Количество просмотров публикации Круговорот веществ в биосфере - 2358
Основой самоподдержания жизни на Земле являются биогеохимические круговороты. Все химические элементы, используемые в процессах жизнедеятельности организмов, совершают постоянные перемещения, переходя из живых тел в соединения неживой природы и обратно. Возможность многократного использования одних и тех же атомов делает жизнь на Земле практически вечной при условии постоянного притока нужного количества энергии.
Типы круговоротов веществ. Биосфера Земли характеризуется определенным образом сложившимися круговоротом веществ и потоком энергии.Круговорот веществ – многократное участие веществ в процессах, протекающих в атмосфере, гидросфере и литосфере, в т.ч. в тех слоях, которые входят в состав биосферы Земли. Круговорот веществ осуществляется при непрерывном поступлении (потоке) внешней энергии Солнца и внутренней энергии Земли.
Учитывая зависимость отдвижущей силы, с определенной долей условности, внутри круговорота веществ можно выделить геологический, биологический и антропогенный круговороты. До возникновения человека на Земле осуществлялись только первые два.
Геологический круговорот (большой круговорот веществ в природе) – круговорот веществ, движущей силой которого являются экзогенные и эндогенные геологические процессы.
Эндогенные процессы (процессы внутренней динамики) происходят под влиянием внутренней энергии Земли. Это энергия, выделяющаяся в результате радиоактивного распада, химических реакций образования минералов, кристаллизации горных пород и т. д. К эндогенным процессам относятся: тектонические движения, землетрясения, магматизм, метаморфизм. Экзогенные процессы (процессы внешней динамики) протекают под влиянием внешней энергии Солнца. Экзогенные процессы включают выветривание горных пород и минералов, удаление продуктов разрушения с одних участков земной коры и перенос их на новые участки, отложение и накопление продуктов разрушения с образованием осадочных пород. К экзогенным процессам относятся геологическая деятельность атмосферы, гидросферы (рек, временных водотоков, подземных вод, морей и океанов, озер и болот, льда), а также живых организмов и человека.
Крупнейшие формы рельефа (материки и океанические впадины) и крупные формы (горы и равнины) образовались за счёт эндогенных процессов, а средние и мелкие формы рельефа (речные долины, холмы, овраги, барханы и др.), наложенные на более крупные формы, – за счёт экзогенных процессов. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, эндогенные и экзогенные процессы противоположны по своему действию. Первые ведут к образованию крупных форм рельефа, вторые – к их сглаживанию.
Магматические горные породы в результате выветривания преобразуются в осадочные. В подвижных зонах земной коры они погружаются вглубь Земли. Там под влиянием высоких температур и давлений они переплавляются и образуют магму, которая, поднимаясь на поверхность и застывая, образует магматические породы.
Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, геологический круговорот веществ протекает без участия живых организмов и осуществляет перераспределение вещества между биосферой и более глубокими слоями Земли.
Биологический (биогеохимический) круговорот (малый круговорот веществ в биосфере) – круговорот веществ, движущей силой которого является деятельность живых организмов. В отличие от большого геологического малый биогеохимический круговорот веществ совершается в пределах биосферы. Главным источником энергии круговорота является солнечная радиация, которая порождает фотосинтез. В экосистеме органические вещества синтезируются автотрофами из неорганических веществ. Далее они потребляются гетеротрофами. В результате выделения в процессе жизнедеятельности или после гибели организмов (как автотрофов, так и гетеротрофов) органические вещества подвергаются минерализации, то есть превращению в неорганические вещества. Эти неорганические вещества бывают вновь использованы для синтеза автотрофами органических веществ.
В биогеохимических круговоротах следует различать две части:
1) резервный фонд – это часть вещества, не связанная с живыми организмами;
2) обменный фонд – значительно меньшая часть вещества, которая связана прямым обменом между организмами и их непосредственным окружением. Учитывая зависимость отрасположения резервного фонда биогеохимические круговороты можно разделить на два типа:
1) Круговороты газового типа с резервным фондом веществ в атмосфере и гидросфере (круговороты углерода, кислорода, азота).
2) Круговороты осадочного типа с резервным фондом в земной коре (круговороты фосфора, кальция, железа и др.).
Круговороты газового типа более совершенны, так как обладают большим обменным фондом, а значит, способны к быстрой саморегуляции. Круговороты осадочного типа менее совершенны, они более инертны, так как основная масса вещества содержится в резервном фонде земной коры в ʼʼнедоступномʼʼ живым организмам виде. Такие круговороты легко нарушаются от различного рода воздействий, и часть обмениваемого материала выходит из круговорота. Возвратиться опять в круговорот она может лишь в результате геологических процессов или путем извлечения живым веществом. При этом извлечь нужные живым организмам вещества из земной коры гораздо сложнее, чем из атмосферы.
Интенсивность биологического круговорота в первую очередь определяется температурой окружающей среды и количеством воды. Так, к примеру, биологический круговорот интенсивнее протекает во влажных тропических лесах, чем в тундре.
С появлением человека возник антропогенный круговорот, или обмен, веществ.Антропогенный круговорот (обмен) – круговорот (обмен) веществ, движущей силой которого является деятельность человека. В нем можно выделить две составляющие: биологическую, связанную с функционированием человека как живого организма, и техническую, связанную с хозяйственной деятельностью людей (техногенный круговорот).
Геологический и биологический круговороты в значительной степени замкнуты, чего нельзя сказать об антропогенном круговороте. По этой причине часто говорят не об антропогенном круговороте, а об антропогенном обмене веществ. Незамкнутость антропогенного круговорота веществ приводит к истощению природных ресурсов и загрязнению природной среды – основным причинам всех экологических проблем человечества.
Круговороты базовых биогенных веществ и элементов. Рассмотрим круговороты наиболее значимых для живых организмов веществ и элементов. Круговорот воды относится к большому геологическому, а круговороты биогенных элементов (углерода, кислорода, азота͵ фосфора, серы и других биогенных элементов) – к малому биогеохимическому.
Круговорот воды между сушей и океаном через атмосферу относится к большому геологическому круговороту. Вода испаряется с поверхности Мирового океана и либо переносится на сушу, где выпадает в виде осадков, которые вновь возвращаются в океан в виде поверхностного и подземного стока, либо выпадает в виде осадков на поверхность океана. В круговороте воды на Земле ежегодно участвует более 500 тыс. км3 воды. Круговорот воды в целом играет основную роль в формировании природных условий на нашей планете. С учетом транспирации воды растениями и поглощения ее в биогеохимическом цикле весь запас воды на Земле распадается и восстанавливается за 2 млн. лет.
Круговорот углерода. Продуценты улавливают углекислый газ из атмосферы и переводят его в органические вещества, консументы поглощают углерод в виде органических веществ с телами продуцентов и консументов низших порядков, редуценты минерализуют органические вещества и возвращают углерод в атмосферу в виде углекислого газа. В Мировом океане круговорот углерода усложнен тем, что часть углерода, содержащегося в мертвых организмах, опускается на дно и накапливается в осадочных породах. Эта часть углерода выключается из биологического круговорота и поступает в геологический круговорот веществ.
Главным резервуаром биологически связанного углерода являются леса, они содержат до 500 млрд. т этого элемента͵чтосоставляет 2/3 его запаса в атмосфере. Вмешательство человека в круговорот углерода (сжигание угля, нефти, газа, дегумификация) приводит к возрастанию содержания СО2 в атмосфере и развитию парникового эффекта.
Скорость круговорота СО2, то есть время, за ĸᴏᴛᴏᴩᴏᴇ весь углекислый газ атмосферы проходит через живое вещество, составляет около 300 лет.
Круговорот кислорода. Главным образом круговорот кислорода происходит между атмосферой и живыми организмами. В основном свободный кислород (0^) поступает в атмосферу в результате фотосинтеза зеленых растений, а потребляется в процессе дыхания животными, растениями и микроорганизмами и при минерализации органических остатков. Незначительное количество кислорода образуется из воды и озона под воздействием ультрафиолетовой радиации. Большое количество кислорода расходуется на окислительные процессы в земной коре, при извержении вулканов и т.д. Основная доля кислорода продуцируется растениями суши – почти 3/4, остальная часть – фотосинтезирующими организмами Мирового океана. Скорость круговорота – около 2 тыс. лет.
Установлено, что на промышленные и бытовые нужды ежегодно расходуется 23% кислорода, который образуется в процессе фотосинтеза, и эта цифра постоянно возрастает.
Круговорот азота. Запас азота (N2) в атмосфере огромен (78% от ее объёма). При этом растения поглощать свободный азот не могут, а только в связанной форме, в основном в виде NН4+ или NО3–. Свободный азот из атмосферы связывают азотфиксирующие бактерии и переводят его в доступные растениям формы. В растениях азот закрепляется в органическом веществе (в белках, нуклеиновых кислотах и пр.) и передается по цепям питания. После отмирания живых организмов редуценты минерализуют органические вещества и превращают их в аммонийные соединения, нитраты, нитриты, а также в свободный азот, который возвращается в атмосферу.
Нитраты и нитриты хорошо растворимы в воде и могут мигрировать в подземные воды и растения и передаваться по пищевым цепям. В случае если их количество излишне велико, что часто наблюдается при неправильном применении азотных удобрений, то происходит загрязнение вод и продуктов питания, и вызывает заболевания человека.
Круговорот фосфора. Основная масса фосфора содержится в горных породах, образовавшихся в прошлые геологические эпохи. В биогеохимический круговорот фосфор включается в результате процессов выветривания горных пород. В наземных экосистемах растения извлекают фосфор из почвы (в основном в форме РО43–) и включают его в состав органических соединений (белков, нуклеиновых кислот, фосфолипидов и др.) или оставляют в неорганической форме. Далее фосфор передается по цепям питания. После отмирания живых организмов и с их выделениями фосфор возвращается в почву.
При неправильном применении фосфорных удобрений, водной и ветровой эрозии почв большие количества фосфора удаляются из почвы. С одной стороны, это приводит к перерасходу фосфорных удобрений и истощению запасов фосфорсодержащих руд (фосфоритов, апатитов и др.). С другой стороны, поступление из почвы в водоемы больших количеств таких биогенных элементов, как фосфор, азот, сера и др., вызывает бурное развитие цианобактерий и других водных растений (ʼʼцветениеʼʼ воды) и эвтрофикацию водоемов. Но большая часть фосфора уносится в море.
В водных экосистемах фосфор усваивается фитопланктоном и передается по трофической цепи вплоть до морских птиц. Их экскременты либо сразу попадают назад в море, либо сначала накапливаются на берегу, а затем все равно смываются в море. Из отмирающих морских животных, особенно рыб, фосфор снова попадает в море и в круговорот, но часть скелетов рыб достигает больших глубин, и заключенный в них фосфор снова попадает в осадочные породы, то есть выключается из биогеохимического круговорота.
Круговорот серы. Основной резервный фонд серы находится в отложениях и почве, но в отличие от фосфора имеется резервный фонд и в атмосфере. Главная роль в вовлечении серы в биогеохимический круговорот принадлежит микроорганизмам. Одни из них восстановители, другие – окислители.
