ток в сверхпроводящем кольце, не создает электрической напряженности поля.

Хотя приведенное описание процессов не является достаточно полным и безупречным, оно дает представление о механизме электромагнитной индукции. С другой стороны, более привычно представлять электродинамические взаимодействия через дополнительную характеристику - индукцию магнитного поля, отсюда название - электромагнитные взаимодействия, хотя реально в природе существует только электрическое поле, а магнитное поле образовано движущимися электрическими потоками B = 0[vD] и связанными с ними токами смещения.

«В результате магнитное поле можно рассматривать как неизбежный релятивистский результат движения электрических зарядов (тока) и нестационарности создаваемого ими электрического поля (тока смещения).»

«Поле, порожденное движущимися зарядами, распространяется в свободное от них пространство независимо от источников с одной и той же скоростью с (рис.1, изображено запаздывание распространения смещения электрического поля при перемещении заряда).»

Физическая энциклопедия. ЭЛЕКТРОДИНАМИКА.

«Таким образом, появление магнитного поля токов есть чисто релятивистский эффект и никакой новой физической субстанции (например, в виде магнитных зарядов) появляться не должно, что и подтверждается экспериментально.»

Основы физики. Л.А.Грибов, Н.И.Прокофьев. 1995. С.299.

Так как магнитное взаимодействие представляет электродинамический процесс, для магнитного поля больше подходит термин "электродинамический эффект". Но несмотря на это, чтобы не возникала путаница, в тексте сохранена привычная терминология, т.е. используется термин "релятивистский" эффект, а не "электродинамический".

Надо заметить, иногда возникновение магнитного поля пытаются объяснить тем, что при движении зарядов напряженность электрического поля в направлении, перпендикулярном движению, возрастает по отношению к покоящимся зарядам.

«... при движении плоскости создаваемое ею электрическое поле в направлении, перпендикулярном движению, должно возрасти.»

Основы физики. Л.А.Грибов, Н.И.Прокофьев. 1995. С.301.

Приводя идеалистические интерпретации, всегда как бы забывают рассмотреть симметричное движение разноименных зарядов. Например, две разноименно заряженные плоскости одновременно движутся в противоположных направлениях, при этом все равно возникает магнитное поле, т.е., если перпендикулярно плоскостям движется заряд, то на него будет действовать сила Лоренца. Таким образом, нельзя объяснить возникновение магнитного поля как возрастание электрической напряженности поля движущихся зарядов. Поэтому для магнитного поля правильнее вернуться к старой терминологии - "электродинамическое взаимодействие" или "электродинамический эффект".

«Явление взаимодействия электрических токов Ампер называл электродинамическим взаимодействием.»

Физика. О.Ф.Кабардин. 1991. С.177.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.comail.ru:8081/

topref.ru

Электромагнитная индукция

Электромагнитная индукция

2013

Меклеш Г.Б. учитель физики

Заполосная ООШ

Явление электромагнитной индукции.

Цели урока:

Изучить материал учебника по данной теме.

Усвоить понятия: индукционный ток, электромагнитная индукция, эдс, магнитный поток.

Уяснить физическую природу электромагнитной индукции.

Научиться выполнять опыты по получению индукционного тока.

Приобрести навыки решения задач на правило правой руки.

Видеть применение электромагнитной индукции в технике.

Объяснить устройство и принцип действия простых электромагнитных устройств.

Проверить полученные знания через тестирование.

Сделать анализ своей работы на уроке.

Приборы и материалы: гальванометр, катушка с сердечником, магнит, соединительные провода, тесты по теме « Электромагнитная индукция.» ,модель телеграфа, модель трансформатора, плакат генератора электрического тока, схема громкоговорителя, учебник.

План урока:1) Опыты : получение индукционного тока.

Движение магнита относительно катушки ( и наоборот)

Движение катушки с током относительно другой катушки.

