Лейбниц, Готфрид Вильгельм. Реферат на тему лейбниц готфрид вильгельм


Реферат Лейбниц

скачать

Реферат на тему:

Gottfried Wilhelm von Leibniz.jpg

План:

Введение

Готфрид Вильгельм фон Лейбниц (нем. Gottfried Wilhelm von Leibniz; 21 июня (1 июля) 1646(16460701), Лейпциг, Германия — 14 ноября 1716, Ганновер, Германия) — немецкий философ, математик, юрист, дипломат.

1. Биография

Готфрид Вильгельм родился в семье профессора философии морали (этики) лейпцигского университета Фридриха Лейбнюца (нем. Friedrich Leibnütz) и Катерины Шмук (нем. Catherina Schmuck).

Когда мальчику было 8 лет, его отец умер, оставив после себя большую личную библиотеку. Свободный доступ к книгам и врождённый талант позволили молодому Лейбницу уже к 12 годам самостоятельно изучить латынь и взяться за изучение греческого языка.

В 15-летнем возрасте (1661) Готфрид сам поступил в тот же Лейпцигский университет, где когда-то работал его отец. В свою бытность студентом он познакомился с работами Кеплера, Галилея и других учёных. Спустя 2 года переходит в Йенский университет, где изучает математику. Затем возвращается в Лейпциг изучать право, но получить докторскую степень там не удалось. Расстроенный отказом, Лейбниц отправился в Нюрнбергский университет в Альтдорфе, где успешно защищает диссертацию на соискание степени доктора права. Диссертация была посвящена разбору вопроса о запутанных юридических случаях. Защита состоялась 5 ноября 1666 года; эрудиция, ясность изложения и ораторский талант Лейбница вызывают всеобщее восхищение.

В этом же году он написал первое из своих многочисленных сочинений «О комбинаторном искусстве». Опередив время на два века, 20-летний Лейбниц задумал проект математизации логики. Будущую теорию (которую он так и не завершил) он называет «всеобщая характеристика». Она включала все логические операции, свойства которых он ясно представлял.

Закончив обучение, он устраивается советником курфюрста Майнцского по юридическим и торговым делам (1670). Работа требовала постоянных разъездов по всей Европе; в ходе этих путешествий он подружился с Гюйгенсом, который согласился обучать его математике. Служба, однако, продолжалась недолго, в начале 1672 года Лейбниц с важной дипломатической миссией покинул Майнц, а спустя год курфюрст умер.

В это время Лейбниц изобретает собственную конструкцию арифмометра, гораздо лучше паскалевской — он умел выполнять умножение, деление и извлечение корней. Предложенные им ступенчатый валик и подвижная каретка легли в основу всех последующих арифмометров.

1673: Лейбниц в Лондоне, где на заседании Королевского общества демонстрирует свой арифмометр и избирается членом Общества. От секретаря Общества Ольденбурга он получает изложение ньютоновских открытий: анализ бесконечно малых и теория бесконечных рядов. Сразу оценив мощь метода, он сам начинает его развивать. В частности, он вывел первый ряд для числа π:

\frac{\pi} {4} = 1 - \frac {1} {3} + \frac {1} {5} - \frac {1} {7} + \frac {1} {9} -

1675: Лейбниц завершает свой вариант математического анализа, тщательно продумывает его символику и терминологию, отражающую существо дела. Почти все его нововведения укоренились в науке и только термин «интеграл» ввёл Якоб Бернулли (1690), сам Лейбниц вначале называл его просто суммой.

По мере развития анализа выяснилось, что символика Лейбница, в отличие от ньютоновской, отлично подходит для обозначения многократного дифференцирования, частных производных и т. д. На пользу школе Лейбница шла и его открытость, массовая популяризация новых идей, что Ньютон делал крайне неохотно.

1676: вскоре после смерти курфюрста Майнцского Лейбниц переходит на службу к герцогу Эрнесту-Августу Брауншвейг-Люнебургскому (Ганновер). Он одновременно советник, историк, библиотекарь и дипломат; этот пост он не оставил до конца жизни. По поручению герцога составляет историю рода Гвельфов-Брауншвейгов; за 40 лет трудов Лейбниц успел довести её до 1005 года.

