Реферат: Эволюция галактик и звезд. Реферат на тему эволюция галактик и звезд


Доклад - Эволюция галактик и звезд

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ – ВЫСШАЯ ШКОЛА ЭКОНОМИКИ

САНКТ-ПЕТЕРБУРГСКИЙ ФИЛИАЛ

Факультет сокращенных программ подготовки специалистов

Реферат

Предмет Концепции современного естествознания.

на тему: _ « Эволюция галактик и звезд»_____

Работу выполнил: Денисова В.П.

Группа_483_

Работу проверил: Кудрина А.Н.

Санкт-Петербург

2011г

Оглавление

Введение.2

Термоядерный синтез в недрах звёзд.2

Этапы эволюции звезд.2

Рождение звёзд.2

Молодые звёзды.2

Молодые звёзды промежуточной массы.2

Молодые звёзды с массой больше 8 солнечных масс.2

Середина жизненного цикла звезды.2

Зрелость.2

Поздние годы и гибель звёзд.2

Старые звёзды с малой массой.2

Звёзды среднего размера.2

Белые карлики.2

Сверхмассивные звёзды.2

Нейтронные звёзды.2

Чёрные дыры.2

Взгляды различных ученых на процессы рождения и развития галактик.2

Современные представления о процессах развития и происхождения галактик.2

Рождение галактик. 2

Заключение.2

Список литературы:2

Звезда́ — небесное тело, в котором идут, шли или будут идти термоядерные реакции. Но чаще всего звездой называют небесное тело, в котором идут в данный момент термоядерные реакции. Солнце — типичная звезда спектрального класса G. Звёзды представляют собой массивные светящиеся газовые (плазменные) шары. Образуются из газово-пылевой среды (главным образом из водорода и гелия) в результате гравитационного сжатия. Температура вещества в недрах звёзд измеряется миллионами кельвинов, а на их поверхности — тысячами кельвинов. Энергия подавляющего большинства звёзд выделяется в результате термоядерных реакций превращения водорода в гелий, происходящих при высоких температурах во внутренних областях. Звёзды часто называют главными телами Вселенной, поскольку в них заключена основная масса светящегося вещества в природе. Примечательно и то, что звёзды имеют отрицательную теплоёмкость.

Звёздная эволюция в астрономии — последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении сотен тысяч, миллионов или миллиардов лет, пока она излучает свет и тепло. В течение таких колоссальных промежутков времени изменения оказываются весьма значительными.

Изучение звёздной эволюции невозможно наблюдением лишь за одной звездой — многие изменения в звёздах протекают слишком медленно, чтобы быть замеченными даже по прошествии многих веков. Поэтому учёные изучают множество звёзд, каждая из которой находится на определённой стадии жизненного цикла. За последние несколько десятилетий широкое распространение в астрофизике получило моделирование структуры звёзд с использованием вычислительной техники

Галактиками наз. гигантские (до ~1013 звёзд) звёздные системы, расположенные вне нашей Галактики. Их наз. ещё внегалактич. туманностями, т. к. при визуальном наблюдении в телескоп они выглядят туманными пятнышками, как и обычные газовые туманности. Сведения о Г. приводятся в спец. астрономич. каталогах. Из них наиболее известны первый каталог туманностей и звёздных скоплений, составленный в конце 18 в. франц. астрономом Ш. Мессье (в этом каталоге туманность Андромеды, напр., записана под номером 31 и обозначается М 31), и «Новый общий каталог» (1888 г.) англ. астронома Й. Дрейера (сокращённо NGC, в нём туманность Андромеды обозначается NGC 224).

Возникновение галактик — появление крупных гравитационно-связанных скоплений материи, имевшее место в далёком прошломВселенной. На данный момент удовлетворительной теории возникновения и эволюции галактик не существует. Есть несколько конкурирующих теорий, объясняющих это явление, но каждая имеет свои серьезные проблемы.

К 1939 году было установлено, что источником звёздной энергии является происходящий в недрах звёзд термоядерный синтез[2]. Большинство звёзд излучают потому, что в их недрах четыре протона соединяются через ряд промежуточных этапов в одну альфа-частицу. Это превращение может идти двумя основными путями, называемыми протон-протонным или p-p-циклом и углеродно-азотным или CN-циклом. В маломассивных звёздах энерговыделение в основном обеспечивается первым циклом, в тяжёлых — вторым. Запас ядерного топлива в звезде ограничен и постоянно тратится на излучение. Процесс термоядерного синтеза, выделяющий энергию и изменяющий состав вещества звезды, в сочетании с гравитацией, стремящейся сжать звезду и тоже высвобождающей энергию, а также с излучением с поверхности, уносящим выделяемую энергию, являются основными движущими силами звёздной эволюции.

Рождение звёзд.

Эволюция звезды начинается в гигантском молекулярном облаке, также называемым звёздной колыбелью. Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см³. Молекулярное облако же имеет плотность около миллиона молекул на см³. Масса такого облака превышает массу Солнца в 100 000—10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике.

Пока облако свободно вращается вокруг центра родной галактики, то ничего не происходит. Но стоит возникнуть внешнему возмущению, слегка уменьшившему размер облака, то наступает гравитационный коллапс. К примеру, облака могут столкнуться друг с другом, или одно из них может пройти через плотный рукав спиральной галактики. Другим фактором может стать близлежащий взрыв сверхновой звезды, ударная волна которого столкнётся с молекулярным облаком на огромной скорости. Кроме того, возможно столкновение галактик, способное вызвать всплеск звёздообразования, по мере того, как газовые облака в каждой из галактик сжимаются в результате столкновения.

Но так или иначе, размер меняется, и давление молекулярного газа больше не может препятствовать дальнейшему сжатию, газ начинает свободно падать, в масштабе времени: К примеру, для Солнца tff = 5 * 107 лет.

По теореме вириала половина высвобождающейся гравитационной энергии уходит на нагрев облака, а половина — на световое излучение. В облаках же давление и плотность нарастают к центру, и коллапс центральной части происходит быстрее, нежели периферии. По мере сжатия длина свободного пробега фотонов уменьшается и облако становится всё менее прозрачным для собственного излучения. Это приводит к более быстрому росту температуры и ещё более быстрому росту давления. В конце концов градиент давления уравновешивает гравитационную силу, образуется гидростатическое ядро, массой порядка 1 % от массы облака. Этот момент мы не видим, глобула давно не прозрачна в оптическом диапазоне. Дальнейшая эволюция протозвезды — это аккреция продолжающего падать вещества. Торможение происходит на поверхности ядра. В конце концов масса вещества исчерпается и звезда проявится в оптическом диапазоне, ознаменовав конец протозвёздной фазы и начало фазы молодой звезды.

Так было бы, если б изначальное молекулярное облако не вращалось. Но все они в той или иной степени вращаются, и по мере уменьшения размера облака растёт и его скорость вращения, которая в определённый момент разделяет вещество на два слоя, которые продолжают коллапсировать независимо друг от друга. Слои в свою очередь также могут быть разорваны увеличившимися центробежными силами. В зависимости от начальной скорости вращения молекулярного облака мы наблюдаем звёздные скопления, двойные звёзды, звёзды с экзопланетами.

Молодые звёзды.

Если рождение звёзд можно описать единым образом, то дальнейший путь развития звезды почти полностью зависит от массы, и лишь в самом конце может сыграть свою роль химический состав.

Молодые звёзды малой массы

Молодые звёзды малой массы (до трёх масс Солнца), находящиеся на подходе к главной последовательности, полностью конвективные. Это ещё по сути протозвёзды, в центре которых только-только начинаются ядерные реакции, и всё излучение происходит в основном из-за гравитационного сжатия. То есть светимость звезды убывает при неизменной эффективной температуре. А на диаграмме Герцшпрунга-Рассела мы видим почти вертикальный трек, называемым треком Хаяcи. По мере приближения молодой звезды к главной последовательности сжатие замедляется. Объекты такого типа ассоциируются со звёздами типа T Тельца.

В это время для звёзд массой больше, чем 0,8 масс Солнца, ядро становится прозрачным для излучения, и возобладает лучистый перенос энергии в ядре, а наверху оболочка остаётся конвективной. Какими прибывают на главную последовательность звёзды меньшей массы, достоверно никто не знает, так как время нахождения этих звёзд в разряде молодых превышает возраст Вселенной. Все наши представления об эволюции этих звёзд держатся на численных расчётах.

По мере сжатия звезды, начинает увеличиваться давление вырожденного электронного газа и на каком-то радиусе звезды это давление останавливает рост центральной температуры, а затем начинает её понижать. И для звёзд меньше 0,08 это оказывается фатальным: выделяющейся энергии в ходе ядерных реакций никогда не хватит, чтобы покрыть расходы на излучение. Такие недо-звёзды получили название коричневые карлики, и их судьба — это постоянное сжатие, пока давление вырожденного газа не остановит его, а затем — постепенное остывание с остановкой всех ядерных реакций.

Молодые звёзды промежуточной массы.

Молодые звёзды промежуточной массы (от 2 до 8 массы Солнца) качественно эволюционируют точно так же, как и их меньшие сестры, за тем исключением, что в них нет конвективных зон вплоть до главной последовательности.

Объекты этого типа ассоциируются с т. н. звёздами Ae\Be Хербита неправильными переменными спектрального типа B-F5. У них также наблюдаются диски биполярные джеты. Скорость истечения, светимость и эффективная температура существенно больше, чем для τ Тельца, поэтому они эффективно нагревают и рассеивают остатки протозвёздного облака.

Молодые звёзды с массой больше 8 солнечных масс.

На самом деле это уже нормальные звёзды. Пока накапливалась масса гидростатического ядра, звезда успела проскочить все промежуточные стадии и разогреть ядерные реакции до такой степени, чтобы они компенсировали потери на излучение. У данных звёзд истечение массы и светимость настолько велики, что не просто останавливают коллапсирование оставшихся внешних областей, но толкает их обратно. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака. Скорее всего этим и объясняется отсутствие в нашей галактике звёзд больше чем 100—200 массы Солнца.

Середина жизненного цикла звезды.

Среди сформировавшихся звёзд встречается огромное многообразие цветов и размеров. По спектральному классу они варьируются от горячих голубых до холодных красных, по массе — от 0,08 до более чем 200 солнечных масс[источник не указан 400 дней ]. Светимость и цвет звезды зависит от температуры её поверхности, которая, в свою очередь, определяется массой. Все новые звёзды «занимают своё место» на главной последовательности согласно своему химическому составу и массе. Речь не идёт о физическом перемещении звезды — только о её положении на указанной диаграмме, зависящем от параметров звезды. То есть, речь идёт, фактически, лишь об изменении параметров звезды.

Маленькие, холодные красные карлики медленно сжигают запасы водорода и остаются на главной последовательности сотни миллиардов лет, в то время как массивные сверхгиганты уйдут с главной последовательности уже через несколько миллионов лет после формирования.

Звёзды среднего размера, такие как Солнце, остаются на главной последовательности в среднем 10 миллиардов лет. Считается, что Солнце все ещё на ней, так как оно находится в середине своего жизненного цикла. Как только звезда истощает запас водорода в ядре, она уходит с главной последовательности.

Зрелость.

По прошествии от миллиона до нескольких десятков миллиардов лет (в зависимости от начальной массы) звезда истощает водородные ресурсы ядра. В больших и горячих звёздах это происходит гораздо быстрее, чем в маленьких и более холодных. Истощение запаса водорода приводит к остановке термоядерных реакций.

Без давления, которое производилось этими реакциями и уравновешивало силу собственного гравитационного притяжения звезды, внешние слои начинают сжиматься к ядру. Температура и давление повышаются как во время формирования протозвезды, но на этот раз до гораздо более высокого уровня. Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов К не начнутся термоядерные реакции с участием гелия.

Очень горячее ядро становится причиной чудовищного расширения звезды. Её размер увеличивается приблизительно в 100 раз. Таким образом звезда становится красным гигантом, и фаза горения гелия продолжается около нескольких миллионов лет. Практически все красные гиганты являются переменными звёздами.

То, что происходит в дальнейшем, вновь зависит от массы звезды.

Поздние годы и гибель звёзд.

Старые звёзды с малой массой.

На сегодняшний день достоверно неизвестно, что происходит с лёгкими звёздами после истощения запаса водорода. Поскольку возраст вселенной составляет 13,7 миллиардов лет, что недостаточно для истощения запаса водородного топлива, современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах.

Некоторые звёзды могут синтезировать гелий лишь в некоторых активных участках, что вызывает нестабильность и сильные звёздные ветры. В этом случае образования планетарной туманности не происходит, а звезда лишь испаряется, становясь даже меньше чем коричневый карлик.

Но звезда с массой менее 0,5 солнечной никогда не будет в состоянии преобразовывать гелий даже после того, как в ядре прекратятся реакции с участием водорода. Звёздная оболочка у них недостаточно массивна, чтобы преодолеть давление, производимое ядром. К таким звёздам относятся красные карлики (такие как Проксима Центавра), срок пребывания которых на главной последовательности составляет сотни миллиардов лет. После прекращения в их ядре термоядерных реакций, они, постепенно остывая, будут продолжать слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра.

Звёзды среднего размера.

Туманность Кошачий Глаз — планетарная туманность, сформировавшаяся после гибели звезды, по массе приблизительно равной солнечной

При достижении звездой средней величины (от 0,4 до 3,4 солнечных масс) фазы красного гиганта, её внешние слои продолжают расширяться, ядро сжиматься, и начинаются реакции синтеза углерода из гелия. Синтез высвобождает много энергии, давая звезде временную отсрочку. Для звезды по размеру схожей с Солнцем, этот процесс может занять около миллиарда лет.

Изменения в величине испускаемой энергии заставляют звезду пройти через периоды нестабильности, включающие в себя перемены в размере, температуре поверхности и выпуске энергии. Выпуск энергии смещается в сторону низкочастотного излучения. Все это сопровождается нарастающей потерей массы вследствие сильных звёздных ветров и интенсивных пульсаций. Звёзды, находящиеся в этой фазе, получили название звёзд позднего типа, OH-IR звёзд или Мира-подобных звёзд, в зависимости от их точных характеристик. Выбрасываемый газ относительно богат тяжёлыми элементами, производимыми в недрах звезды, такими как кислород и углерод. Газ образует расширяющуюся оболочку и охлаждается по мере удаления от звезды, делая возможным образование частиц пыли и молекул. При сильном инфракрасном излучении центральной звезды в таких оболочках формируются идеальные условия для активизации мазеров.

Реакции сжигания гелия очень чувствительны к температуре. Иногда это приводит к большой нестабильности. Возникают сильнейшие пульсации, которые в конечном итоге сообщают внешним слоям достаточно кинетической энергии, чтобы быть выброшенными и превратиться в планетарную туманность. В центре туманности остаётся ядро звезды, которое, остывая, превращается в гелиевый белый карлик, как правило, имеющий массу до 0,5-0,6 солнечных и диаметр порядка диаметра Земли.

Белые карлики.

Вскоре после гелиевой вспышки «загораются» углерод и кислород; каждое из этих событий вызывает сильную перестройку звезды и её быстрое перемещение по диаграмме Герцшпрунга — Рассела. Размер атмосферы звезды увеличивается ещё больше, и она начинает интенсивно терять газ в виде разлетающихся потоков звёздного ветра. Судьба центральной части звезды полностью зависит от её исходной массы: ядро звезды может закончить свою эволюцию как белый карлик (маломассивные звёзды), в случае, если её масса на поздних стадиях эволюции превышает предел Чандрасекара — как нейтронная звезда (пульсар), если же масса превышает предел Оппенгеймера — Волкова — как чёрная дыра. В двух последних случаях завершение эволюции звёзд сопровождается катастрофическими событиями — вспышками сверхновых.

Подавляющее большинство звёзд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденныхэлектронов не уравновесит гравитацию. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится тёмной и невидимой.

У звёзд более массивных, чем Солнце, давление вырожденныхэлектронов не может сдержать сжатие ядра, и оно продолжается до тех пор, пока большинство частиц не превратится в нейтроны, упакованные так плотно, что размер звезды измеряется километрами, а плотность в 100 млн раз превышает плотность воды. Такой объект называют нейтронной звездой; его равновесие поддерживается давлением вырожденногонейтронного вещества.

Сверхмассивные звёзды.

Крабовидная туманность, разлетающиеся остатки взрыва сверхновой, произошедшего почти 1000 лет назад

После того, как внешние слои звезды, с массой большей чем пять солнечных, разлетелись образовав красный сверхгигант, ядро вследствие сил гравитации начинает сжиматься. По мере сжатия увеличиваются температура и плотность, и начинается новая последовательность термоядерных реакций. В таких реакциях синтезируются тяжёлые элементы, что временно сдерживает коллапс ядра.

В конечном итоге, по мере образования всё более тяжёлых элементов периодической системы, из кремния синтезируется железо-56. Вплоть до этого момента синтез элементов высвобождал большое количество энергии, однако именно ядро железа-56 обладает максимальным дефектом массы и образование более тяжёлых ядер невозможно. Поэтому когда железное ядро звезды достигает определённой величины, то давление в нём уже не в состоянии противостоять колоссальной силе гравитации, и происходит незамедлительный коллапс ядра с нейтронизацией его вещества.

То что происходит в дальнейшем, не до конца ясно. Но что бы это ни было, это в считанные секунды приводит к взрыву сверхновой звезды невероятной силы.

Сопутствующий этому всплеск нейтрино провоцирует ударную волну[источник не указан 596 дней ]. Сильные струи нейтрино и вращающееся магнитное поле выталкивают большую часть накопленного звездой материала — так называемые рассадочные элементы, включая железо и более лёгкие элементы. Разлетающаяся материя бомбардируется вырываемыми из ядра нейтронами, захватывая их и тем самым создавая набор элементов тяжелее железа, включая радиоактивные, вплоть до урана (а возможно, даже до калифорния). Таким образом, взрывы сверхновых объясняют наличие в межзвёздном веществе элементов тяжелее железа.

Взрывная волна и струи нейтрино уносят материал прочь от умирающей звезды в межзвёздное пространство. В последующем, перемещаясь по космосу, этот материал сверхновой может столкнуться с другим космическим мусором, и возможно, участвовать в образовании новых звёзд, планет или спутников.

Процессы, протекающие при образовании сверхновой, до сих пор изучаются, и пока в этом вопросе нет ясности. Также под вопросом, что же на самом деле остаётся от изначальной звезды. Тем не менее, рассматриваются два варианта:

Нейтронные звёзды.

Известно, что в некоторых сверхновых сильная гравитация в недрах сверхгиганта заставляет электроны упасть на атомное ядро, где они, сливаясь с протонами, образуют нейтроны[источник не указан 322 дня ]. Электромагнитные силы, разделяющие близлежащие ядра, исчезают. Ядро звезды теперь представляет собой плотный шар из атомных ядер и отдельных нейтронов.

Такие звёзды, известные, как нейтронные звёзды, чрезвычайно малы — не более размера крупного города, и имеют невообразимо высокую плотность. Период их обращения становится чрезвычайно мал по мере уменьшения размера звезды (благодаря сохранению момента импульса). Некоторые совершают 600 оборотов в секунду. Когда ось, соединяющая северный и южный магнитный полюса этой быстро вращающейся звезды, указывает на Землю, можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Такие нейтронные звёзды получили название «пульсары», и стали первыми открытыми нейтронными звёздами.

Чёрные дыры.

Далеко не все сверхновые становятся нейтронными звёздами. Если звезда обладает достаточно большой массой, то коллапс звезды продолжится и сами нейтроны начнут обрушиваться внутрь, пока её радиус не станет меньше Шварцшильдовского. После этого звезда становится чёрной дырой.

Существование чёрных дыр было предсказано общей теорией относительности. Согласно этой теории, материя и информация не может покидать чёрную дыру ни при каких условиях. Тем не менее, квантовая механика, вероятно, делает возможными исключения из этого правила.

Остаётся ряд открытых вопросов. Главный среди них: «А есть ли чёрные дыры вообще?». Ведь чтобы сказать точно, что данный объект — это чёрная дыра, необходимо наблюдать его горизонт событий. Это невозможно сугубо по определению горизонта, но с помощью радиоинтерферометрии со сверхдлинной базой можно определить метрику вблизи объекта, а также зафиксировать быструю, миллисекундную переменность. Эти свойства, наблюдаемые у одного объекта, должны окончательно доказать существование чёрных дыр.

В настоящий момент существуют только косвенные наблюдения. Так, наблюдая светимость ядер активных галактик, можно оценить массу объекта, на который происходит аккреция. Также массу объекта можно оценить по кривой вращения галактики или по частоте обращения близких к объекту звёзд, используя теорему вириала. Для многих галактик масса центра оказывается слишком большой для любого объекта, кроме чёрной дыры. Есть объекты с явной аккрецией вещества на них, но при этом не наблюдается специфического излучения, вызванного ударной волной. Из этого можно сделать вывод, что аккреция не останавливается твёрдой поверхностью звезды, а просто уходит в области очень высокого красного смещения, где согласно с современными представлениями (2009 год) никакой стационарный объект, кроме чёрной дыры, невозможен.

Также открыты вопросы: возможен ли коллапс звезды непосредственно в чёрную дыру, минуя сверхновую? Существуют ли сверхновые, которые впоследствии станут чёрными дырами? Каково точное влияние изначальной массы звезды на формирование объектов в конце её жизненного цикла?

К проблеме эволюции галактик ученые начали серьезно подходить в середине 40х годов. Эти годы ознаменовались рядом важных открытий в звездной астрономии. Удалось выяснить, что среди звездных скоплений, рассеянных и шаровых, имеются молодые и старые, и даже оценить их возраст.

Поэтому путь к раскрытию хода эволюции галактик, казалась, намечен сам собой. Нужно было произвести своеобразную перепись населения в галактиках разных типов и сравнить результаты. В каких галактиках: эллиптических или спиральных, в каких классах галактик преобладают более молодые или более старые звезды такое исследование дало бы ясное указание на направление эволюции галактик, позволило бы выяснить эволюционный смысл классификации Хаббла.

Но прежде надо было выяснить численное соотношение между разными типами галактик. Непосредственное изучение фотографий полученные на обсерватории Маунт Вилсон, позволило Хабблу получить следующие результаты эллиптические — 23%, спиральные 59%, спиральные с перемычкой 15%, неправильные 3%.

Однако действительное соотношение численности галактик разных типов оказалось иным. В 1948 г. Московский астроном Ю.И.Ефремов обработал данные каталога галактик Шепли и Эймс и пришел к следующим выводам: эллиптические галактики в среднем на 4 звездные величины слабее спиральных по абсолютной величине. Среди них много галактик карликов. Если учесть это обстоятельство и сделать пересчет количества галактик в единице объема, то окажется, что эллиптические галактики примерно в 100 раз больше чем спиральные.

И так, большая часть спиральных галактик оказалась галактики гиганты, большинство эллиптических галактик галактики карлики. Конечно, среди тех и других существовал некий разброс в размещении, имелись и эллиптические галактики гиганты, но в среднем было именно так.

В 1947 году Х.Шепли обратил внимание на то, что количество ярких сверхгигантов постепенно убывает по мере перехода от неправильных галактик к спиральным, а затем к эллиптическим. Спиралях класса Sа, замечает Шепли, встречаются лишь очень мало звезд большой светимости, а в эллиптических галактиках они практически отсутствуют. Получалось, что молодыми являлись именно неправильные галактики и спирали класса Sс сильно разветвленными ветвями, спирали класса Sа и эллиптические галактики находились на более поздней стадии развития. Шепли тогда же высказал мысль, что переход галактик из одного класса в другой должен был занять громадные сроки и совсем не обязательно имел место. Возможно, что галактики образовались все такими какими мы их наблюдаем, а потом лишь медленно эволюционировали в направлении сглаживания и округления их форм.

Х. Шепли обратил внимание еще на одно важное обстоятельство. Уже давно было известно существование двойных галактик это не случайные совпадения положений, не могли они быть и результатом захвата одной галактики другой. И вот не редко в этих парах галактики существовали спиральные с эллиптическими. Но галактические пары, очевидно, вместе и возникли. Можно ли в этом случае допустить, что они прошли существенно разный путь развития.

В 1949 году советский астроном профессор Б. В. Кукаркин опубликовал важную работу Исследование строения и развития звездных систем на основе изучения переменных звезд. В ней были и новые установленные соотношения, и их глубокий теоретический анализ.

В своей работе Кукаркин обращал внимание на давно обнаруженные, но часто забываемые обстоятельства существования не только пары, но и скопления галактик. Между тем возраст скопления галактик, судя по данным небесной механики, не может превышать 1012 лет. (Здесь Кукаркин явно отдавал дань длинной школе развития звездных систем; в действительности этот предел гораздо меньше.

Таким образом, получалось, что практически одновременно образовались галактики разных форм. Значит, переход каждой галактики за время ее существования из одного типа в другой совсем не обязателен.

К концу сороковых и началу пятидесятых годов в космогонии галактик сложилось несколько направлений.