Изменение тока в первичной катушке( размыкание, замыкание цепи)

2) Разбор по картинкам вращения рамки с током в однородном и неоднородном магнитных полях.

3) Понятия индукционного тока, эдс, электромагнитной индукции.

4) Природа эдс.

5) Способы получения индукционного тока.

6) Понятие электромагнитной индукции.

7) Определение магнитного потока.

8) Нахождение направления индукционного тока.( по правилу правой руки)

9) Решение задач на правило правой руки.

10) Доклад « Открытие электромагнитной индукции.»

11) Тесты по теме «Электромагнитная индукция.»

12) Доклад « Применение электромагнитной индукции.»

13) Рефлексия учебной деятельности.

Электромагнитная индукция. Явление электромагнитной индукции обнаружено в 1831 г. Фарадеем. Оно выражает взаимосвязь электрических и магнитных явлений.

Рассмотрим некоторые экспериментальные факты:

постоянный магнит вставляют в катушку, замкнутую на гальванометр, или вынимают из нее. При движении магнита в контуре возникает электрический ток (см. рис. 2).

Аналогичный результат будет иметь место в случае перемещения электромагнита, по которому пропускают постоянный ток, относительно первичной катушки или при изменении тока в неподвижной вторичной катушке.

рамку, замкнутую на гальванометр, помещают в однородное магнитное поле и вращают. В рамке возникает электрический ток. Если же рамка движется поступательно, не пересекая силовых линий, то ток в ней не возникает (см. рис. 3).

,

рамка движется  в неоднородном магнитном поле. Число линий индукции, пересекающих рамку, изменяется. В рамке возникает электрический ток (см.  рис. 4).

Рис. 4.

Ток, возникающий в контуре при изменении магнитного потока, называют индукционным током.

Направление индукционного тока в контуре определяется правилом Ленца:

Индукционный ток направлен так, чтобы своим магнитным полем противодействовать изменению магнитного потока, которым он вызван.

Явление электромагнитной индукции— возникновение электрического тока в замкнутом проводящем контуре, который либо покоится в переменном во времени магнитном поле, либо движется в постоянном магнитном поле так, что число линий магнитной индукции, пронизывающих контур, меняется. Чем быстрее меняется число линий магнитной индукции, тем больше индукционный ток.,

,

Природа ЭДС индукции заключается в возникновении вихревого электрического поля в любой области пространства, где существует переменное магнитное поле.

Закон электромагнитной индукции формулируется следующим образом: 

ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока, пронизывающего контур,,

,,

Явление электромагнитной индукции.

Ток, возникающий в контуре при изменении магнитного потока, называют индукционным током.

Явление электромагнитной индукции— возникновение электрического тока в замкнутом проводящем контуре при изменении магнитного потока , пронизывающего контур.

Способы получения индукционного тока

Индукционный ток зависит

………..

1.перемещение магнита и катушки относительно друг друга; 2. перемещение одной катушки относительно другой; 3. изменение силы тока в одной из катушек;4. замыкание и размыкание цепи; 5. перемещение сердечника,

6.вращение контура в магнитном поле или

вращение магнита относительно контура.

От скорости движения магнита, катушки, сердечника относительно другой катушки.

От направления движения катушки, сердечника, магнита.

От величины изменения силы тока в цепи.

От количества витков в катушке.

1) Почему в опытах Фарадея так долго не был обнаружен индукционный ток?

2)В чём суть явления электромагнитной индукции?

3)Как повлияет на результаты опытов увеличение числа витков в катушках?

4)Как будет изменяться сила индукционного тока, если скорость вращения контура увеличится?

.

МАГНИТНЫЙ ПОТОК ( или поток магнитной индукции)

Магнитным потоком через поверхность площадью S называют величину, равную произведению модуля вектора магнитной индукции В на площадь S и косинус угла между векторами В и n.

. Нормаль n к плоскости контура составляет угол с направлением вектора магнитной индукции В (см. рис. 1).