Лейбниц продолжает математические исследования, открывает «основную теорему анализа», обменивается с Ньютоном несколькими любезными письмами, в которых просил разъяснить неясные места в теории рядов. Уже в 1676 году Лейбниц в письмах излагает основы математического анализа. Объём его переписки колоссален.

1682: основал научный журнал Acta Eruditorum, сыгравший значительную роль в распространении научных знаний в Европе. Привлекает к исследованиям братьев Бернулли, Якоба и Иоганна.

1698: умирает герцог Брауншвейгский. Его наследником стал Георг-Людвиг, будущий король Великобритании. Он оставляет Лейбница на службе, но относится к нему пренебрежительно.

1700: Лейбниц основывает Берлинскую Академию наук и становится её первым президентом. Избирается иностранным членом Французской Академии наук.

В 1697 году, во время путешествия Петра I по Европе, русский царь познакомился с Лейбницом. Это была случайная встреча в ганноверском замке Коппенбрюк. Во время торжеств в 1711 году, посвящённых свадьбе наследника престола Алексея Петровича с представительницей правящего ганноверского дома, принцессой Брауншвейгской Софией Христиной, состоялась их вторая встреча. На этот раз встреча имела заметное влияние на императора. В следующем году Лейбниц имел более продолжительные встречи с Петром, и, по его просьбе, сопровождал его в Теплиц и Дрезден. Это свидание было весьма важным и привело в дальнейшем к одобрению Петром создания Академии наук в Петербурге, что послужило началом развития научных исследований в России по западноевропейскому образцу. От Петра Лейбниц получил титул тайного юстиции советника и пенсию в 2000 гульденов. Лейбниц предложил проект научных исследований в России, связанных с её уникальным географическим положением, таких как изучение магнитного поля Земли, отыскание пути из Арктики в Тихий океан. Также Лейбниц предложил проект движения за объединение церквей, которое должно было быть создано под эгидой русского императора.

5 марок 1966 г. — немецкая памятная монета, посвящённая 250-летию смерти Готфрида Вильгельма Лейбница

1708: вспыхнул давний спор с Ньютоном о научном приоритете.

1716: смерть Лейбница. За его гробом шёл только его личный секретарь [1].

«Он любил наблюдать, как расцветают в чужом саду растения, семена которых он предоставил сам» (Фонтенель).

Лейбниц стал первым гражданским лицом Германии, которому был воздвигнут памятник.

В честь Лейбница получили название:

2. Философия

Готфрид Лейбниц (1646—1716)

Лейбниц — один из важнейших представителей новоевропейской метафизики, в центре внимания которой — вопрос о том, что такое субстанция. Лейбниц развивает систему, получившую название субстанциальный плюрализм или монадология. Согласно Лейбницу, основаниями существующих явлений или феноменов служат простые субстанции или монады. Все монады просты и не содержат частей. Их бесконечно много. Каждая монада отличается от другой. Это обеспечивает бесконечное разнообразие мира феноменов.

Простые субстанции созданы Богом одномоментно и могут быть уничтожены только все сразу. Монады не могут претерпеть изменения в своём внутреннем состоянии от действия каких-либо внешних причин, кроме Бога. Лейбниц в своей одной из итоговых работ, «Монадология», использует следующее метафорическое определение автономности существования простых субстанций: «Монады вовсе не имеют окон и дверей, через которые что-либо могло бы войти туда или оттуда выйти». Монада способна к изменению своего состояния, и все естественные изменения монады исходят из её внутреннего принципа. Деятельность внутреннего принципа, которая производит изменение во внутренней жизни монады называется стремлением.

Все монады способны к перцепции или восприятию своей внутренней жизни. Некоторые монады в ходе своего внутреннего развития достигают уровня осознанного восприятия или апперцепции.