В горных породах сера встречается в виде сульфидов (FeS2 и др.), в растворах – в форме иона (SO42–), в газообразной фазе в виде сероводорода (Н2S) или сернистого газа (SО2). В некоторых организмах сера накапливается в чистом виде и при их отмирании на дне морей образуются залежи самородной серы.
По содержанию в морской среде Сульфат-ион занимает второеместо после хлора и является основной доступной формой серы, которая потребляется автотрофами и включается в состав белков.
В наземных экосистемах сера поступает в растения из почвы в основном в виде сульфатов. В живых организмах сера содержится в белках, в виде ионов и т.д. После гибели живых организмов часть серы восстанавливается в почве микроорганизмами до Н2S, другая часть окисляется до сульфатов и вновь включается в круговорот. Образовавшийся сероводород улетучивается в атмосферу, там окисляется и возвращается в почву с осадками.
Сжигание человеком ископаемого топлива (особенно угля), а также выбросы химической промышленности, приводят к накоплению в атмосфере сернистого газа (SO2), который реагируя с парами воды, выпадает на землю в виде кислотных дождей.
Биогеохимические циклы не столь масштабны как геологические и в значительно степени подвержены влиянию человека. Хозяйственная деятельность нарушает их замкнутость, они становятся ацикличными.
referatwork.ru
Министерство Образования Российской Федерации
Филиал Байкальского Государственного университета экономики и
права в городе Братске
Финансово-кредитный факультет
РЕФЕРАТ
по Природопользованию
ТЕМА: Круговорот веществ, роль и место человека в биосфере.
Выполнила: ст-ка гр. Н-02
Пономарева А.Е.
Научный рук-ль:
Епифанцева Е.И.
Братск- 2004
С О Д Е Р Ж А Н И Е :
Введение……………………………………………………………..3
1. Круговорот веществ: понятие, виды……………………..…..4
1.1 Круговорот углерода………………………………………6
1.2 Круговорот азота…………………………………………..7
2. Понятие загрязнения окружающей среды…………………..13
3. Ноосфера как новая стадия эволюции биосферы…………15
Заключение…………………………………………………………..19
Список использованной литературы…………………………….20
Введение
Биосферой называют часть земного шара, в пределах которой существует жизнь. Для этой особой оболочки Земли наиболее важными являются три условия. Во-первых, в ней имеется много воды в жидком состоянии, что автоматически подразумевает наличие достаточно плотной атмосферы и определенный диапазон температур. Во-вторых, на неё падает мощный поток лучистой энергии от Солнца. В-третьих, в ней имеются выраженные поверхности раздела между веществом в различных фазовых состояниях — газообразном, жидком и твёрдом.
Следует отметить, что человек (со своим научно-техническим прогрессом) занимает главное, основополагающее место в круговороте веществ биосферы. Если уже не говорить о его главенствующем месте в природной среде. Следствием развития науки и техники явилось загрязнение атмосферы, вод, почв нашей планеты. С момента появления человека биосфера вынуждена подстраиваться под все возникающие и возникающие потребности человечества. Защита окружающей среды — это комплексная проблема, которая может быть решена только совместными усилиями специалистов различных отраслей науки и техники. Наиболее эффективной формой защиты окружающей среды от вредного воздействия промышленных предприятий является переход к малоотходным и безотходным технологиям, а в условиях сельскохозяйственного производства к биологическим методам борьбы с сорняками и вредителями. Это потребует решения целого комплекса сложных технологических, конструкторских и организационных задач.
1.Круговорот веществ: понятие, виды.
Академик В. Р. Вильямс писал, что единственный способ придать чему-то конечному свойства бесконечного — это заставить конечное вращаться по замкнутой кривой, т. е. вовлечь его в круговорот.
Все вещества на планете Земля находятся в процессе биохимического круговорота. Выделяют два основных круговорота: большой (геологический) и малый (биотический).
Большой круговорот длится миллионы лет. Горные породы разрушаются, выветриваются и потоками вод сносятся в Мировой океан, где образуют мощные морские напластования. Часть химических соединений растворяется в воде или потребляется биоценозом. Крупные медленные геотектонические изменения, процессы, связанные с опусканием материков и поднятием морского дна, перемещение морей и океанов в течение длительного времени приводят к тому, что эти напластования возвращаются на сушу и процесс начинается вновь.
Малый круговорот, являясь частью большого, происходит на уровне биогеоценоза и заключается в том, что питательные вещества почвы, воды, воздуха аккумулируются в растениях, расходуются на создание их массы и жизненные процессы в них. Продукты распада органического вещества под воздействием бактерий вновь разлагаются до минеральных компонентов, доступных растениям, и вовлекаются ими в поток вещества.
Возврат химических веществ из неорганической среды через растительные и животные организмы обратно в неорганическую среду с использованием солнечной энергии и химических реакций называется биохимическим циклом.
В круговороте веществ участвуют три группы организмов:
Продуценты (производители) — автотрофные организмы и зеленые растения, которые, используя солнечную энергию, создают первичную продукцию живого вещества. Они потребляют углекислый газ, воду, соли и выделяют кислород. К этой группе принадлежат некоторые бактерии хемосептики, способные создавать органическое вещество.
Консу менты (потребители) — гетеротрофные организмы, питающиеся за счет автотрофных и друг друга. Они подразделяются на: консументы 1-го порядка — животные, питающиеся растениями, потребляющие кислород и выделяющие угле кислый газ; консументы 2-го порядка — хищники и паразиты растительных организмов; консументы 3-го и 4-го порядка сверхпаразиты. Всего в цепи питания существует не более 5 звеньев.
Редуценты (восстановители) — организмы, питающиеся организмами, бактериями и грибками. Здесь особенно велика роль микроорганизмов, до конца разрушающих органические остатки, превращающие их в конечные продукты: минеральные соли, углекислый газ, воду, простейшие органические вещества, поступающие в почву и вновь потребляемые растениями.
В результате фотосинтеза на суше ежегодно создается 1,5*1010 -5,5*1010 т растительной биомассы, в которой заключено около 3*1018 Кдж энергии. Весь прирост живого вещества составляет 8,8.1011 т/год. Общая масса живого вещества на Земле включает около 500 тыс. видов растений и около 2 млн. видов животных.
Скорость образования биологического вещества (биомассы) т. е. образование массы вещества в единицу времени, называют продуктивностью экосистемы .
На суше общий объем биомассы равен 6,6*1012 т, что составляет около 4,5*1018 кДж солнечной энергии. Биомасса океанов существенно меньше, чем на суше, т. е. 3*1010 т. В океане масса животных в 30 раз больше массы растений, а на суше масса растений составляет 98-99% от всей биомассы. Биологические продуктивности суши и океана примерно равны, т. к. биомасса океана состоит в основном из одноклеточных водорослей, которая обновляется ежедневно. Обновление биомассы суши происходит в течение 15 лет.
1.1 Круговорот углерода
Круговорот энергии связан с круговоротом веществ. Наиболее характерен для процессов, происходящих в биосфере, круговорот углерода. Соединения углерода образуются, изменяются и разрушаются. Основной путь углерода — от углекислого газа в живое вещество и обратно. Часть углерода выходит из круговорота, отлагаясь в осадочных породах океана или в ископаемых горючих веществах органического происхождения (торф, каменный уголь, нефть, горючие газы), где уже аккумулирована его основная масса. Этот углерод принимает участие в медленном геологическом круговороте.
Обмен углекислым газом происходит также между атмосферой и океаном. В верхних слоях океана растворено большое ко личество углекислого газа, находящегося в равновесии с атмосферным. Всего в гидросфере содержится около 13*1013 т растворенного углекислого газа, а в атмосфере — в 60 раз меньше. Жизнь на Земле и газовый баланс атмосферы поддерживаются относительно небольшими количествами углерода, участвующего в малом круговороте и содержащегося в растительных тканях (5*1011 т), в тканях животных (5*109 т).
1.2 Круговорот азота
Важную роль в биосферных процессах играет круговорот азота. В них участвует только азот, входящий в определенные химические соединения.
Фиксация его в химических соединениях происходит при вулканической деятельности, при грозовых разрядах в атмосфере в процессе её ионизации, при сгорании материалов. Определяющее значение в фиксации азота имеют микроорганизмы.
Соединения азота (нитраты, нитриты) в растворах поступают в организмы растений, участвуя в образовании органического вещества (аминокислоты, сложные белки). Часть соединений
азота выносится в реки, моря, проникает в подземные воды. Из соединений, растворенных в морской воде, азот поглощается водными организмами, а после их отмирания перемещается в глубь океана. Поэтому концентрация азота в верхних слоях океана заметно возрастает.
Одним из важнейших элементов биосферы является фосфор, входящий в состав нуклеиновых кислот, клеточных мембран, костной ткани. Фосфор также участвует в малом и большом круговоротах, усваивается растениями. В воде фосфаты натрия и кальция растворяются плохо, а в щелочной среде они практически не растворимы.
Ключевым элементом биосферы является вода. Круговорот воды происходит путем испарения ее с поверхности водоемов и суши в атмосферу, а затем переносится воздушными массами, конденсируется и выпадает в виде осадков.
Средняя продолжительность общего цикла обмена углерода, азота и воды, вовлеченных в биологический круговорот 300-400 лет. В соответствии с этой скоростью освобождаются минеральные соединения, связанные в биомассе. Освобождаются и минерализуются вещества гумуса почвы.
Различные вещества имеют разную скорость обмена в биосфере. К подвижным относят: хлор, серу, бор, бром, фтор. К пассивным — кремний, калий, фосфор, медь, никель, алюминий и железо. Круговорот всех биогенных элементов происходит на уровне биогеоценоза. От того, насколько регулярно и полно осуществляется круговорот химических элементов, зависит продуктивность биогеоценоза.
Вмешательство человека отрицательно влияет на процессы круговорота. Например, вырубка лесов или нарушение процессов ассимиляции веществ растениями в результате загрязнений приводят к снижению интенсивности усвоения углерода. Избыток органических элементов в воде под воздействием промышленных стоков вызывает загнивание водоемов и перерасход растворенного в воде кислорода, что препятствует развитию аэробных (потребляющих кислород) бактерий. Сжигая ископаемое топливо, фиксируя атмосферный азот в продуктах производства, связывая фосфор в детергентах (синтетические моющие средства), человек нарушает круговорот элементов.
Скорость круговоротов биогенных элементов достаточно высока. Время оборота атмосферного углерода составляет около 8 лет. Ежегодно в наземных экосистемах в круговорот вовлекаются примерно 12% содержащегося в воздухе диоксида углерода. Общее время круговорота азота оценивается более чем в 110 лет, кислорода — в 2500 лет.
Круговорот веществ в природе подразумевает общую согласованность места, времени и скорости процессов по уровням от популяции до биосферы. Такую согласованность явлений природы называют экологическим равновесием, но это равновесие подвижное и динамичное.