Магнитный поток пропрционален числу линий магнитной индукции, пронизывающих поверхность площадью S.

Магнитный поток характеризует распределение магнитного поля по поверхности , ограниченной контуром.

Магнитный поток в 1Вб создается однородным магнитным полем с индукцией 1Тл через поверхность площадью 1м2, расположенной перпендикулярно вектору магнитной индукции.

.

НАПРАВЛЕНИЕ ИНДУКЦИОННОГО ТОКА

Прямолинейный проводник

Направление индукционного тока определяется по правилу правой руки:

Если поставить правую руку так, чтобы вектор магнитной индукции входил в ладонь, отставленный на 90 градусов большой палец указывал направление вектора скорости, то выпрямленные 4 пальца покажут направление индукционного тока в проводнике,,

Открытие электромагнитной индукции

Фарадей, будучи еще молодым ученым, так же как и Эрстед, думал, что все силы природы связаны между собой и, более того, что они способны превращаться друг в друга. Интересно, что эту мысль Фарадей высказывал еще до установления закона сохранения и превращения энергии. Фарадей знал об открытии Ампера, о том, что он, говоря образным языком, превратил злектричество в магнетизм. Раздумывая над этим открытием, Фарадей пришел к мысли, что если “электричество создает магнетизм” , то и наоборот, “магнетизм должен создавать электричество”. И вот еще в 1823 г. он записал в своем дневнике: “Обратить магнетизм в электричество”. В течение восьми лет Фарадей работал над решением поставленной задачи. Долгое время его преследовали неудачи . . Говорят, он постоянно носил в жилетном кармане магнит, который должен был напоминать ему о поставленной задаче. Через десять лет в результате упорного труда и веры в успех задача была решена. Им было сделано открытие, лежащее в основе устройства всех генераторов электростанций мира, превращающих механическую энергию в энергию электрического тока. Другие источники: гальванические элементы, аккумуляторы, термо- и фотоэлементы дают ничтожную долю вырабатываемой энергии.

Электрический ток, рассуждал Фарадей, способен намагнитить кусок железа. Для этого достаточно положить кусок внутрь катушки. Не может ли магнит в свою очередь вызвать появление электрического тока или изменить его величину? Долгое время ничего обнаружить не удавалось.

Какого рода случайности могли помешать открытию, показывает следующий любопытный факт. Почти одновременно с Фарадеем швейцарский физик Колладон также пытался получить электрический ток с помощью магнита. При работе он пользовался гальванометром, легкая магнитная стрелка которого помещалась внутри катушки прибора. Чтобы магнит не оказывал непосредственного влияния на стрелку, концы катушки, в которую Колладон вдвигал магнит, надеясь получить в ней ток, были выведены в соседнюю комнату и там присоединены к гальванометру. Вдвинув магнит в катушку, Колладон шел в эту комнату и с огорчением убеждался, что гальванометр показывает нуль. Стоило бы ему все время наблюдать за гальванометром и попросить кого-нибудь заняться магнитом, замечательное открытие было бы сделано. Но этого не случилось. Покоящийся относительно катушки магнит мог лежать преспокойно внутри нее сотни лет, не вызывая в катушке тока.

С подобного рода случайностями сталкивался и Фарадей, потому что он неоднократно пытался получить электрический ток при помощи магнита и при помощи тока в другом проводнике, но безуспешно.

Открытие электромагнитной индукции, как назвал сам Фарадей это явление (по-русски слово «индукция» означает наведение), было сделано 29 августа В 1831 году англичанином Майклом Фарадеем было открыто явление электромагнитной индукции. Его опыт, в котором ток в одном проводнике появлялся благодаря другому, без прямого контакта между ними, некоторыми людьми воспринимался как цирковой фокус, а некоторыми как откровенное шарлатанство.