Для простых субстанций, имеющих только стремление, достаточно общего имени монады или энтелехии. Монады, имеющие более отчётливые восприятия, сопровождающиеся памятью, Лейбниц называет душами. Таким образом, не существует совершенно неодушевлённой природы. Поскольку никакая субстанция не может погибнуть, то она не может окончательно лишиться какой-либо внутренней жизни. Лейбниц говорит о том, что монады, которые основывают явления «неодушевлённой» природы, на самом деле находятся в состоянии глубокого сна или обморока. Каждая, самая неразвитая монада может быть волей Бога вызвана к осознанной жизни, совершив определённый прогресс в своём развитии.

Однако, разумные души, составляя особое Царство Духа, находятся на особом положении. Бесконечный прогресс всей совокупности монад как бы представлен в двух аспектах. Первый — это развитие царства природы, где главенствует механическая необходимость. Второй — это развитие царства духа, где основным законом является свобода. Под последней Лейбниц понимает, в духе новоевропейского рационализма, познание вечных истин. Души в системе Лейбница представляют, по его собственному выражению, «живые зеркала Вселенной». Однако, разумные души представляют собой, вместе с тем, отображения самого Божества.

В каждой монаде в потенциале свёрнута целая Вселенная. Лейбниц причудливо комбинирует атомизм Демокрита с различием актуального и потенциального у Аристотеля. Жизнь появляется тогда, когда атомы пробуждаются. Эти же монады могут достигать уровня самосознания (апперцепции).

Разум человека — это тоже монада, а привычные атомы — это спящие монады. Монада обладает двумя характеристиками — стремлением и восприятием.

Теория познания и педагогика основываются на воспитании врождённых способностей. В этом Лейбниц повлиял на Германа Гессе.

Лейбниц делает утверждение, что пространство и время субъективны — это способы восприятия монад. В действительности, пространство может не исчерпываться тремя известными нам измерениями. В этом Лейбниц повлиял на Канта.

Несмотря на свой атомизм, Лейбниц считал, что монады излучаются и поглощаются Богом, функцией которого является поддержание предустановленной гармонии между монадами.

Природу Лейбниц толковал как привычку Бога.

3. Научная деятельность

Важнейшие научные достижения Лейбница:

1684: Лейбниц публикует первую в мире крупную работу по дифференциальному исчислению: «Новый метод максимумов и минимумов», причём имя Ньютона в первой части даже не упоминается, а во второй заслуги Ньютона описаны не вполне ясно. Тогда Ньютон не обратил на это внимания. Его работы по анализу начали издаваться только с 1704 года.

В этой краткой работе Лейбница излагаются основы дифференциального исчисления, правила дифференцирования выражений. Используя геометрическое истолкование отношения dy/dx, он кратко разъясняет признаки возрастания и убывания, максимума и минимума, выпуклости и вогнутости (следовательно, и достаточные условия экстремума для простейшего случая), а также точки перегиба. Попутно без каких-либо пояснений вводятся «разности разностей» (кратные дифференциалы), обозначаемые ddv. Лейбниц писал:

То, что человек, сведущий в этом исчислении, может получить прямо в трёх строках, другие учёнейшие мужи принуждены были искать, следуя сложными обходными путями.

1686: Лейбниц даёт подразделение вещественных чисел на алгебраические и трансцендентные; ещё раньше он аналогично классифицировал кривые линии. Впервые в печати вводит символ интеграла (и указывает, что эта операция обратна дифференцированию).

1692: введено общее понятие огибающей однопараметрического семейства кривых, выведено её уравнение.

1693: Лейбниц рассматривает вопрос о разрешимости линейных систем; его результат фактически вводит понятие определителя. Но это открытие не вызвало тогда интереса, и линейная алгебра возникла только спустя полвека.

1695: Лейбниц вводит показательную функцию в самом общем виде: uv.

1702: совместно с Иоганном Бернулли открыл приём разложения рациональных дробей на сумму простейших. Это решает многие вопросы интегрирования рациональных функций.