Представители одного из них пытались построить новую гипотезу образования галактик из каких то первичных, до галактических форм материи. Так Вейзеккер разработал теорию возникновения галактик из вращающейся массы, в которой значительную роль играла турбулентность. По его теории эллиптические галактики находились на самой поздней, а неправильные на самой ранней стадии развитии. Но Вейзеккер ввел существенные уточнение: он показал что в случае турбулентного развития газовых масс в галактике шкала времени такого развития пропорциональна размерам галактик. По этому карликовые эллиптические галактики хотя и находятся на более поздней стадии развития, но могут быть моложе по возрасту, чем гигантские спиральные. Это позволяло устранить возрождение, связанное с тем, что в скоплениях встречаются галактики всех типов. Но тогда должна была существовать зависимость между размерами и стадией эволюции галактик в скоплениях, то есть самые маленькие галактики там должны быть непременно эллиптическими, средние спиральными, а большие неправильными. И хотя между эллиптическими и спиральными галактиками такое соотношение размеров выполнялось, неправильные галактики, будучи меньше спиральных, явно не укладывались в схему Вейзеккера.

Наконец, не согласовывался с этой гипотезой тот факт, что в эллиптических галактиках преобладают старые звезды ( в абсолютной шкале времени). Значит, эллиптические галактики должны быть не только относительно, но и абсолютно старше спиральных. А как же быть с галактиками в скоплениях? Предложение, что эллиптические галактики образовывались раньше, а спиральные возникали в том же скоплении потом, слишком искусственно. К тому же данные о парных галактиках этому противоречат.

Выход из положения наметился благодаря работам В. А. Амбарцумяна и его школы, показавшим, что звездообразование в нашей, а значит и в других галактиках, продолжается в наше время. Поэтому спиральные и неправильные галактики могут изобиловать молодыми звездами из населения I типа не потому, что эти галактики сами молоды, а потому, что в них имеются условия для звездообразования, тогда как в эллиптических галактиках они почему-либо отсутствуют.

В явной связи с этим стоит еще один существенный факт, на который обратил внимание Б. В. Кукаркин в уже упомянутой работе. Н и в о д н о й эллиптической галактике, даже наиболее сжатой (Е7), не обнаружено сконцентрированного к экваториальной плоскости межзвездного диффузного вещества. Обнаруженные в них диффузные включения концентрируются к центру этих галактик. Наоборот, все спиральные галактики богаты сконцентрированным к экваториальной плоскости межзвездным диффузным веществом, которое особенно четко заметно, когда галактика видна с ребра. Об этом же свидетельствуют спектральные наблюдения: линии излучения, принадлежащие межзвездному галактическому газу, обнаружены у 80-90% спиральных галактик и только у 10-20% эллиптических. Правда, не надо забывать, что для образования линий излучения нужен не только газ, но и источник возбуждения свечения, то есть горячие сверхгиганты, а их-то в эллиптических галактиках не хватает.

Приведенный факт, наряду с работами академика Г. А. Шайна и других ученых по изучению связи молодых звезд с диффузными туманностями, побудил в 1951 году. А. И. Лебединского и Л. Э. Гуревича заняться разработкой новой гипотезы образования галактик из межгалактического газа. Их работа была закончена в 1954 году.

А. И. Лебединский, которому принадлежит основная идея гипотезы, исходил из следующих основных предположений:

Галактики образовались из разреженного диффузного вещества, заполнявшего (и заполняющего) Метагалактику.

Галактики возникали не одновременно, так что некоторые из них образовывались, когда другие уже существовали.

Условия в метагалактическом пространстве в период формирования галактик мало отличались от современных.

Ту массу газа, из которой образовалась наша (или какая-либо другая) Галактика, А. И. Лебединский назвал п р о т о г а л а к т и к о й. Он полагал, что до начала сжатия состояние протогалактики было квазистатическим, то есть почти неизменным. Потом какие-то постепенные количественные изменения состояния протогалактики (например, увеличение плотности) привели к тому, что она начала сжиматься. Этому могли способствовать и потери энергии молекул газа при соударении с твердыми пылинками.

Дальше сжатие протогалактики происходит почти по Джинсу: первоначально сферическая туманность вращается, а сжимаясь, начинает вращаться все быстрее, что приводит к ее уплощению, притом ничем не ограниченному. Но это вовсе не эллиптическая туманность наоборот, пока в протогалактике не возникнут звезды, она не может излучать, и мы не можем ее заметить.

Но вот на некоторой стадии сжатия и уплощения в протогалактике возникают сгущения, сначала большие, в тысячи световых лет диаметром, потом все более и более мелкие. Самые большие дадут потом начало звездным облакам, меньшие звездным скоплениям, еще меньшие звездам. Образование звезд происходит путем гравитационной конденсации, механизм который был уже описан в главе I I I. Звезды появляются в наиболее уплощенных галактиках в спиральных. Спиральные ветви возникают потому, что в сильно уплощенных системах это энергетически выгодно (то есть не требует затраты энергии). Наоборот, при малом уплощении (как у эллиптических галактик, даже класса Е7) ни формирование спиралей, ни образование звездных облаков не возможны.

Но вот образовалось первое поколение звезд, свет горячих сверхгигантов возбудили свечение газа протогалактика превратилась в галактику, стала наблюдаемой. Между тем звездообразование продолжается, галактика живет и эволюционирует. Как же именно это происходит?

Теорию дальнейшей эволюции молодой спиральной галактики разработал Л. Э. Гуревич. Он доказал математически, что с образованием звезд в галактике начинается перераспределение момента количества движения, который выносится с небольшими массами наружу. Система разделяется на центральную часть, ядро, и периферическую часть, сильно сплющенную. Дальше гравитационные взаимодействия звезд и звездных скоплений приводят к постепенному росту отклонения их движений от круговых и к раскачке их в направлении, перпендикулярном экватору галактики. Галактика продолжает сжиматься в направлении ее радиусов, но расширяется вдоль оси. Сплющенность ее уменьшается. Происходит разбрасывание звезд из центральной части галактики во все стороны- образуется сферическая подсистема. А в плоской подсистеме продолжается образование молодых звезд из диффузной материи. Вновь образовавшиеся звезды со временем тоже уйдут из галактической плоскости. Гравитационные взаимодействия разрушат звездные скопления и ассоциации, потом распадутся звездные облака и спиральные ветви. Галактика превратится в эллиптическую. Ввиду исчерпания диффузной материи звездообразование прекратится.

Теория Л. Э. Гуревича объяснила и многие другие проблемы, как, например, образование межзвездных магнитных полей и полей около звезд, процессы ускорения заряженных частиц, образование сложных элементов.

Космогоническая концепция А. И. Лебединского и Л. Э. Гуревича явилась важным этапом в развитии космогонии галактики. Конечно, и в ней были свои слабые стороны. Во-первых, в ней постулировалось существование никем не наблюдавшихся (ни раньше, ни потом) протогалактик. Во-вторых, авторы гипотезы не дали объяснения спиральной структуры галактик, ограничившись замечанием об энергетической выгодности этой структуры. Обсуждение этого вопроса А. И. Лебединский обещал провести во второй части работы. Увы, ни он, не Л. Э. Гуревич так и не сделали этого, и вторая часть работы не была опубликована. Постигла ли авторов теории неудача в их попытке рассмотреть образование спиралей, или их отвлекли другие исследования, — нам не известно.

Работу над этой проблемой продолжил в 1958 году ленинградский теоретик — звездник Т. А. Агекян. Изучив эволюцию вращающихся систем взаимно притягивающихся тел, имеющих форму фигур равновесия, Т. А. Агекян учел возможность их диссипации, то есть покидания системы отдельными ее членами (звездами).

В наше время имеются уже довольно хорошо разработанные модели превращения огромного облака газа сначала в протогалактику, а затем и в галактику. Начнем с самого начала.

Во время эры излучения продолжалось стремительное расширение космической материи, состоящей из фотонов, среди которых встречались свободные протоны или электроны и крайне редко альфа частицы. (Не надо забывать, что фотонов было в миллиард раз больше чем протонов и электронов). В период эры излучения протоны и электроны в основном оставались без изменений, уменьшалась только их скорость. С фотонами дело обстояло намного сложнее. Хотя скорость их осталась прежней, в течении эры излучения гамма фотоны постепенно превращались в фотоны рентгеновские, ультрафиолетовые и фотоны света. Вещество и фотоны к концу эры остыли уже настолько, что каждому из протонов мог, присоединится один электрон. При этом происходило излучение одного ультрафиолетового фотона (или же нескольких фотонов света) и, таким образом, возник атом водорода. Это была первая система частиц во Вселенной.

С возникновением атомов водорода начинается звездная эра эра частиц, точнее говоря, эра протонов и электронов.

Вселенная вступает в звездную эру в форме водородного газа с огромным количеством световых и ультрафиолетовых фотонов. Водородный газ расширялся в различных частях Вселенной с разной скоростью. Неодинаковой была так же и его плотность. Он образовывал огромные сгустки, во много миллионов световых лет. Масса таких космических водородных сгустков была в сотни тысяч, а то и в миллионы раз больше, чем масса нашей теперешней Галактики. Расширение газа внутри сгустков шло медленнее, чем расширение разреженного водорода между самими сгущениями. Позднее из отдельных участков с помощью собственного притяжения образовались сверхгалактики и скопления галактик. Итак, крупнейшие структурные единицы Вселенной — сверхгалактики — являются результатом неравномерного распределения водорода, которое происходило на ранних этапах истории Вселенной.

Рождение галактик

Колоссальные водородные сгущения зародыш сверх галактики и скоплений галактик медленно вращались. Внутри их образовывались вихри, похожие на водовороты. Их диаметр достигал примерно ста тысяч световых лет. Мы называем эти системы протогалактиками, то есть зародыш галактик. Несмотря на свои невероятные размеры, вихри протогалактик были всего лишь ничтожной частью сверхгалактик и по размеру не превышали одну тысячную сверхгалактики. Сила гравитации образовывала из этих вихрей системы звезд, которые мы называем галактиками. Некоторые из галактик до сих пор напоминают нам гигантское завихрение.

Астрономические исследования показывают, что скорость вращения завихрения предопределила форму галактик, родившейся из этого вихря. Выражаясь научным языком, скорость осевого ращения определяет тип будущей галактики. Из медленно вращающихся вихрей возникли эллиптические галактики, в то время как из быстро вращающихся родились сплющенные спиральные галактики.

В результате силы тяготения очень медленно вращающийся вихрь сжимался в шар или несколько сплюснутый эллипсоид. Размеры такого правильного гигантского водородного облака были от нескольких десятков до нескольких сотен тысяч световых лет. Не трудно определить, какие из водородных атомов вошли в состав рождающейся эллиптической, точнее говоря эллипсоидальной галактики, а какие остались в космическом пространстве вне ее. Если энергия связи сил гравитации атома на периферии превышала его кинетическую энергию, атом становился составной частью галактики. Это условие называется критерием Джинса. С его помощью можно определить, в какой степени зависела масса и величена протогалактики от плотности и температуры водородного газа.

Протогалактика, которая вообще не вращалась, становилась родоначальницей шаровой галактики. Сплющенные эллиптические галактики рождались из медленно вращающихся протогалактик. Из-за недостаточной центробежной силы преобладала сила гравитационная. Протогалактика сжималась и плотность водорода в ней возрастала. Как только плотность достигала определенного уровня, начали выделяться и сжиматься сгустки водорода. Рождались протозвезды, которые позже эволюционировали в звезды. Рождение всех звезд в шаровой или слегка приплюснутой галактике происходило почти одновременно. Этот процесс продолжается относительно недолго, примерно сто миллионов лет. Это значит, что в эллиптических галактиках все звезды приблизительно одинакового возраста, то есть очень старые. В эллиптических галактиках весь водород был исчерпан сразу же в самом начале, примерно в первую сотую существования галактики. На протяжении последующих 99 сотых этого периода звезды уже не могли возникать. Таким образом, в эллиптических галактиках количество межзвездного вещества ничтожно.

Спиральные галактики, в том числе и наша, состоят из очень старой сферической составляющей (в этом они похожи на эллиптические галактики) и из более молодой плоской составляющей, находящейся в спиральных рукавах. Между этими составляющими существует несколько переходных компонентов разного уровня сплюснутости, разного возраста и скорости вращения. Строение спиральных галактик, таким образом, сложнее и разнообразнее, чем строение эллиптических. Спиральные галактики кроме того вращаются значительно быстрее, чем галактики эллиптические. Не следует забывать, что они образовались из быстро вращающихся вихрей. Поэтому в создании спиральных галактик участвовали и гравитационная центробежная силы.

Если бы из нашей галактики через сто миллионов лет после ее возникновения (это время формирования сферической составляющей) улетучился весь межзвездный водород, новые звезды не смогли бы рождаться, и наша галактика стала бы эллиптической.

Но межзвездный газ в те далекие времена не улетучился, и, таким образом гравитация и вращение могли продолжать строительство нашей и других спиральных галактик. На каждый атом межзвездного газа действовали две силы гравитация, притягивающая его к центру галактики и центробежная сила, выталкивающая его по направлению от оси вращения. В конечном итоге газ сжимался по направлению к галактической плоскости. В настоящее время межзвездный газ сконцентрирован к галактической плоскости в весьма тонкий слой. Он сосредоточен прежде всего в спиральных рукавах и представляет собой плоскую или промежуточную составляющую, названную звездным населением второго типа. На каждом этапе сплющивания межзвездного газа во все более утончающемся диске рождались звезды. Поэтому в нашей галактике можно найти, как старые, возникшие примерно десять миллиардов лет назад, так и звезды родившиеся недавно в спиральных рукавах, в так называемых ассоциациях и рассеянных скоплениях. Можно сказать, что чем более сплющена система, в которой родились звезды, тем она моложе.

Дальнейшее развитие науки покажет, какие из сегодняшних представлений о происхождении галактик и звезд окажутся правильными. Но уже теперь нет сомнения в том, что звезды, во- первых, подчиняясь законам природы, рождаются, живут и умирают, а не есть однажды созданные и вечно неизменные объекты Вселенной, и, во вторых, звезды рождаются группами, причем процесс звездообразования продолжается в настоящее время.

1. А. В. Засов, К. А. Постнов. Галактики и скопления галактик // Общая астрофизика. — Фрязино: Век 2, 2006

2. А. В. Засов, К. А. Постнов. Общая астрофизика. — Фрязино: Век 2, 2006.

3. Левченко И. В. Многоликая Вселенная // Открытия и гипотезы, ТОВ «Интеллект Медиа»

4. И. А. Климишин Астрономия наших дней 3-е изд., перераб., и доп. М.: Наука. Гл. ред. физ. мат. лит. 1986

5. Шварцшильд М., Строение и эволюция звезд, пер. с англ., M., 1961

6. Масевич А. Г., Тутуков А. В., Эволюция звезд; теория и наблюдения, M., 1988

www.ronl.ru

Эволюция галактик и звезд — реферат

Введение

Звезда́ — небесное тело, в котором идут, шли или будут идти термоядерные реакции. Но чаще всего звездой называют небесное тело, в котором идут в данный момент термоядерные реакции. Солнце — типичная звезда спектрального класса G. Звёзды представляют собой массивные светящиеся газовые (плазменные) шары. Образуются из газово-пылевой среды (главным образом из водорода и гелия) в результате гравитационного сжатия. Температура вещества в недрах звёзд измеряется миллионами кельвинов, а на их поверхности — тысячами кельвинов. Энергия подавляющего большинства звёзд выделяется в результате термоядерных реакций превращения водорода в гелий, происходящих при высоких температурах во внутренних областях. Звёзды часто называют главными телами Вселенной, поскольку в них заключена основная масса светящегося вещества в природе. Примечательно и то, что звёзды имеют отрицательную теплоёмкость.

Звёздная эволюция в астрономии — последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении сотен тысяч, миллионов или миллиардов лет, пока она излучает свет и тепло. В течение таких колоссальных промежутков времени изменения оказываются весьма значительными.

Изучение звёздной эволюции невозможно наблюдением лишь за одной звездой — многие изменения в звёздах протекают слишком медленно, чтобы быть замеченными даже по прошествии многих веков. Поэтому учёные изучают множество звёзд, каждая из которой находится на определённой стадии жизненного цикла. За последние несколько десятилетий широкое распространение в астрофизике получило моделирование структуры звёзд с использованием вычислительной техники

Галактиками наз. гигантские (до ~1013 звёзд) звёздные системы, расположенные вне нашей Галактики. Их наз. ещё внегалактич. туманностями, т. к. при визуальном наблюдении в телескоп они выглядят туманными пятнышками, как и обычные газовые туманности. Сведения о Г. приводятся в спец. астрономич. каталогах. Из них наиболее известны первый каталог туманностей и звёздных скоплений, составленный в конце 18 в. франц. астрономом Ш. Мессье , и "Новый общий каталог" (1888 г.) англ. астронома Й. Дрейера.

Возникновение галактик — появление крупных гравитационно-связанных скоплений материи, имевшее место в далёком прошлом Вселенной. На данный момент удовлетворительной теории возникновения и эволюции галактик не существует. Есть несколько конкурирующих теорий, объясняющих это явление, но каждая имеет свои серьезные проблемы.

      Современные представления о происхождении планет.

Проблема происхождения планет – очень сложная и далеко еще не решенная проблема, во многом зависящая от развития не только астрономии, но и других естественных наук (прежде всего наук о Земле). Дело в том, что пока можно исследовать только единственную планетарную систему, окружающую наше Солнце. Как выглядят более молодые и более старые системы, вероятно существующие вокруг других звезд, неизвестно. Чтобы правильно объяснить происхождение планет, необходимо также знать, как образовалось Солнце и другие звезды, потому что планетарные системы возникают вокруг звезд в результате закономерных процессов развития материи.

Наиболее важные выводы планетной  космогонии сводятся к следующему:

а) планеты сформировались в результате объединения твердых (холодных) тел  и частиц, входивших в состав туманности, которая когда -то окружала Солнце. Эту туманность часто называют “допланетным” или “протопланетным” облаком. Считается, что солнце и протопланетное облако сформировались одновременно в едином процессе, хотя пока неизвестно, как произошло отделение части туманности, из которой возникли планеты, от “протосолнца”.

б) формирование планет происходило  под воздействием различных физических процессов. Следствием механических процессов  стало сжатие (уплощение) вращающейся  туманности, ее удаление от “протосолнца”, столкновение частиц, их укрупнение и т.д. Изменялась температура вещества, туманности и состояние, в котором находилось вещество. Замедление вращения будущего Солнца могло быть обусловлено магнитным полем, связывающим туманность с “протосолнцем”. Взаимодействие солнечного излучения с веществом протопланетного облака привело к тому, что наиболее легкие и многочисленные частицы оказались вдали от Солнца (там, где сейчас планеты-гиганты).

в) спутники планет (а значит, и наша Луна) возникли, по-видимому, из роя частиц, окружающих планеты, то есть тоже из вещества протопланетной туманности. Пояс астероидов возник там, где притяжение Юпитера препятствовало формированию крупной планеты.

Основная идея современной планетной  космогонии – это то, что планеты и их спутники образовались из холодных твердых тел и частиц.

Звезды рождаются

 

Межзвездный газ. Для того чтобы  лучше понять процесс рождения звезд, нужно

вначале изучить пространство между  звездами. Потребовалось, однако,

тысячелетнее развитие науки, чтобы человечество осознало. Простой и вместе с

тем величественный факт, что звезды   это объекты, более или менее  похожие на

солнце, но только стоящие от нас  на несравненно большие расстояния. Ньютон был

первым, кто правильно оценил расстояния до звезд. Два столетия после великого

английского ученного почти всеми  молчаливо принималось, что чудовищно  больших

размеров пространство, в котором  находятся звезды, есть абсолютная пустота.

Лишь отдельные астрономы время  от времени поднимали вопрос о возможном

поглощении света в межзвездной  среде. Только в самом начале ХХ столетия

немецкий астроном Гартман убедительно  доказал, что пространство между  звездами

представляет собой отнюдь не мифическую пустоту. Оно заполнено газом, правда с

очень малой, но вполне определенной плотностью. Это выдающееся открытие, так же

как и многие другие, было сделано  с помощью спектрального анализа.

Почти половину столетия межзвездный  газ исследовался главным образом  путем

анализа образующихся в нем линий  поглощения. Выяснилось, например, что довольно

часто эти линии имеют сложную  структуру, то есть состоят из нескольких близко

расположенных друг к другу компонентов. Каждая такая компонента возникает  при

поглощении света звезды в каком-нибудь определенном облаке межзвездной среды,

причем облака движутся относительно друг друга со скоростью, близкой  к

10км/сек. Это и приводит благодаря  эффекту Доплера к незначительному  смещению

длин волн линий поглощения.

Химический состав межзвездного газа в первом приближении оказался довольно

близким к химическому составу  Солнца и звезд. Преобладающими элементами

являются водород и гелий, между  тем как остальные элементы мы можем

рассматривать как  примеси.

Межзвездная пыль. В межзвездной  среде есть и другая компонента. Речь идет о

межзвездной пыли. Еще в прошлом столетии дебатировался вопрос о прозрачности

межзвездного пространства. Только 1930 года с несомненностью было доказано, что

межзвездное пространство действительно  не совсем прозрачно. Поглощающая свет

субстанция сосредоточенно в довольно тонком слое около галактической плоскости.

Сильнее всего поглощаются синие  и фиолетовые лучи, между тем как  поглощение в

красных лучах сравнительно невелико.

Что же это за субстанция? Сейчас уже  представляется доказанным, что поглощение

света обусловлено межзвездной пылью, то есть твердыми микроскопическими

частицами вещества, размерами меньше микрона. Эти пылинки имеют сложный

химический состав. Установлено, что  пылинки имеют довольно вытянутую  форму и в

какой-то степени  ориентируются , то есть направления их вытянутости имеют

тенденцию  выстраиваться  в  данном облаке более или менее  параллельно. По этой

причине проходящий через тонкую среду  звездный свет становится частично

поляризованным.

Почему должны рождаться новые звезды?

 

Значение газово-пылевых комплексов в современной астрофизике очень велико. Дело

в том, что уже давно астрономы, в значительной степени интуитивно, связывали

образования конденсации в межзвездной  среде с важнейшим процессом  образования

звезд из  диффузной  сравнительно разряженной газово-пылевой среды. Какие же

основания существуют для предположения  о связи между газово-пылевыми

комплексами и процессом звездообразования? Прежде всего следует подчеркнуть,

что уже по крайней мере с сороковых  годов нашего столетия астрономам ясно, что

звезды в Галактике должны непрерывно (то есть буквально  на наших глазах )

образовываться из какой-то качественно  другой субстанции. Дело в том что  к 1939

году было установлено, что источником звездной энергии является происходящий в

недрах звезд термоядерный синтез. Грубо говоря, подавляющее большинство звезд

излучают потому, что в их недрах четыре протона соединяются через  ряд

промежуточных этапов в одну альфа- частицу. Так как масса одного протона (в

атомных единицах ) равна 4,0039, то избыток массы, равный 0,007 атомной единицы

на протон, должен выделиться как  энергия. Тем самым определяется запас ядерной

энергии в звезде, которая постоянно  тратиться на излучение. В самом

благоприятном случае чисто водородной звезды запаса ядерной энергии хватит не

более, чем на 100 миллионов лет, в  то время как реальных условиях эволюции

время жизни звезды оказывается  на порядок меньше этой явно завышенной оценки.

Но десяток миллионов лет   ничтожный срок для эволюции нашей  Галактики, возраст

который никак не меньше чем 10 миллиардов лет. Возраст массивных звезд уже

соизмерим с возрастом человека на земле! Значит звезды ( по крайней  мере,

массивные с высокой светимостью) никак не могут быть в Галактике  изначально ,

то есть с момента ее образования. Оказывается, что ежегодно в Галактике

 умирает  по меньшей мере  одна звезда. Значит, для того, чтобы   звездное пламя 

не  выродилось , необходимо, чтобы  столько же звезд в среднем  образовывалось в

нашей Галактике каждый год. Для  того, чтобы в течении длительного  времени

(исчисляемого миллиардами лет)  Галактика сохраняла бы неизменными  свои основные

особенности (например, распределение  звезд по классам, или, что практически

одно и тоже, по спектральным классам), необходимо, чтобы в ней автоматически

поддерживалось динамическое равновесие межу рождающимися и  гибнущими

звездами. В этом отношение Галактика  похожа на первобытный лес, состоящий  из

деревьев различных видов и  возрастов, причем возраст деревьев меньше возраста

леса. Имеется, правда, одно важное различие между Галактикой и лесом. В

Галактике время жизни звезды с  массой меньше солнечной превышает  ее возраст.

Поэтому следует ожидать постепенного увеличения звезд со сравнительно небольшой

массой, так как они пока еще  не успели умереть, а рождаться продолжают. Но для

более массивных звезд упомянутое выше динамическое равновесие неизбежно  должно

выполняться.