Вот краткое описание первого опыта: «На широкую деревянную катушку была намотана медная проволока длиной в 203 фута, и между витками ее намотана проволока такой же длины, но изолированная от первой хлопчатобумажной нитью, Одна из этих спиралей была соединена с гальванометром, а другая с сильной батареей, состоящей из 100 пар пластин… При замыкании цепи удавалось заметить внезапное, но чрезвычайно слабое действие на гальванометре, и то же самое замечалось при прекращении тока. При непрерывном же прохождении тока через одну из спиралей не удавалось отметить ни действия на гальванометр, ни вообще какого-либо индукционного действия на другую спираль, несмотря на то, что нагревание всей спирали, соединенной с батареей, и яркость искры, проскакивающей между углями, свидетельствовали о мощности батареи» (М. Фарадей, «Экспериментальные исследования по электричеству», I серия).

1 2 Во-первых, Фарадей обнаружил явление электромагнитной индукции для случая, когда катушки намотаны на один и тот же барабан. Если в одной катушке возникает или пропадает электрический ток в результате подключения к ней или отключения от нее гальванической батареи, то в другой катушке в этот момент возникает кратковременный ток. Этот ток обнаруживается гальванометром, который присоединен ко второй катушке.

Затем Фарадей установил также наличие индукционного тока в катушке, когда к ней приближали или удаляли от нее катушку, в которой протекал электрический ток.

Наконец, третий случай электромагнитной индукции, который обнаружил Фарадей, заключался в том, что в катушке появлялся ток, когда в нее вносили или же удаляли из нее магнит.

В течение одного месяца Фарадей экспериментально открыл все существенные особенности явления. «Его могучий ум обошел широкое поле и едва ли оставил для сбора последователям хотя бы крохи фактов»,— писал друг Фарадея Тиндаль. Оставалось только придать закону строгую количественную форму и полностью вскрыть физическую природу явления. Уже сам Фарадей уловил то общее, от чего зависит появление индукционного тока в этих, выглядевших внешне по-разному, опытах. В контуре возникает ток при изменении числа силовых линий магнитного поля, пронизывающих площадь, ограниченную этим контуром (в частности, при изменении величины магнитного поля, пронизывающего контур). И чем быстрее меняется это число, тем больше ток. Причина изменения числа силовых линий совершенно безразлична. Это может быть и изменение силы тока (а следовательно и его поля), и сближение катушек, и движение магнита.

Фарадей не только открыл явление, но и первым осуществил несовершенную пока еще модель генератора электрического тока, превращающего механическую энергию вращения в ток. Это был массивный медный диск, вращающийся между полюсами сильного магнита. Присоединив ось и край диска к гальванометру, Фарадей обнаружил отклонение стрелки. Ток был, правда, слаб, но найденный принцип позволил впоследствии построить мощные генераторы. Без них электричество и по сей день было бы мало кому доступной роскошью.

Развитие электротехники.

Прежде всего возникает электрический телеграф. Первый эпектромагнитный телеграф был изобретен русским изобретателем П. Л. Шиллингом в 1832 г.

Телеграф Шиллинга состоял из передающего и принимающего устройств, соединенных несколькими проводами. В приемном аппарате имелось шесть так называемых мультипликаторов. Каждый мультипликатор представлял собой проволочную катушку, внутри которой находилась магнитная стрелка, подвешенная на нити. К нити вне катушки прикреплялась еще одна магнитная стрелка, направление полюсов которой было противоположным направлению полюсов первой стрелки. Такая система называется астатической, она употребляется для того, чтобы исключить действие на стрелки магнитного поля Земли. Помимо этого, к каждой нити был прикреплен кружок, стороны которого были окрашены в черный и белый цвета.