В подходе Лейбница к математическому анализу были некоторые особенности. Лейбниц мыслил высший анализ не кинематически, как Ньютон, а алгебраически. В первых работах он, похоже, понимал бесконечно малые как актуальные объекты, сравнимые между собой только если они одного порядка. Возможно, он надеялся установить их связь со своей концепцией монад. В конце жизни он высказывался скорее в пользу потенциально бесконечно малых, то есть переменных величин, хотя и не пояснял, что он под этим подразумевает. В общефилософском плане он рассматривал бесконечно малые как опору непрерывности в природе.

Лейбниц также описал двоичную систему счисления с цифрами 0 и 1, на которой основана современная компьютерная техника[2].

В физике Лейбниц ввёл понятие «живой силы», позднее получившей название кинетической энергии.

4. Изобретения

В 1673 году, после знакомства с Христианом Гюйгенсом, Лейбниц создал механический калькулятор (арифмометр), выполняющий сложение, вычитание, умножение и деление чисел. Машина была продемонстрирована во Французской академии наук и лондонском Королевском обществе.

Лейбниц подсказал Дени Папену конструкцию паровой машины (цилиндр и поршень).

Среди других его изобретений можно отметить:

Leibnitz W.JPG

5. Сочинения

6. Литература

6.1. Биография

6.2. Философия Лейбница

6.3. Научная деятельность

6.4. Политические и правовые воззрения

Кембаев Ж. М. «Египетский план» Готфрида Вильгельма Лейбница как один из этапов развития политических и правовых теорий объединения европейских государств // История государства и права. 2010. № 2. C. 42-45.

Примечания

  1. Стиллвелл Д. Математика и её история. — Москва-Ижевск: Институт компьютерных исследований, 2004, стр. 170.
  2. http://www.leibniz-translations.com/binary.htm - www.leibniz-translations.com/binary.htm Leibniz Translation.com EXPLANATION OF BINARY ARITHMETIC
  3. Монография содержит главу «Жизнь и деятельность» (стр. 12-21), где представлены краткие биографические сведения о Лейбнице.Аннотация книги: В книге дается анализ метода и философской системы Лейбница, мыслителя, предвосхитившего многие философские и научные идеи XIX-XX вв. Автор разбирает основные произведения Лейбница, излагает его учение о бытии, теорию познания, этику.

wreferat.baza-referat.ru

Доклад - Готфрид Вильгельм Лейбниц

(1646-1716)

Многие называют его последним ученым эпохи Возрождения, или первым ученым эпохи Просвещения. То и другое верно. Первое " потому, что до наших дней никто иной не сочетал столь яркий математический талант с такой широтой гуманитарных склонностей. В этом отношении Лейбница можно сравнить с Аристотелем или Раймондом Луллием, с Леонардо да Винчи или Рене Декартом. Второе прозвание Лейбница также оправдано. Ведь он стал первым академиком двух виднейших научных содружеств Европы: Лондонского Королевского Общества и Парижской Академии Наук. А позднее Лейбниц оказался основателем еще двух академий. В 1700 году он стал президентом и организатором Прусской Академии Наук в Берлине. До Петербурга он не добрался, но успел составить (по заказу Петра 1) проект Российской Академии Наук, которая была учреждена в 1725 году " уже после смерти ее инициаторов. Чтобы достичь таких результатов, нужно особое сочетание талантов. Во-первых, надо быть вундеркиндом. Лейбниц им был: в 8 лет он самостоятельно изучил латынь, а еще через два года " древнегреческий язык. Тяга к экзотическим языкам не исчезла и позднее: познакомившись с элементами персидского языка и хинди, Лейбниц одним из первых высказал догадку об индоевропейской языковой общности, за которой скрываются какие-то переселения древнейших народов. В конце 17 века это была очень дерзкая мысль. Обосновать ее помог труд многих миссионеров-лингвистов, и в научный обиход она вошла лишь в 19 веке.