В процессе своей деятельности человек постоянно воздействует на экосистему в целом или на ее отдельные звенья. Например, при отстреле животных, вырубке деревьев, загрязнении природной среды. Не всегда и не сразу это ведет к распаду всей системы, нарушению её стабильности. Но сохранение системы не значит, что она осталась неизменной. Система трансформируется, и оценить эти изменения крайне сложно.
В настоящее время на земле практически не осталось экосистем, не подверженных влиянию человека. Воздействия человека на экосистемы так интенсивны, что организмы не успевают приспособиться к ним. На уровне отдельной особи происходят необратимые изменения: часть насекомых гибнет из-за ядовитости гербицидов, другие оказываются устойчивыми (толерантными) к ним. У некоторых отмечаются изменения в хромосомах (мутации), влияющие на наследственность.
Выброс в атмосферу загрязнителей (оксида серы, азота, фтористых соединений, углеводородов) меняет соотношение газов в атмосферном воздухе и создает помехи реакциям фотосинтеза, а в некоторых случаях убивает листву. В индустриальных районах повышение содержания в почве марганца, хрома, никеля, меди, кобальта, свинца снижает урожайность сельскохозяйственных культур. Например, пшеницы на 20-30%, картофеля на 47%, сахарной свеклы на 35%. Такие помехи ведут к разрушению экосистемы в целом, т. к. уничтожается основной трофический уровень — продуценты. За разрушением отдельных экосистем может последовать и разрушение биосферы в целом или намного снизится ее продуктивность.
Вырубка лесов, эрозия почв, замещение природных ландшафтов строительными объектами, горными выработками и городами снижает общую биомассу фотосинтетиков, делает привычным биотический круговорот, отрицательно влияет на жизнь человека.
Развитие биосферы связано с появлением человека на Земле, но длительное время воздействия человека на биосферу определялись только наличием его как биологического вида.
Жизнь живых организмов, в т. ч. и человека, невозможна без окружающей среды, без природы. Человеку свойственен обмен веществ с окружающей средой, который является основным условием существования любого живого организма.
Организм человека во многом связан с компонентами биосферы — растительностью, насекомыми, животными, микроорганизмами. Он входит в глобальный круговорот веществ. Человеческий организм, как и организмы других животных, подвержен суточным и сезонным ритмам, реагирует на сезонные изменения окружающей температуры, интенсивности (активности) солнечной радиации.
Человек — часть природы, но благодаря эволюционному развитию биологических систем животный предок человека подошел к той грани, за которой открылась возможность его социальной эволюции. Сегодня человек является частью особой социальной среды — общества. Человек обладает уникальной способностью самопознания, познания и преобразования окружающего мира.
Человек, как живое существо и человеческий род, как совокупность индивидов, подчиняется законам экосистемы и экосферы. Специфика экосистемы «Человек – окружающая среда» определяется не только физическими и биологическими факторами, но также социально-экономическими условиями, которые по мере развития общества приобретают все большее значение в отношениях человека и природы. В процессе целесообразной трудовой коллективной деятельности человек воздействует на природу, меняет способы организаций своей жизни, создает особые формы общественных отношений.
Биологический обмен веществ между человеком и природой сохранился. Природа остается постоянным условием жизни человека и развития общества. Однако в результате производственной деятельности возник новый процесс обмена веществ и энергии между ПРИРОДОЙ и обществом. Этот обмен носит уже техногенный характер и называется антропогенным или социальным обменом веществ и энергии.
Антропогенный обмен существенно изменяет общепланетарный круговорот веществ, резко ускоряя его. Он отличается от биотического круговорота своей незамкнутостью, носит открытый характер. На входе антропогенного обмена находятся природные ресурсы, а на выходе — производственные и бытовые отходы. Экологическое несовершенство антропогенного обмена заключается в том, что коэффициент полезного использования природных ресурсов, как правило, чрезвычайно низок, а отходы производства ухудшают природную среду, многие из них не разлагаются до природного состояния. В период научно-технического прогресса и на стадии его интенсификации масштабы и скорость антропогенного обмена резко возрастают, вызывая заметные напряжения в биосфере.
До появления человека равновесие биосферы определяли пять энергетических факторов: солнечная радиация, сила гравитации, тектонические силы, химическая энергия (окислительно-восстановительные процессы), биогенная энергия (фотосинтез у растений, хемосинтез у бактерий, усвоение и окисление нищи у животных, размножение и продуктивность у биомассы).
Эти факторы развивались по геологической шкале времени и за 3,5 млрд. лет сформировали природную среду.
В настоящее время появился новый фактор — энергия мирового производства. Этот фактор развивается не по геологической, а по исторической шкале времени. От организации производства зависит сохранение или необратимое нарушение подвижного равновесия в биосфере.
На современном этапе исторического развития сложились две формы взаимодействия общества и природы: э к о н о м и ч е с к а я и э к о л о г и ч е с к а я. Экономическая фор м а — потребление ресурсов природы, т. е. использование их для удовлетворения человеком своих материальных и духовных потребностей. Экологическая форма — охрана окружающей природной среды с целью сохранения человека как биологического и социального организма и его естественной среды обитания.
Человек, потребляя природные ресурсы для решения своих хозяйственных задач, еще и изменяет природную среду, которая как бумеранг, начинает воздействовать негативно на самого человека.
За всю историю цивилизации было вырублено 2/3 лесов, уничтожено более 200 видов животных и растений, запасы кислорода в атмосфере снизились на 10 миллиардов тонн, в результате неправильного ведения сельского хозяйства потеряно около200 млн. га сельхозугодий.
В последнее время хозяйственное давление человека на природу существенно усилилось: ежегодно в результате только нерациональной его деятельности обращаются в пустыни 44 га земель, уничтожается 690 тыс. га лесов, исчезает по одному виду животных и растений.
2. Понятие загрязнения окружающей среды
Негативная деятельность человека проявляется в следующих т р е х н а п р а в л е н и я х: загрязнение окружающей природной среды, истощение природных ресурсов, разрушение природной среды.
Под загрязнением среды обитания понимают физико-химические изменения состава природного вещества (воздуха, воды, почвы), которые неблагоприятно влияют на окружающую среду обитания.
Загрязнение окружающей природной среды бывает к о с м и ч е с к о е, т. е. естественное, которое Земля получает из Космоса или при извержении вулканов, и а н т р о п о г е н н о е, связанное с хозяйственной деятельностью человека.
А н т р о п о г е н н о е загрязнение окружающей среды подразделяется на пылевое, газовое, хuмuческое (в т. ч. Загрязнение почвы химикатами), ароматuческое, тепловое (изменение температуры воды, воздуха, почвы), радиоактивное. Источником загрязнений является хозяйственная деятельность человека: промышленность, сельское хозяйство, транспорт. Доля того или иного источника загрязнения может значительно колебаться в зависимости от региона.
Таким образом, человек стал в настоящий период главной силой, изменяющей процессы в биосфере. Управлять этими процессами человек только учится. Научно-технический прогресс значительно опередил наши знания законов биосферы, что привело к заметному нарушению биосферного равновесия, превышению возможностей природных систем по самоочищению. Необходимо изучать законы природы, чтобы предотвратить ее разрушение, найти пути разумного использования природных ресурсов и сбалансированного природопользования.
Гармоничное сосуществование человека и природы — новый этап в развитии биосферы, который академик В. И. Вернадский назвал ноосферой (греч. nоos — разум).
3.Ноосфера как новая стадия эволюции биосферы.
Ноосфера («мыслящая оболочка», сфера разума) – высшая стадия развития биосферы. Это «сфера взаимодействия природы общества, в пределах которой разумная человеческая деятельность становится главным, определяющим фактором развития».[1]
Почему возникло понятие «ноосфера»? Оно появилось с связи с оценкой роли человека в эволюции биосферы. Непреходящая ценность учения В.И. Вернадского о ноосфере именно в том, что он выявил геологическую роль жизни, живого вещества в планетарных процессах, в создании и развитии биосферы и всего разнообразия живых существ в ней. Среди этих существ он выделил человека как мощную геологическую силу. Эта сила способна оказывать влияние на ход биогеохимических и других процессов в охваченной ее воздействием среде Земли и околоземном пространстве (пока «ближний» космос). Вся эта среда весьма существенно изменяется человеком, благодаря его труду. Он способен перестроить ее согласно своим представлениям и потребностям, изменить фактически ту биосферу, которая складывалась в течение всей геологической истории Земли.
В.И. Вернадский писал, что становление ноосферы «есть не случайное явление на нашей планете», «создание свободного разума», «человеческого гения», а «природное явление, резко материально проявляющееся в своих следствиях в окружающей человека среде». Иными словами, ноосфера – окружающая человека среда, в которой природные процессы обмена веществ и энергии контролируются обществом.
Человек, по мнению В.И.Вернадского, является частью биосферы, ее «определенной функцией». Подчеркивая тесную связь человека с природой, он допускал, что предпосылки возникновения человеческого разума имели место еще во времена животных, предшественников Homosapiens, и проявление его началось миллиарды лет назад, в конце третичного периода. Но как новая геологическая сила смог проявить себя только человек.
Воздействие человеческого общества, как единого целого на природу, по своему характеру резко отличается от воздействия других норм живого вещества. В.И. Вернадский писал: «Раньше организмы влияли на историю тех атомов, которые были нужны им для роста, размножения, питания, дыхания. Человек расширил этот круг, влияя на элементы, нужные для техники и создания цивилизованных форм жизни», что и изменило «вечный бег геохимических циклов».
Эти гениальные мысли В.И.Вернадского позволили ряду ученых допустить в дальнейшем и такой ход событий в эволюции биосферы, как коэволюцию между человеческим обществом и природной средой, в результате чего и возникнет ноосфера. Но это будет происходить благодаря «новым формам действия живого вещества на обмен атомов живого вещества с косной материей». Он считал, что «геологически мы переживаем сейчас выделение в биосфере царства разума, меняющего коренным образом и ее облик, и ее строение, — ноосферы».
Анализируя представления В.И.Вернадского о ноосфере. Э.В.Гирусов (1986) высказал мнение, что ломка развития человеческой деятельности должна идти не вопреки, а в унисон с организованностью биосферы, ибо человечество, образуя ноосферу, всеми своими корнями связано с биосферой. Ноосфера – естественное и необходимое следствие человеческих усилий. Это преобразованная людьми биосфера соответственно познанным и практически освоенным законам ее строения и развития. Рассматривая такое развитие биосферы в ноосферу с позиций системного подхода, можно заключить, что ноосфера – это новое состояние некоторой глобальной суперсистемы как совокупности трех мощных подсистем: «человек», «производство» и «природа», как трех взаимосвязанных элементов при активной роли подсистемы «человек».
Становление ноосферы, по В.И. Вернадскому, процесс длительный, но ряд ученых полагают, что человечество уже вступило в период ноосферы, хотя многие считают, что пока об этом говорить рано, так как то, что сейчас происходит во взаимодействии человека и природы, трудно увязать с наступлением эпохи разума.