Эволюция звезд. Современная астрономия располагает большим количеством

аргументов в пользу утверждения, что звезды образуются путем конденсации

облаков газово-пылевой межзвездной среды.

Важным аргументом в пользу вывода, о том, что звезды образуются из межзвездной

газово-пылевой среды, служит расположение групп заведомо молодых звезд  в

спиральных ветвях Галактики. Наибольшая плотность межзвездного газа наблюдаются

на внутренних краях спирали.

Центральным в проблеме эволюции звезд  является вопрос об источниках их энергии.

Успехи ядерной физики позволили  решить эту проблему. Таким источником является

термоядерные реакции синтеза, происходящие в недрах звезд при  господствующей

там очень высокой температуре (порядка десяти миллионов градусов).

В результате этих реакций, скорость которых сильно зависит от температуры,

протоны превращаются в ядра гелия, а освобождающаяся энергия медленно

 просачивается  сквозь недра  звезд и излучается в мировое пространство. Это

исключительно мощный источник. Если предположить, что изначально солнце

состояло только из водорода, который  в результате термоядерных реакций  целиком

превратился в гелий, то выделившееся количество энергии составит примерно 1052

эрг.

Теперь мы можем представить  картину эволюции какой-нибудь звезды следующим

образом. По некоторым причинам начало конденсироваться облако межзвездной

referat911.ru

Курсовая работа - Эволюция галактик и звезд

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ – ВЫСШАЯ ШКОЛА ЭКОНОМИКИ

САНКТ-ПЕТЕРБУРГСКИЙ ФИЛИАЛ

Факультет сокращенных программ подготовки специалистов

Реферат

Предмет Концепции современного естествознания.

на тему: _ « Эволюция галактик и звезд»_____

Работу выполнил: Денисова В.П.

Группа_483_

Работу проверил: Кудрина А.Н.

Санкт-Петербург

2011г

Оглавление

Введение.2

Термоядерный синтез в недрах звёзд.2

Этапы эволюции звезд.2

Рождение звёзд.2

Молодые звёзды.2

Молодые звёзды промежуточной массы.2

Молодые звёзды с массой больше 8 солнечных масс.2

Середина жизненного цикла звезды.2

Зрелость.2

Поздние годы и гибель звёзд.2

Старые звёзды с малой массой.2

Звёзды среднего размера.2

Белые карлики.2

Сверхмассивные звёзды.2

Нейтронные звёзды.2

Чёрные дыры.2

Взгляды различных ученых на процессы рождения и развития галактик.2

Современные представления о процессах развития и происхождения галактик.2

Рождение галактик. 2

Заключение.2

Список литературы:2

Звезда́ — небесное тело, в котором идут, шли или будут идти термоядерные реакции. Но чаще всего звездой называют небесное тело, в котором идут в данный момент термоядерные реакции. Солнце — типичная звезда спектрального класса G. Звёзды представляют собой массивные светящиеся газовые (плазменные) шары. Образуются из газово-пылевой среды (главным образом из водорода и гелия) в результате гравитационного сжатия. Температура вещества в недрах звёзд измеряется миллионами кельвинов, а на их поверхности — тысячами кельвинов. Энергия подавляющего большинства звёзд выделяется в результате термоядерных реакций превращения водорода в гелий, происходящих при высоких температурах во внутренних областях. Звёзды часто называют главными телами Вселенной, поскольку в них заключена основная масса светящегося вещества в природе. Примечательно и то, что звёзды имеют отрицательную теплоёмкость.

Звёздная эволюция в астрономии — последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении сотен тысяч, миллионов или миллиардов лет, пока она излучает свет и тепло. В течение таких колоссальных промежутков времени изменения оказываются весьма значительными.

Изучение звёздной эволюции невозможно наблюдением лишь за одной звездой — многие изменения в звёздах протекают слишком медленно, чтобы быть замеченными даже по прошествии многих веков. Поэтому учёные изучают множество звёзд, каждая из которой находится на определённой стадии жизненного цикла. За последние несколько десятилетий широкое распространение в астрофизике получило моделирование структуры звёзд с использованием вычислительной техники

Галактиками наз. гигантские (до ~1013 звёзд) звёздные системы, расположенные вне нашей Галактики. Их наз. ещё внегалактич. туманностями, т. к. при визуальном наблюдении в телескоп они выглядят туманными пятнышками, как и обычные газовые туманности. Сведения о Г. приводятся в спец. астрономич. каталогах. Из них наиболее известны первый каталог туманностей и звёздных скоплений, составленный в конце 18 в. франц. астрономом Ш. Мессье (в этом каталоге туманность Андромеды, напр., записана под номером 31 и обозначается М 31), и «Новый общий каталог» (1888 г.) англ. астронома Й. Дрейера (сокращённо NGC, в нём туманность Андромеды обозначается NGC 224).

Возникновение галактик — появление крупных гравитационно-связанных скоплений материи, имевшее место в далёком прошломВселенной. На данный момент удовлетворительной теории возникновения и эволюции галактик не существует. Есть несколько конкурирующих теорий, объясняющих это явление, но каждая имеет свои серьезные проблемы.

К 1939 году было установлено, что источником звёздной энергии является происходящий в недрах звёзд термоядерный синтез[2]. Большинство звёзд излучают потому, что в их недрах четыре протона соединяются через ряд промежуточных этапов в одну альфа-частицу. Это превращение может идти двумя основными путями, называемыми протон-протонным или p-p-циклом и углеродно-азотным или CN-циклом. В маломассивных звёздах энерговыделение в основном обеспечивается первым циклом, в тяжёлых — вторым. Запас ядерного топлива в звезде ограничен и постоянно тратится на излучение. Процесс термоядерного синтеза, выделяющий энергию и изменяющий состав вещества звезды, в сочетании с гравитацией, стремящейся сжать звезду и тоже высвобождающей энергию, а также с излучением с поверхности, уносящим выделяемую энергию, являются основными движущими силами звёздной эволюции.

Рождение звёзд.

Эволюция звезды начинается в гигантском молекулярном облаке, также называемым звёздной колыбелью. Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см³. Молекулярное облако же имеет плотность около миллиона молекул на см³. Масса такого облака превышает массу Солнца в 100 000—10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике.

Пока облако свободно вращается вокруг центра родной галактики, то ничего не происходит. Но стоит возникнуть внешнему возмущению, слегка уменьшившему размер облака, то наступает гравитационный коллапс. К примеру, облака могут столкнуться друг с другом, или одно из них может пройти через плотный рукав спиральной галактики. Другим фактором может стать близлежащий взрыв сверхновой звезды, ударная волна которого столкнётся с молекулярным облаком на огромной скорости. Кроме того, возможно столкновение галактик, способное вызвать всплеск звёздообразования, по мере того, как газовые облака в каждой из галактик сжимаются в результате столкновения.

Но так или иначе, размер меняется, и давление молекулярного газа больше не может препятствовать дальнейшему сжатию, газ начинает свободно падать, в масштабе времени: К примеру, для Солнца tff = 5 * 107 лет.

По теореме вириала половина высвобождающейся гравитационной энергии уходит на нагрев облака, а половина — на световое излучение. В облаках же давление и плотность нарастают к центру, и коллапс центральной части происходит быстрее, нежели периферии. По мере сжатия длина свободного пробега фотонов уменьшается и облако становится всё менее прозрачным для собственного излучения. Это приводит к более быстрому росту температуры и ещё более быстрому росту давления. В конце концов градиент давления уравновешивает гравитационную силу, образуется гидростатическое ядро, массой порядка 1 % от массы облака. Этот момент мы не видим, глобула давно не прозрачна в оптическом диапазоне. Дальнейшая эволюция протозвезды — это аккреция продолжающего падать вещества. Торможение происходит на поверхности ядра. В конце концов масса вещества исчерпается и звезда проявится в оптическом диапазоне, ознаменовав конец протозвёздной фазы и начало фазы молодой звезды.

Так было бы, если б изначальное молекулярное облако не вращалось. Но все они в той или иной степени вращаются, и по мере уменьшения размера облака растёт и его скорость вращения, которая в определённый момент разделяет вещество на два слоя, которые продолжают коллапсировать независимо друг от друга. Слои в свою очередь также могут быть разорваны увеличившимися центробежными силами. В зависимости от начальной скорости вращения молекулярного облака мы наблюдаем звёздные скопления, двойные звёзды, звёзды с экзопланетами.

Молодые звёзды.

Если рождение звёзд можно описать единым образом, то дальнейший путь развития звезды почти полностью зависит от массы, и лишь в самом конце может сыграть свою роль химический состав.

Молодые звёзды малой массы

Молодые звёзды малой массы (до трёх масс Солнца), находящиеся на подходе к главной последовательности, полностью конвективные. Это ещё по сути протозвёзды, в центре которых только-только начинаются ядерные реакции, и всё излучение происходит в основном из-за гравитационного сжатия. То есть светимость звезды убывает при неизменной эффективной температуре. А на диаграмме Герцшпрунга-Рассела мы видим почти вертикальный трек, называемым треком Хаяcи. По мере приближения молодой звезды к главной последовательности сжатие замедляется. Объекты такого типа ассоциируются со звёздами типа T Тельца.

В это время для звёзд массой больше, чем 0,8 масс Солнца, ядро становится прозрачным для излучения, и возобладает лучистый перенос энергии в ядре, а наверху оболочка остаётся конвективной. Какими прибывают на главную последовательность звёзды меньшей массы, достоверно никто не знает, так как время нахождения этих звёзд в разряде молодых превышает возраст Вселенной. Все наши представления об эволюции этих звёзд держатся на численных расчётах.

По мере сжатия звезды, начинает увеличиваться давление вырожденного электронного газа и на каком-то радиусе звезды это давление останавливает рост центральной температуры, а затем начинает её понижать. И для звёзд меньше 0,08 это оказывается фатальным: выделяющейся энергии в ходе ядерных реакций никогда не хватит, чтобы покрыть расходы на излучение. Такие недо-звёзды получили название коричневые карлики, и их судьба — это постоянное сжатие, пока давление вырожденного газа не остановит его, а затем — постепенное остывание с остановкой всех ядерных реакций.

Молодые звёзды промежуточной массы.

Молодые звёзды промежуточной массы (от 2 до 8 массы Солнца) качественно эволюционируют точно так же, как и их меньшие сестры, за тем исключением, что в них нет конвективных зон вплоть до главной последовательности.

Объекты этого типа ассоциируются с т. н. звёздами Ae\Be Хербита неправильными переменными спектрального типа B-F5. У них также наблюдаются диски биполярные джеты. Скорость истечения, светимость и эффективная температура существенно больше, чем для τ Тельца, поэтому они эффективно нагревают и рассеивают остатки протозвёздного облака.

Молодые звёзды с массой больше 8 солнечных масс.

На самом деле это уже нормальные звёзды. Пока накапливалась масса гидростатического ядра, звезда успела проскочить все промежуточные стадии и разогреть ядерные реакции до такой степени, чтобы они компенсировали потери на излучение. У данных звёзд истечение массы и светимость настолько велики, что не просто останавливают коллапсирование оставшихся внешних областей, но толкает их обратно. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака. Скорее всего этим и объясняется отсутствие в нашей галактике звёзд больше чем 100—200 массы Солнца.

Середина жизненного цикла звезды.

Среди сформировавшихся звёзд встречается огромное многообразие цветов и размеров. По спектральному классу они варьируются от горячих голубых до холодных красных, по массе — от 0,08 до более чем 200 солнечных масс[источник не указан 400 дней ]. Светимость и цвет звезды зависит от температуры её поверхности, которая, в свою очередь, определяется массой. Все новые звёзды «занимают своё место» на главной последовательности согласно своему химическому составу и массе. Речь не идёт о физическом перемещении звезды — только о её положении на указанной диаграмме, зависящем от параметров звезды. То есть, речь идёт, фактически, лишь об изменении параметров звезды.

Маленькие, холодные красные карлики медленно сжигают запасы водорода и остаются на главной последовательности сотни миллиардов лет, в то время как массивные сверхгиганты уйдут с главной последовательности уже через несколько миллионов лет после формирования.

Звёзды среднего размера, такие как Солнце, остаются на главной последовательности в среднем 10 миллиардов лет. Считается, что Солнце все ещё на ней, так как оно находится в середине своего жизненного цикла. Как только звезда истощает запас водорода в ядре, она уходит с главной последовательности.

Зрелость.

По прошествии от миллиона до нескольких десятков миллиардов лет (в зависимости от начальной массы) звезда истощает водородные ресурсы ядра. В больших и горячих звёздах это происходит гораздо быстрее, чем в маленьких и более холодных. Истощение запаса водорода приводит к остановке термоядерных реакций.

Без давления, которое производилось этими реакциями и уравновешивало силу собственного гравитационного притяжения звезды, внешние слои начинают сжиматься к ядру. Температура и давление повышаются как во время формирования протозвезды, но на этот раз до гораздо более высокого уровня. Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов К не начнутся термоядерные реакции с участием гелия.

Очень горячее ядро становится причиной чудовищного расширения звезды. Её размер увеличивается приблизительно в 100 раз. Таким образом звезда становится красным гигантом, и фаза горения гелия продолжается около нескольких миллионов лет. Практически все красные гиганты являются переменными звёздами.

То, что происходит в дальнейшем, вновь зависит от массы звезды.

Поздние годы и гибель звёзд.

Старые звёзды с малой массой.

На сегодняшний день достоверно неизвестно, что происходит с лёгкими звёздами после истощения запаса водорода. Поскольку возраст вселенной составляет 13,7 миллиардов лет, что недостаточно для истощения запаса водородного топлива, современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах.

Некоторые звёзды могут синтезировать гелий лишь в некоторых активных участках, что вызывает нестабильность и сильные звёздные ветры. В этом случае образования планетарной туманности не происходит, а звезда лишь испаряется, становясь даже меньше чем коричневый карлик.

Но звезда с массой менее 0,5 солнечной никогда не будет в состоянии преобразовывать гелий даже после того, как в ядре прекратятся реакции с участием водорода. Звёздная оболочка у них недостаточно массивна, чтобы преодолеть давление, производимое ядром. К таким звёздам относятся красные карлики (такие как Проксима Центавра), срок пребывания которых на главной последовательности составляет сотни миллиардов лет. После прекращения в их ядре термоядерных реакций, они, постепенно остывая, будут продолжать слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра.

Звёзды среднего размера.

Туманность Кошачий Глаз — планетарная туманность, сформировавшаяся после гибели звезды, по массе приблизительно равной солнечной

При достижении звездой средней величины (от 0,4 до 3,4 солнечных масс) фазы красного гиганта, её внешние слои продолжают расширяться, ядро сжиматься, и начинаются реакции синтеза углерода из гелия. Синтез высвобождает много энергии, давая звезде временную отсрочку. Для звезды по размеру схожей с Солнцем, этот процесс может занять около миллиарда лет.

Изменения в величине испускаемой энергии заставляют звезду пройти через периоды нестабильности, включающие в себя перемены в размере, температуре поверхности и выпуске энергии. Выпуск энергии смещается в сторону низкочастотного излучения. Все это сопровождается нарастающей потерей массы вследствие сильных звёздных ветров и интенсивных пульсаций. Звёзды, находящиеся в этой фазе, получили название звёзд позднего типа, OH-IR звёзд или Мира-подобных звёзд, в зависимости от их точных характеристик. Выбрасываемый газ относительно богат тяжёлыми элементами, производимыми в недрах звезды, такими как кислород и углерод. Газ образует расширяющуюся оболочку и охлаждается по мере удаления от звезды, делая возможным образование частиц пыли и молекул. При сильном инфракрасном излучении центральной звезды в таких оболочках формируются идеальные условия для активизации мазеров.

Реакции сжигания гелия очень чувствительны к температуре. Иногда это приводит к большой нестабильности. Возникают сильнейшие пульсации, которые в конечном итоге сообщают внешним слоям достаточно кинетической энергии, чтобы быть выброшенными и превратиться в планетарную туманность. В центре туманности остаётся ядро звезды, которое, остывая, превращается в гелиевый белый карлик, как правило, имеющий массу до 0,5-0,6 солнечных и диаметр порядка диаметра Земли.

Белые карлики.

Вскоре после гелиевой вспышки «загораются» углерод и кислород; каждое из этих событий вызывает сильную перестройку звезды и её быстрое перемещение по диаграмме Герцшпрунга — Рассела. Размер атмосферы звезды увеличивается ещё больше, и она начинает интенсивно терять газ в виде разлетающихся потоков звёздного ветра. Судьба центральной части звезды полностью зависит от её исходной массы: ядро звезды может закончить свою эволюцию как белый карлик (маломассивные звёзды), в случае, если её масса на поздних стадиях эволюции превышает предел Чандрасекара — как нейтронная звезда (пульсар), если же масса превышает предел Оппенгеймера — Волкова — как чёрная дыра. В двух последних случаях завершение эволюции звёзд сопровождается катастрофическими событиями — вспышками сверхновых.

Подавляющее большинство звёзд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденныхэлектронов не уравновесит гравитацию. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится тёмной и невидимой.

У звёзд более массивных, чем Солнце, давление вырожденныхэлектронов не может сдержать сжатие ядра, и оно продолжается до тех пор, пока большинство частиц не превратится в нейтроны, упакованные так плотно, что размер звезды измеряется километрами, а плотность в 100 млн раз превышает плотность воды. Такой объект называют нейтронной звездой; его равновесие поддерживается давлением вырожденногонейтронного вещества.

Сверхмассивные звёзды.

Крабовидная туманность, разлетающиеся остатки взрыва сверхновой, произошедшего почти 1000 лет назад

После того, как внешние слои звезды, с массой большей чем пять солнечных, разлетелись образовав красный сверхгигант, ядро вследствие сил гравитации начинает сжиматься. По мере сжатия увеличиваются температура и плотность, и начинается новая последовательность термоядерных реакций. В таких реакциях синтезируются тяжёлые элементы, что временно сдерживает коллапс ядра.

В конечном итоге, по мере образования всё более тяжёлых элементов периодической системы, из кремния синтезируется железо-56. Вплоть до этого момента синтез элементов высвобождал большое количество энергии, однако именно ядро железа-56 обладает максимальным дефектом массы и образование более тяжёлых ядер невозможно. Поэтому когда железное ядро звезды достигает определённой величины, то давление в нём уже не в состоянии противостоять колоссальной силе гравитации, и происходит незамедлительный коллапс ядра с нейтронизацией его вещества.

То что происходит в дальнейшем, не до конца ясно. Но что бы это ни было, это в считанные секунды приводит к взрыву сверхновой звезды невероятной силы.

Сопутствующий этому всплеск нейтрино провоцирует ударную волну[источник не указан 596 дней ]. Сильные струи нейтрино и вращающееся магнитное поле выталкивают большую часть накопленного звездой материала — так называемые рассадочные элементы, включая железо и более лёгкие элементы. Разлетающаяся материя бомбардируется вырываемыми из ядра нейтронами, захватывая их и тем самым создавая набор элементов тяжелее железа, включая радиоактивные, вплоть до урана (а возможно, даже до калифорния). Таким образом, взрывы сверхновых объясняют наличие в межзвёздном веществе элементов тяжелее железа.

Взрывная волна и струи нейтрино уносят материал прочь от умирающей звезды в межзвёздное пространство. В последующем, перемещаясь по космосу, этот материал сверхновой может столкнуться с другим космическим мусором, и возможно, участвовать в образовании новых звёзд, планет или спутников.

Процессы, протекающие при образовании сверхновой, до сих пор изучаются, и пока в этом вопросе нет ясности. Также под вопросом, что же на самом деле остаётся от изначальной звезды. Тем не менее, рассматриваются два варианта:

Нейтронные звёзды.

Известно, что в некоторых сверхновых сильная гравитация в недрах сверхгиганта заставляет электроны упасть на атомное ядро, где они, сливаясь с протонами, образуют нейтроны[источник не указан 322 дня ]. Электромагнитные силы, разделяющие близлежащие ядра, исчезают. Ядро звезды теперь представляет собой плотный шар из атомных ядер и отдельных нейтронов.

Такие звёзды, известные, как нейтронные звёзды, чрезвычайно малы — не более размера крупного города, и имеют невообразимо высокую плотность. Период их обращения становится чрезвычайно мал по мере уменьшения размера звезды (благодаря сохранению момента импульса). Некоторые совершают 600 оборотов в секунду. Когда ось, соединяющая северный и южный магнитный полюса этой быстро вращающейся звезды, указывает на Землю, можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Такие нейтронные звёзды получили название «пульсары», и стали первыми открытыми нейтронными звёздами.

Чёрные дыры.

Далеко не все сверхновые становятся нейтронными звёздами. Если звезда обладает достаточно большой массой, то коллапс звезды продолжится и сами нейтроны начнут обрушиваться внутрь, пока её радиус не станет меньше Шварцшильдовского. После этого звезда становится чёрной дырой.

Существование чёрных дыр было предсказано общей теорией относительности. Согласно этой теории, материя и информация не может покидать чёрную дыру ни при каких условиях. Тем не менее, квантовая механика, вероятно, делает возможными исключения из этого правила.

Остаётся ряд открытых вопросов. Главный среди них: «А есть ли чёрные дыры вообще?». Ведь чтобы сказать точно, что данный объект — это чёрная дыра, необходимо наблюдать его горизонт событий. Это невозможно сугубо по определению горизонта, но с помощью радиоинтерферометрии со сверхдлинной базой можно определить метрику вблизи объекта, а также зафиксировать быструю, миллисекундную переменность. Эти свойства, наблюдаемые у одного объекта, должны окончательно доказать существование чёрных дыр.

В настоящий момент существуют только косвенные наблюдения. Так, наблюдая светимость ядер активных галактик, можно оценить массу объекта, на который происходит аккреция. Также массу объекта можно оценить по кривой вращения галактики или по частоте обращения близких к объекту звёзд, используя теорему вириала. Для многих галактик масса центра оказывается слишком большой для любого объекта, кроме чёрной дыры. Есть объекты с явной аккрецией вещества на них, но при этом не наблюдается специфического излучения, вызванного ударной волной. Из этого можно сделать вывод, что аккреция не останавливается твёрдой поверхностью звезды, а просто уходит в области очень высокого красного смещения, где согласно с современными представлениями (2009 год) никакой стационарный объект, кроме чёрной дыры, невозможен.

Также открыты вопросы: возможен ли коллапс звезды непосредственно в чёрную дыру, минуя сверхновую? Существуют ли сверхновые, которые впоследствии станут чёрными дырами? Каково точное влияние изначальной массы звезды на формирование объектов в конце её жизненного цикла?

К проблеме эволюции галактик ученые начали серьезно подходить в середине 40х годов. Эти годы ознаменовались рядом важных открытий в звездной астрономии. Удалось выяснить, что среди звездных скоплений, рассеянных и шаровых, имеются молодые и старые, и даже оценить их возраст.

Поэтому путь к раскрытию хода эволюции галактик, казалась, намечен сам собой. Нужно было произвести своеобразную перепись населения в галактиках разных типов и сравнить результаты. В каких галактиках: эллиптических или спиральных, в каких классах галактик преобладают более молодые или более старые звезды такое исследование дало бы ясное указание на направление эволюции галактик, позволило бы выяснить эволюционный смысл классификации Хаббла.

Но прежде надо было выяснить численное соотношение между разными типами галактик. Непосредственное изучение фотографий полученные на обсерватории Маунт Вилсон, позволило Хабблу получить следующие результаты эллиптические — 23%, спиральные 59%, спиральные с перемычкой 15%, неправильные 3%.

Однако действительное соотношение численности галактик разных типов оказалось иным. В 1948 г. Московский астроном Ю.И.Ефремов обработал данные каталога галактик Шепли и Эймс и пришел к следующим выводам: эллиптические галактики в среднем на 4 звездные величины слабее спиральных по абсолютной величине. Среди них много галактик карликов. Если учесть это обстоятельство и сделать пересчет количества галактик в единице объема, то окажется, что эллиптические галактики примерно в 100 раз больше чем спиральные.

И так, большая часть спиральных галактик оказалась галактики гиганты, большинство эллиптических галактик галактики карлики. Конечно, среди тех и других существовал некий разброс в размещении, имелись и эллиптические галактики гиганты, но в среднем было именно так.

В 1947 году Х.Шепли обратил внимание на то, что количество ярких сверхгигантов постепенно убывает по мере перехода от неправильных галактик к спиральным, а затем к эллиптическим. Спиралях класса Sа, замечает Шепли, встречаются лишь очень мало звезд большой светимости, а в эллиптических галактиках они практически отсутствуют. Получалось, что молодыми являлись именно неправильные галактики и спирали класса Sс сильно разветвленными ветвями, спирали класса Sа и эллиптические галактики находились на более поздней стадии развития. Шепли тогда же высказал мысль, что переход галактик из одного класса в другой должен был занять громадные сроки и совсем не обязательно имел место. Возможно, что галактики образовались все такими какими мы их наблюдаем, а потом лишь медленно эволюционировали в направлении сглаживания и округления их форм.