Спорить Лейбниц не любил " но он любил и умел мирить спорщиков, так что дипломатическая карьера была ему обеспечена. Поступив в 15 лет в Лейпцигский университет, он к 20 годам стал магистром философии, доктором права и дипломатом на службе у курфюрста Майнцского. Перед юношей открылся путь в большую политику. Однако Лейбниц уже понял, какое это ненадежное ремесло для незнатного человека, и предпочел (не оставляя дипломатическое поприще) вступить на путь большой науки. Перелом совершился в 1672 году, когда 26-летний Лейбниц попал с дипломатической миссией в Париж и познакомился с главой новорожденной Академии Наук " Христианом Гюйгенсом. Прежде математические интересы Лейбница ограничивались арифметикой и комбинаторикой; в этой области он чувствовал себя хозяином. Уже готов был образец механического компьютера, способного не только складывать и вычитать (как более ранняя машина Паскаля), но также умножать и делить. Это свое детище Лейбниц пестовал почти 40 лет, научив его даже извлекать квадратные корни. При этом он (первым из европейцев Нового времени) оценил преимущества двоичной системы счисления и сформулировал основные положения математической логики " одним словом, стал «отцом» вычислительной математики. Но встреча с Гюйгенсом повернула карьеру Лейбница на 90". Великий голландец пленил молодого саксонца красотой и мощью «непрерывной» математики и математической физики. К 1671 году Гюйгенс уже создал математическую теорию колебаний маятника, изобрел первые точные часы с маятником. Тем временем из Англии доходили туманные слухи об удивительных открытиях молодого Ньютона. Лейбниц решил: это надо увидеть своими глазами! В 1673 году он посетил Англию " опять под дипломатическим предлогом, а на самом деле ради знакомства с работой Королевского Общества. Английские ученые приняли молодого немца любезно и деловито, но без восхищения; шесть лет спустя Лейбниц был избран членом Королевского Общества. Только Ньютон уклонился от личной встречи с Лейбницем: он был поглощен общением с природой на новом языке математического анализа, и не хотел тратить время на беседы с иностранными туристами.

Это мелкое недоразумение обернулось большой бедой для обоих ученых и для всей науки. Вероятно, при личной встрече красноречивый, тактичный и быстро соображающий Лейбниц сумел бы очаровать нелюдимого и глубокомысленного Ньютона, стать одним из немногих его ученых друзей. Их совместные усилия быстро сделали бы исчисление дифференциалов и интегралов достоянием всех ученых европейцев " а Германия стала бы третьей научной державой Европы на полвека раньше, чем это произошло в действительности. Но контакт с Ньютоном не состоялся, и Лейбниц вернулся на континент с твердым намерением: открыть все факты и методы математического анализа самостоятельно, в одиночку. Этот труд занял 10 лет. Лейбниц меньше, чем Ньютон, думал о нуждах теоретической физики, а больше " об удобной системе обозначений для новых математических понятий. В этой сфере успех Лейбница бесспорен: сейчас мы пользуемся понятиями дифференциала и интеграла, производной и первообразной функции в таком виде, как их определил Лейбниц. Не случайно первые выдающиеся математики следующего поколения " братья Бернулли " стали учениками Лейбница, даже не встречаясь с ним: они учились математическому анализу по его статьям. Напротив " Ньютон не имел выдающихся учеников и завидовал Лейбницу, обвиняя его в краже чужих открытий. Эта нелепая и вредная распря затянулась на десятилетия, обособив английских математиков и физиков от их коллег на континенте. Примирение наступило лишь после смерти Лейбница и Ньютона " когда новое поколение математиков перешло к решению новых проблем.