Когда в катушку мупьтипликатора поступал электрический ток определенного направления, то на стрелку, находящуюся внутри катушки, действовала пара сил. Стрелка поворачивалась, вместе с ней поворачивался и кружок, показывая белую или черную сторону. На приемном аппарате находилось шесть мультипликаторов, соединенных проводниками с передающими аппаратами :

Передающий аппарат имел соответствующее число клавишей и источник электрического тока — гальваническую батарею. При нажатии определенной клавиши ток посылался по проводам в соответствующий мультипликатор, в котором стрелки и кружок поворачивались в нужном направлении. Таким образом осуществлялась передача сигналов. Из сочетания черных и белых кружков была разработана условная азбука.

Телеграф Шиллинга употреблялся для практических целей. С его помощью осуществлялась связь между Зимним дворцом и зданием министерства путей сообщения в Петербурге.

Вскоре появились и другие телеграфные аппараты, отличающиеся от аппарата Шинлинга. В 1837 г. американец Морзе сконструировал более удобный телеграфный аппарат.

В телеграфе Морзе при замыкании ключа электрический ток поступал в обмотку электромагнита, который притягивал висящий маятник с закрепленным на конце карандашом, При этом конец карандаша касался бумажной ленты, непрерывно передвигающейся с помощью специального механизма в горизонтальном направлении перпендикулярно плоскости качания маятника.

3амыкание ключа на короткое время давало на бумажной ленте изображение точки, а на более длительное — тире. С помощью комбинаций точек и тире Морзе разработал специальный телеграфный код — азбуку Морзе.

В 1844 г. Морзе построил первую телеграфную линию в Америке между Вашингтоном и Балтиморой

2. Микрофон и телефон (рис.331). В цепи микрофона под действием звуковых колебаний возникают изменения тока (благодаря изменениям сопротивления угольного порошка, имеющегося в микрофоне). Эти изменения вызывают переменное напряжение во вторичной катушке; по телефонной линии оно поступает к головному телефону. Здесь магнитное поле токов, меняющихся со звуковой частотой, налагаются на магнитное поле постоянного магнита, усиливая или ослабляя последнее. Меняющееся магнитное поле приводит в вынужденные колебания мембрану телефона (см.стр.238).

3. Электродинамический громкоговоритель. В кольцеобразной щели между полюсами электромагнита (или постоянного магнита) существует радиальное магнитное поле. В этом поле расположена легкая катушка, жестко связанная с диффузором громкоговорителя. При прохождении по катушке тока звуковой частоты происходит взаимное наложение магнитных полей. Катушка то втягивается в щель, то выталкивается из неё. Диффузор приходит в движение и создает звуковые колебания в окружающем воздухе (рис.332).

Вслед за применением электричества для связи изобретательская мысль начинает работать над задачей использования его в качестве движущей силы.

Уже в 30-х гг. XIX в. появляются изобретения различных электродвигателей. Первый электродвигатель, применяемый для практических целей, был изоретен в 1834 г. петербургским академиком Б. С. Якоби (1801 — 1874). В 1838 г. этот двигатель был применен для приведения в движение лодки, которая плавала по Неве со скоростью 2 км/ч.

Предлагались и другие конструкции электрических двигателей. Однако, так же как и двигатель Якоби, они были неудобны для практики и не получали широкого применения. Только во второй половине XIX в. в результате работ ряда ученых и изобретателей появился электродвигатель, который начал широко применяться в технике.

Одновременно с электродвигателем начались попытки конструирования генераторов электрического тока. Первые практически пригодные генераторы электрического тока также появились только во второй половине XIX в.

Генераторы переменного тока.

Явление электромагнитной индукции используется, прежде всего, для преобразования механической энергии в энергию электрического тока. Для этой цели применяются генераторы переменного тока (индукционные генераторы).     