Х. Шепли обратил внимание еще на одно важное обстоятельство. Уже давно было известно существование двойных галактик это не случайные совпадения положений, не могли они быть и результатом захвата одной галактики другой. И вот не редко в этих парах галактики существовали спиральные с эллиптическими. Но галактические пары, очевидно, вместе и возникли. Можно ли в этом случае допустить, что они прошли существенно разный путь развития.

В 1949 году советский астроном профессор Б. В. Кукаркин опубликовал важную работу Исследование строения и развития звездных систем на основе изучения переменных звезд. В ней были и новые установленные соотношения, и их глубокий теоретический анализ.

В своей работе Кукаркин обращал внимание на давно обнаруженные, но часто забываемые обстоятельства существования не только пары, но и скопления галактик. Между тем возраст скопления галактик, судя по данным небесной механики, не может превышать 1012 лет. (Здесь Кукаркин явно отдавал дань длинной школе развития звездных систем; в действительности этот предел гораздо меньше.

Таким образом, получалось, что практически одновременно образовались галактики разных форм. Значит, переход каждой галактики за время ее существования из одного типа в другой совсем не обязателен.

К концу сороковых и началу пятидесятых годов в космогонии галактик сложилось несколько направлений.

Представители одного из них пытались построить новую гипотезу образования галактик из каких то первичных, до галактических форм материи. Так Вейзеккер разработал теорию возникновения галактик из вращающейся массы, в которой значительную роль играла турбулентность. По его теории эллиптические галактики находились на самой поздней, а неправильные на самой ранней стадии развитии. Но Вейзеккер ввел существенные уточнение: он показал что в случае турбулентного развития газовых масс в галактике шкала времени такого развития пропорциональна размерам галактик. По этому карликовые эллиптические галактики хотя и находятся на более поздней стадии развития, но могут быть моложе по возрасту, чем гигантские спиральные. Это позволяло устранить возрождение, связанное с тем, что в скоплениях встречаются галактики всех типов. Но тогда должна была существовать зависимость между размерами и стадией эволюции галактик в скоплениях, то есть самые маленькие галактики там должны быть непременно эллиптическими, средние спиральными, а большие неправильными. И хотя между эллиптическими и спиральными галактиками такое соотношение размеров выполнялось, неправильные галактики, будучи меньше спиральных, явно не укладывались в схему Вейзеккера.

Наконец, не согласовывался с этой гипотезой тот факт, что в эллиптических галактиках преобладают старые звезды ( в абсолютной шкале времени). Значит, эллиптические галактики должны быть не только относительно, но и абсолютно старше спиральных. А как же быть с галактиками в скоплениях? Предложение, что эллиптические галактики образовывались раньше, а спиральные возникали в том же скоплении потом, слишком искусственно. К тому же данные о парных галактиках этому противоречат.

Выход из положения наметился благодаря работам В. А. Амбарцумяна и его школы, показавшим, что звездообразование в нашей, а значит и в других галактиках, продолжается в наше время. Поэтому спиральные и неправильные галактики могут изобиловать молодыми звездами из населения I типа не потому, что эти галактики сами молоды, а потому, что в них имеются условия для звездообразования, тогда как в эллиптических галактиках они почему-либо отсутствуют.

В явной связи с этим стоит еще один существенный факт, на который обратил внимание Б. В. Кукаркин в уже упомянутой работе. Н и в о д н о й эллиптической галактике, даже наиболее сжатой (Е7), не обнаружено сконцентрированного к экваториальной плоскости межзвездного диффузного вещества. Обнаруженные в них диффузные включения концентрируются к центру этих галактик. Наоборот, все спиральные галактики богаты сконцентрированным к экваториальной плоскости межзвездным диффузным веществом, которое особенно четко заметно, когда галактика видна с ребра. Об этом же свидетельствуют спектральные наблюдения: линии излучения, принадлежащие межзвездному галактическому газу, обнаружены у 80-90% спиральных галактик и только у 10-20% эллиптических. Правда, не надо забывать, что для образования линий излучения нужен не только газ, но и источник возбуждения свечения, то есть горячие сверхгиганты, а их-то в эллиптических галактиках не хватает.

Приведенный факт, наряду с работами академика Г. А. Шайна и других ученых по изучению связи молодых звезд с диффузными туманностями, побудил в 1951 году. А. И. Лебединского и Л. Э. Гуревича заняться разработкой новой гипотезы образования галактик из межгалактического газа. Их работа была закончена в 1954 году.

А. И. Лебединский, которому принадлежит основная идея гипотезы, исходил из следующих основных предположений:

Галактики образовались из разреженного диффузного вещества, заполнявшего (и заполняющего) Метагалактику.

Галактики возникали не одновременно, так что некоторые из них образовывались, когда другие уже существовали.

Условия в метагалактическом пространстве в период формирования галактик мало отличались от современных.

Ту массу газа, из которой образовалась наша (или какая-либо другая) Галактика, А. И. Лебединский назвал п р о т о г а л а к т и к о й. Он полагал, что до начала сжатия состояние протогалактики было квазистатическим, то есть почти неизменным. Потом какие-то постепенные количественные изменения состояния протогалактики (например, увеличение плотности) привели к тому, что она начала сжиматься. Этому могли способствовать и потери энергии молекул газа при соударении с твердыми пылинками.

Дальше сжатие протогалактики происходит почти по Джинсу: первоначально сферическая туманность вращается, а сжимаясь, начинает вращаться все быстрее, что приводит к ее уплощению, притом ничем не ограниченному. Но это вовсе не эллиптическая туманность наоборот, пока в протогалактике не возникнут звезды, она не может излучать, и мы не можем ее заметить.

Но вот на некоторой стадии сжатия и уплощения в протогалактике возникают сгущения, сначала большие, в тысячи световых лет диаметром, потом все более и более мелкие. Самые большие дадут потом начало звездным облакам, меньшие звездным скоплениям, еще меньшие звездам. Образование звезд происходит путем гравитационной конденсации, механизм который был уже описан в главе I I I. Звезды появляются в наиболее уплощенных галактиках в спиральных. Спиральные ветви возникают потому, что в сильно уплощенных системах это энергетически выгодно (то есть не требует затраты энергии). Наоборот, при малом уплощении (как у эллиптических галактик, даже класса Е7) ни формирование спиралей, ни образование звездных облаков не возможны.

Но вот образовалось первое поколение звезд, свет горячих сверхгигантов возбудили свечение газа протогалактика превратилась в галактику, стала наблюдаемой. Между тем звездообразование продолжается, галактика живет и эволюционирует. Как же именно это происходит?

Теорию дальнейшей эволюции молодой спиральной галактики разработал Л. Э. Гуревич. Он доказал математически, что с образованием звезд в галактике начинается перераспределение момента количества движения, который выносится с небольшими массами наружу. Система разделяется на центральную часть, ядро, и периферическую часть, сильно сплющенную. Дальше гравитационные взаимодействия звезд и звездных скоплений приводят к постепенному росту отклонения их движений от круговых и к раскачке их в направлении, перпендикулярном экватору галактики. Галактика продолжает сжиматься в направлении ее радиусов, но расширяется вдоль оси. Сплющенность ее уменьшается. Происходит разбрасывание звезд из центральной части галактики во все стороны- образуется сферическая подсистема. А в плоской подсистеме продолжается образование молодых звезд из диффузной материи. Вновь образовавшиеся звезды со временем тоже уйдут из галактической плоскости. Гравитационные взаимодействия разрушат звездные скопления и ассоциации, потом распадутся звездные облака и спиральные ветви. Галактика превратится в эллиптическую. Ввиду исчерпания диффузной материи звездообразование прекратится.

Теория Л. Э. Гуревича объяснила и многие другие проблемы, как, например, образование межзвездных магнитных полей и полей около звезд, процессы ускорения заряженных частиц, образование сложных элементов.

Космогоническая концепция А. И. Лебединского и Л. Э. Гуревича явилась важным этапом в развитии космогонии галактики. Конечно, и в ней были свои слабые стороны. Во-первых, в ней постулировалось существование никем не наблюдавшихся (ни раньше, ни потом) протогалактик. Во-вторых, авторы гипотезы не дали объяснения спиральной структуры галактик, ограничившись замечанием об энергетической выгодности этой структуры. Обсуждение этого вопроса А. И. Лебединский обещал провести во второй части работы. Увы, ни он, не Л. Э. Гуревич так и не сделали этого, и вторая часть работы не была опубликована. Постигла ли авторов теории неудача в их попытке рассмотреть образование спиралей, или их отвлекли другие исследования, — нам не известно.

Работу над этой проблемой продолжил в 1958 году ленинградский теоретик — звездник Т. А. Агекян. Изучив эволюцию вращающихся систем взаимно притягивающихся тел, имеющих форму фигур равновесия, Т. А. Агекян учел возможность их диссипации, то есть покидания системы отдельными ее членами (звездами).

В наше время имеются уже довольно хорошо разработанные модели превращения огромного облака газа сначала в протогалактику, а затем и в галактику. Начнем с самого начала.

Во время эры излучения продолжалось стремительное расширение космической материи, состоящей из фотонов, среди которых встречались свободные протоны или электроны и крайне редко альфа частицы. (Не надо забывать, что фотонов было в миллиард раз больше чем протонов и электронов). В период эры излучения протоны и электроны в основном оставались без изменений, уменьшалась только их скорость. С фотонами дело обстояло намного сложнее. Хотя скорость их осталась прежней, в течении эры излучения гамма фотоны постепенно превращались в фотоны рентгеновские, ультрафиолетовые и фотоны света. Вещество и фотоны к концу эры остыли уже настолько, что каждому из протонов мог, присоединится один электрон. При этом происходило излучение одного ультрафиолетового фотона (или же нескольких фотонов света) и, таким образом, возник атом водорода. Это была первая система частиц во Вселенной.

С возникновением атомов водорода начинается звездная эра эра частиц, точнее говоря, эра протонов и электронов.

Вселенная вступает в звездную эру в форме водородного газа с огромным количеством световых и ультрафиолетовых фотонов. Водородный газ расширялся в различных частях Вселенной с разной скоростью. Неодинаковой была так же и его плотность. Он образовывал огромные сгустки, во много миллионов световых лет. Масса таких космических водородных сгустков была в сотни тысяч, а то и в миллионы раз больше, чем масса нашей теперешней Галактики. Расширение газа внутри сгустков шло медленнее, чем расширение разреженного водорода между самими сгущениями. Позднее из отдельных участков с помощью собственного притяжения образовались сверхгалактики и скопления галактик. Итак, крупнейшие структурные единицы Вселенной — сверхгалактики — являются результатом неравномерного распределения водорода, которое происходило на ранних этапах истории Вселенной.

Рождение галактик

Колоссальные водородные сгущения зародыш сверх галактики и скоплений галактик медленно вращались. Внутри их образовывались вихри, похожие на водовороты. Их диаметр достигал примерно ста тысяч световых лет. Мы называем эти системы протогалактиками, то есть зародыш галактик. Несмотря на свои невероятные размеры, вихри протогалактик были всего лишь ничтожной частью сверхгалактик и по размеру не превышали одну тысячную сверхгалактики. Сила гравитации образовывала из этих вихрей системы звезд, которые мы называем галактиками. Некоторые из галактик до сих пор напоминают нам гигантское завихрение.

Астрономические исследования показывают, что скорость вращения завихрения предопределила форму галактик, родившейся из этого вихря. Выражаясь научным языком, скорость осевого ращения определяет тип будущей галактики. Из медленно вращающихся вихрей возникли эллиптические галактики, в то время как из быстро вращающихся родились сплющенные спиральные галактики.

В результате силы тяготения очень медленно вращающийся вихрь сжимался в шар или несколько сплюснутый эллипсоид. Размеры такого правильного гигантского водородного облака были от нескольких десятков до нескольких сотен тысяч световых лет. Не трудно определить, какие из водородных атомов вошли в состав рождающейся эллиптической, точнее говоря эллипсоидальной галактики, а какие остались в космическом пространстве вне ее. Если энергия связи сил гравитации атома на периферии превышала его кинетическую энергию, атом становился составной частью галактики. Это условие называется критерием Джинса. С его помощью можно определить, в какой степени зависела масса и величена протогалактики от плотности и температуры водородного газа.

Протогалактика, которая вообще не вращалась, становилась родоначальницей шаровой галактики. Сплющенные эллиптические галактики рождались из медленно вращающихся протогалактик. Из-за недостаточной центробежной силы преобладала сила гравитационная. Протогалактика сжималась и плотность водорода в ней возрастала. Как только плотность достигала определенного уровня, начали выделяться и сжиматься сгустки водорода. Рождались протозвезды, которые позже эволюционировали в звезды. Рождение всех звезд в шаровой или слегка приплюснутой галактике происходило почти одновременно. Этот процесс продолжается относительно недолго, примерно сто миллионов лет. Это значит, что в эллиптических галактиках все звезды приблизительно одинакового возраста, то есть очень старые. В эллиптических галактиках весь водород был исчерпан сразу же в самом начале, примерно в первую сотую существования галактики. На протяжении последующих 99 сотых этого периода звезды уже не могли возникать. Таким образом, в эллиптических галактиках количество межзвездного вещества ничтожно.

Спиральные галактики, в том числе и наша, состоят из очень старой сферической составляющей (в этом они похожи на эллиптические галактики) и из более молодой плоской составляющей, находящейся в спиральных рукавах. Между этими составляющими существует несколько переходных компонентов разного уровня сплюснутости, разного возраста и скорости вращения. Строение спиральных галактик, таким образом, сложнее и разнообразнее, чем строение эллиптических. Спиральные галактики кроме того вращаются значительно быстрее, чем галактики эллиптические. Не следует забывать, что они образовались из быстро вращающихся вихрей. Поэтому в создании спиральных галактик участвовали и гравитационная центробежная силы.

Если бы из нашей галактики через сто миллионов лет после ее возникновения (это время формирования сферической составляющей) улетучился весь межзвездный водород, новые звезды не смогли бы рождаться, и наша галактика стала бы эллиптической.

Но межзвездный газ в те далекие времена не улетучился, и, таким образом гравитация и вращение могли продолжать строительство нашей и других спиральных галактик. На каждый атом межзвездного газа действовали две силы гравитация, притягивающая его к центру галактики и центробежная сила, выталкивающая его по направлению от оси вращения. В конечном итоге газ сжимался по направлению к галактической плоскости. В настоящее время межзвездный газ сконцентрирован к галактической плоскости в весьма тонкий слой. Он сосредоточен прежде всего в спиральных рукавах и представляет собой плоскую или промежуточную составляющую, названную звездным населением второго типа. На каждом этапе сплющивания межзвездного газа во все более утончающемся диске рождались звезды. Поэтому в нашей галактике можно найти, как старые, возникшие примерно десять миллиардов лет назад, так и звезды родившиеся недавно в спиральных рукавах, в так называемых ассоциациях и рассеянных скоплениях. Можно сказать, что чем более сплющена система, в которой родились звезды, тем она моложе.

Дальнейшее развитие науки покажет, какие из сегодняшних представлений о происхождении галактик и звезд окажутся правильными. Но уже теперь нет сомнения в том, что звезды, во- первых, подчиняясь законам природы, рождаются, живут и умирают, а не есть однажды созданные и вечно неизменные объекты Вселенной, и, во вторых, звезды рождаются группами, причем процесс звездообразования продолжается в настоящее время.

1. А. В. Засов, К. А. Постнов. Галактики и скопления галактик // Общая астрофизика. — Фрязино: Век 2, 2006

2. А. В. Засов, К. А. Постнов. Общая астрофизика. — Фрязино: Век 2, 2006.

3. Левченко И. В. Многоликая Вселенная // Открытия и гипотезы, ТОВ «Интеллект Медиа»

4. И. А. Климишин Астрономия наших дней 3-е изд., перераб., и доп. М.: Наука. Гл. ред. физ. мат. лит. 1986

5. Шварцшильд М., Строение и эволюция звезд, пер. с англ., M., 1961

6. Масевич А. Г., Тутуков А. В., Эволюция звезд; теория и наблюдения, M., 1988

www.ronl.ru

Реферат: Эволюция галактик и звезд

 

 

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ – ВЫСШАЯ ШКОЛА ЭКОНОМИКИ

САНКТ-ПЕТЕРБУРГСКИЙ ФИЛИАЛ

 

Факультет сокращенных программ подготовки специалистов

 

         

 

           Реферат

 

             Предмет     Концепции современного естествознания.

на тему: _«Эволюция галактик и звезд»_____

 

 

                             Работу выполнил: Денисова В.П.

                                           Группа_483_

 Работу проверил: Кудрина А.Н.

 

 

 

 

 

 

Санкт-Петербург

2011г

Оглавление

Введение. 3

Термоядерный синтез в недрах звёзд. 5

Этапы эволюции звезд. 5

Рождение звёзд. 5

Молодые звёзды. 6

Молодые звёзды промежуточной массы. 7

Молодые звёзды с массой больше 8 солнечных масс. 7

Середина жизненного цикла звезды. 8

Зрелость. 8

Поздние годы и гибель звёзд. 9

Старые звёзды с малой массой. 9

Звёзды среднего размера. 9

Белые карлики. 10

Сверхмассивные звёзды. 11

Нейтронные звёзды. 12

Чёрные дыры. 13

Взгляды различных ученых на процессы рождения и развития галактик. 14

Современные представления о процессах развития и происхождения галактик. 19

Рождение галактик. 20

Заключение. 22

Список литературы: 23

 

 

 

Звезда́ — небесное тело, в котором идут, шли или будут идти термоядерные реакции. Но чаще всего звездой называют небесное тело, в котором идут в данный момент термоядерные реакции. Солнце — типичная звезда спектрального класса G. Звёзды представляют собой массивные светящиеся газовые (плазменные) шары. Образуются из газово-пылевой среды (главным образом из водорода и гелия) в результате гравитационного сжатия. Температура вещества в недрах звёзд измеряется миллионами кельвинов, а на их поверхности — тысячами кельвинов. Энергия подавляющего большинства звёзд выделяется в результате термоядерных реакций превращения водорода в гелий, происходящих при высоких температурах во внутренних областях. Звёзды часто называют главными телами Вселенной, поскольку в них заключена основная масса светящегося вещества в природе. Примечательно и то, что звёзды имеют отрицательную теплоёмкость.

Звёздная эволюция в астрономии — последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении сотен тысяч, миллионов или миллиардов лет, пока она излучает свет и тепло. В течение таких колоссальных промежутков времени изменения оказываются весьма значительными.

Изучение звёздной эволюции невозможно наблюдением лишь за одной звездой — многие изменения в звёздах протекают слишком медленно, чтобы быть замеченными даже по прошествии многих веков. Поэтому учёные изучают множество звёзд, каждая из которой находится на определённой стадии жизненного цикла. За последние несколько десятилетий широкое распространение в астрофизике получило моделирование структуры звёзд с использованием вычислительной техники

Галактиками наз. гигантские (до ~1013 звёзд) звёздные системы, расположенные вне нашей Галактики. Их наз. ещё внегалактич. туманностями, т. к. при визуальном наблюдении в телескоп они выглядят туманными пятнышками, как и обычные газовые туманности. Сведения о Г. приводятся в спец. астрономич. каталогах. Из них наиболее известны первый каталог туманностей и звёздных скоплений, составленный в конце 18 в. франц. астрономом Ш. Мессье (в этом каталоге туманность Андромеды, напр., записана под номером 31 и обозначается М 31), и "Новый общий каталог" (1888 г.) англ. астронома Й. Дрейера (сокращённо NGC, в нём туманность Андромеды обозначается NGC 224).

Возникновение галактик — появление крупных гравитационно-связанных скоплений материи, имевшее место в далёком прошлом Вселенной. На данный момент удовлетворительной теории возникновения и эволюции галактик не существует. Есть несколько конкурирующих теорий, объясняющих это явление, но каждая имеет свои серьезные проблемы.

 

 

К 1939 году было установлено, что источником звёздной энергии является происходящий в недрах звёзд термоядерный синтез [2]. Большинство звёзд излучают потому, что в их недрах четыре протона соединяются через ряд промежуточных этапов в одну альфа-частицу. Это превращение может идти двумя основными путями, называемыми протон-протонным или p-p-циклом и углеродно-азотным или CN-циклом. В маломассивных звёздах энерговыделение в основном обеспечивается первым циклом, в тяжёлых — вторым. Запас ядерного топлива в звезде ограничен и постоянно тратится на излучение. Процесс термоядерного синтеза, выделяющий энергию и изменяющий состав вещества звезды, в сочетании с гравитацией, стремящейся сжать звезду и тоже высвобождающей энергию, а также с излучением с поверхности, уносящим выделяемую энергию, являются основными движущими силами звёздной эволюции.

Рождение звёзд.

Эволюция звезды начинается в гигантском молекулярном облаке, также называемым звёздной колыбелью. Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см³. Молекулярное облако же имеет плотность около миллиона молекул на см³. Масса такого облака превышает массу Солнца в 100 000—10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике.

Пока облако свободно вращается вокруг центра родной галактики, то ничего не происходит. Но стоит возникнуть внешнему возмущению, слегка уменьшившему размер облака, то наступает гравитационный коллапс. К примеру, облака могут столкнуться друг с другом, или одно из них может пройти через плотный рукав спиральной галактики. Другим фактором может стать близлежащий взрыв сверхновой звезды, ударная волна которого столкнётся с молекулярным облаком на огромной скорости. Кроме того, возможно столкновение галактик, способное вызвать всплеск звёздообразования, по мере того, как газовые облака в каждой из галактик сжимаются в результате столкновения.

Но так или иначе, размер меняется, и давление молекулярного газа больше не может препятствовать дальнейшему сжатию, газ начинает свободно падать, в масштабе времени: t_{ff}\simeq\frac {1}{\sqrt{G\rho}}К примеру, для Солнца tff = 5 * 107 лет.

По теореме вириала половина высвобождающейся гравитационной энергии уходит на нагрев облака, а половина — на световое излучение. В облаках же давление и плотность нарастают к центру, и коллапс центральной части происходит быстрее, нежели периферии. По мере сжатия длина свободного пробега фотонов уменьшается и облако становится всё менее прозрачным для собственного излучения. Это приводит к более быстрому росту температуры и ещё более быстрому росту давления. В конце концов градиент давления уравновешивает гравитационную силу, образуется гидростатическое ядро, массой порядка 1 % от массы облака. Этот момент мы не видим, глобула давно не прозрачна в оптическом диапазоне. Дальнейшая эволюция протозвезды — это аккреция продолжающего падать вещества. Торможение происходит на поверхности ядра. В конце концов масса вещества исчерпается и звезда проявится в оптическом диапазоне, ознаменовав конец протозвёздной фазы и начало фазы молодой звезды.

Так было бы, если б изначальное молекулярное облако не вращалось. Но все они в той или иной степени вращаются, и по мере уменьшения размера облака растёт и его скорость вращения, которая в определённый момент разделяет вещество на два слоя, которые продолжают коллапсировать независимо друг от друга. Слои в свою очередь также могут быть разорваны увеличившимися центробежными силами. В зависимости от начальной скорости вращения молекулярного облака мы наблюдаем звёздные скопления, двойные звёзды, звёзды с экзопланетами.

Молодые звёзды.

Если рождение звёзд можно описать единым образом, то дальнейший путь развития звезды почти полностью зависит от массы, и лишь в самом конце может сыграть свою роль химический состав.

Молодые звёзды малой массы

Молодые звёзды малой массы (до трёх масс Солнца), находящиеся на подходе к главной последовательности, полностью конвективные. Это ещё по сути протозвёзды, в центре которых только-только начинаются ядерные реакции, и всё излучение происходит в основном из-за гравитационного сжатия. То есть светимость звезды убывает при неизменной эффективной температуре. А на диаграмме Герцшпрунга-Рассела мы видим почти вертикальный трек, называемым треком Хаяcи. По мере приближения молодой звезды к главной последовательности сжатие замедляется. Объекты такого типа ассоциируются со звёздами типа T Тельца.

В это время для звёзд массой больше, чем 0,8 масс Солнца, ядро становится прозрачным для излучения, и возобладает лучистый перенос энергии в ядре, а наверху оболочка остаётся конвективной. Какими прибывают на главную последовательность звёзды меньшей массы, достоверно никто не знает, так как время нахождения этих звёзд в разряде молодых превышает возраст Вселенной. Все наши представления об эволюции этих звёзд держатся на численных расчётах.

По мере сжатия звезды, начинает увеличиваться давление вырожденного электронного газа и на каком-то радиусе звезды это давление останавливает рост центральной температуры, а затем начинает её понижать. И для звёзд меньше 0,08 это оказывается фатальным: выделяющейся энергии в ходе ядерных реакций никогда не хватит, чтобы покрыть расходы на излучение. Такие недо-звёзды получили название коричневые карлики, и их судьба — это постоянное сжатие, пока давление вырожденного газа не остановит его, а затем — постепенное остывание с остановкой всех ядерных реакций.

Молодые звёзды промежуточной массы.