Тем не менее, прогресс человеческого разума и научной мысли ноосферы налицо: они вышли уже за пределы биосферы Земли, в космос и глубины литосферы (сверхглубокая Кольская скважина). По мнению многих ученых – ноосфера в будущем станет особой областью Солнечной системы. «Биосфера перейдет, так или иначе, рано или поздно в ноосферу… На определенном этапе развития человек вынужден взять на себя ответственность за дальнейшую эволюцию планеты, иначе у него не будет будущего», — утверждал В.И.Вернадский.
Заключение
Человек, став мощным геологическим фактором, оказывает глобальное воздействие на биосферу. Биосфера, со своей стороны, через свои экологические законы, которые он вынужден соблюдать, чтобы выжить, в том числе и закон о биотической регуляции окружающей среды, воздействует на человека. Создаются условия, очень напоминающие сопряженную эволюцию или коэволюцию – человек-биосфера.
Продуктом такой коэволюции может стать так называемая «ноосфера», т. е. сфера разума, основоположником теории развития которой был Владимир Иванович Вернадский.
В качестве дополнительных средств защиты применяется различное очистное оборудование, к которому относятся аппараты и системы очистки газовых выбросов, сточных вод, глушители шума при сбросе газов в окружающую среду. Перечисленные мероприятия позволят снизить выброс вредных веществ в окружающую среду и тем самым более полно использовать природные ресурсы. Таким образом, рациональное использование ресурсов и обеспечение качества окружающей среды являются общей задачей, которую должны решать специалисты различных областей науки и отраслей техники.
Перечисленные выше особенности круговорота веществ, эволюции биосферы и понятие загрязнений окружающей среды это лишь некоторые, крайне важные аспекты предмета природопользования, как дисциплины и как науки, изучающей влияние человека на круговорот веществ и природное равновесие.
Представления всего человечества и мировой цивилизации о безграничной возможности самоочищения и самовосстановления природной среды являются ошибочными т. к. на сегодняшний день все экологи мира бьют тревогу об озоновых дырах, нехватке пресной питьевой воды, сырьевой проблеме, огромных объемах выхлопных газов, глобальном потеплении и многих других экологических проблемах, носящих общемировое, планетарное значение.
Список использованной литературы:
1. Смирнова Е.О. Основы природопользования. – М.: «испор», — 2003. – с. 56-78.
2. Пирогова Н.О. Экономика и экология: Учебник. – СПб.: Юристъ – 2002. – с. 90 -111.
3. Кононенко О.Д. Экология.: Учебник. – М.:2002. – с.70 -80.
4. Вавилова Е.В.Экономическая география и регионалистика: Учебное пособие. – М.: Гардарики, 2001. – с.76 – 78.
5. Москаленко А.П. Экономика природопользования и охраны окружающей среды: Учебное пособие. – М.: ИКЦ «Март» — Ростов — на — Дону: изд-во Центр, 2003. – с. 67 — 89.
6. Гирусов Э.В.и другие. Экология и экономика природопользования. М.: Закон и право, ЮНИТИ. – 1998 – с. 345 — 356
7. Черников А.П. Стратегия развития региона. – Новосибирск: ИЭ ИУБП Сибирского отделения РАН, 2003. – с. 34 — 89
[1] БСЭ, т. 18, с. 103.
www.ronl.ru
Министерство образования и науки Российской Федерации
Федеральное государственное бюджетное образовательное учреждение
высшего профессионального образования
«Юго-Западный государственный университет»
(ЮЗГУ)
Кафедра «Экологии».
Реферат на тему: «Круговороты в биосфере».
Выполнил: ст. гр. НЛ-11Б
Вейс В. В.
Проверил: Харитонова Е.Н.
Курск 2012
СОДЕРЖАНИЕ
Введение
1. Понятие о биосфере
1.1. Границы биосферы
1.2. Состав и свойства биосферы
2. Живое вещество биосферы
2.1. Свойства живого вещества
2.2. Функции живого вещества
3. Геохимические циклы, круговороты кислорода, углекислого газа, азота
3.1. Круговорот углекислого газа
3.2. Круговорот азота
3.3 Круговорот кислорода и водорода
Заключение
ВВЕДЕНИЕ
Круговорот веществ и превращение энергии как основа существования биосферы. Деятельность живых организмов в биосфере сопровождается извлечением из окружающей среды больших количеств минеральных веществ. После смерти организмов составляющие их химические элементы возвращаются в окружающую среду. Так возникает биогенный (с участием живых организмов) круговорот веществ в природе, т. е. циркуляция веществ между литосферой, атмосферой, гидросферой и живыми организмами. Под круговоротом веществ понимают повторяющийся процесс превращения и перемещения веществ в природе, имеющий более или менее выраженный циклический характер.
В круговороте веществ принимают участие все живые организмы, поглощающие из внешней среды одни вещества и выделяющие в нее другие. Так, растения потребляют из внешней среды углекислый газ, воду и минеральные соли и выделяют в нее кислород. Животные вдыхают кислород, выделенный растениями, а поедая их, усваивают синтезированные из воды и углекислого газа органические вещества и выделяют углекислый газ, воду и вещества непереваренной части пищи. При разложении бактериями и грибами отмерших растений и животных образуется дополнительное количество углекислого газа, а органические вещества превращаются в минеральные, которые попадают в почву и снова усваиваются растениями. Таким образом, атомы основных химических элементов постоянно совершают миграцию из одного организма в другой, из почвы, атмосферы и гидросферы — в живые организмы, а из них—в окружающую среду, пополняя таким образом неживое вещество биосферы. Эти процессы повторяются бесконечное число раз. Так, например, весь атмосферный кислород проходит через живое вещество за 2 тыс. лет, весь углекислый газ — за 200—300 лет. Непрерывная циркуляция химических элементов в биосфере по более или менее замкнутым путям называется биогеохимическим циклом. Необходимость такой циркуляции объясняется ограниченностью их запасов на планете. Чтобы обеспечить бесконечность жизни, химические элементы должны совершать движение по кругу. Круговорот каждого химического элемента является частью общего грандиозного круговорота веществ на Земле, т. е. все круговороты тесно связаны между собой.
Круговорот веществ, как и все происходящие в природе процессы, требует постоянного притока энергии. Основой биогенного круговорота, обеспечивающего существование жизни, является солнечная энергия. Связанная в органических веществах энергия но ступеням пищевой цепи уменьшается, потому что большая ее часть поступает в окружающую среду в виде тепла или же тратится на осуществление процессов, происходящих в организмах, Поэтому в биосфере наблюдается поток энергии и ее преобразование. Таким образом, биосфера может быть устойчивой только при условии постоянного круговорота веществ и притока солнечной энергии.
1. ПОНЯТИЕ О БИОСФЕРЕ
Впервые понятие биосфера, как «область жизни», было введено в науку Ж.Б. Ламарком в начале 19 века, а в геологию Э. Зюссом в 1875 г. Он понимал под этим термином совокупность всех организмов. Это определение близко к современному понятию биота. Вернадский пошел значительно дальше. Его «биосфера не есть только так называемая область жизни». Это единство живого и косного вещества планеты. Но не только. Это еще и связь с космосом, с космическими излучениями, принимаемыми нашей планетой, строящими ее биосферу. Биосфера составляет верхнюю оболочку или геосферу, одной из больших концентрических областей нашей планеты Земли. Если с понятием «биосферы» по Зюссу связывалось только наличие в трех сферах земной оболочки (твердой, жидкой, газообразной) живых организмов, то по В.И. Вернадскому, им отводится роль главнейшей геохимической силы.
В таком случае под понятием биосферы понимается все пространство, где существует или когда-либо существовала жизнь, то есть, где встречаются живые организмы или продукты их жизнедеятельности. Биосфера охватывает часть атмосферы, верхнюю часть литосферы и гидросферу. Верхняя граница биосферы проходит на высоте примерно 20 км над поверхностью Земли, а нижняя на 6-7-километровой глубине. Биосфера принципиально отличается от прочих земных оболочек поскольку является «комплексной». Она не только «покров» из живого вещества, но и среда обитания миллионов видов живых существ, в том числе и человека.
Вернадский не только сконкретизировал и очертил границы жизни в биосфере, роль живых организмов в процессах планетарного масштаба. Он показал, что в природе нет более мощной геологической средообразующей) силы, чем живые организмы и продукты их жизнедеятельности. Ту часть биосферы, где живые организмы встречаются в настоящее время обычно называют современной биосферой, или необиосферой, а древние биосферы относят к палеобиосферам, или к белым биосферам.
1.1. Границы биосферы
Биосфера в атмосфере простирается примерно дозонового экрана (у полюсов – 8-10 км, у экватора – 17-18 км, над остальными территориями – 20-25 км).
Гидросфера практически вся, в том числе и самая глубокая впадина (Марианская) Мирового океана (11022 м) занята жизнью. К необиосфере следует относить также и донные отложения, где возможно существование живых организмов. В литосферу жизнь проникает на несколько километров, но в основном ограничивается почвенным слоем, но по отдельным трещинам и пещерам она распространяется на сотни метров. Границы палеобиосферы в атмосфере примерно совпадают с необиосферой, под водами к палеобиосфере следует относить и осадочные породы, которые практически полностью претерпели переработку живыми организмами. Это толща от сотен метров до десятков километров. Это применимо и к литосфере, пережившей водную стадию функционирования. Таким образом, границы биосферы определяются наличием живых организмов или «следами» их жизнедеятельности. Живое вещество образовало ничтожно тонкий слой в общей массе геосфер Земли. Его масса составляет 2420 млрд. тонн, что более чем в 2 тысячи раз меньше массы самой легкой оболочки Земли – атмосферы. Но эта ничтожная масса живого вещества встречается практически повсюду – в настоящее время живые существа отсутствуют лишь в областях обширного оледенения и в кратерах действующих вулканов. «Всюдность жизни» в биосфере обязана потенциальным возможностям и масштабу приспомобляемости организмов, которые постепенно, захватив моря и океаны, вышли на сушу и захватили ее. В.И. Вернадский считал, что этот захват продолжается.
На границах биосферы от высот атмосферы царят холод и низкое давление, до глубин океана, где давление достигает 12 тысяч атмосфер. Это стало возможным, потому что пределы толерантности температур у различных организмов – от абсолютного 0 до +180°С, а некоторые бактерии могут существовать в вакууме. Широк диапазон химических условий среды для ряда организмов – от жизни в уксусе до жизни под действием ионизирующей радиации (бактерии в котлах ядерных реакторов). Более того, выносливость некоторых живых существ по отношению к отдельным факторам выходит даже за пределы биосферы, то есть у них есть еще определенный «запас прочности» и потенциальные возможности к распространению. Однако все организмы выживают еще и потому, что везде, где бы ни было их место обитания, существует биогенный ток атомов. Этот ток не смог бы иметь места, во всяком случае, в наземных условиях, если бы не было почвы. В целом экологический диапазон распространения живого вещества очень велик.