     Простейшим генератором переменного тока является проволочная рамка, вращающаяся равномерно   в однородном магнитном поле с индукцией В

Для промышленного производства электроэнергии на электрических станциях используются синхронные генераторы (турбогенераторы, если станция тепловая или атомная, и гидрогенераторы, если станция гидравлическая). Неподвижная часть синхронного генератора называется статором, а вращающаяся – ротором (рис. 4.6). Ротор генератора имеет обмотку постоянного тока (обмотку возбуждения) и является мощным электромагнитом. Постоянный ток, подаваемый на обмотку возбуждения через щеточно-контактный аппарат, намагничивает ротор, и при этом образуется электромагнит с северным и южным полюсами.      На статоре генератора расположены три обмотки переменного тока, которые смещены одна относительно другой на 1200 и соединены между собой по определенной схеме включения.      При вращении возбужденного ротора с помощью паровой или гидравлической турбины его полюсы проходят под обмотками статора, и в них индуцируется изменяющаяся по гармоническому закону электродвижущая сила. Далее генератор по определенной схеме электрической сети соединяется с узлами потребления электроэнергии.      Если передавать электроэнергию от генераторов станций к потребителям по линиям электропередачи непосредственно (на генераторном напряжении, которое относительно невелико), то в сети будут происходить большие потери энергии и напряжения (обратите внимание на соотношения , ). Следовательно, для экономичной транспортировки электроэнергии необходимо уменьшить силу тока. Но так как передаваемая мощность при этом остается неизменной, напряжение должно увеличиться во столько же раз, во сколько раз уменьшается сила тока.      У потребителя электроэнергии, в свою очередь, напряжение необходимо понизить до требуемого уровня. Электрические аппараты, в которых напряжение увеличивается или уменьшается в заданное количество раз, называются трансформаторами. Работа трансформатора также основана на законе электромагнитной индукции.

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

 

Катушка замкнута на гальванометр.

а) В катушку вдвигают постоянный магнит. 

б) Катушку надевают на постоянный магнит.

Электрический ток возникает

только в случае а)   только в случае б)

в обоих случаях     ни в одном из перечисленных случаев

 

 Медное кольцо, находящееся в магнитном поле, поворачивается из положения, когда его плоскость параллельна линиям магнитной индукции, в перпендикулярное положение. Модуль магнитного потока при этом:

   увеличивается  уменьшается  не изменяется равен 0

    3.      За 3 секунды магнитный поток, пронизывающий проволочную рамку, равномерно увеличился с 6 Вб до 9 Вб. Чему равно при этом значение ЭДС индукции в рамке? 

1 В   2 В   3 В   0 В

    4.   Магнитный поток в 1 Вб может быть выражен в системе СИ  как

Н/м2      Тл/м2     Тл/с     Тл/м

    5.   Постоянный прямой магнит падает сквозь алюминиевое кольцо. Модуль ускорения падения магнита.

равен g          больше g               меньше g

в начале пролета кольца меньше g, в конце больше g.

    6.  В короткозамкнутую катушку вдвигают постоянный магнит: один раз быстро, второй раз медленно. Сравните значения заряда, переносимого индукционным током.

       g1 = g2    g1>g2    g1g2  не знаю  

    7.  Изменяясь во времени, магнитное поле порождает

 вихревое электрическое поле   электростатическое поле  

постоянное магнитное поле          гравитационное поле

    8.  Тонкое медное кольцо площадью 100 см2 расположено во внешнем магнитном поле так, что плоскость кольца параллельна линиям магнитной индукции. За 1 секунду магнитная индукция равномерно увеличивается с 1 мТл до 2 мТл. Модуль ЭДС индукции, возникающей при этом в контуре, равен

0,0001В       0,001 В       0,1 В         0 В

     9.    Медное кольцо находится во внешнем магнитном поле так, что плоскость кольца перпендикулярна линиям магнитной индукции. Индукция магнитного поля равномерно увеличивается. Индукционный ток в кольце

увеличивается    уменьшается равен 0   постоянен

    10. Сила тока в катушке с индуктивностью 1 Гн увеличилась в 2 раза. Магнитный поток через катушку

  увеличился в 2 раза         увеличился в 4 раза

  уменьшился в 2 раза          уменьшился в 4 раза

Внимание, только СЕГОДНЯ!

psychology-msk.ru


Смотрите также