Молодые звёзды промежуточной массы (от 2 до 8 массы Солнца) качественно эволюционируют точно так же, как и их меньшие сестры, за тем исключением, что в них нет конвективных зон вплоть до главной последовательности.

Объекты этого типа ассоциируются с т. н. звёздами Ae\Be Хербита неправильными переменными спектрального типа B-F5. У них также наблюдаются диски биполярные джеты. Скорость истечения, светимость и эффективная температура существенно больше, чем для τ Тельца, поэтому они эффективно нагревают и рассеивают остатки протозвёздного облака.

Молодые звёзды с массой больше 8 солнечных масс.

На самом деле это уже нормальные звёзды. Пока накапливалась масса гидростатического ядра, звезда успела проскочить все промежуточные стадии и разогреть ядерные реакции до такой степени, чтобы они компенсировали потери на излучение. У данных звёзд истечение массы и светимость настолько велики, что не просто останавливают коллапсирование оставшихся внешних областей, но толкает их обратно. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака. Скорее всего этим и объясняется отсутствие в нашей галактике звёзд больше чем 100—200 массы Солнца.

Середина жизненного цикла звезды.

Среди сформировавшихся звёзд встречается огромное многообразие цветов и размеров. По спектральному классу они варьируются от горячих голубых до холодных красных, по массе — от 0,08 до более чем 200 солнечных масс[источник не указан 400 дней]. Светимость и цвет звезды зависит от температуры её поверхности, которая, в свою очередь, определяется массой. Все новые звёзды «занимают своё место» на главной последовательности согласно своему химическому составу и массе. Речь не идёт о физическом перемещении звезды — только о её положении на указанной диаграмме, зависящем от параметров звезды. То есть, речь идёт, фактически, лишь об изменении параметров звезды.

Маленькие, холодные красные карлики медленно сжигают запасы водорода и остаются на главной последовательности сотни миллиардов лет, в то время как массивные сверхгиганты уйдут с главной последовательности уже через несколько миллионов лет после формирования.

Звёзды среднего размера, такие как Солнце, остаются на главной последовательности в среднем 10 миллиардов лет. Считается, что Солнце все ещё на ней, так как оно находится в середине своего жизненного цикла. Как только звезда истощает запас водорода в ядре, она уходит с главной последовательности.

Зрелость.

По прошествии от миллиона до нескольких десятков миллиардов лет (в зависимости от начальной массы) звезда истощает водородные ресурсы ядра. В больших и горячих звёздах это происходит гораздо быстрее, чем в маленьких и более холодных. Истощение запаса водорода приводит к остановке термоядерных реакций.

Без давления, которое производилось этими реакциями и уравновешивало силу собственного гравитационного притяжения звезды, внешние слои начинают сжиматься к ядру. Температура и давление повышаются как во время формирования протозвезды, но на этот раз до гораздо более высокого уровня. Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов К не начнутся термоядерные реакции с участием гелия.

Очень горячее ядро становится причиной чудовищного расширения звезды. Её размер увеличивается приблизительно в 100 раз. Таким образом звезда становится красным гигантом, и фаза горения гелия продолжается около нескольких миллионов лет. Практически все красные гиганты являются переменными звёздами.

То, что происходит в дальнейшем, вновь зависит от массы звезды.

Поздние годы и гибель звёзд.

Старые звёзды с малой массой.

На сегодняшний день достоверно неизвестно, что происходит с лёгкими звёздами после истощения запаса водорода. Поскольку возраст вселенной составляет 13,7 миллиардов лет, что недостаточно для истощения запаса водородного топлива, современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах.

Некоторые звёзды могут синтезировать гелий лишь в некоторых активных участках, что вызывает нестабильность и сильные звёздные ветры. В этом случае образования планетарной туманности не происходит, а звезда лишь испаряется, становясь даже меньше чем коричневый карлик.

Но звезда с массой менее 0,5 солнечной никогда не будет в состоянии преобразовывать гелий даже после того, как в ядре прекратятся реакции с участием водорода. Звёздная оболочка у них недостаточно массивна, чтобы преодолеть давление, производимое ядром. К таким звёздам относятся красные карлики (такие как Проксима Центавра), срок пребывания которых на главной последовательности составляет сотни миллиардов лет. После прекращения в их ядре термоядерных реакций, они, постепенно остывая, будут продолжать слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра.

Звёзды среднего размера.

Туманность Кошачий Глаз — планетарная туманность, сформировавшаяся после гибели звезды, по массе приблизительно равной солнечной

При достижении звездой средней величины (от 0,4 до 3,4 солнечных масс) фазы красного гиганта, её внешние слои продолжают расширяться, ядро сжиматься, и начинаются реакции синтеза углерода из гелия. Синтез высвобождает много энергии, давая звезде временную отсрочку. Для звезды по размеру схожей с Солнцем, этот процесс может занять около миллиарда лет.

Изменения в величине испускаемой энергии заставляют звезду пройти через периоды нестабильности, включающие в себя перемены в размере, температуре поверхности и выпуске энергии. Выпуск энергии смещается в сторону низкочастотного излучения. Все это сопровождается нарастающей потерей массы вследствие сильных звёздных ветров и интенсивных пульсаций. Звёзды, находящиеся в этой фазе, получили название звёзд позднего типа, OH-IR звёзд или Мира-подобных звёзд, в зависимости от их точных характеристик. Выбрасываемый газ относительно богат тяжёлыми элементами, производимыми в недрах звезды, такими как кислород и углерод. Газ образует расширяющуюся оболочку и охлаждается по мере удаления от звезды, делая возможным образование частиц пыли и молекул. При сильном инфракрасном излучении центральной звезды в таких оболочках формируются идеальные условия для активизации мазеров.

Реакции сжигания гелия очень чувствительны к температуре. Иногда это приводит к большой нестабильности. Возникают сильнейшие пульсации, которые в конечном итоге сообщают внешним слоям достаточно кинетической энергии, чтобы быть выброшенными и превратиться в планетарную туманность. В центре туманности остаётся ядро звезды, которое, остывая, превращается в гелиевый белый карлик, как правило, имеющий массу до 0,5-0,6 солнечных и диаметр порядка диаметра Земли.

 Белые карлики.

Вскоре после гелиевой вспышки «загораются» углерод и кислород; каждое из этих событий вызывает сильную перестройку звезды и её быстрое перемещение по диаграмме Герцшпрунга — Рассела. Размер атмосферы звезды увеличивается ещё больше, и она начинает интенсивно терять газ в виде разлетающихся потоков звёздного ветра. Судьба центральной части звезды полностью зависит от её исходной массы: ядро звезды может закончить свою эволюцию как белый карлик (маломассивные звёзды), в случае, если её масса на поздних стадиях эволюции превышает предел Чандрасекара — как нейтронная звезда (пульсар), если же масса превышает предел Оппенгеймера — Волкова — как чёрная дыра. В двух последних случаях завершение эволюции звёзд сопровождается катастрофическими событиями — вспышками сверхновых.

Подавляющее большинство звёзд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится тёмной и невидимой.

У звёзд более массивных, чем Солнце, давление вырожденных электронов не может сдержать сжатие ядра, и оно продолжается до тех пор, пока большинство частиц не превратится в нейтроны, упакованные так плотно, что размер звезды измеряется километрами, а плотность в 100 млн раз превышает плотность воды. Такой объект называют нейтронной звездой; его равновесие поддерживается давлением вырожденного нейтронного вещества.

Сверхмассивные звёзды.

Крабовидная туманность, разлетающиеся остатки взрыва сверхновой, произошедшего почти 1000 лет назад

После того, как внешние слои звезды, с массой большей чем пять солнечных, разлетелись образовав красный сверхгигант, ядро вследствие сил гравитации начинает сжиматься. По мере сжатия увеличиваются температура и плотность, и начинается новая последовательность термоядерных реакций. В таких реакциях синтезируются тяжёлые элементы, что временно сдерживает коллапс ядра.

В конечном итоге, по мере образования всё более тяжёлых элементов периодической системы, из кремния синтезируется железо-56. Вплоть до этого момента синтез элементов высвобождал большое количество энергии, однако именно ядро железа-56 обладает максимальным дефектом массы и образование более тяжёлых ядер невозможно. Поэтому когда железное ядро звезды достигает определённой величины, то давление в нём уже не в состоянии противостоять колоссальной силе гравитации, и происходит незамедлительный коллапс ядра с нейтронизацией его вещества.

То что происходит в дальнейшем, не до конца ясно. Но что бы это ни было, это в считанные секунды приводит к взрыву сверхновой звезды невероятной силы.

Сопутствующий этому всплеск нейтрино провоцирует ударную волну[источник не указан 596 дней]. Сильные струи нейтрино и вращающееся магнитное поле выталкивают большую часть накопленного звездой материала — так называемые рассадочные элементы, включая железо и более лёгкие элементы. Разлетающаяся материя бомбардируется вырываемыми из ядра нейтронами, захватывая их и тем самым создавая набор элементов тяжелее железа, включая радиоактивные, вплоть до урана (а возможно, даже до калифорния). Таким образом, взрывы сверхновых объясняют наличие в межзвёздном веществе элементов тяжелее железа.

Взрывная волна и струи нейтрино уносят материал прочь от умирающей звезды в межзвёздное пространство. В последующем, перемещаясь по космосу, этот материал сверхновой может столкнуться с другим космическим мусором, и возможно, участвовать в образовании новых звёзд, планет или спутников.

Процессы, протекающие при образовании сверхновой, до сих пор изучаются, и пока в этом вопросе нет ясности. Также под вопросом, что же на самом деле остаётся от изначальной звезды. Тем не менее, рассматриваются два варианта:

Нейтронные звёзды.

Известно, что в некоторых сверхновых сильная гравитация в недрах сверхгиганта заставляет электроны упасть на атомное ядро, где они, сливаясь с протонами, образуют нейтроны[источник не указан 322 дня]. Электромагнитные силы, разделяющие близлежащие ядра, исчезают. Ядро звезды теперь представляет собой плотный шар из атомных ядер и отдельных нейтронов.

Такие звёзды, известные, как нейтронные звёзды, чрезвычайно малы — не более размера крупного города, и имеют невообразимо высокую плотность. Период их обращения становится чрезвычайно мал по мере уменьшения размера звезды (благодаря сохранению момента импульса). Некоторые совершают 600 оборотов в секунду. Когда ось, соединяющая северный и южный магнитный полюса этой быстро вращающейся звезды, указывает на Землю, можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Такие нейтронные звёзды получили название «пульсары», и стали первыми открытыми нейтронными звёздами.

 

Чёрные дыры.

Далеко не все сверхновые становятся нейтронными звёздами. Если звезда обладает достаточно большой массой, то коллапс звезды продолжится и сами нейтроны начнут обрушиваться внутрь, пока её радиус не станет меньше Шварцшильдовского. После этого звезда становится чёрной дырой.

Существование чёрных дыр было предсказано общей теорией относительности. Согласно этой теории, материя и информация не может покидать чёрную дыру ни при каких условиях. Тем не менее, квантовая механика, вероятно, делает возможными исключения из этого правила.

Остаётся ряд открытых вопросов. Главный среди них: «А есть ли чёрные дыры вообще?». Ведь чтобы сказать точно, что данный объект — это чёрная дыра, необходимо наблюдать его горизонт событий. Это невозможно сугубо по определению горизонта, но с помощью радиоинтерферометрии со сверхдлинной базой можно определить метрику вблизи объекта, а также зафиксировать быструю, миллисекундную переменность. Эти свойства, наблюдаемые у одного объекта, должны окончательно доказать существование чёрных дыр.

В настоящий момент существуют только косвенные наблюдения. Так, наблюдая светимость ядер активных галактик, можно оценить массу объекта, на который происходит аккреция. Также массу объекта можно оценить по кривой вращения галактики или по частоте обращения близких к объекту звёзд, используя теорему вириала. Для многих галактик масса центра оказывается слишком большой для любого объекта, кроме чёрной дыры. Есть объекты с явной аккрецией вещества на них, но при этом не наблюдается специфического излучения, вызванного ударной волной. Из этого можно сделать вывод, что аккреция не останавливается твёрдой поверхностью звезды, а просто уходит в области очень высокого красного смещения, где согласно с современными представлениями (2009 год) никакой стационарный объект, кроме чёрной дыры, невозможен.

Также открыты вопросы: возможен ли коллапс звезды непосредственно в чёрную дыру, минуя сверхновую? Существуют ли сверхновые, которые впоследствии станут чёрными дырами? Каково точное влияние изначальной массы звезды на формирование объектов в конце её жизненного цикла?

 

К проблеме эволюции галактик ученые начали серьезно подходить в середине 40х годов. Эти годы ознаменовались рядом важных открытий в звездной астрономии. Удалось выяснить, что среди звездных скоплений, рассеянных и шаровых, имеются молодые и старые, и даже оценить их возраст.

Поэтому путь к раскрытию хода эволюции галактик, казалась, намечен сам собой. Нужно было произвести своеобразную перепись населения в галактиках разных типов и сравнить результаты. В каких галактиках: эллиптических или спиральных, в каких классах галактик преобладают более молодые или более старые звезды такое исследование дало бы ясное указание на направление эволюции галактик, позволило бы выяснить эволюционный смысл классификации Хаббла.

Но прежде надо было выяснить численное соотношение между разными типами галактик. Непосредственное изучение фотографий полученные на обсерватории Маунт Вилсон, позволило Хаблу получить следующие результаты эллиптические - 23%, спиральные 59%, спиральные с перемычкой 15%, неправильные 3%.

Однако действительное соотношение численности галактик разных типов оказалось иным. В 1948 г. Московский астроном Ю.И.Ефремов обработал данные каталога галактик Шепли и Эймс и пришел к следующим выводам: эллиптические галактики в среднем на 4 звездные величины слабее спиральных по абсолютной величине. Среди них много галактик карликов. Если учесть это обстоятельство и сделать пересчет количества галактик в единице объема, то окажется, что эллиптические галактики примерно в 100 раз больше чем спиральные.

И так, большая часть спиральных галактик оказалась галактики гиганты, большинство эллиптических галактик галактики карлики. Конечно, среди тех и других существовал некий разброс в размещении, имелись и эллиптические галактики гиганты, но в среднем было именно так.

В 1947 году Х.Шепли обратил внимание на то, что количество ярких сверхгигантов постепенно убывает по мере перехода от неправильных галактик к спиральным, а затем к эллиптическим. Спиралях класса Sа, замечает Шепли, встречаются лишь очень мало звезд большой светимости, а в эллиптических галактиках они практически отсутствуют. Получалось, что молодыми являлись именно неправильные галактики и спирали класса Sс сильно разветвленными ветвями, спирали класса Sа и эллиптические галактики находились на более поздней стадии развития. Шепли тогда же высказал мысль, что переход галактик из одного класса в другой должен был занять громадные сроки и совсем не обязательно имел место. Возможно, что галактики образовались все такими какими мы их наблюдаем, а потом лишь медленно эволюционировали в направлении сглаживания и округления их форм.

Х. Шепли обратил внимание еще на одно важное обстоятельство. Уже давно было известно существование двойных галактик это не случайные совпадения положений, не могли они быть и результатом захвата одной галактики другой. И вот не редко в этих парах галактики существовали спиральные с эллиптическими. Но галактические пары, очевидно, вместе и возникли. Можно ли в этом случае допустить, что они прошли существенно разный путь развития.

В 1949 году советский астроном профессор Б. В. Кукаркин опубликовал важную работу Исследование строения и развития звездных систем на основе изучения переменных звезд . В ней были и новые установленные соотношения, и их глубокий теоретический анализ.

В своей работе Кукаркин обращал внимание на давно обнаруженные, но часто забываемые обстоятельства существования не только пары, но и скопления галактик. Между тем возраст скопления галактик, судя по данным небесной механики, не может превышать 1012 лет. (Здесь Кукаркин явно отдавал дань длинной школе развития звездных систем; в действительности этот предел гораздо меньше.

Таким образом, получалось, что практически одновременно образовались галактики разных форм. Значит, переход каждой галактики за время ее существования из одного типа в другой совсем не обязателен.

К концу сороковых и началу пятидесятых годов в космогонии галактик сложилось несколько направлений.

Представители одного из них пытались построить новую гипотезу образования галактик из каких то первичных, до галактических форм материи. Так Вейзеккер разработал теорию возникновения галактик из вращающейся массы, в которой значительную роль играла турбулентность. По его теории эллиптические галактики находились на самой поздней, а неправильные на самой ранней стадии развитии. Но Вейзеккер ввел существенные уточнение: он показал что в случае турбулентного развития газовых масс в галактике шкала времени такого развития пропорциональна размерам галактик. По этому карликовые эллиптические галактики хотя и находятся на более поздней стадии развития, но могут быть моложе по возрасту, чем гигантские спиральные. Это позволяло устранить возрождение, связанное с тем, что в скоплениях встречаются галактики всех типов. Но тогда должна была существовать зависимость между размерами и стадией эволюции галактик в скоплениях, то есть самые маленькие галактики там должны быть непременно эллиптическими, средние спиральными, а большие неправильными. И хотя между эллиптическими и спиральными галактиками такое соотношение размеров выполнялось, неправильные галактики, будучи меньше спиральных, явно не укладывались в схему Вейзеккера.

Наконец, не согласовывался с этой гипотезой тот факт, что в эллиптических галактиках преобладают старые звезды ( в абсолютной шкале времени). Значит, эллиптические галактики должны быть не только относительно, но и абсолютно старше спиральных. А как же быть с галактиками в скоплениях? Предложение, что эллиптические галактики образовывались раньше, а спиральные возникали в том же скоплении потом, слишком искусственно. К тому же данные о парных галактиках этому противоречат.

Выход из положения наметился благодаря работам В. А. Амбарцумяна и его школы, показавшим, что звездообразование в нашей, а значит и в других галактиках, продолжается в наше время. Поэтому спиральные и неправильные галактики могут изобиловать молодыми звездами из населения I типа не потому, что эти галактики сами молоды, а потому, что в них имеются условия для звездообразования, тогда как в эллиптических галактиках они почему-либо отсутствуют.

В явной связи с этим стоит еще один существенный факт, на который обратил внимание Б. В. Кукаркин в уже упомянутой работе. Н и в о д н о й эллиптической галактике, даже наиболее сжатой (Е7), не обнаружено сконцентрированного к экваториальной плоскости межзвездного диффузного вещества. Обнаруженные в них диффузные включения концентрируются к центру этих галактик. Наоборот, все спиральные галактики богаты сконцентрированным к экваториальной плоскости межзвездным диффузным веществом, которое особенно четко заметно, когда галактика видна с ребра. Об этом же свидетельствуют спектральные наблюдения: линии излучения, принадлежащие межзвездному галактическому газу, обнаружены у 80-90% спиральных галактик и только у 10-20% эллиптических. Правда, не надо забывать, что для образования линий излучения нужен не только газ, но и источник возбуждения свечения, то есть горячие сверхгиганты, а их-то в эллиптических галактиках не хватает.

Приведенный факт, наряду с работами академика Г. А. Шайна и других ученых по изучению связи молодых звезд с диффузными туманностями, побудил в 1951 году. А. И. Лебединского и Л. Э. Гуревича заняться разработкой новой гипотезы образования галактик из межгалактического газа. Их работа была закончена в 1954 году.

А. И. Лебединский, которому принадлежит основная идея гипотезы, исходил из следующих основных предположений:

Галактики образовались из разреженного диффузного вещества, заполнявшего (и заполняющего) Метагалактику.

Галактики возникали не одновременно, так что некоторые из них образовывались, когда другие уже существовали.

Условия в метагалактическом пространстве в период формирования галактик мало отличались от современных.

Ту массу газа, из которой образовалась наша (или какая-либо другая) Галактика, А. И. Лебединский назвал  п р о т о г а л а к т и к о й . Он полагал, что до начала сжатия состояние протогалактики было квазистатическим, то есть почти неизменным. Потом какие-то постепенные количественные изменения состояния протогалактики (например, увеличение плотности) привели к тому, что она начала сжиматься. Этому могли способствовать и потери энергии молекул газа при соударении с твердыми пылинками.

Дальше сжатие протогалактики происходит почти по Джинсу: первоначально сферическая туманность вращается, а сжимаясь, начинает вращаться все быстрее, что приводит к ее уплощению, притом ничем не ограниченному. Но это вовсе не эллиптическая туманность наоборот, пока в протогалактике не возникнут звезды, она не может излучать, и мы не можем ее заметить.

Но вот на некоторой стадии сжатия и уплощения в протогалактике возникают сгущения, сначала большие, в тысячи световых лет диаметром, потом все более и более мелкие. Самые большие дадут потом начало звездным облакам, меньшие звездным скоплениям, еще меньшие звездам. Образование звезд происходит путем гравитационной конденсации, механизм который был уже описан в главе I I I. Звезды появляются в наиболее уплощенных галактиках в спиральных. Спиральные ветви возникают потому, что в сильно уплощенных системах это энергетически выгодно (то есть не требует затраты энергии). Наоборот, при малом уплощении (как у эллиптических галактик, даже класса Е7) ни формирование спиралей, ни образование звездных облаков не возможны.

Но вот образовалось первое поколение звезд, свет горячих сверхгигантов возбудили свечение газа протогалактика превратилась в галактику, стала наблюдаемой. Между тем звездообразование продолжается, галактика живет и эволюционирует. Как же именно это происходит?

Теорию дальнейшей эволюции молодой спиральной галактики разработал Л. Э. Гуревич. Он доказал математически, что с образованием звезд в галактике начинается перераспределение момента количества движения, который выносится с небольшими массами наружу. Система разделяется на центральную часть, ядро, и периферическую часть, сильно сплющенную. Дальше гравитационные взаимодействия звезд и звездных скоплений приводят к постепенному росту отклонения их движений от круговых и к раскачке их в направлении, перпендикулярном экватору галактики. Галактика продолжает сжиматься в направлении ее радиусов, но расширяется вдоль оси. Сплющенность ее уменьшается. Происходит разбрасывание звезд из центральной части галактики во все стороны- образуется сферическая подсистема. А в плоской подсистеме продолжается образование молодых звезд из диффузной материи. Вновь образовавшиеся звезды со временем тоже уйдут из галактической плоскости. Гравитационные взаимодействия разрушат звездные скопления и ассоциации, потом распадутся звездные облака и спиральные ветви. Галактика превратится в эллиптическую. Ввиду исчерпания диффузной материи звездообразование прекратится.

Теория Л. Э. Гуревича объяснила и многие другие проблемы, как, например, образование межзвездных магнитных полей и полей около звезд, процессы ускорения заряженных частиц, образование сложных элементов.

Космогоническая концепция А. И. Лебединского и Л. Э. Гуревича явилась важным этапом в развитии космогонии галактики. Конечно, и в ней были свои слабые стороны. Во-первых, в ней постулировалось существование никем не наблюдавшихся (ни раньше, ни потом) протогалактик. Во-вторых, авторы гипотезы не дали объяснения спиральной структуры галактик, ограничившись замечанием об энергетической выгодности этой структуры. Обсуждение этого вопроса А. И. Лебединский обещал провести во второй части работы. Увы, ни он, не Л. Э. Гуревич так и не сделали этого, и вторая часть работы не была опубликована. Постигла ли авторов теории неудача в их попытке рассмотреть образование спиралей, или их отвлекли другие исследования, - нам не известно.

Работу над этой проблемой продолжил в 1958 году ленинградский теоретик - звездник Т. А. Агекян. Изучив эволюцию вращающихся систем взаимно притягивающихся тел, имеющих форму фигур равновесия, Т. А. Агекян учел возможность их диссипации, то есть покидания системы отдельными ее членами (звездами).

В наше время имеются уже довольно хорошо разработанные модели превращения огромного облака газа сначала в протогалактику, а затем и в галактику. Начнем с самого начала.

Во время эры излучения продолжалось стремительное расширение космической материи, состоящей из фотонов, среди которых встречались свободные протоны или электроны и крайне редко альфа частицы. (Не надо забывать, что фотонов было в миллиард раз больше чем протонов и электронов). В период эры излучения протоны и электроны в основном оставались без изменений, уменьшалась только их скорость. С фотонами дело обстояло намного сложнее. Хотя скорость их осталась прежней, в течении эры излучения гамма фотоны постепенно превращались в фотоны рентгеновские, ультрафиолетовые и фотоны света. Вещество и фотоны к концу эры остыли уже настолько, что каждому из протонов мог, присоединится один электрон. При этом происходило излучение одного ультрафиолетового фотона (или же нескольких фотонов света) и, таким образом, возник атом водорода. Это была первая система частиц во Вселенной.

С возникновением атомов водорода начинается звездная эра эра частиц, точнее говоря, эра протонов и электронов.