В 1977 г. в океане на глубине нескольких километров были обнаружены горячие вулканические зоны, в которых при температуре 350°С существуют многочисленные термофильные бактерии. В экспериментах американского исследователя Камерона сине-зеленые водоросли на протяжении нескольких месяцев не теряли жизнеспособности в условиях, которые соответствовали марианским. Живое вещество не гибнет в жидком азоте. Некоторые виды, например, те же сине-зеленые водоросли, не гибнут под действием мощного ионищирующего излучения и поселяются в эпицентре ядерного взрыва уже после нескольких дней его действия. Живое вещество может сохраняться даже в условиях открытого космоса. Так, третья экспедиция американских астронавтов забыла на Луне телекамеру. Когда через полгода ее возвратили на Землю, на внутренней стороне крышки были обнаружены земные бактерии, которые без каких-либо вредных последствий пережили длительное нахождение за пределами родной планеты.
1.2. Состав и свойства биосферы
Биосфера, являясь глобальной экосистемой (экосферой), как и любая экосистема, состоит из абиотической и биотической части.
Абиотическая часть представлена:
- почвой и подстилающими ее породами до глубины, где еще есть живые организмы, вступающие в обмен с веществом этих пород и физической средой порового пространства.
- атмосферным воздухом до высот, на которых возможны еще проявления жизни.
- водной средой – океаны, реки, озера и т.п.
Биотическая часть состоит из живых организмов всех таксонов, осуществляющих важнейшую функцию биосферы, без которых не может существовать сама жизнь: биогенный ток атомов. Живые организмы осуществляют этот ток атомов благодаря своему дыханию, питанию и размножению, обеспечивая обмен веществом между всеми частями биосферы.
В основе биогенной миграции атомов в биосфере лежат два биохимических принципа:
- стремиться к максимальному проявлению, к «всюдности» жизни;
- обеспечить выживание организмов, что увеличивает саму биогенную миграцию.
Эти закономерности проявляются прежде всего в стремлении живых организмов «захватить» все мало-мальски приспособленные к их жизни пространства, создавала экосистему или ее часть. Но любая экосистема имеет границы, имеет свои границы в планетарном масштабе и биосфера. При общем рассмотрении биосферы, как планетарной экосистемы, особое значение приобретает представление о ее живом веществе, как о некой общей живой массе планеты. Под живым веществом В.И. Вернадский понимает все количество живых организмов планеты как единое целое. Его химический состав подтверждает единство природы – он состоит из тех же элементов, что и неживая природа, только соотношение этих элементов различное и строение молекул иное.
Свойства биосферы
Биосфере, как и составляющим ее другим экосистемам более низкого ранга, присуща система свойств, которые обеспечивают ее функционирование, саморегулирование, устойчивость и другие параметры. Рассмотрим основные из них.
1). Биосфера – централизованная система. Центральным звеном ее выступают живые организмы (живое вещество).
2). Биосфера – открытая система. Ее существование немыслимо без поступления энергии из вне. Она испытывает воздействие космических сил, прежде всего солнечной активности.
3). Биосфера – саморегулирующаяся система, для которой, как отмечал Вернадский, характерна организованность. В настоящее время это свойство называется гомеостазом, понимая под ним способность возвращаться в исходное состояние, гасить возникающие возмущения включением ряда механизмов. Биосфера за свою историю пережила ряд таких возмущений, как извержение вулканов, встречи с астероидами, землетрясения, горообразование и т.п., благодаря действию гомеостатических механизмов и, в частности, принципа Ле-Гиателье-Брауна при действии на систему сил, выводящих ее из состояния устойчивого равновесия, последнее смещается в том направлении, при котором эффект этого воздействия ослабляется. Опасность современной экологической ситуации связана прежде всего с тем, что нарушается линия механического гомеостаза и принцип Ле-Гиателье-Брауна, если не в планетарных, то в крупных региональных масштабах. Результат – распад экосистем, либо появление неустойчивых, практически лишенных свойств гомеостаза систем типа агроценоза или урбанизированных комплексов.
4). Биосфера – система, характеризующаяся большим разнообразием. Разнообразие – важнейшее свойство всех экосистем. Биосфера как глобальная экосистема, характеризующаяся максимальным среди других систем разнообразием. Разнообразие рассматривается как основное условие устойчивости любой экосистемы и биосферы в целом. Это условие так универсально, что сформировалось в качестве закона.
yaneuch.ru
Министерство Образования Российской Федерации
Филиал Байкальского Государственного университета экономики и
права в городе Братске
Финансово-кредитный факультет
РЕФЕРАТ
по Природопользованию
ТЕМА: Круговорот веществ, роль и место человека в биосфере.
Выполнила: ст-ка гр. Н-02
Пономарева А.Е.
Научный рук-ль:
Епифанцева Е.И.
Братск- 2004
С О Д Е Р Ж А Н И Е :
Введение……………………………………………………………..3
1. Круговорот веществ: понятие, виды……………………..…..4
1.1 Круговорот углерода………………………………………6
1.2 Круговорот азота…………………………………………..7
2. Понятие загрязнения окружающей среды…………………..13
3. Ноосфера как новая стадия эволюции биосферы…………15
Заключение…………………………………………………………..19
Список использованной литературы…………………………….20
Введение
Биосферой называют часть земного шара, в пределах которой существует жизнь. Для этой особой оболочки Земли наиболее важными являются три условия. Во-первых, в ней имеется много воды в жидком состоянии, что автоматически подразумевает наличие достаточно плотной атмосферы и определенный диапазон температур. Во-вторых, на неё падает мощный поток лучистой энергии от Солнца. В-третьих, в ней имеются выраженные поверхности раздела между веществом в различных фазовых состояниях — газообразном, жидком и твёрдом.
Следует отметить, что человек (со своим научно-техническим прогрессом) занимает главное, основополагающее место в круговороте веществ биосферы. Если уже не говорить о его главенствующем месте в природной среде. Следствием развития науки и техники явилось загрязнение атмосферы, вод, почв нашей планеты. С момента появления человека биосфера вынуждена подстраиваться под все возникающие и возникающие потребности человечества. Защита окружающей среды — это комплексная проблема, которая может быть решена только совместными усилиями специалистов различных отраслей науки и техники. Наиболее эффективной формой защиты окружающей среды от вредного воздействия промышленных предприятий является переход к малоотходным и безотходным технологиям, а в условиях сельскохозяйственного производства к биологическим методам борьбы с сорняками и вредителями. Это потребует решения целого комплекса сложных технологических, конструкторских и организационных задач.
1.Круговорот веществ: понятие, виды.
Академик В. Р. Вильямс писал, что единственный способ придать чему-то конечному свойства бесконечного — это заставить конечное вращаться по замкнутой кривой, т. е. вовлечь его в круговорот.
Все вещества на планете Земля находятся в процессе биохимического круговорота. Выделяют два основных круговорота: большой (геологический) и малый (биотический).
Большой круговорот длится миллионы лет. Горные породы разрушаются, выветриваются и потоками вод сносятся в Мировой океан, где образуют мощные морские напластования. Часть химических соединений растворяется в воде или потребляется биоценозом. Крупные медленные геотектонические изменения, процессы, связанные с опусканием материков и поднятием морского дна, перемещение морей и океанов в течение длительного времени приводят к тому, что эти напластования возвращаются на сушу и процесс начинается вновь.
Малый круговорот, являясь частью большого, происходит на уровне биогеоценоза и заключается в том, что питательные вещества почвы, воды, воздуха аккумулируются в растениях, расходуются на создание их массы и жизненные процессы в них. Продукты распада органического вещества под воздействием бактерий вновь разлагаются до минеральных компонентов, доступных растениям, и вовлекаются ими в поток вещества.
Возврат химических веществ из неорганической среды через растительные и животные организмы обратно в неорганическую среду с использованием солнечной энергии и химических реакций называется биохимическим циклом.
В круговороте веществ участвуют три группы организмов:
Продуценты (производители) — автотрофные организмы и зеленые растения, которые, используя солнечную энергию, создают первичную продукцию живого вещества. Они потребляют углекислый газ, воду, соли и выделяют кислород. К этой группе принадлежат некоторые бактерии хемосептики, способные создавать органическое вещество.
Консу менты (потребители) — гетеротрофные организмы, питающиеся за счет автотрофных и друг друга. Они подразделяются на: консументы 1-го порядка — животные, питающиеся растениями, потребляющие кислород и выделяющие угле кислый газ; консументы 2-го порядка — хищники и паразиты растительных организмов; консументы 3-го и 4-го порядка сверхпаразиты. Всего в цепи питания существует не более 5 звеньев.
Редуценты (восстановители) — организмы, питающиеся организмами, бактериями и грибками. Здесь особенно велика роль микроорганизмов, до конца разрушающих органические остатки, превращающие их в конечные продукты: минеральные соли, углекислый газ, воду, простейшие органические вещества, поступающие в почву и вновь потребляемые растениями.
В результате фотосинтеза на суше ежегодно создается 1,5*1010 -5,5*1010 т растительной биомассы, в которой заключено около 3*1018 Кдж энергии. Весь прирост живого вещества составляет 8,8.1011 т/год. Общая масса живого вещества на Земле включает около 500 тыс. видов растений и около 2 млн. видов животных.
Скорость образования биологического вещества (биомассы) т. е. образование массы вещества в единицу времени, называют продуктивностью экосистемы .
На суше общий объем биомассы равен 6,6*1012 т, что составляет около 4,5*1018 кДж солнечной энергии. Биомасса океанов существенно меньше, чем на суше, т. е. 3*1010 т. В океане масса животных в 30 раз больше массы растений, а на суше масса растений составляет 98-99% от всей биомассы. Биологические продуктивности суши и океана примерно равны, т. к. биомасса океана состоит в основном из одноклеточных водорослей, которая обновляется ежедневно. Обновление биомассы суши происходит в течение 15 лет.
1.1 Круговорот углерода
Круговорот энергии связан с круговоротом веществ. Наиболее характерен для процессов, происходящих в биосфере, круговорот углерода. Соединения углерода образуются, изменяются и разрушаются. Основной путь углерода — от углекислого газа в живое вещество и обратно. Часть углерода выходит из круговорота, отлагаясь в осадочных породах океана или в ископаемых горючих веществах органического происхождения (торф, каменный уголь, нефть, горючие газы), где уже аккумулирована его основная масса. Этот углерод принимает участие в медленном геологическом круговороте.
Обмен углекислым газом происходит также между атмосферой и океаном. В верхних слоях океана растворено большое ко личество углекислого газа, находящегося в равновесии с атмосферным. Всего в гидросфере содержится около 13*1013 т растворенного углекислого газа, а в атмосфере — в 60 раз меньше. Жизнь на Земле и газовый баланс атмосферы поддерживаются относительно небольшими количествами углерода, участвующего в малом круговороте и содержащегося в растительных тканях (5*1011 т), в тканях животных (5*109 т).
1.2 Круговорот азота
Важную роль в биосферных процессах играет круговорот азота. В них участвует только азот, входящий в определенные химические соединения.
Фиксация его в химических соединениях происходит при вулканической деятельности, при грозовых разрядах в атмосфере в процессе её ионизации, при сгорании материалов. Определяющее значение в фиксации азота имеют микроорганизмы.