В математическую физику Лейбниц пришел своим путем, независимо от Ньютона. Англичанин шел по стопам Галилея: он старался упорядочить движения тел в пространстве, измеряя и вычисляя те силы, которые действуют между телами. Напротив, Лейбниц следовал примеру Гюйгенса: он изучал закономерности периодических движений, выявляя те измеримые величины, которые сохраняются при движении. Начав с маятника, Лейбниц в 1693 году обнаружил, что при его колебаниях сохраняется сумма двух энергий: кинетической и потенциальной. Факт сохранения кинетической энергии при упругих столкновениях тел был уже известен, и Лейбниц сделал общий вывод: закон сохранения полной энергии в механических системах. Распространить этот закон на более общие системы Лейбниц не мог, поскольку никто не умел тогда измерять тепловую или электрическую энергию. Тем не менее Лейбниц пришел к оригинальной гипотезе о строении Вселенной: что вся она состоит из больших и малых «маятников» " замкнутых систем, внутри которых энергия переходит из одной формы в другую. Каждая такая система неограниченно сложна внутрь себя. Но есть минимальные системы («монады»), на которые разлагается физический мир " подобно тому, как текст разлагается на буквы, или как любое логичное рассуждение разлагается на элементарные утверждения и выводы. Например, свет Солнца, вероятно, состоит из монад. Поэтому не имеет смысла спор о том, являются ли частицы света точками или волнами: они " и то, и другое! В 20 веке физики согласились с этой моделью Лейбница; «монады» теперь называют элементарными частицами и изучают их с помощью очень сложной математики. Но в начале 18 века никто из физиков или математиков не принял догадку Лейбница всерьез: ведь ее не удавалось проверить путем опыта или расчета, а девиз эпохи был таков: Nullius in verba " «Ничего на словах»!

Из предложенной Лейбницем картины мира ясно следует главная цель науки: открывать и исследовать природные «алфавиты» и «грамматики» во всей Вселенной: от небесной механики и земной химии до лингвистики или политики. По мысли Лейбница, вся наука является как бы «алгеброй природы». Она состоит из исчислений разной сложности " от арифметрики и евклидовой геометрии до математического анализа, римского права или христианского богословия. Понятно, что человек, достигший столь глубокого понимания науки и природы, способен быть президентом любой академии или советником любого государя. Так думал и Лейбниц. Поэтому он сначала принял приглашение на роль президента Прусской Академии Наук, а позднее составил для Петра 1 проект Российской Академии Наук и стал служить курфюрсту Ганновера " будущему королю Англии. Но во всех трех случаях успех был незначителен или непрочен: либо не хватало людей, способных воплотить замыслы Лейбница, либо способные люди предпочитали воплощать свои замыслы. В Берлине и Петербурге академии наук заработали всерьез лишь в середине 18 века. Их лидеров можно назвать «научными внуками» Лейбница: это были ученики его учеников (например, Леонард Эйлер был учеником Иоганна Бернулли). Парижская Академия Наук в 1700 году избрала Лейбница и Ньютона своими первыми иностранными членами. При этом французы демонстративно пренебрегли жестокими спорами о приоритете двух ученых в создании математического анализа. Иначе получилось в Англии, где авторитет Ньютона был непререкаем. В 1714 году курфюрста Ганновера пригласили на английский престол " но предупредили нового короля, чтобы он не брал с собою Лейбница. Не желая огорчать своих новых самоуверенных подданных, Георг 1 согласился " и Лейбниц остался доживать свои дни в германской провинции. Вскоре он незаметно умер: великий ученый, хороший юрист и дипломат, но неудачливый политик; забытый властителями, но бессмертный в делах своих учеников.

www.ronl.ru

Реферат: Готфрид Вильгельм Лейбниц

Готфрид Вильгельм Лейбниц (1646-1716)

Многие называют его последним ученым эпохи Возрождения, или первым ученым эпохи Просвещения. То и другое верно. Первое " потому, что до наших дней никто иной не сочетал столь яркий математический талант с такой широтой гуманитарных склонностей. В этом отношении Лейбница можно сравнить с Аристотелем или Раймондом Луллием, с Леонардо да Винчи или Рене Декартом. Второе прозвание Лейбница также оправдано. Ведь он стал первым академиком двух виднейших научных содружеств Европы: Лондонского Королевского Общества и Парижской Академии Наук. А позднее Лейбниц оказался основателем еще двух академий. В 1700 году он стал президентом и организатором Прусской Академии Наук в Берлине. До Петербурга он не добрался, но успел составить (по заказу Петра 1) проект Российской Академии Наук, которая была учреждена в 1725 году " уже после смерти ее инициаторов. Чтобы достичь таких результатов, нужно особое сочетание талантов. Во-первых, надо быть вундеркиндом. Лейбниц им был: в 8 лет он самостоятельно изучил латынь, а еще через два года " древнегреческий язык. Тяга к экзотическим языкам не исчезла и позднее: познакомившись с элементами персидского языка и хинди, Лейбниц одним из первых высказал догадку об индоевропейской языковой общности, за которой скрываются какие-то переселения древнейших народов. В конце 17 века это была очень дерзкая мысль. Обосновать ее помог труд многих миссионеров-лингвистов, и в научный обиход она вошла лишь в 19 веке.