Вселенная вступает в звездную эру в форме водородного газа с огромным количеством световых и ультрафиолетовых фотонов. Водородный газ расширялся в различных частях Вселенной с разной скоростью. Неодинаковой была так же и его плотность. Он образовывал огромные сгустки, во много миллионов световых лет. Масса таких космических водородных сгустков была в сотни тысяч, а то и в миллионы раз больше, чем масса нашей теперешней Галактики. Расширение газа внутри сгустков шло медленнее, чем расширение разреженного водорода между самими сгущениями. Позднее из отдельных участков с помощью собственного притяжения образовались сверхгалактики и скопления галактик. Итак, крупнейшие структурные единицы Вселенной - сверхгалактики - являются результатом неравномерного распределения водорода, которое происходило на ранних этапах истории Вселенной.

Рождение галактик

Колоссальные водородные сгущения зародыш сверх галактики и скоплений галактик  медленно вращались. Внутри их образовывались вихри, похожие на водовороты. Их диаметр достигал примерно ста тысяч световых лет. Мы называем эти системы протогалактиками, то есть зародыш галактик. Несмотря на свои невероятные размеры, вихри протогалактик были всего лишь ничтожной частью сверхгалактик и по размеру не превышали одну тысячную сверхгалактики. Сила гравитации образовывала из этих вихрей системы звезд, которые мы называем галактиками. Некоторые из галактик до сих пор напоминают нам гигантское завихрение.

Астрономические исследования показывают, что скорость вращения завихрения предопределила форму галактик, родившейся из этого вихря. Выражаясь научным языком, скорость осевого ращения определяет тип будущей галактики. Из медленно вращающихся вихрей возникли эллиптические галактики, в то время как из быстро вращающихся родились сплющенные спиральные галактики.

В результате силы тяготения очень медленно вращающийся вихрь сжимался в шар или несколько сплюснутый эллипсоид. Размеры такого правильного гигантского водородного облака были от нескольких десятков до нескольких сотен тысяч световых лет. Не трудно определить, какие из водородных атомов вошли в состав рождающейся эллиптической, точнее говоря эллипсоидальной галактики, а какие остались в космическом пространстве вне ее. Если энергия связи сил гравитации атома на периферии превышала его кинетическую энергию, атом становился составной частью галактики. Это условие называется критерием Джинса. С его помощью можно определить, в какой степени зависела масса и величена протогалактики от плотности и температуры водородного газа.

Протогалактика, которая вообще не вращалась, становилась родоначальницей шаровой галактики. Сплющенные эллиптические галактики рождались из медленно вращающихся протогалактик. Из-за недостаточной центробежной силы преобладала сила гравитационная. Протогалактика сжималась и плотность водорода в ней возрастала. Как только плотность достигала определенного уровня, начали выделяться и сжиматься сгустки водорода. Рождались протозвезды, которые позже эволюционировали в звезды. Рождение всех звезд в шаровой или слегка приплюснутой галактике происходило почти одновременно. Этот процесс продолжается относительно недолго, примерно сто миллионов лет. Это значит, что в эллиптических галактиках все звезды приблизительно одинакового возраста, то есть очень старые. В эллиптических галактиках весь водород был исчерпан сразу же в самом начале, примерно в первую сотую существования галактики. На протяжении последующих 99 сотых этого периода звезды уже не могли возникать. Таким образом, в эллиптических галактиках количество межзвездного вещества ничтожно.

Спиральные галактики, в том числе и наша, состоят из очень старой сферической составляющей (в этом они похожи на эллиптические галактики) и из более молодой плоской составляющей, находящейся в спиральных рукавах. Между этими составляющими существует несколько переходных компонентов разного уровня сплюснутости, разного возраста и скорости вращения. Строение спиральных галактик, таким образом, сложнее и разнообразнее, чем строение эллиптических. Спиральные галактики кроме того вращаются значительно быстрее, чем галактики эллиптические. Не следует забывать, что они образовались из быстро вращающихся вихрей. Поэтому в создании спиральных галактик участвовали и гравитационная центробежная силы.

Если бы из нашей галактики через сто миллионов лет после ее возникновения (это время формирования сферической составляющей) улетучился весь межзвездный водород, новые звезды не смогли бы рождаться, и наша галактика стала бы эллиптической.

Но межзвездный газ в те далекие времена не улетучился, и, таким образом гравитация и вращение могли продолжать строительство нашей и других спиральных галактик. На каждый атом межзвездного газа действовали две силы гравитация, притягивающая его к центру галактики и центробежная сила, выталкивающая его по направлению от оси вращения. В конечном итоге газ сжимался по направлению к галактической плоскости. В настоящее время межзвездный газ сконцентрирован к галактической плоскости в весьма тонкий слой. Он сосредоточен прежде всего в спиральных рукавах и представляет собой плоскую или промежуточную составляющую, названную звездным населением второго типа.  На каждом этапе сплющивания межзвездного газа во все более утончающемся диске рождались звезды. Поэтому в нашей галактике можно найти, как старые, возникшие примерно десять миллиардов лет назад, так и звезды родившиеся недавно в спиральных рукавах, в так называемых ассоциациях и рассеянных скоплениях. Можно сказать, что чем более сплющена система, в которой родились звезды, тем она моложе.

Дальнейшее развитие науки покажет, какие из сегодняшних представлений о происхождении галактик и звезд окажутся правильными. Но уже теперь нет сомнения в том, что звезды, во- первых, подчиняясь законам природы, рождаются, живут и умирают, а не есть однажды созданные и вечно неизменные объекты Вселенной, и, во вторых, звезды рождаются группами, причем процесс звездообразования продолжается в настоящее время.

 

1.      А. В. Засов, К. А. Постнов. Галактики и скопления галактик // Общая астрофизика. — Фрязино: Век 2, 2006

2.      А. В. Засов, К. А. Постнов. Общая астрофизика. — Фрязино: Век 2, 2006.

3.      Левченко И. В. Многоликая Вселенная // Открытия и гипотезы, ТОВ «Интеллект Медиа»

4.      И. А. Климишин Астрономия наших дней  3-е изд., перераб., и доп. М.: Наука. Гл. ред. физ. мат. лит. 1986

5.      Шварцшильд М., Строение и эволюция звезд, пер. с англ., M., 1961

6.      Масевич А. Г., Тутуков А. В., Эволюция звезд; теория и наблюдения, M., 1988

www.referatmix.ru

Эволюция галактик и звезд

 

 

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ – ВЫСШАЯ ШКОЛА ЭКОНОМИКИ

САНКТ-ПЕТЕРБУРГСКИЙ ФИЛИАЛ

 

Факультет сокращенных программ подготовки специалистов

 

         

 

           Реферат

 

             Предмет     Концепции современного естествознания.

на тему: _«Эволюция галактик и звезд»_____

 

 

                             Работу выполнил: Денисова В.П.

                                           Группа_483_

 Работу проверил: Кудрина А.Н.

 

 

 

 

 

 

Санкт-Петербург

2011г

Оглавление

Введение. 2

Термоядерный синтез в недрах звёзд. 2

Этапы эволюции звезд. 2

Рождение звёзд. 2

Молодые звёзды. 2

Молодые звёзды промежуточной массы. 2

Молодые звёзды с массой больше 8 солнечных масс. 2

Середина жизненного цикла звезды. 2

Зрелость. 2

Поздние годы и гибель звёзд. 2

Старые звёзды с малой массой. 2

Звёзды среднего размера. 2

Белые карлики. 2

Сверхмассивные звёзды. 2

Нейтронные звёзды. 2

Чёрные дыры. 2

Взгляды различных ученых на процессы рождения и развития галактик. 2

Современные представления о процессах развития и происхождения галактик. 2

Рождение галактик. 2

Заключение. 2

Список литературы: 2

 

 

 

 

Звезда́ — небесное тело, в котором идут, шли или будут идти термоядерные реакции. Но чаще всего звездой называют небесное тело, в котором идут в данный момент термоядерные реакции. Солнце — типичная звезда спектрального класса G. Звёзды представляют собой массивные светящиеся газовые (плазменные) шары. Образуются из газово-пылевой среды (главным образом из водорода и гелия) в результате гравитационного сжатия. Температура вещества в недрах звёзд измеряется миллионами кельвинов, а на их поверхности — тысячами кельвинов. Энергия подавляющего большинства звёзд выделяется в результате термоядерных реакций превращения водорода в гелий, происходящих при высоких температурах во внутренних областях. Звёзды часто называют главными телами Вселенной, поскольку в них заключена основная масса светящегося вещества в природе. Примечательно и то, что звёзды имеют отрицательную теплоёмкость.

Звёздная эволюция в астрономии — последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении сотен тысяч, миллионов или миллиардов лет, пока она излучает свет и тепло. В течение таких колоссальных промежутков времени изменения оказываются весьма значительными.

Изучение звёздной эволюции невозможно наблюдением лишь за одной звездой — многие изменения в звёздах протекают слишком медленно, чтобы быть замеченными даже по прошествии многих веков. Поэтому учёные изучают множество звёзд, каждая из которой находится на определённой стадии жизненного цикла. За последние несколько десятилетий широкое распространение в астрофизике получило моделирование структуры звёзд с использованием вычислительной техники

Галактиками наз. гигантские (до ~1013 звёзд) звёздные системы, расположенные вне нашей Галактики. Их наз. ещё внегалактич. туманностями, т. к. при визуальном наблюдении в телескоп они выглядят туманными пятнышками, как и обычные газовые туманности. Сведения о Г. приводятся в спец. астрономич. каталогах. Из них наиболее известны первый каталог туманностей и звёздных скоплений, составленный в конце 18 в. франц. астрономом Ш. Мессье (в этом каталоге туманность Андромеды, напр., записана под номером 31 и обозначается М 31), и "Новый общий каталог" (1888 г.) англ. астронома Й. Дрейера (сокращённо NGC, в нём туманность Андромеды обозначается NGC 224).

Возникновение галактик — появление крупных гравитационно-связанных скоплений материи, имевшее место в далёком прошлом Вселенной. На данный момент удовлетворительной теории возникновения и эволюции галактик не существует. Есть несколько конкурирующих теорий, объясняющих это явление, но каждая имеет свои серьезные проблемы.

 

 

 

 

 

 

К 1939 году было установлено, что источником звёздной энергии является происходящий в недрах звёзд термоядерный синтез [2]. Большинство звёзд излучают потому, что в их недрах четыре протона соединяются через ряд промежуточных этапов в одну альфа-частицу. Это превращение может идти двумя основными путями, называемыми протон-протонным или p-p-циклом и углеродно-азотным или CN-циклом. В маломассивных звёздах энерговыделение в основном обеспечивается первым циклом, в тяжёлых — вторым. Запас ядерного топлива в звезде ограничен и постоянно тратится на излучение. Процесс термоядерного синтеза, выделяющий энергию и изменяющий состав вещества звезды, в сочетании с гравитацией, стремящейся сжать звезду и тоже высвобождающей энергию, а также с излучением с поверхности, уносящим выделяемую энергию, являются основными движущими силами звёздной эволюции.

Рождение звёзд.

Эволюция звезды начинается в гигантском молекулярном облаке, также называемым звёздной колыбелью. Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см³. Молекулярное облако же имеет плотность около миллиона молекул на см³. Масса такого облака превышает массу Солнца в 100 000—10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике.

Пока облако свободно вращается вокруг центра родной галактики, то ничего не происходит. Но стоит возникнуть внешнему возмущению, слегка уменьшившему размер облака, то наступает гравитационный коллапс. К примеру, облака могут столкнуться друг с другом, или одно из них может пройти через плотный рукав спиральной галактики. Другим фактором может стать близлежащий взрыв сверхновой звезды, ударная волна которого столкнётся с молекулярным облаком на огромной скорости. Кроме того, возможно столкновение галактик, способное вызвать всплеск звёздообразования, по мере того, как газовые облака в каждой из галактик сжимаются в результате столкновения.

Но так или иначе, размер меняется, и давление молекулярного газа больше не может препятствовать дальнейшему сжатию, газ начинает свободно падать, в масштабе времени: t_{ff}simeqfrac {1}{sqrt{Grho}}К примеру, для Солнца tff = 5 * 107 лет.

По теореме вириала половина высвобождающейся гравитационной энергии уходит на нагрев облака, а половина — на световое излучение. В облаках же давление и плотность нарастают к центру, и коллапс центральной части происходит быстрее, нежели периферии. По мере сжатия длина свободного пробега фотонов уменьшается и облако становится всё менее прозрачным для собственного излучения. Это приводит к более быстрому росту температуры и ещё более быстрому росту давления. В конце концов градиент давления уравновешивает гравитационную силу, образуется гидростатическое ядро, массой порядка 1 % от массы облака. Этот момент мы не видим, глобула давно не прозрачна в оптическом диапазоне. Дальнейшая эволюция протозвезды — это аккреция продолжающего падать вещества. Торможение происходит на поверхности ядра. В конце концов масса вещества исчерпается и звезда проявится в оптическом диапазоне, ознаменовав конец протозвёздной фазы и начало фазы молодой звезды.

Так было бы, если б изначальное молекулярное облако не вращалось. Но все они в той или иной степени вращаются, и по мере уменьшения размера облака растёт и его скорость вращения, которая в определённый момент разделяет вещество на два слоя, которые продолжают коллапсировать независимо друг от друга. Слои в свою очередь также могут быть разорваны увеличившимися центробежными силами. В зависимости от начальной скорости вращения молекулярного облака мы наблюдаем звёздные скопления, двойные звёзды, звёзды с экзопланетами.

Молодые звёзды.

Если рождение звёзд можно описать единым образом, то дальнейший путь развития звезды почти полностью зависит от массы, и лишь в самом конце может сыграть свою роль химический состав.

Молодые звёзды малой массы

Молодые звёзды малой массы (до трёх масс Солнца), находящиеся на подходе к главной последовательности, полностью конвективные. Это ещё по сути протозвёзды, в центре которых только-только начинаются ядерные реакции, и всё излучение происходит в основном из-за гравитационного сжатия. То есть светимость звезды убывает при неизменной эффективной температуре. А на диаграмме Герцшпрунга-Рассела мы видим почти вертикальный трек, называемым треком Хаяcи. По мере приближения молодой звезды к главной последовательности сжатие замедляется. Объекты такого типа ассоциируются со звёздами типа T Тельца.

В это время для звёзд массой больше, чем 0,8 масс Солнца, ядро становится прозрачным для излучения, и возобладает лучистый перенос энергии в ядре, а наверху оболочка остаётся конвективной. Какими прибывают на главную последовательность звёзды меньшей массы, достоверно никто не знает, так как время нахождения этих звёзд в разряде молодых превышает возраст Вселенной. Все наши представления об эволюции этих звёзд держатся на численных расчётах.

По мере сжатия звезды, начинает увеличиваться давление вырожденного электронного газа и на каком-то радиусе звезды это давление останавливает рост центральной температуры, а затем начинает её понижать. И для звёзд меньше 0,08 это оказывается фатальным: выделяющейся энергии в ходе ядерных реакций никогда не хватит, чтобы покрыть расходы на излучение. Такие недо-звёзды получили название коричневые карлики, и их судьба — это постоянное сжатие, пока давление вырожденного газа не остановит его, а затем — постепенное остывание с остановкой всех ядерных реакций.

Молодые звёзды промежуточной массы.

Молодые звёзды промежуточной массы (от 2 до 8 массы Солнца) качественно эволюционируют точно так же, как и их меньшие сестры, за тем исключением, что в них нет конвективных зон вплоть до главной последовательности.

Объекты этого типа ассоциируются с т. н. звёздами AeBe Хербита неправильными переменными спектрального типа B-F5. У них также наблюдаются диски биполярные джеты. Скорость истечения, светимость и эффективная температура существенно больше, чем для τ Тельца, поэтому они эффективно нагревают и рассеивают остатки протозвёздного облака.

Молодые звёзды с массой больше 8 солнечных масс.

На самом деле это уже нормальные звёзды. Пока накапливалась масса гидростатического ядра, звезда успела проскочить все промежуточные стадии и разогреть ядерные реакции до такой степени, чтобы они компенсировали потери на излучение. У данных звёзд истечение массы и светимость настолько велики, что не просто останавливают коллапсирование оставшихся внешних областей, но толкает их обратно. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака. Скорее всего этим и объясняется отсутствие в нашей галактике звёзд больше чем 100—200 массы Солнца.

Середина жизненного цикла звезды.

Среди сформировавшихся звёзд встречается огромное многообразие цветов и размеров. По спектральному классу они варьируются от горячих голубых до холодных красных, по массе — от 0,08 до более чем 200 солнечных масс[источник не указан 400 дней]. Светимость и цвет звезды зависит от температуры её поверхности, которая, в свою очередь, определяется массой. Все новые звёзды «занимают своё место» на главной последовательности согласно своему химическому составу и массе. Речь не идёт о физическом перемещении звезды — только о её положении на указанной диаграмме, зависящем от параметров звезды. То есть, речь идёт, фактически, лишь об изменении параметров звезды.

Маленькие, холодные красные карлики медленно сжигают запасы водорода и остаются на главной последовательности сотни миллиардов лет, в то время как массивные сверхгиганты уйдут с главной последовательности уже через несколько миллионов лет после формирования.

Звёзды среднего размера, такие как Солнце, остаются на главной последовательности в среднем 10 миллиардов лет. Считается, что Солнце все ещё на ней, так как оно находится в середине своего жизненного цикла. Как только звезда истощает запас водорода в ядре, она уходит с главной последовательности.

Зрелость.

По прошествии от миллиона до нескольких десятков миллиардов лет (в зависимости от начальной массы) звезда истощает водородные ресурсы ядра. В больших и горячих звёздах это происходит гораздо быстрее, чем в маленьких и более холодных. Истощение запаса водорода приводит к остановке термоядерных реакций.

Без давления, которое производилось этими реакциями и уравновешивало силу собственного гравитационного притяжения звезды, внешние слои начинают сжиматься к ядру. Температура и давление повышаются как во время формирования протозвезды, но на этот раз до гораздо более высокого уровня. Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов К не начнутся термоядерные реакции с участием гелия.

Очень горячее ядро становится причиной чудовищного расширения звезды. Её размер увеличивается приблизительно в 100 раз. Таким образом звезда становится красным гигантом, и фаза горения гелия продолжается около нескольких миллионов лет. Практически все красные гиганты являются переменными звёздами.

То, что происходит в дальнейшем, вновь зависит от массы звезды.

Поздние годы и гибель звёзд.

Старые звёзды с малой массой.

На сегодняшний день достоверно неизвестно, что происходит с лёгкими звёздами после истощения запаса водорода. Поскольку возраст вселенной составляет 13,7 миллиардов лет, что недостаточно для истощения запаса водородного топлива, современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах.

Некоторые звёзды могут синтезировать гелий лишь в некоторых активных участках, что вызывает нестабильность и сильные звёздные ветры. В этом случае образования планетарной туманности не происходит, а звезда лишь испаряется, становясь даже меньше чем коричневый карлик.

Но звезда с массой менее 0,5 солнечной никогда не будет в состоянии преобразовывать гелий даже после того, как в ядре прекратятся реакции с участием водорода. Звёздная оболочка у них недостаточно массивна, чтобы преодолеть давление, производимое ядром. К таким звёздам относятся красные карлики (такие как Проксима Центавра), срок пребывания которых на главной последовательности составляет сотни миллиардов лет. После прекращения в их ядре термоядерных реакций, они, постепенно остывая, будут продолжать слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра.

Звёзды среднего размера.

Туманность Кошачий Глаз — планетарная туманность, сформировавшаяся после гибели звезды, по массе приблизительно равной солнечной

При достижении звездой средней величины (от 0,4 до 3,4 солнечных масс) фазы красного гиганта, её внешние слои продолжают расширяться, ядро сжиматься, и начинаются реакции синтеза углерода из гелия. Синтез высвобождает много энергии, давая звезде временную отсрочку. Для звезды по размеру схожей с Солнцем, этот процесс может занять около миллиарда лет.

Изменения в величине испускаемой энергии заставляют звезду пройти через периоды нестабильности, включающие в себя перемены в размере, температуре поверхности и выпуске энергии. Выпуск энергии смещается в сторону низкочастотного излучения. Все это сопровождается нарастающей потерей массы вследствие сильных звёздных ветров и интенсивных пульсаций. Звёзды, находящиеся в этой фазе, получили название звёзд позднего типа, OH-IR звёзд или Мира-подобных звёзд, в зависимости от их точных характеристик. Выбрасываемый газ относительно богат тяжёлыми элементами, производимыми в недрах звезды, такими как кислород и углерод. Газ образует расширяющуюся оболочку и охлаждается по мере удаления от звезды, делая возможным образование частиц пыли и молекул. При сильном инфракрасном излучении центральной звезды в таких оболочках формируются идеальные условия для активизации мазеров.

Реакции сжигания гелия очень чувствительны к температуре. Иногда это приводит к большой нестабильности. Возникают сильнейшие пульсации, которые в конечном итоге сообщают внешним слоям достаточно кинетической энергии, чтобы быть выброшенными и превратиться в планетарную туманность. В центре туманности остаётся ядро звезды, которое, остывая, превращается в гелиевый белый карлик, как правило, имеющий массу до 0,5-0,6 солнечных и диаметр порядка диаметра Земли.

 Белые карлики.

Вскоре после гелиевой вспышки «загораются» углерод и кислород; каждое из этих событий вызывает сильную перестройку звезды и её быстрое перемещение по диаграмме Герцшпрунга — Рассела. Размер атмосферы звезды увеличивается ещё больше, и она начинает интенсивно терять газ в виде разлетающихся потоков звёздного ветра. Судьба центральной части звезды полностью зависит от её исходной массы: ядро звезды может закончить свою эволюцию как белый карлик (маломассивные звёзды), в случае, если её масса на поздних стадиях эволюции превышает предел Чандрасекара — как нейтронная звезда (пульсар), если же масса превышает предел Оппенгеймера — Волкова — как чёрная дыра. В двух последних случаях завершение эволюции звёзд сопровождается катастрофическими событиями — вспышками сверхновых.

Подавляющее большинство звёзд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится тёмной и невидимой.

У звёзд более массивных, чем Солнце, давление вырожденных электронов не может сдержать сжатие ядра, и оно продолжается до тех пор, пока большинство частиц не превратится в нейтроны, упакованные так плотно, что размер звезды измеряется километрами, а плотность в 100 млн раз превышает плотность воды. Такой объект называют нейтронной звездой; его равновесие поддерживается давлением вырожденного нейтронного вещества.

Сверхмассивные звёзды.

Крабовидная туманность, разлетающиеся остатки взрыва сверхновой, произошедшего почти 1000 лет назад

После того, как внешние слои звезды, с массой большей чем пять солнечных, разлетелись образовав красный сверхгигант, ядро вследствие сил гравитации начинает сжиматься. По мере сжатия увеличиваются температура и плотность, и начинается новая последовательность термоядерных реакций. В таких реакциях синтезируются тяжёлые элементы, что временно сдерживает коллапс ядра.

В конечном итоге, по мере образования всё более тяжёлых элементов периодической системы, из кремния синтезируется железо-56. Вплоть до этого момента синтез элементов высвобождал большое количество энергии, однако именно ядро железа-56 обладает максимальным дефектом массы и образование более тяжёлых ядер невозможно. Поэтому когда железное ядро звезды достигает определённой величины, то давление в нём уже не в состоянии противостоять колоссальной силе гравитации, и происходит незамедлительный коллапс ядра с нейтронизацией его вещества.

То что происходит в дальнейшем, не до конца ясно. Но что бы это ни было, это в считанные секунды приводит к взрыву сверхновой звезды невероятной силы.

Сопутствующий этому всплеск нейтрино провоцирует ударную волну[источник не указан 596 дней]. Сильные струи нейтрино и вращающееся магнитное поле выталкивают большую часть накопленного звездой материала — так называемые рассадочные элементы, включая железо и более лёгкие элементы. Разлетающаяся материя бомбардируется вырываемыми из ядра нейтронами, захватывая их и тем самым создавая набор элементов тяжелее железа, включая радиоактивные, вплоть до урана (а возможно, даже до калифорния). Таким образом, взрывы сверхновых объясняют наличие в межзвёздном веществе элементов тяжелее железа.

Взрывная волна и струи нейтрино уносят материал прочь от умирающей звезды в межзвёздное пространство. В последующем, перемещаясь по космосу, этот материал сверхновой может столкнуться с другим космическим мусором, и возможно, участвовать в образовании новых звёзд, планет или спутников.

Процессы, протекающие при образовании сверхновой, до сих пор изучаются, и пока в этом вопросе нет ясности. Также под вопросом, что же на самом деле остаётся от изначальной звезды. Тем не менее, рассматриваются два варианта:

Нейтронные звёзды.

Известно, что в некоторых сверхновых сильная гравитация в недрах сверхгиганта заставляет электроны упасть на атомное ядро, где они, сливаясь с протонами, образуют нейтроны[источник не указан 322 дня]. Электромагнитные силы, разделяющие близлежащие ядра, исчезают. Ядро звезды теперь представляет собой плотный шар из атомных ядер и отдельных нейтронов.