Соединения азота (нитраты, нитриты) в растворах поступают в организмы растений, участвуя в образовании органического вещества (аминокислоты, сложные белки). Часть соединений
азота выносится в реки, моря, проникает в подземные воды. Из соединений, растворенных в морской воде, азот поглощается водными организмами, а после их отмирания перемещается в глубь океана. Поэтому концентрация азота в верхних слоях океана заметно возрастает.
Одним из важнейших элементов биосферы является фосфор, входящий в состав нуклеиновых кислот, клеточных мембран, костной ткани. Фосфор также участвует в малом и большом круговоротах, усваивается растениями. В воде фосфаты натрия и кальция растворяются плохо, а в щелочной среде они практически не растворимы.
Ключевым элементом биосферы является вода. Круговорот воды происходит путем испарения ее с поверхности водоемов и суши в атмосферу, а затем переносится воздушными массами, конденсируется и выпадает в виде осадков.
Средняя продолжительность общего цикла обмена углерода, азота и воды, вовлеченных в биологический круговорот 300-400 лет. В соответствии с этой скоростью освобождаются минеральные соединения, связанные в биомассе. Освобождаются и минерализуются вещества гумуса почвы.
Различные вещества имеют разную скорость обмена в биосфере. К подвижным относят: хлор, серу, бор, бром, фтор. К пассивным — кремний, калий, фосфор, медь, никель, алюминий и железо. Круговорот всех биогенных элементов происходит на уровне биогеоценоза. От того, насколько регулярно и полно осуществляется круговорот химических элементов, зависит продуктивность биогеоценоза.
Вмешательство человека отрицательно влияет на процессы круговорота. Например, вырубка лесов или нарушение процессов ассимиляции веществ растениями в результате загрязнений приводят к снижению интенсивности усвоения углерода. Избыток органических элементов в воде под воздействием промышленных стоков вызывает загнивание водоемов и перерасход растворенного в воде кислорода, что препятствует развитию аэробных (потребляющих кислород) бактерий. Сжигая ископаемое топливо, фиксируя атмосферный азот в продуктах производства, связывая фосфор в детергентах (синтетические моющие средства), человек нарушает круговорот элементов.
Скорость круговоротов биогенных элементов достаточно высока. Время оборота атмосферного углерода составляет около 8 лет. Ежегодно в наземных экосистемах в круговорот вовлекаются примерно 12% содержащегося в воздухе диоксида углерода. Общее время круговорота азота оценивается более чем в 110 лет, кислорода — в 2500 лет.
Круговорот веществ в природе подразумевает общую согласованность места, времени и скорости процессов по уровням от популяции до биосферы. Такую согласованность явлений природы называют экологическим равновесием, но это равновесие подвижное и динамичное.
В процессе своей деятельности человек постоянно воздействует на экосистему в целом или на ее отдельные звенья. Например, при отстреле животных, вырубке деревьев, загрязнении природной среды. Не всегда и не сразу это ведет к распаду всей системы, нарушению её стабильности. Но сохранение системы не значит, что она осталась неизменной. Система трансформируется, и оценить эти изменения крайне сложно.
В настоящее время на земле практически не осталось экосистем, не подверженных влиянию человека. Воздействия человека на экосистемы так интенсивны, что организмы не успевают приспособиться к ним. На уровне отдельной особи происходят необратимые изменения: часть насекомых гибнет из-за ядовитости гербицидов, другие оказываются устойчивыми (толерантными) к ним. У некоторых отмечаются изменения в хромосомах (мутации), влияющие на наследственность.
Выброс в атмосферу загрязнителей (оксида серы, азота, фтористых соединений, углеводородов) меняет соотношение газов в атмосферном воздухе и создает помехи реакциям фотосинтеза, а в некоторых случаях убивает листву. В индустриальных районах повышение содержания в почве марганца, хрома, никеля, меди, кобальта, свинца снижает урожайность сельскохозяйственных культур. Например, пшеницы на 20-30%, картофеля на 47%, сахарной свеклы на 35%. Такие помехи ведут к разрушению экосистемы в целом, т. к. уничтожается основной трофический уровень — продуценты. За разрушением отдельных экосистем может последовать и разрушение биосферы в целом или намного снизится ее продуктивность.
Вырубка лесов, эрозия почв, замещение природных ландшафтов строительными объектами, горными выработками и городами снижает общую биомассу фотосинтетиков, делает привычным биотический круговорот, отрицательно влияет на жизнь человека.
Развитие биосферы связано с появлением человека на Земле, но длительное время воздействия человека на биосферу определялись только наличием его как биологического вида.
Жизнь живых организмов, в т. ч. и человека, невозможна без окружающей среды, без природы. Человеку свойственен обмен веществ с окружающей средой, который является основным условием существования любого живого организма.
Организм человека во многом связан с компонентами биосферы — растительностью, насекомыми, животными, микроорганизмами. Он входит в глобальный круговорот веществ. Человеческий организм, как и организмы других животных, подвержен суточным и сезонным ритмам, реагирует на сезонные изменения окружающей температуры, интенсивности (активности) солнечной радиации.
Человек — часть природы, но благодаря эволюционному развитию биологических систем животный предок человека подошел к той грани, за которой открылась возможность его социальной эволюции. Сегодня человек является частью особой социальной среды — общества. Человек обладает уникальной способностью самопознания, познания и преобразования окружающего мира.
Человек, как живое существо и человеческий род, как совокупность индивидов, подчиняется законам экосистемы и экосферы. Специфика экосистемы «Человек – окружающая среда» определяется не только физическими и биологическими факторами, но также социально-экономическими условиями, которые по мере развития общества приобретают все большее значение в отношениях человека и природы. В процессе целесообразной трудовой коллективной деятельности человек воздействует на природу, меняет способы организаций своей жизни, создает особые формы общественных отношений.
Биологический обмен веществ между человеком и природой сохранился. Природа остается постоянным условием жизни человека и развития общества. Однако в результате производственной деятельности возник новый процесс обмена веществ и энергии между ПРИРОДОЙ и обществом. Этот обмен носит уже техногенный характер и называется антропогенным или социальным обменом веществ и энергии.
Антропогенный обмен существенно изменяет общепланетарный круговорот веществ, резко ускоряя его. Он отличается от биотического круговорота своей незамкнутостью, носит открытый характер. На входе антропогенного обмена находятся природные ресурсы, а на выходе — производственные и бытовые отходы. Экологическое несовершенство антропогенного обмена заключается в том, что коэффициент полезного использования природных ресурсов, как правило, чрезвычайно низок, а отходы производства ухудшают природную среду, многие из них не разлагаются до природного состояния. В период научно-технического прогресса и на стадии его интенсификации масштабы и скорость антропогенного обмена резко возрастают, вызывая заметные напряжения в биосфере.
До появления человека равновесие биосферы определяли пять энергетических факторов: солнечная радиация, сила гравитации, тектонические силы, химическая энергия (окислительно-восстановительные процессы), биогенная энергия (фотосинтез у растений, хемосинтез у бактерий, усвоение и окисление нищи у животных, размножение и продуктивность у биомассы).
Эти факторы развивались по геологической шкале времени и за 3,5 млрд. лет сформировали природную среду.
В настоящее время появился новый фактор — энергия мирового производства. Этот фактор развивается не по геологической, а по исторической шкале времени. От организации производства зависит сохранение или необратимое нарушение подвижного равновесия в биосфере.
На современном этапе исторического развития сложились две формы взаимодействия общества и природы: э к о н о м и ч е с к а я и э к о л о г и ч е с к а я. Экономическая фор м а — потребление ресурсов природы, т. е. использование их для удовлетворения человеком своих материальных и духовных потребностей. Экологическая форма — охрана окружающей природной среды с целью сохранения человека как биологического и социального организма и его естественной среды обитания.
Человек, потребляя природные ресурсы для решения своих хозяйственных задач, еще и изменяет природную среду, которая как бумеранг, начинает воздействовать негативно на самого человека.
За всю историю цивилизации было вырублено 2/3 лесов, уничтожено более 200 видов животных и растений, запасы кислорода в атмосфере снизились на 10 миллиардов тонн, в результате неправильного ведения сельского хозяйства потеряно около200 млн. га сельхозугодий.
В последнее время хозяйственное давление человека на природу существенно усилилось: ежегодно в результате только нерациональной его деятельности обращаются в пустыни 44 га земель, уничтожается 690 тыс. га лесов, исчезает по одному виду животных и растений.
2. Понятие загрязнения окружающей среды
Негативная деятельность человека проявляется в следующих т р е х н а п р а в л е н и я х: загрязнение окружающей природной среды, истощение природных ресурсов, разрушение природной среды.
Под загрязнением среды обитания понимают физико-химические изменения состава природного вещества (воздуха, воды, почвы), которые неблагоприятно влияют на окружающую среду обитания.
Загрязнение окружающей природной среды бывает к о с м и ч е с к о е, т. е. естественное, которое Земля получает из Космоса или при извержении вулканов, и а н т р о п о г е н н о е, связанное с хозяйственной деятельностью человека.
А н т р о п о г е н н о е загрязнение окружающей среды подразделяется на пылевое, газовое, хuмuческое (в т. ч. Загрязнение почвы химикатами), ароматuческое, тепловое (изменение температуры воды, воздуха, почвы), радиоактивное. Источником загрязнений является хозяйственная деятельность человека: промышленность, сельское хозяйство, транспорт. Доля того или иного источника загрязнения может значительно колебаться в зависимости от региона.
Таким образом, человек стал в настоящий период главной силой, изменяющей процессы в биосфере. Управлять этими процессами человек только учится. Научно-технический прогресс значительно опередил наши знания законов биосферы, что привело к заметному нарушению биосферного равновесия, превышению возможностей природных систем по самоочищению. Необходимо изучать законы природы, чтобы предотвратить ее разрушение, найти пути разумного использования природных ресурсов и сбалансированного природопользования.
Гармоничное сосуществование человека и природы — новый этап в развитии биосферы, который академик В. И. Вернадский назвал ноосферой (греч. nоos — разум).
3.Ноосфера как новая стадия эволюции биосферы.
Ноосфера («мыслящая оболочка», сфера разума) – высшая стадия развития биосферы. Это «сфера взаимодействия природы общества, в пределах которой разумная человеческая деятельность становится главным, определяющим фактором развития».[1]
Почему возникло понятие «ноосфера»? Оно появилось с связи с оценкой роли человека в эволюции биосферы. Непреходящая ценность учения В.И. Вернадского о ноосфере именно в том, что он выявил геологическую роль жизни, живого вещества в планетарных процессах, в создании и развитии биосферы и всего разнообразия живых существ в ней. Среди этих существ он выделил человека как мощную геологическую силу. Эта сила способна оказывать влияние на ход биогеохимических и других процессов в охваченной ее воздействием среде Земли и околоземном пространстве (пока «ближний» космос). Вся эта среда весьма существенно изменяется человеком, благодаря его труду. Он способен перестроить ее согласно своим представлениям и потребностям, изменить фактически ту биосферу, которая складывалась в течение всей геологической истории Земли.