Спорить Лейбниц не любил " но он любил и умел мирить спорщиков, так что дипломатическая карьера была ему обеспечена. Поступив в 15 лет в Лейпцигский университет, он к 20 годам стал магистром философии, доктором права и дипломатом на службе у курфюрста Майнцского. Перед юношей открылся путь в большую политику. Однако Лейбниц уже понял, какое это ненадежное ремесло для незнатного человека, и предпочел (не оставляя дипломатическое поприще) вступить на путь большой науки. Перелом совершился в 1672 году, когда 26-летний Лейбниц попал с дипломатической миссией в Париж и познакомился с главой новорожденной Академии Наук " Христианом Гюйгенсом. Прежде математические интересы Лейбница ограничивались арифметикой и комбинаторикой; в этой области он чувствовал себя хозяином. Уже готов был образец механического компьютера, способного не только складывать и вычитать (как более ранняя машина Паскаля), но также умножать и делить. Это свое детище Лейбниц пестовал почти 40 лет, научив его даже извлекать квадратные корни. При этом он (первым из европейцев Нового времени) оценил преимущества двоичной системы счисления и сформулировал основные положения математической логики " одним словом, стал "отцом" вычислительной математики. Но встреча с Гюйгенсом повернула карьеру Лейбница на 90". Великий голландец пленил молодого саксонца красотой и мощью "непрерывной" математики и математической физики. К 1671 году Гюйгенс уже создал математическую теорию колебаний маятника, изобрел первые точные часы с маятником. Тем временем из Англии доходили туманные слухи об удивительных открытиях молодого Ньютона. Лейбниц решил: это надо увидеть своими глазами! В 1673 году он посетил Англию " опять под дипломатическим предлогом, а на самом деле ради знакомства с работой Королевского Общества. Английские ученые приняли молодого немца любезно и деловито, но без восхищения; шесть лет спустя Лейбниц был избран членом Королевского Общества. Только Ньютон уклонился от личной встречи с Лейбницем: он был поглощен общением с природой на новом языке математического анализа, и не хотел тратить время на беседы с иностранными туристами.

Это мелкое недоразумение обернулось большой бедой для обоих ученых и для всей науки. Вероятно, при личной встрече красноречивый, тактичный и быстро соображающий Лейбниц сумел бы очаровать нелюдимого и глубокомысленного Ньютона, стать одним из немногих его ученых друзей. Их совместные усилия быстро сделали бы исчисление дифференциалов и интегралов достоянием всех ученых европейцев " а Германия стала бы третьей научной державой Европы на полвека раньше, чем это произошло в действительности. Но контакт с Ньютоном не состоялся, и Лейбниц вернулся на континент с твердым намерением: открыть все факты и методы математического анализа самостоятельно, в одиночку. Этот труд занял 10 лет. Лейбниц меньше, чем Ньютон, думал о нуждах теоретической физики, а больше " об удобной системе обозначений для новых математических понятий. В этой сфере успех Лейбница бесспорен: сейчас мы пользуемся понятиями дифференциала и интеграла, производной и первообразной функции в таком виде, как их определил Лейбниц. Не случайно первые выдающиеся математики следующего поколения " братья Бернулли " стали учениками Лейбница, даже не встречаясь с ним: они учились математическому анализу по его статьям. Напротив " Ньютон не имел выдающихся учеников и завидовал Лейбницу, обвиняя его в краже чужих открытий. Эта нелепая и вредная распря затянулась на десятилетия, обособив английских математиков и физиков от их коллег на континенте. Примирение наступило лишь после смерти Лейбница и Ньютона " когда новое поколение математиков перешло к решению новых проблем.