Такие звёзды, известные, как нейтронные звёзды, чрезвычайно малы — не более размера крупного города, и имеют невообразимо высокую плотность. Период их обращения становится чрезвычайно мал по мере уменьшения размера звезды (благодаря сохранению момента импульса). Некоторые совершают 600 оборотов в секунду. Когда ось, соединяющая северный и южный магнитный полюса этой быстро вращающейся звезды, указывает на Землю, можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Такие нейтронные звёзды получили название «пульсары», и стали первыми открытыми нейтронными звёздами.

 

Чёрные дыры.

Далеко не все сверхновые становятся нейтронными звёздами. Если звезда обладает достаточно большой массой, то коллапс звезды продолжится и сами нейтроны начнут обрушиваться внутрь, пока её радиус не станет меньше Шварцшильдовского. После этого звезда становится чёрной дырой.

Существование чёрных дыр было предсказано общей теорией относительности. Согласно этой теории, материя и информация не может покидать чёрную дыру ни при каких условиях. Тем не менее, квантовая механика, вероятно, делает возможными исключения из этого правила.

Остаётся ряд открытых вопросов. Главный среди них: «А есть ли чёрные дыры вообще?». Ведь чтобы сказать точно, что данный объект — это чёрная дыра, необходимо наблюдать его горизонт событий. Это невозможно сугубо по определению горизонта, но с помощью радиоинтерферометрии со сверхдлинной базой можно определить метрику вблизи объекта, а также зафиксировать быструю, миллисекундную переменность. Эти свойства, наблюдаемые у одного объекта, должны окончательно доказать существование чёрных дыр.

В настоящий момент существуют только косвенные наблюдения. Так, наблюдая светимость ядер активных галактик, можно оценить массу объекта, на который происходит аккреция. Также массу объекта можно оценить по кривой вращения галактики или по частоте обращения близких к объекту звёзд, используя теорему вириала. Для многих галактик масса центра оказывается слишком большой для любого объекта, кроме чёрной дыры. Есть объекты с явной аккрецией вещества на них, но при этом не наблюдается специфического излучения, вызванного ударной волной. Из этого можно сделать вывод, что аккреция не останавливается твёрдой поверхностью звезды, а просто уходит в области очень высокого красного смещения, где согласно с современными представлениями (2009 год) никакой стационарный объект, кроме чёрной дыры, невозможен.

Также открыты вопросы: возможен ли коллапс звезды непосредственно в чёрную дыру, минуя сверхновую? Существуют ли сверхновые, которые впоследствии станут чёрными дырами? Каково точное влияние изначальной массы звезды на формирование объектов в конце её жизненного цикла?

 

К проблеме эволюции галактик ученые начали серьезно подходить в середине 40х годов. Эти годы ознаменовались рядом важных открытий в звездной астрономии. Удалось выяснить, что среди звездных скоплений, рассеянных и шаровых, имеются молодые и старые, и даже оценить их возраст.

Поэтому путь к раскрытию хода эволюции галактик, казалась, намечен сам собой. Нужно было произвести своеобразную перепись населения в галактиках разных типов и сравнить результаты. В каких галактиках: эллиптических или спиральных, в каких классах галактик преобладают более молодые или более старые звезды такое исследование дало бы ясное указание на направление эволюции галактик, позволило бы выяснить эволюционный смысл классификации Хаббла.

Но прежде надо было выяснить численное соотношение между разными типами галактик. Непосредственное изучение фотографий полученные на обсерватории Маунт Вилсон, позволило Хабблу получить следующие результаты эллиптические - 23%, спиральные 59%, спиральные с перемычкой 15%, неправильные 3%.

Однако действительное соотношение численности галактик разных типов оказалось иным. В 1948 г. Московский астроном Ю.И.Ефремов обработал данные каталога галактик Шепли и Эймс и пришел к следующим выводам: эллиптические галактики в среднем на 4 звездные величины слабее спиральных по абсолютной величине. Среди них много галактик карликов. Если учесть это обстоятельство и сделать пересчет количества галактик в единице объема, то окажется, что эллиптические галактики примерно в 100 раз больше чем спиральные.

И так, большая часть спиральных галактик оказалась галактики гиганты, большинство эллиптических галактик галактики карлики. Конечно, среди тех и других существовал некий разброс в размещении, имелись и эллиптические галактики гиганты, но в среднем было именно так.

В 1947 году Х.Шепли обратил внимание на то, что количество ярких сверхгигантов постепенно убывает по мере перехода от неправильных галактик к спиральным, а затем к эллиптическим. Спиралях класса Sа, замечает Шепли, встречаются лишь очень мало звезд большой светимости, а в эллиптических галактиках они практически отсутствуют. Получалось, что молодыми являлись именно неправильные галактики и спирали класса Sс сильно разветвленными ветвями, спирали класса Sа и эллиптические галактики находились на более поздней стадии развития. Шепли тогда же высказал мысль, что переход галактик из одного класса в другой должен был занять громадные сроки и совсем не обязательно имел место. Возможно, что галактики образовались все такими какими мы их наблюдаем, а потом лишь медленно эволюционировали в направлении сглаживания и округления их форм.

Х. Шепли обратил внимание еще на одно важное обстоятельство. Уже давно было известно существование двойных галактик это не случайные совпадения положений, не могли они быть и результатом захвата одной галактики другой. И вот не редко в этих парах галактики существовали спиральные с эллиптическими. Но галактические пары, очевидно, вместе и возникли. Можно ли в этом случае допустить, что они прошли существенно разный путь развития.

В 1949 году советский астроном профессор Б. В. Кукаркин опубликовал важную работу Исследование строения и развития звездных систем на основе изучения переменных звезд . В ней были и новые установленные соотношения, и их глубокий теоретический анализ.

В своей работе Кукаркин обращал внимание на давно обнаруженные, но часто забываемые обстоятельства существования не только пары, но и скопления галактик. Между тем возраст скопления галактик, судя по данным небесной механики, не может превышать 1012 лет. (Здесь Кукаркин явно отдавал дань длинной школе развития звездных систем; в действительности этот предел гораздо меньше.

Таким образом, получалось, что практически одновременно образовались галактики разных форм. Значит, переход каждой галактики за время ее существования из одного типа в другой совсем не обязателен.

К концу сороковых и началу пятидесятых годов в космогонии галактик сложилось несколько направлений.

Представители одного из них пытались построить новую гипотезу образования галактик из каких то первичных, до галактических форм материи. Так Вейзеккер разработал теорию возникновения галактик из вращающейся массы, в которой значительную роль играла турбулентность. По его теории эллиптические галактики находились на самой поздней, а неправильные на самой ранней стадии развитии. Но Вейзеккер ввел существенные уточнение: он показал что в случае турбулентного развития газовых масс в галактике шкала времени такого развития пропорциональна размерам галактик. По этому карликовые эллиптические галактики хотя и находятся на более поздней стадии развития, но могут быть моложе по возрасту, чем гигантские спиральные. Это позволяло устранить возрождение, связанное с тем, что в скоплениях встречаются галактики всех типов. Но тогда должна была существовать зависимость между размерами и стадией эволюции галактик в скоплениях, то есть самые маленькие галактики там должны быть непременно эллиптическими, средние спиральными, а большие неправильными. И хотя между эллиптическими и спиральными галактиками такое соотношение размеров выполнялось, неправильные галактики, будучи меньше спиральных, явно не укладывались в схему Вейзеккера.

Наконец, не согласовывался с этой гипотезой тот факт, что в эллиптических галактиках преобладают старые звезды ( в абсолютной шкале времени). Значит, эллиптические галактики должны быть не только относительно, но и абсолютно старше спиральных. А как же быть с галактиками в скоплениях? Предложение, что эллиптические галактики образовывались раньше, а спиральные возникали в том же скоплении потом, слишком искусственно. К тому же данные о парных галактиках этому противоречат.

Выход из положения наметился благодаря работам В. А. Амбарцумяна и его школы, показавшим, что звездообразование в нашей, а значит и в других галактиках, продолжается в наше время. Поэтому спиральные и неправильные галактики могут изобиловать молодыми звездами из населения I типа не потому, что эти галактики сами молоды, а потому, что в них имеются условия для звездообразования, тогда как в эллиптических галактиках они почему-либо отсутствуют.

В явной связи с этим стоит еще один существенный факт, на который обратил внимание Б. В. Кукаркин в уже упомянутой работе. Н и в о д н о й эллиптической галактике, даже наиболее сжатой (Е7), не обнаружено сконцентрированного к экваториальной плоскости межзвездного диффузного вещества. Обнаруженные в них диффузные включения концентрируются к центру этих галактик. Наоборот, все спиральные галактики богаты сконцентрированным к экваториальной плоскости межзвездным диффузным веществом, которое особенно четко заметно, когда галактика видна с ребра. Об этом же свидетельствуют спектральные наблюдения: линии излучения, принадлежащие межзвездному галактическому газу, обнаружены у 80-90% спиральных галактик и только у 10-20% эллиптических. Правда, не надо забывать, что для образования линий излучения нужен не только газ, но и источник возбуждения свечения, то есть горячие сверхгиганты, а их-то в эллиптических галактиках не хватает.

Приведенный факт, наряду с работами академика Г. А. Шайна и других ученых по изучению связи молодых звезд с диффузными туманностями, побудил в 1951 году. А. И. Лебединского и Л. Э. Гуревича заняться разработкой новой гипотезы образования галактик из межгалактического газа. Их работа была закончена в 1954 году.

А. И. Лебединский, которому принадлежит основная идея гипотезы, исходил из следующих основных предположений:

Галактики образовались из разреженного диффузного вещества, заполнявшего (и заполняющего) Метагалактику.

Галактики возникали не одновременно, так что некоторые из них образовывались, когда другие уже существовали.

Условия в метагалактическом пространстве в период формирования галактик мало отличались от современных.

Ту массу газа, из которой образовалась наша (или какая-либо другая) Галактика, А. И. Лебединский назвал  п р о т о г а л а к т и к о й . Он полагал, что до начала сжатия состояние протогалактики было квазистатическим, то есть почти неизменным. Потом какие-то постепенные количественные изменения состояния протогалактики (например, увеличение плотности) привели к тому, что она начала сжиматься. Этому могли способствовать и потери энергии молекул газа при соударении с твердыми пылинками.

Дальше сжатие протогалактики происходит почти по Джинсу: первоначально сферическая туманность вращается, а сжимаясь, начинает вращаться все быстрее, что приводит к ее уплощению, притом ничем не ограниченному. Но это вовсе не эллиптическая туманность наоборот, пока в протогалактике не возникнут звезды, она не может излучать, и мы не можем ее заметить.

Но вот на некоторой стадии сжатия и уплощения в протогалактике возникают сгущения, сначала большие, в тысячи световых лет диаметром, потом все более и более мелкие. Самые большие дадут потом начало звездным облакам, меньшие звездным скоплениям, еще меньшие звездам. Образование звезд происходит путем гравитационной конденсации, механизм который был уже описан в главе I I I. Звезды появляются в наиболее уплощенных галактиках в спиральных. Спиральные ветви возникают потому, что в сильно уплощенных системах это энергетически выгодно (то есть не требует затраты энергии). Наоборот, при малом уплощении (как у эллиптических галактик, даже класса Е7) ни формирование спиралей, ни образование звездных облаков не возможны.

Но вот образовалось первое поколение звезд, свет горячих сверхгигантов возбудили свечение газа протогалактика превратилась в галактику, стала наблюдаемой. Между тем звездообразование продолжается, галактика живет и эволюционирует. Как же именно это происходит?

Теорию дальнейшей эволюции молодой спиральной галактики разработал Л. Э. Гуревич. Он доказал математически, что с образованием звезд в галактике начинается перераспределение момента количества движения, который выносится с небольшими массами наружу. Система разделяется на центральную часть, ядро, и периферическую часть, сильно сплющенную. Дальше гравитационные взаимодействия звезд и звездных скоплений приводят к постепенному росту отклонения их движений от круговых и к раскачке их в направлении, перпендикулярном экватору галактики. Галактика продолжает сжиматься в направлении ее радиусов, но расширяется вдоль оси. Сплющенность ее уменьшается. Происходит разбрасывание звезд из центральной части галактики во все стороны- образуется сферическая подсистема. А в плоской подсистеме продолжается образование молодых звезд из диффузной материи. Вновь образовавшиеся звезды со временем тоже уйдут из галактической плоскости. Гравитационные взаимодействия разрушат звездные скопления и ассоциации, потом распадутся звездные облака и спиральные ветви. Галактика превратится в эллиптическую. Ввиду исчерпания диффузной материи звездообразование прекратится.

Теория Л. Э. Гуревича объяснила и многие другие проблемы, как, например, образование межзвездных магнитных полей и полей около звезд, процессы ускорения заряженных частиц, образование сложных элементов.

Космогоническая концепция А. И. Лебединского и Л. Э. Гуревича явилась важным этапом в развитии космогонии галактики. Конечно, и в ней были свои слабые стороны. Во-первых, в ней постулировалось существование никем не наблюдавшихся (ни раньше, ни потом) протогалактик. Во-вторых, авторы гипотезы не дали объяснения спиральной структуры галактик, ограничившись замечанием об энергетической выгодности этой структуры. Обсуждение этого вопроса А. И. Лебединский обещал провести во второй части работы. Увы, ни он, не Л. Э. Гуревич так и не сделали этого, и вторая часть работы не была опубликована. Постигла ли авторов теории неудача в их попытке рассмотреть образование спиралей, или их отвлекли другие исследования, - нам не известно.

Работу над этой проблемой продолжил в 1958 году ленинградский теоретик - звездник Т. А. Агекян. Изучив эволюцию вращающихся систем взаимно притягивающихся тел, имеющих форму фигур равновесия, Т. А. Агекян учел возможность их диссипации, то есть покидания системы отдельными ее членами (звездами).

В наше время имеются уже довольно хорошо разработанные модели превращения огромного облака газа сначала в протогалактику, а затем и в галактику. Начнем с самого начала.

Во время эры излучения продолжалось стремительное расширение космической материи, состоящей из фотонов, среди которых встречались свободные протоны или электроны и крайне редко альфа частицы. (Не надо забывать, что фотонов было в миллиард раз больше чем протонов и электронов). В период эры излучения протоны и электроны в основном оставались без изменений, уменьшалась только их скорость. С фотонами дело обстояло намного сложнее. Хотя скорость их осталась прежней, в течении эры излучения гамма фотоны постепенно превращались в фотоны рентгеновские, ультрафиолетовые и фотоны света. Вещество и фотоны к концу эры остыли уже настолько, что каждому из протонов мог, присоединится один электрон. При этом происходило излучение одного ультрафиолетового фотона (или же нескольких фотонов света) и, таким образом, возник атом водорода. Это была первая система частиц во Вселенной.

С возникновением атомов водорода начинается звездная эра эра частиц, точнее говоря, эра протонов и электронов.

Вселенная вступает в звездную эру в форме водородного газа с огромным количеством световых и ультрафиолетовых фотонов. Водородный газ расширялся в различных частях Вселенной с разной скоростью. Неодинаковой была так же и его плотность. Он образовывал огромные сгустки, во много миллионов световых лет. Масса таких космических водородных сгустков была в сотни тысяч, а то и в миллионы раз больше, чем масса нашей теперешней Галактики. Расширение газа внутри сгустков шло медленнее, чем расширение разреженного водорода между самими сгущениями. Позднее из отдельных участков с помощью собственного притяжения образовались сверхгалактики и скопления галактик. Итак, крупнейшие структурные единицы Вселенной - сверхгалактики - являются результатом неравномерного распределения водорода, которое происходило на ранних этапах истории Вселенной.

Рождение галактик

Колоссальные водородные сгущения зародыш сверх галактики и скоплений галактик  медленно вращались. Внутри их образовывались вихри, похожие на водовороты. Их диаметр достигал примерно ста тысяч световых лет. Мы называем эти системы протогалактиками, то есть зародыш галактик. Несмотря на свои невероятные размеры, вихри протогалактик были всего лишь ничтожной частью сверхгалактик и по размеру не превышали одну тысячную сверхгалактики. Сила гравитации образовывала из этих вихрей системы звезд, которые мы называем галактиками. Некоторые из галактик до сих пор напоминают нам гигантское завихрение.

Астрономические исследования показывают, что скорость вращения завихрения предопределила форму галактик, родившейся из этого вихря. Выражаясь научным языком, скорость осевого ращения определяет тип будущей галактики. Из медленно вращающихся вихрей возникли эллиптические галактики, в то время как из быстро вращающихся родились сплющенные спиральные галактики.

В результате силы тяготения очень медленно вращающийся вихрь сжимался в шар или несколько сплюснутый эллипсоид. Размеры такого правильного гигантского водородного облака были от нескольких десятков до нескольких сотен тысяч световых лет. Не трудно определить, какие из водородных атомов вошли в состав рождающейся эллиптической, точнее говоря эллипсоидальной галактики, а какие остались в космическом пространстве вне ее. Если энергия связи сил гравитации атома на периферии превышала его кинетическую энергию, атом становился составной частью галактики. Это условие называется критерием Джинса. С его помощью можно определить, в какой степени зависела масса и величена протогалактики от плотности и температуры водородного газа.

Протогалактика, которая вообще не вращалась, становилась родоначальницей шаровой галактики. Сплющенные эллиптические галактики рождались из медленно вращающихся протогалактик. Из-за недостаточной центробежной силы преобладала сила гравитационная. Протогалактика сжималась и плотность водорода в ней возрастала. Как только плотность достигала определенного уровня, начали выделяться и сжиматься сгустки водорода. Рождались протозвезды, которые позже эволюционировали в звезды. Рождение всех звезд в шаровой или слегка приплюснутой галактике происходило почти одновременно. Этот процесс продолжается относительно недолго, примерно сто миллионов лет. Это значит, что в эллиптических галактиках все звезды приблизительно одинакового возраста, то есть очень старые. В эллиптических галактиках весь водород был исчерпан сразу же в самом начале, примерно в первую сотую существования галактики. На протяжении последующих 99 сотых этого периода звезды уже не могли возникать. Таким образом, в эллиптических галактиках количество межзвездного вещества ничтожно.

Спиральные галактики, в том числе и наша, состоят из очень старой сферической составляющей (в этом они похожи на эллиптические галактики) и из более молодой плоской составляющей, находящейся в спиральных рукавах. Между этими составляющими существует несколько переходных компонентов разного уровня сплюснутости, разного возраста и скорости вращения. Строение спиральных галактик, таким образом, сложнее и разнообразнее, чем строение эллиптических. Спиральные галактики кроме того вращаются значительно быстрее, чем галактики эллиптические. Не следует забывать, что они образовались из быстро вращающихся вихрей. Поэтому в создании спиральных галактик участвовали и гравитационная центробежная силы.

Если бы из нашей галактики через сто миллионов лет после ее возникновения (это время формирования сферической составляющей) улетучился весь межзвездный водород, новые звезды не смогли бы рождаться, и наша галактика стала бы эллиптической.

Но межзвездный газ в те далекие времена не улетучился, и, таким образом гравитация и вращение могли продолжать строительство нашей и других спиральных галактик. На каждый атом межзвездного газа действовали две силы гравитация, притягивающая его к центру галактики и центробежная сила, выталкивающая его по направлению от оси вращения. В конечном итоге газ сжимался по направлению к галактической плоскости. В настоящее время межзвездный газ сконцентрирован к галактической плоскости в весьма тонкий слой. Он сосредоточен прежде всего в спиральных рукавах и представляет собой плоскую или промежуточную составляющую, названную звездным населением второго типа.  На каждом этапе сплющивания межзвездного газа во все более утончающемся диске рождались звезды. Поэтому в нашей галактике можно найти, как старые, возникшие примерно десять миллиардов лет назад, так и звезды родившиеся недавно в спиральных рукавах, в так называемых ассоциациях и рассеянных скоплениях. Можно сказать, что чем более сплющена система, в которой родились звезды, тем она моложе.

Дальнейшее развитие науки покажет, какие из сегодняшних представлений о происхождении галактик и звезд окажутся правильными. Но уже теперь нет сомнения в том, что звезды, во- первых, подчиняясь законам природы, рождаются, живут и умирают, а не есть однажды созданные и вечно неизменные объекты Вселенной, и, во вторых, звезды рождаются группами, причем процесс звездообразования продолжается в настоящее время.

 

 

  1. А. В. Засов, К. А. Постнов. Галактики и скопления галактик // Общая астрофизика. — Фрязино: Век 2, 2006

2.      А. В. Засов, К. А. Постнов. Общая астрофизика. — Фрязино: Век 2, 2006.

3.      Левченко И. В. Многоликая Вселенная // Открытия и гипотезы, ТОВ «Интеллект Медиа»

4.      И. А. Климишин Астрономия наших дней  3-е изд., перераб., и доп. М.: Наука. Гл. ред. физ. мат. лит. 1986

5.      Шварцшильд М., Строение и эволюция звезд, пер. с англ., M., 1961

  1. Масевич А. Г., Тутуков А. В., Эволюция звезд; теория и наблюдения, M., 1988
  2.  

znakka4estva.ru

Реферат: Эволюция галактик и звезд

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ – ВЫСШАЯ ШКОЛА ЭКОНОМИКИ

САНКТ-ПЕТЕРБУРГСКИЙ ФИЛИАЛ

Факультет сокращенных программ подготовки специалистов

Реферат

Предмет Концепции современного естествознания.

на тему: _ « Эволюция галактик и звезд»_____

Работу выполнил: Денисова В.П.

Группа_483_

Работу проверил: Кудрина А.Н.

Санкт-Петербург

2011г

Оглавление

Введение.2

Термоядерный синтез в недрах звёзд.2

Этапы эволюции звезд.2

Рождение звёзд.2

Молодые звёзды.2

Молодые звёзды промежуточной массы.2

Молодые звёзды с массой больше 8 солнечных масс.2

Середина жизненного цикла звезды.2

Зрелость.2

Поздние годы и гибель звёзд.2

Старые звёзды с малой массой.2

Звёзды среднего размера.2

Белые карлики.2

Сверхмассивные звёзды.2

Нейтронные звёзды.2

Чёрные дыры.2

Взгляды различных ученых на процессы рождения и развития галактик.2

Современные представления о процессах развития и происхождения галактик.2

Рождение галактик. 2

Заключение.2

Список литературы:2

Звезда́ — небесное тело, в котором идут, шли или будут идти термоядерные реакции. Но чаще всего звездой называют небесное тело, в котором идут в данный момент термоядерные реакции. Солнце — типичная звезда спектрального класса G. Звёзды представляют собой массивные светящиеся газовые (плазменные) шары. Образуются из газово-пылевой среды (главным образом из водорода и гелия) в результате гравитационного сжатия. Температура вещества в недрах звёзд измеряется миллионами кельвинов, а на их поверхности — тысячами кельвинов. Энергия подавляющего большинства звёзд выделяется в результате термоядерных реакций превращения водорода в гелий, происходящих при высоких температурах во внутренних областях. Звёзды часто называют главными телами Вселенной, поскольку в них заключена основная масса светящегося вещества в природе. Примечательно и то, что звёзды имеют отрицательную теплоёмкость.

Звёздная эволюция в астрономии — последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении сотен тысяч, миллионов или миллиардов лет, пока она излучает свет и тепло. В течение таких колоссальных промежутков времени изменения оказываются весьма значительными.

Изучение звёздной эволюции невозможно наблюдением лишь за одной звездой — многие изменения в звёздах протекают слишком медленно, чтобы быть замеченными даже по прошествии многих веков. Поэтому учёные изучают множество звёзд, каждая из которой находится на определённой стадии жизненного цикла. За последние несколько десятилетий широкое распространение в астрофизике получило моделирование структуры звёзд с использованием вычислительной техники

Галактиками наз. гигантские (до ~1013 звёзд) звёздные системы, расположенные вне нашей Галактики. Их наз. ещё внегалактич. туманностями, т. к. при визуальном наблюдении в телескоп они выглядят туманными пятнышками, как и обычные газовые туманности. Сведения о Г. приводятся в спец. астрономич. каталогах. Из них наиболее известны первый каталог туманностей и звёздных скоплений, составленный в конце 18 в. франц. астрономом Ш. Мессье (в этом каталоге туманность Андромеды, напр., записана под номером 31 и обозначается М 31), и "Новый общий каталог" (1888 г.) англ. астронома Й. Дрейера (сокращённо NGC, в нём туманность Андромеды обозначается NGC 224).

Возникновение галактик — появление крупных гравитационно-связанных скоплений материи, имевшее место в далёком прошломВселенной. На данный момент удовлетворительной теории возникновения и эволюции галактик не существует. Есть несколько конкурирующих теорий, объясняющих это явление, но каждая имеет свои серьезные проблемы.