В.И. Вернадский писал, что становление ноосферы «есть не случайное явление на нашей планете», «создание свободного разума», «человеческого гения», а «природное явление, резко материально проявляющееся в своих следствиях в окружающей человека среде». Иными словами, ноосфера – окружающая человека среда, в которой природные процессы обмена веществ и энергии контролируются обществом.
Человек, по мнению В.И.Вернадского, является частью биосферы, ее «определенной функцией». Подчеркивая тесную связь человека с природой, он допускал, что предпосылки возникновения человеческого разума имели место еще во времена животных, предшественников Homosapiens, и проявление его началось миллиарды лет назад, в конце третичного периода. Но как новая геологическая сила смог проявить себя только человек.
Воздействие человеческого общества, как единого целого на природу, по своему характеру резко отличается от воздействия других норм живого вещества. В.И. Вернадский писал: «Раньше организмы влияли на историю тех атомов, которые были нужны им для роста, размножения, питания, дыхания. Человек расширил этот круг, влияя на элементы, нужные для техники и создания цивилизованных форм жизни», что и изменило «вечный бег геохимических циклов».
Эти гениальные мысли В.И.Вернадского позволили ряду ученых допустить в дальнейшем и такой ход событий в эволюции биосферы, как коэволюцию между человеческим обществом и природной средой, в результате чего и возникнет ноосфера. Но это будет происходить благодаря «новым формам действия живого вещества на обмен атомов живого вещества с косной материей». Он считал, что «геологически мы переживаем сейчас выделение в биосфере царства разума, меняющего коренным образом и ее облик, и ее строение, — ноосферы».
Анализируя представления В.И.Вернадского о ноосфере. Э.В.Гирусов (1986) высказал мнение, что ломка развития человеческой деятельности должна идти не вопреки, а в унисон с организованностью биосферы, ибо человечество, образуя ноосферу, всеми своими корнями связано с биосферой. Ноосфера – естественное и необходимое следствие человеческих усилий. Это преобразованная людьми биосфера соответственно познанным и практически освоенным законам ее строения и развития. Рассматривая такое развитие биосферы в ноосферу с позиций системного подхода, можно заключить, что ноосфера – это новое состояние некоторой глобальной суперсистемы как совокупности трех мощных подсистем: «человек», «производство» и «природа», как трех взаимосвязанных элементов при активной роли подсистемы «человек».
Становление ноосферы, по В.И. Вернадскому, процесс длительный, но ряд ученых полагают, что человечество уже вступило в период ноосферы, хотя многие считают, что пока об этом говорить рано, так как то, что сейчас происходит во взаимодействии человека и природы, трудно увязать с наступлением эпохи разума.
Тем не менее, прогресс человеческого разума и научной мысли ноосферы налицо: они вышли уже за пределы биосферы Земли, в космос и глубины литосферы (сверхглубокая Кольская скважина). По мнению многих ученых – ноосфера в будущем станет особой областью Солнечной системы. «Биосфера перейдет, так или иначе, рано или поздно в ноосферу… На определенном этапе развития человек вынужден взять на себя ответственность за дальнейшую эволюцию планеты, иначе у него не будет будущего», — утверждал В.И.Вернадский.
Заключение
Человек, став мощным геологическим фактором, оказывает глобальное воздействие на биосферу. Биосфера, со своей стороны, через свои экологические законы, которые он вынужден соблюдать, чтобы выжить, в том числе и закон о биотической регуляции окружающей среды, воздействует на человека. Создаются условия, очень напоминающие сопряженную эволюцию или коэволюцию – человек-биосфера.
Продуктом такой коэволюции может стать так называемая «ноосфера», т. е. сфера разума, основоположником теории развития которой был Владимир Иванович Вернадский.
В качестве дополнительных средств защиты применяется различное очистное оборудование, к которому относятся аппараты и системы очистки газовых выбросов, сточных вод, глушители шума при сбросе газов в окружающую среду. Перечисленные мероприятия позволят снизить выброс вредных веществ в окружающую среду и тем самым более полно использовать природные ресурсы. Таким образом, рациональное использование ресурсов и обеспечение качества окружающей среды являются общей задачей, которую должны решать специалисты различных областей науки и отраслей техники.
Перечисленные выше особенности круговорота веществ, эволюции биосферы и понятие загрязнений окружающей среды это лишь некоторые, крайне важные аспекты предмета природопользования, как дисциплины и как науки, изучающей влияние человека на круговорот веществ и природное равновесие.
Представления всего человечества и мировой цивилизации о безграничной возможности самоочищения и самовосстановления природной среды являются ошибочными т. к. на сегодняшний день все экологи мира бьют тревогу об озоновых дырах, нехватке пресной питьевой воды, сырьевой проблеме, огромных объемах выхлопных газов, глобальном потеплении и многих других экологических проблемах, носящих общемировое, планетарное значение.
Список использованной литературы:
1. Смирнова Е.О. Основы природопользования. – М.: «испор», — 2003. – с. 56-78.
2. Пирогова Н.О. Экономика и экология: Учебник. – СПб.: Юристъ – 2002. – с. 90 -111.
3. Кононенко О.Д. Экология.: Учебник. – М.:2002. – с.70 -80.
4. Вавилова Е.В.Экономическая география и регионалистика: Учебное пособие. – М.: Гардарики, 2001. – с.76 – 78.
5. Москаленко А.П. Экономика природопользования и охраны окружающей среды: Учебное пособие. – М.: ИКЦ «Март» — Ростов — на — Дону: изд-во Центр, 2003. – с. 67 — 89.
6. Гирусов Э.В.и другие. Экология и экономика природопользования. М.: Закон и право, ЮНИТИ. – 1998 – с. 345 — 356
7. Черников А.П. Стратегия развития региона. – Новосибирск: ИЭ ИУБП Сибирского отделения РАН, 2003. – с. 34 — 89
[1] БСЭ, т. 18, с. 103.
www.ronl.ru
Вода и ее круговорот
В.Ф.Попов, О.Н.Толстихин
В момент образования Земли из протопланетного облака элементы ее будущей атмосферы и гидросферы находились в связанном виде в составе твердых веществ. Их формирование было обусловлено выделением водяного пара и газов из верхней мантии при ее дифференциации и вулканических процессах на ранних этапах развития Земли.
Вода - уникальное вещество. Cо школьного курса химии известно, что молекула воды h3O - гидроль состоит из двух атомов водорода и одного атома кислорода. Атомы водорода образуют с атомом кислорода угол примерно 105°, поэтому одна сторона молекулы имеет общий положительный заряд, а другая - отрицательный. Так как электрические заряды разделены, то молекула воды представляет собой электрический диполь. Благодаря электрическому дипольному моменту в жидкой воде каждая гидроль может соединяться с другими молекулами воды, но не более чем в двух водородных связях, имеющих электростатическую природу. Вследствие этого в воде появляются молекулярные агрегаты в виде цепочек, колец и более сложных систем. В постоянном объеме общее количество водородных связей зависит от термодинамических условий. Таким образом, жидкая вода представляет собой смесь мономерных (отдельных) и полимерных (агрегированных) молекул, определяющих ее структуру. В холодной воде структурировано около половины молекул, а при температуре кипения - около трети молекул. Структурные особенности изменяются не только под действием температуры и давления, но и под влиянием растворенных солей и газов, электрического и магнитного полей.
Интересны факты положительного воздействия на человеческий организм талой воды или воды побывавшей в магнитном поле. При замачивании семян сельскохозяйственных культур намагниченной водой резко возрастает их всхожесть, а полив увеличивает урожайность. Широко применяется метод предварительной магнитной обработки воды для уменьшения интенсивности образования накипи в паровых котлах.
Структурное строение жидкой воды объясняет ее уникальные и аномальные свойства. Так, необходимость разрушения водородных связей предопределяет высокую энергоемкость воды. В результате аномально высокими становятся теплоемкость (4,19 Дж/°С), температуры кипения (100 °С) и плавления воды (0 °С). Заметим, что другие водородные соединения группы кислорода (h3S, h3Se, h3Te) кипят и плавятся при отрицательных температурах (-61 и -82; -42 и -64; -4 и -51 °С соответственно), которые ложатся на плавные линии, в зависимости от молекулярной массы вещества. Экстраполяция этих линий дает следующие теоретические температуры кипения и плавления воды порядка -7 и -100 °С. В совокупности с общими закономерностями, вытекающими из периодического закона Д.И.Менделеева, вода в земных условиях должна была бы быть дурно пахнущим газом.
Теплоемкость воды превышает теплоемкость спирта в 8 раз, бензола в 10,7 раза и песка более чем в 20 раз. Поэтому вода медленно нагревается и медленно остывает. Нужны большие затраты энергии для превращения льда в жидкость и жидкой воды в пар. Эти свойства определяют роль воды как аккумулятора энергии и главного регулятора климата на Земле.
Вода обладает максимальной плотностью при температуре +4 °С, в то время как для других жидкостей максимальная плотность соответствует температуре плавления. При температурах выше и ниже +4 °С вода имеет меньшую плотность, то есть она расширяется. Поэтому лед не тонет в собственном расплаве. Благодаря этому водоемы замерзают с поверхности и образовавшаяся ледяная корка защищает их от полного промерзания, а живые организмы от гибели.
Вода обладает самой высокой из всех жидкостей диэлектрической постоянной, в результате чего при растворении солей сила электрического взаимодействия между разноименно заряженными частицами уменьшается примерно в 80 раз и соли диссоциируют на ионы. При этом вода в большинстве случаев не участвует в химических реакциях с растворенными веществами и они могут быть обратно получены через выпаривание. Эта особенность воды имеет колоссальное геологическое и биологическое значение.
Уникальные свойства воды предопределяют особую ее миссию в формировании лика планеты Земля, ее физической и химической среды, а также в появлении и поддержании удивительного явления - жизни. Напомним, что человек почти на 70% состоит из воды.
Работа тепловых машин Земли обуславливает круговорот воды в природе, при этом вода переходит из жидкого в газообразное и твердое состояния и обратно. За счет притока солнечной энергии вода испаряется с поверхности морей и океанов, а также суши в количестве порядка 519 тыс. км3 в год. Часть воды, испарившейся с поверхности океанов, выпадает в виде осадков в океан, совершив, так называемый, малый круговорот. Другая часть воды в виде водяного пара, переносимого воздушными течениями, достигает суши. Атмосферные осадки, выпавшие на суше, частью просачиваются в почву и образуют подземный сток, частью стекают по земной поверхности, образуя ручьи и реки, а в остальной части снова испаряются, в том числе и через процесс биологического испарения, связанного с жизнедеятельностью растений (транспирация) и животных. В конце концов, она снова достигает океана, завершая большой круговорот воды на земном шаре.
Вода, будучи сильнейшим растворителем, играет огромную роль в геохимических процессах. Промывая толщи горных пород, она вовлекает в круговорот большую часть химических элементов периодической системы Менделеева. На Земле нет дистиллированной воды. Любая вода содержит растворенные соли, газы, органические и коллоидные вещества. Совместно с циркуляцией воды в биосфере, растворенные в ней элементы также участвуют в круговороте. Количество растворенных веществ варьирует в очень широких пределах. Минерализация может составлять от первых миллиграммов на дм3 до почти 600 г/дм3. Пресными называют воды с минерализацией до 1 г/дм3.