В математическую физику Лейбниц пришел своим путем, независимо от Ньютона. Англичанин шел по стопам Галилея: он старался упорядочить движения тел в пространстве, измеряя и вычисляя те силы, которые действуют между телами. Напротив, Лейбниц следовал примеру Гюйгенса: он изучал закономерности периодических движений, выявляя те измеримые величины, которые сохраняются при движении. Начав с маятника, Лейбниц в 1693 году обнаружил, что при его колебаниях сохраняется сумма двух энергий: кинетической и потенциальной. Факт сохранения кинетической энергии при упругих столкновениях тел был уже известен, и Лейбниц сделал общий вывод: закон сохранения полной энергии в механических системах. Распространить этот закон на более общие системы Лейбниц не мог, поскольку никто не умел тогда измерять тепловую или электрическую энергию. Тем не менее Лейбниц пришел к оригинальной гипотезе о строении Вселенной: что вся она состоит из больших и малых "маятников" " замкнутых систем, внутри которых энергия переходит из одной формы в другую. Каждая такая система неограниченно сложна внутрь себя. Но есть минимальные системы ("монады"), на которые разлагается физический мир " подобно тому, как текст разлагается на буквы, или как любое логичное рассуждение разлагается на элементарные утверждения и выводы. Например, свет Солнца, вероятно, состоит из монад. Поэтому не имеет смысла спор о том, являются ли частицы света точками или волнами: они " и то, и другое! В 20 веке физики согласились с этой моделью Лейбница; "монады" теперь называют элементарными частицами и изучают их с помощью очень сложной математики. Но в начале 18 века никто из физиков или математиков не принял догадку Лейбница всерьез: ведь ее не удавалось проверить путем опыта или расчета, а девиз эпохи был таков: Nullius in verba " "Ничего на словах"!

Из предложенной Лейбницем картины мира ясно следует главная цель науки: открывать и исследовать природные "алфавиты" и "грамматики" во всей Вселенной: от небесной механики и земной химии до лингвистики или политики. По мысли Лейбница, вся наука является как бы "алгеброй природы". Она состоит из исчислений разной сложности " от арифметрики и евклидовой геометрии до математического анализа, римского права или христианского богословия. Понятно, что человек, достигший столь глубокого понимания науки и природы, способен быть президентом любой академии или советником любого государя. Так думал и Лейбниц. Поэтому он сначала принял приглашение на роль президента Прусской Академии Наук, а позднее составил для Петра 1 проект Российской Академии Наук и стал служить курфюрсту Ганновера " будущему королю Англии. Но во всех трех случаях успех был незначителен или непрочен: либо не хватало людей, способных воплотить замыслы Лейбница, либо способные люди предпочитали воплощать свои замыслы. В Берлине и Петербурге академии наук заработали всерьез лишь в середине 18 века. Их лидеров можно назвать "научными внуками" Лейбница: это были ученики его учеников (например, Леонард Эйлер был учеником Иоганна Бернулли). Парижская Академия Наук в 1700 году избрала Лейбница и Ньютона своими первыми иностранными членами. При этом французы демонстративно пренебрегли жестокими спорами о приоритете двух ученых в создании математического анализа. Иначе получилось в Англии, где авторитет Ньютона был непререкаем. В 1714 году курфюрста Ганновера пригласили на английский престол " но предупредили нового короля, чтобы он не брал с собою Лейбница. Не желая огорчать своих новых самоуверенных подданных, Георг 1 согласился " и Лейбниц остался доживать свои дни в германской провинции. Вскоре он незаметно умер: великий ученый, хороший юрист и дипломат, но неудачливый политик; забытый властителями, но бессмертный в делах своих учеников.

Список литературы

www.neuch.ru


Смотрите также