Химический состав воды Мирового океана по ряду химических элементов (Cl, Na, О, Ca, K) очень близок к химическому составу крови человека. Вероятно, с этим связано оздоровительное влияние морской воды на организм человека. В питьевой воде растворены важные для жизнедеятельности организма органические и неорганические вещества. Вода, благодаря электролитической диссоциации содержащихся в ней солей, кислот и щелочей, выполняет роль катализатора разнообразных процессов обмена веществ в организме. Вода - обязательный компонент практически всех технологических процессов сельскохозяйственного и промышленного производств. Воды гидросферы используются то как сырье, то как теплоноситель, то как транспортная система, то как растворитель и почти всегда как среда, в которую удаляются всевозможные отходы. В силу широкого применения воды в промышленности и в сельском хозяйстве, а также стремительного роста потребления воды во многих регионах мира проблема воды является весьма актуальной. Необходимо бороться с истощением и загрязнением водных ресурсов планеты.
Для питьевой воды существуют строгие стандарты качества (для России это ГОСТ - 2874). Вода должна быть эпидемиологически безопасной, не содержащей болезнетворных бактерий и вирусов. Состав воды имеет важное значение. Например, недостаточное или чрезмерное содержание фтора приводит к поражению зубов. Питьевая вода должна удовлетворять по органолептическим свойствам, таким как вкус, запах, прозрачность.
Естественные циклы основных биогенных веществ
Для обеспечения жизнедеятельности растений и животных требуются различные химические элементы, но только некоторые из них имеют преобладающее значение. Основа жизни - белки, углеводы и жиры складываются из шести основных элементов: водорода, углерода, азота, кислорода, фосфора и серы. Кроме фосфора они все образуют растворимые и летучие соединения и таким образом участвуют в повторном цикле воды.
В процессе фотосинтеза зеленые растения и водоросли на свету выделяют кислород, причем не из углекислого газа, как это считалось раньше, а из воды. Суммарное уравнение фотосинтеза можно записать следующим образом:
6СО2 + 6Н2О ® С6Н12О6 + 6О2.
В первичной атмосфере Земли было мало или совсем не было кислорода, поэтому первые организмы были анаэробными. Накопление кислорода началось в докембрии и он по сути является биогенным. Сейчас запасы свободного кислорода оцениваются приблизительно в 1,6*1015 т. В процессе фотосинтеза ежегодно участвует 1013 кг углерода атмосферы.
Кислород является самым распространенным элементом на Земле. В гидросфере его содержится 85,82% по массе, в литосфере 47%, в атмосфере 23,15%. Кислород стоит на первом месте по числу образуемых им минералов (1364). Среди них преобладают силикаты, кварц, окислы железа, карбонаты и сульфаты. В живых организмах содержится в среднем около 70% кислорода. Он входит в состав большинства органических соединений (белков, жиров, углеводов и т.д.) и в состав органических соединений скелета.
Свободный кислород играет большую роль в биохимических и физиологических процессах, особенно в аэробном дыхании.
В области свободного кислорода формируются резко окислительные условия, в отличие от сред, в которых кислород отсутствует (в магме, глубоких горизонтах подземных вод, илах морей и озер, в болотах), где образуется восстановительная обстановка.
Огромное значение для атмосферы имеет также двуокись углерода. Его содержание в атмосфере до промышленной революции, в 1800 г составляло 0,029%, а в настоящее время ее содержание превысило 0,033%. В океане этого газа растворено в 50 раз больше.
Углерод в больших количествах содержится в земной коре, прежде всего в карбонатных породах - 9,6*1015 т и горючих ископаемых (угли, нефть, сланцы, битумы, газы, торф). Разведанные запасы горючих ископаемых по углероду оцениваются в 1013 т.
Синтезированные растениями углеводы (глюкоза, сахароза, крахмал и другие) являются главным источником энергии для большинства гетеротрофных организмов. В процессе аэробного дыхания, синтезированное органическое вещество вновь разлагается с образованием углекислого газа и воды, при этом высвобождается энергия Q:
С6Н12О6 + 6О2 ® 6СО2 + 6Н2О + Q.
Воздух по объему почти на 80% состоит из молекулярного азота N2 и представляет собой крупнейший резервуар этого элемента. Естественный цикл азота является более сложным, чем углерода. Большинство биологических форм не могут усваивать газообразный азот. Поэтому сначала происходит фиксация азота - превращение N2 в неорганические и органические соединения, которые происходят как физико-химическим, так и биологическим путем. Основными фиксаторами азота являются бактерии, грибки и водоросли (прежде всего синезеленые). Например, клубеньковая бактерия Rhizobium, проникая в корневые волоски растений семейства бобовых, превращает азот в нитраты. На клеверном поле площадью 100 м2 ежегодно в нитраты превращается около 600 кг азота.
В процессе цикла продуцент - консумент - редуцент нитраты становятся составной частью белков, нуклеиновых кислот и других компонентов. Погибшие организмы являются объектом деятельности редуцентов - бактерий и грибов, при этом они азот превращают в аммиак. И далее в нитрит и обратно газообразный азот.
Фосфор, необходимый животным и растениям для построения белков протоплазмы, поступает в круговорот за счет эрозии фосфатных пород и гуано, минерализации продуктов жизнедеятельности и органических остатков. Фосфаты потребляются растениями. Не образующий летучих соединений фосфор имеет тенденцию накапливаться в море. Вынос фосфора из моря на сушу осуществляется в основном с рыбой и с пометом морских птиц.
Сера относится к весьма распространенным химическим элементам, которые встречаются в свободном состоянии - самородная сера и в виде соединений - сульфидов, полисульфидов и сульфатов. Известно более 150 минералов серы, среди которых доминируют сульфаты. В природе широко распространены процессы окисления сульфидов до сульфатов, которые обратно восстанавливаются до h3S и сульфидов. Эти реакции происходят при активном участии микроорганизмов, прежде всего десульфирующих бактерий и серобактерий.
В виде органических и неорганических соединений сера постоянно присутствует во всех живых организмах и является важным биогенным элементом, она входит в состав широко распространенных соединений: аминокислот, коферментов, витаминов.
Организмы в основном состоят из вышеперечисленных элементов, однако они не смогут жить, если не будут содержать в достаточных количествах некоторые катионы: калий, кальций, магний и натрий, которые относятся к группе макроэлементов, потому что их содержание выражается в сотых долях сухого вещества. Некоторые вещества нужны организмам в очень маленьких количествах, к ним, например, относятся железо, бор, цинк, медь, марганец, молибден и анион хлора. Микроэлементы выражаются в миллионных долях сухого вещества. В пищевую цепь они поступают в основном через круговорот воды. Они обладают высокой биологической активностью и участвуют во всех процессах жизнедеятельности: белковом, жировом, углеводном, витаминном, минеральном обмене, газо- и теплообмене, тканевой проницаемости, клеточном делении, образовании костного скелета, кроветворении, росте, размножении, иммунобиологических реакциях.
Циклы некоторых токсичных элементов
Второстепенные для живых организмов химические элементы, также как и жизненно важные, мигрируют между организмами и средой. В естественных экологических системах они содержатся в таких концентрациях и формах, что не оказывают отрицательного влияния на организмы. В настоящее время стала весьма острой проблема токсичных веществ в связи с региональными и глобальным техногенным загрязнением биосферы. Ниже рассмотрим лишь некоторые примеры токсичных химических элементов, оказывающих значительный отрицательный биологический эффект.
Ртуть, также как и другие тяжелые металлы, почти не влиял на организмы до наступления индустриальной эры, потому что ее концентрации в природе были невелики, а она сама химически малоподвижна. Разработка месторождений и промышленное использование ртути (в электротехническом оборудовании, термометрах, красках и фунгицидах) увеличили ее поток в экосистемы. Чистый элемент не токсичен. Превращение в токсичные органические соединения ртути, такие как метилртуть Ch4Hg и этилртуть C2H5Hg, происходит благодаря бактериям, присутствующим в детритах и осадках. Эти соединения легко растворимы, подвижны и очень ядовиты. Химической основой агрессивного действия ртути является ее сродство с серой, в частности с сероводородной группой в белках. Эти молекулы связываются с хромосомами и клетками головного мозга. Рыбы и моллюски могут накапливать их до концентраций опасных для человека, употребляющего их в пищу, вызывая болезнь "Минамата".
Тяжелый металл кадмий представляет собой один из самых опасных токсикантов среды, он значительнее токсичнее свинца. В последние 30-40 лет он находит все большее техническое применение. Его попадание в пищевые цепи связано с его промышленными выбросами в воздух и воду. Например в среднем тонна угля содержит 2 г кадмия. Кадмий имеет свойство накапливаться в организмах животных и растений. Так, растения аккумулируют до 70% кадмия содержащегося в почве. В Финляндии, Норвегии и Швеции ветеренарные учреждения предостерегают от употребления печени, почек и легких лосей, оленей, косуль и зайцев, в связи с высоким содержанием в них кадмия.
Вследствие деятельности цинкового рудника произошло загрязнение кадмием реки Дзинцу в Японии от хронического отравления умерло более 150 человек, сопровождавшегося атрофией костей всего скелета. Этот случай вошел в историю эндемических отравлений тяжелыми металлами под названием "болезнь итаи-итаи". Именно с такими словами умирали больные.
Стронций-90 и цезий-137 - продукты деления атома, имеющие большой период полураспада. Эти ранее малоизученные элементы теперь являются объектами пристального внимания в связи с их большой опасностью для человека и животных. Они попадают в окружающую среду при производстве и использовании различных источников ядерной энергии. Эти вещества активно циркулируют по пищевым цепям и накапливаются в тканях животных и растений. Это связано с тем, что стронций по свойствам похож на кальций, а цезий - на калий. По мнению некоторых ученых в костях людей уже содержится такое количество стронция, что он может оказывать канцерогенное действие.
Дихлордифенилтрихлорэтан или просто ДДТ - пестицид (пестис - зараза, циде - убиваю, лат.), использовавшийся, а местами используемый до сих пор в сельском хозяйстве для борьбы с насекомыми. В свое время его открытие было отмечено Нобелевской премией. Он малорастворим и никогда не поступает в верхние слои атмосферы и при этом встречается повсюду. Его обнаруживают в тканях пингвинов Антарктиды. Он в основном мигрирует по пищевым цепям, при этом в конце пищевого цикла его концентрация может увеличиться в 1000 раз. Сейчас его использование запрещено.
Диоксины - это группа веществ, в которую входят сотни видов хлор-, бром- и хлорброморганических циклических эфиров. Диоксины образуются во многих технологических процессах различных производств, включая сжигание отходов, биологическую очистку сточной воды и сгорание топлива в двигателях. Эти вещества превосходят по своей токсичности соединения тяжелых металлов. Являются сильными канцерогенами. Они способны накапливаться в организме, являясь причиной многих тяжелых заболеваний.
botanim.ru