К 1939 году было установлено, что источником звёздной энергии является происходящий в недрах звёзд термоядерный синтез[2] . Большинство звёзд излучают потому, что в их недрах четыре протона соединяются через ряд промежуточных этапов в одну альфа-частицу. Это превращение может идти двумя основными путями, называемыми протон-протонным или p-p-циклом и углеродно-азотным или CN-циклом. В маломассивных звёздах энерговыделение в основном обеспечивается первым циклом, в тяжёлых — вторым. Запас ядерного топлива в звезде ограничен и постоянно тратится на излучение. Процесс термоядерного синтеза, выделяющий энергию и изменяющий состав вещества звезды, в сочетании с гравитацией, стремящейся сжать звезду и тоже высвобождающей энергию, а также с излучением с поверхности, уносящим выделяемую энергию, являются основными движущими силами звёздной эволюции.

Рождение звёзд.

Эволюция звезды начинается в гигантском молекулярном облаке, также называемым звёздной колыбелью. Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см³. Молекулярное облако же имеет плотность около миллиона молекул на см³. Масса такого облака превышает массу Солнца в 100 000—10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике.

Пока облако свободно вращается вокруг центра родной галактики, то ничего не происходит. Но стоит возникнуть внешнему возмущению, слегка уменьшившему размер облака, то наступает гравитационный коллапс. К примеру, облака могут столкнуться друг с другом, или одно из них может пройти через плотный рукав спиральной галактики. Другим фактором может стать близлежащий взрыв сверхновой звезды, ударная волна которого столкнётся с молекулярным облаком на огромной скорости. Кроме того, возможно столкновение галактик, способное вызвать всплеск звёздообразования, по мере того, как газовые облака в каждой из галактик сжимаются в результате столкновения.

Но так или иначе, размер меняется, и давление молекулярного газа больше не может препятствовать дальнейшему сжатию, газ начинает свободно падать, в масштабе времени: К примеру, для Солнца tff = 5 * 107 лет.

По теореме вириала половина высвобождающейся гравитационной энергии уходит на нагрев облака, а половина — на световое излучение. В облаках же давление и плотность нарастают к центру, и коллапс центральной части происходит быстрее, нежели периферии. По мере сжатия длина свободного пробега фотонов уменьшается и облако становится всё менее прозрачным для собственного излучения. Это приводит к более быстрому росту температуры и ещё более быстрому росту давления. В конце концов градиент давления уравновешивает гравитационную силу, образуется гидростатическое ядро, массой порядка 1 % от массы облака. Этот момент мы не видим, глобула давно не прозрачна в оптическом диапазоне. Дальнейшая эволюция протозвезды — это аккреция продолжающего падать вещества. Торможение происходит на поверхности ядра. В конце концов масса вещества исчерпается и звезда проявится в оптическом диапазоне, ознаменовав конец протозвёздной фазы и начало фазы молодой звезды.

Так было бы, если б изначальное молекулярное облако не вращалось. Но все они в той или иной степени вращаются, и по мере уменьшения размера облака растёт и его скорость вращения, которая в определённый момент разделяет вещество на два слоя, которые продолжают коллапсировать независимо друг от друга. Слои в свою очередь также могут быть разорваны увеличившимися центробежными силами. В зависимости от начальной скорости вращения молекулярного облака мы наблюдаем звёздные скопления, двойные звёзды, звёзды с экзопланетами.

Молодые звёзды.

Если рождение звёзд можно описать единым образом, то дальнейший путь развития звезды почти полностью зависит от массы, и лишь в самом конце может сыграть свою роль химический состав.

Молодые звёзды малой массы

Молодые звёзды малой массы (до трёх масс Солнца), находящиеся на подходе к главной последовательности, полностью конвективные. Это ещё по сути протозвёзды, в центре которых только-только начинаются ядерные реакции, и всё излучение происходит в основном из-за гравитационного сжатия. То есть светимость звезды убывает при неизменной эффективной температуре. А на диаграмме Герцшпрунга-Рассела мы видим почти вертикальный трек, называемым треком Хаяcи. По мере приближения молодой звезды к главной последовательности сжатие замедляется. Объекты такого типа ассоциируются со звёздами типа T Тельца.

В это время для звёзд массой больше, чем 0,8 масс Солнца, ядро становится прозрачным для излучения, и возобладает лучистый перенос энергии в ядре, а наверху оболочка остаётся конвективной. Какими прибывают на главную последовательность звёзды меньшей массы, достоверно никто не знает, так как время нахождения этих звёзд в разряде молодых превышает возраст Вселенной. Все наши представления об эволюции этих звёзд держатся на численных расчётах.

По мере сжатия звезды, начинает увеличиваться давление вырожденного электронного газа и на каком-то радиусе звезды это давление останавливает рост центральной температуры, а затем начинает её понижать. И для звёзд меньше 0,08 это оказывается фатальным: выделяющейся энергии в ходе ядерных реакций никогда не хватит, чтобы покрыть расходы на излучение. Такие недо-звёзды получили название коричневые карлики, и их судьба — это постоянное сжатие, пока давление вырожденного газа не остановит его, а затем — постепенное остывание с остановкой всех ядерных реакций.

Молодые звёзды промежуточной массы.

Молодые звёзды промежуточной массы (от 2 до 8 массы Солнца) качественно эволюционируют точно так же, как и их меньшие сестры, за тем исключением, что в них нет конвективных зон вплоть до главной последовательности.

Объекты этого типа ассоциируются с т. н. звёздами Ae\Be Хербита неправильными переменными спектрального типа B-F5. У них также наблюдаются диски биполярные джеты. Скорость истечения, светимость и эффективная температура существенно больше, чем для τ Тельца, поэтому они эффективно нагревают и рассеивают остатки протозвёздного облака.

Молодые звёзды с массой больше 8 солнечных масс.

На самом деле это уже нормальные звёзды. Пока накапливалась масса гидростатического ядра, звезда успела проскочить все промежуточные стадии и разогреть ядерные реакции до такой степени, чтобы они компенсировали потери на излучение. У данных звёзд истечение массы и светимость настолько велики, что не просто останавливают коллапсирование оставшихся внешних областей, но толкает их обратно. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака. Скорее всего этим и объясняется отсутствие в нашей галактике звёзд больше чем 100—200 массы Солнца.

Середина жизненного цикла звезды.

Среди сформировавшихся звёзд встречается огромное многообразие цветов и размеров. По спектральному классу они варьируются от горячих голубых до холодных красных, по массе — от 0,08 до более чем 200 солнечных масс[источник не указан 400 дней ] . Светимость и цвет звезды зависит от температуры её поверхности, которая, в свою очередь, определяется массой. Все новые звёзды «занимают своё место» на главной последовательности согласно своему химическому составу и массе. Речь не идёт о физическом перемещении звезды — только о её положении на указанной диаграмме, зависящем от параметров звезды. То есть, речь идёт, фактически, лишь об изменении параметров звезды.

Маленькие, холодные красные карлики медленно сжигают запасы водорода и остаются на главной последовательности сотни миллиардов лет, в то время как массивные сверхгиганты уйдут с главной последовательности уже через несколько миллионов лет после формирования.

Звёзды среднего размера, такие как Солнце, остаются на главной последовательности в среднем 10 миллиардов лет. Считается, что Солнце все ещё на ней, так как оно находится в середине своего жизненного цикла. Как только звезда истощает запас водорода в ядре, она уходит с главной последовательности.

Зрелость.

По прошествии от миллиона до нескольких десятков миллиардов лет (в зависимости от начальной массы) звезда истощает водородные ресурсы ядра. В больших и горячих звёздах это происходит гораздо быстрее, чем в маленьких и более холодных. Истощение запаса водорода приводит к остановке термоядерных реакций.

Без давления, которое производилось этими реакциями и уравновешивало силу собственного гравитационного притяжения звезды, внешние слои начинают сжиматься к ядру. Температура и давление повышаются как во время формирования протозвезды, но на этот раз до гораздо более высокого уровня. Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов К не начнутся термоядерные реакции с участием гелия.

Очень горячее ядро становится причиной чудовищного расширения звезды. Её размер увеличивается приблизительно в 100 раз. Таким образом звезда становится красным гигантом, и фаза горения гелия продолжается около нескольких миллионов лет. Практически все красные гиганты являются переменными звёздами.

То, что происходит в дальнейшем, вновь зависит от массы звезды.

Поздние годы и гибель звёзд.

Старые звёзды с малой массой.

На сегодняшний день достоверно неизвестно, что происходит с лёгкими звёздами после истощения запаса водорода. Поскольку возраст вселенной составляет 13,7 миллиардов лет, что недостаточно для истощения запаса водородного топлива, современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах.

Некоторые звёзды могут синтезировать гелий лишь в некоторых активных участках, что вызывает нестабильность и сильные звёздные ветры. В этом случае образования планетарной туманности не происходит, а звезда лишь испаряется, становясь даже меньше чем коричневый карлик.

Но звезда с массой менее 0,5 солнечной никогда не будет в состоянии преобразовывать гелий даже после того, как в ядре прекратятся реакции с участием водорода. Звёздная оболочка у них недостаточно массивна, чтобы преодолеть давление, производимое ядром. К таким звёздам относятся красные карлики (такие как Проксима Центавра), срок пребывания которых на главной последовательности составляет сотни миллиардов лет. После прекращения в их ядре термоядерных реакций, они, постепенно остывая, будут продолжать слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра.

Звёзды среднего размера.

Туманность Кошачий Глаз — планетарная туманность, сформировавшаяся после гибели звезды, по массе приблизительно равной солнечной

При достижении звездой средней величины (от 0,4 до 3,4 солнечных масс) фазы красного гиганта, её внешние слои продолжают расширяться, ядро сжиматься, и начинаются реакции синтеза углерода из гелия. Синтез высвобождает много энергии, давая звезде временную отсрочку. Для звезды по размеру схожей с Солнцем, этот процесс может занять около миллиарда лет.

Изменения в величине испускаемой энергии заставляют звезду пройти через периоды нестабильности, включающие в себя перемены в размере, температуре поверхности и выпуске энергии. Выпуск энергии смещается в сторону низкочастотного излучения. Все это сопровождается нарастающей потерей массы вследствие сильных звёздных ветров и интенсивных пульсаций. Звёзды, находящиеся в этой фазе, получили название звёзд позднего типа , OH-IR звёзд или Мира-подобных звёзд, в зависимости от их точных характеристик. Выбрасываемый газ относительно богат тяжёлыми элементами, производимыми в недрах звезды, такими как кислород и углерод. Газ образует расширяющуюся оболочку и охлаждается по мере удаления от звезды, делая возможным образование частиц пыли и молекул. При сильном инфракрасном излучении центральной звезды в таких оболочках формируются идеальные условия для активизации мазеров.

Реакции сжигания гелия очень чувствительны к температуре. Иногда это приводит к большой нестабильности. Возникают сильнейшие пульсации, которые в конечном итоге сообщают внешним слоям достаточно кинетической энергии, чтобы быть выброшенными и превратиться в планетарную туманность. В центре туманности остаётся ядро звезды, которое, остывая, превращается в гелиевый белый карлик, как правило, имеющий массу до 0,5-0,6 солнечных и диаметр порядка диаметра Земли.

Белые карлики.

Вскоре после гелиевой вспышки «загораются» углерод и кислород; каждое из этих событий вызывает сильную перестройку звезды и её быстрое перемещение по диаграмме Герцшпрунга — Рассела. Размер атмосферы звезды увеличивается ещё больше, и она начинает интенсивно терять газ в виде разлетающихся потоков звёздного ветра. Судьба центральной части звезды полностью зависит от её исходной массы: ядро звезды может закончить свою эволюцию как белый карлик (маломассивные звёзды), в случае, если её масса на поздних стадиях эволюции превышает предел Чандрасекара — как нейтронная звезда (пульсар), если же масса превышает предел Оппенгеймера — Волкова — как чёрная дыра. В двух последних случаях завершение эволюции звёзд сопровождается катастрофическими событиями — вспышками сверхновых.

Подавляющее большинство звёзд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденныхэлектронов не уравновесит гравитацию. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится тёмной и невидимой.

У звёзд более массивных, чем Солнце, давление вырожденныхэлектронов не может сдержать сжатие ядра, и оно продолжается до тех пор, пока большинство частиц не превратится в нейтроны, упакованные так плотно, что размер звезды измеряется километрами, а плотность в 100 млн раз превышает плотность воды. Такой объект называют нейтронной звездой; его равновесие поддерживается давлением вырожденногонейтронного вещества.

Сверхмассивные звёзды.

Крабовидная туманность, разлетающиеся остатки взрыва сверхновой, произошедшего почти 1000 лет назад

После того, как внешние слои звезды, с массой большей чем пять солнечных, разлетелись образовав красный сверхгигант, ядро вследствие сил гравитации начинает сжиматься. По мере сжатия увеличиваются температура и плотность, и начинается новая последовательность термоядерных реакций. В таких реакциях синтезируются тяжёлые элементы, что временно сдерживает коллапс ядра.

В конечном итоге, по мере образования всё более тяжёлых элементов периодической системы, из кремния синтезируется железо-56. Вплоть до этого момента синтез элементов высвобождал большое количество энергии, однако именно ядро железа-56 обладает максимальным дефектом массы и образование более тяжёлых ядер невозможно. Поэтому когда железное ядро звезды достигает определённой величины, то давление в нём уже не в состоянии противостоять колоссальной силе гравитации, и происходит незамедлительный коллапс ядра с нейтронизацией его вещества.

То что происходит в дальнейшем, не до конца ясно. Но что бы это ни было, это в считанные секунды приводит к взрыву сверхновой звезды невероятной силы.

Сопутствующий этому всплеск нейтрино провоцирует ударную волну[источник не указан 596 дней ] . Сильные струи нейтрино и вращающееся магнитное поле выталкивают большую часть накопленного звездой материала — так называемые рассадочные элементы, включая железо и более лёгкие элементы. Разлетающаяся материя бомбардируется вырываемыми из ядра нейтронами, захватывая их и тем самым создавая набор элементов тяжелее железа, включая радиоактивные, вплоть до урана (а возможно, даже до калифорния). Таким образом, взрывы сверхновых объясняют наличие в межзвёздном веществе элементов тяжелее железа.

Взрывная волна и струи нейтрино уносят материал прочь от умирающей звезды в межзвёздное пространство. В последующем, перемещаясь по космосу, этот материал сверхновой может столкнуться с другим космическим мусором, и возможно, участвовать в образовании новых звёзд, планет или спутников.

Процессы, протекающие при образовании сверхновой, до сих пор изучаются, и пока в этом вопросе нет ясности. Также под вопросом, что же на самом деле остаётся от изначальной звезды. Тем не менее, рассматриваются два варианта:

Нейтронные звёзды.

Известно, что в некоторых сверхновых сильная гравитация в недрах сверхгиганта заставляет электроны упасть на атомное ядро, где они, сливаясь с протонами, образуют нейтроны[источник не указан 322 дня ] . Электромагнитные силы, разделяющие близлежащие ядра, исчезают. Ядро звезды теперь представляет собой плотный шар из атомных ядер и отдельных нейтронов.

Такие звёзды, известные, как нейтронные звёзды, чрезвычайно малы — не более размера крупного города, и имеют невообразимо высокую плотность. Период их обращения становится чрезвычайно мал по мере уменьшения размера звезды (благодаря сохранению момента импульса). Некоторые совершают 600 оборотов в секунду. Когда ось, соединяющая северный и южный магнитный полюса этой быстро вращающейся звезды, указывает на Землю, можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Такие нейтронные звёзды получили название «пульсары», и стали первыми открытыми нейтронными звёздами.

Чёрные дыры.

Далеко не все сверхновые становятся нейтронными звёздами. Если звезда обладает достаточно большой массой, то коллапс звезды продолжится и сами нейтроны начнут обрушиваться внутрь, пока её радиус не станет меньше Шварцшильдовского. После этого звезда становится чёрной дырой.

Существование чёрных дыр было предсказано общей теорией относительности. Согласно этой теории, материя и информация не может покидать чёрную дыру ни при каких условиях. Тем не менее, квантовая механика, вероятно, делает возможными исключения из этого правила.

Остаётся ряд открытых вопросов. Главный среди них: «А есть ли чёрные дыры вообще?». Ведь чтобы сказать точно, что данный объект — это чёрная дыра, необходимо наблюдать его горизонт событий. Это невозможно сугубо по определению горизонта, но с помощью радиоинтерферометрии со сверхдлинной базой можно определить метрику вблизи объекта, а также зафиксировать быструю, миллисекундную переменность. Эти свойства, наблюдаемые у одного объекта, должны окончательно доказать существование чёрных дыр.

В настоящий момент существуют только косвенные наблюдения. Так, наблюдая светимость ядер активных галактик, можно оценить массу объекта, на который происходит аккреция. Также массу объекта можно оценить по кривой вращения галактики или по частоте обращения близких к объекту звёзд, используя теорему вириала. Для многих галактик масса центра оказывается слишком большой для любого объекта, кроме чёрной дыры. Есть объекты с явной аккрецией вещества на них, но при этом не наблюдается специфического излучения, вызванного ударной волной. Из этого можно сделать вывод, что аккреция не останавливается твёрдой поверхностью звезды, а просто уходит в области очень высокого красного смещения, где согласно с современными представлениями (2009 год) никакой стационарный объект, кроме чёрной дыры, невозможен.

Также открыты вопросы: возможен ли коллапс звезды непосредственно в чёрную дыру, минуя сверхновую? Существуют ли сверхновые, которые впоследствии станут чёрными дырами? Каково точное влияние изначальной массы звезды на формирование объектов в конце её жизненного цикла?

К проблеме эволюции галактик ученые начали серьезно подходить в середине 40х годов. Эти годы ознаменовались рядом важных открытий в звездной астрономии. Удалось выяснить, что среди звездных скоплений, рассеянных и шаровых, имеются молодые и старые, и даже оценить их возраст.

Поэтому путь к раскрытию хода эволюции галактик, казалась, намечен сам собой. Нужно было произвести своеобразную перепись населения в галактиках разных типов и сравнить результаты. В каких галактиках: эллиптических или спиральных, в каких классах галактик преобладают более молодые или более старые звезды такое исследование дало бы ясное указание на направление эволюции галактик, позволило бы выяснить эволюционный смысл классификации Хаббла.

Но прежде надо было выяснить численное соотношение между разными типами галактик. Непосредственное изучение фотографий полученные на обсерватории Маунт Вилсон, позволило Хабблу получить следующие результаты эллиптические - 23%, спиральные 59%, спиральные с перемычкой 15%, неправильные 3%.

Однако действительное соотношение численности галактик разных типов оказалось иным. В 1948 г. Московский астроном Ю.И.Ефремов обработал данные каталога галактик Шепли и Эймс и пришел к следующим выводам: эллиптические галактики в среднем на 4 звездные величины слабее спиральных по абсолютной величине. Среди них много галактик карликов. Если учесть это обстоятельство и сделать пересчет количества галактик в единице объема, то окажется, что эллиптические галактики примерно в 100 раз больше чем спиральные.

И так, большая часть спиральных галактик оказалась галактики гиганты, большинство эллиптических галактик галактики карлики. Конечно, среди тех и других существовал некий разброс в размещении, имелись и эллиптические галактики гиганты, но в среднем было именно так.

В 1947 году Х.Шепли обратил внимание на то, что количество ярких сверхгигантов постепенно убывает по мере перехода от неправильных галактик к спиральным, а затем к эллиптическим. Спиралях класса Sа, замечает Шепли, встречаются лишь очень мало звезд большой светимости, а в эллиптических галактиках они практически отсутствуют. Получалось, что молодыми являлись именно неправильные галактики и спирали класса Sс сильно разветвленными ветвями, спирали класса Sа и эллиптические галактики находились на более поздней стадии развития. Шепли тогда же высказал мысль, что переход галактик из одного класса в другой должен был занять громадные сроки и совсем не обязательно имел место. Возможно, что галактики образовались все такими какими мы их наблюдаем, а потом лишь медленно эволюционировали в направлении сглаживания и округления их форм.

Х. Шепли обратил внимание еще на одно важное обстоятельство. Уже давно было известно существование двойных галактик это не случайные совпадения положений, не могли они быть и результатом захвата одной галактики другой. И вот не редко в этих парах галактики существовали спиральные с эллиптическими. Но галактические пары, очевидно, вместе и возникли. Можно ли в этом случае допустить, что они прошли существенно разный путь развития.

В 1949 году советский астроном профессор Б. В. Кукаркин опубликовал важную работу Исследование строения и развития звездных систем на основе изучения переменных звезд . В ней были и новые установленные соотношения, и их глубокий теоретический анализ.

В своей работе Кукаркин обращал внимание на давно обнаруженные, но часто забываемые обстоятельства существования не только пары, но и скопления галактик. Между тем возраст скопления галактик, судя по данным небесной механики, не может превышать 1012 лет. (Здесь Кукаркин явно отдавал дань длинной школе развития звездных систем; в действительности этот предел гораздо меньше.

Таким образом, получалось, что практически одновременно образовались галактики разных форм. Значит, переход каждой галактики за время ее существования из одного типа в другой совсем не обязателен.

К концу сороковых и началу пятидесятых годов в космогонии галактик сложилось несколько направлений.

Представители одного из них пытались построить новую гипотезу образования галактик из каких то первичных, до галактических форм материи. Так Вейзеккер разработал теорию возникновения галактик из вращающейся массы, в которой значительную роль играла турбулентность. По его теории эллиптические галактики находились на самой поздней, а неправильные на самой ранней стадии развитии. Но Вейзеккер ввел существенные уточнение: он показал что в случае турбулентного развития газовых масс в галактике шкала времени такого развития пропорциональна размерам галактик. По этому карликовые эллиптические галактики хотя и находятся на более поздней стадии развития, но могут быть моложе по возрасту, чем гигантские спиральные. Это позволяло устранить возрождение, связанное с тем, что в скоплениях встречаются галактики всех типов. Но тогда должна была существовать зависимость между размерами и стадией эволюции галактик в скоплениях, то есть самые маленькие галактики там должны быть непременно эллиптическими, средние спиральными, а большие неправильными. И хотя между эллиптическими и спиральными галактиками такое соотношение размеров выполнялось, неправильные галактики, будучи меньше спиральных, явно не укладывались в схему Вейзеккера.

Наконец, не согласовывался с этой гипотезой тот факт, что в эллиптических галактиках преобладают старые звезды ( в абсолютной шкале времени). Значит, эллиптические галактики должны быть не только относительно, но и абсолютно старше спиральных. А как же быть с галактиками в скоплениях? Предложение, что эллиптические галактики образовывались раньше, а спиральные возникали в том же скоплении потом, слишком искусственно. К тому же данные о парных галактиках этому противоречат.

Выход из положения наметился благодаря работам В. А. Амбарцумяна и его школы, показавшим, что звездообразование в нашей, а значит и в других галактиках, продолжается в наше время. Поэтому спиральные и неправильные галактики могут изобиловать молодыми звездами из населения I типа не потому, что эти галактики сами молоды, а потому, что в них имеются условия для звездообразования, тогда как в эллиптических галактиках они почему-либо отсутствуют.

В явной связи с этим стоит еще один существенный факт, на который обратил внимание Б. В. Кукаркин в уже упомянутой работе. Н и в о д н о й эллиптической галактике, даже наиболее сжатой (Е7), не обнаружено сконцентрированного к экваториальной плоскости межзвездного диффузного вещества. Обнаруженные в них диффузные включения концентрируются к центру этих галактик. Наоборот, все спиральные галактики богаты сконцентрированным к экваториальной плоскости межзвездным диффузным веществом, которое особенно четко заметно, когда галактика видна с ребра. Об этом же свидетельствуют спектральные наблюдения: линии излучения, принадлежащие межзвездному галактическому газу, обнаружены у 80-90% спиральных галактик и только у 10-20% эллиптических. Правда, не надо забывать, что для образования линий излучения нужен не только газ, но и источник возбуждения свечения, то есть горячие сверхгиганты, а их-то в эллиптических галактиках не хватает.

Приведенный факт, наряду с работами академика Г. А. Шайна и других ученых по изучению связи молодых звезд с диффузными туманностями, побудил в 1951 году. А. И. Лебединского и Л. Э. Гуревича заняться разработкой новой гипотезы образования галактик из межгалактического газа. Их работа была закончена в 1954 году.

А. И. Лебединский, которому принадлежит основная идея гипотезы, исходил из следующих основных предположений:

Галактики образовались из разреженного диффузного вещества, заполнявшего (и заполняющего) Метагалактику.

Галактики возникали не одновременно, так что некоторые из них образовывались, когда другие уже существовали.

Условия в метагалактическом пространстве в период формирования галактик мало отличались от современных.

Ту массу газа, из которой образовалась наша (или какая-либо другая) Галактика, А. И. Лебединский назвал п р о т о г а л а к т и к о й . Он полагал, что до начала сжатия состояние протогалактики было квазистатическим, то есть почти неизменным. Потом какие-то постепенные количественные изменения состояния протогалактики (например, увеличение плотности) привели к тому, что она начала сжиматься. Этому могли способствовать и потери энергии молекул газа при соударении с твердыми пылинками.

Дальше сжатие протогалактики происходит почти по Джинсу: первоначально сферическая туманность вращается, а сжимаясь, начинает вращаться все быстрее, что приводит к ее уплощению, притом ничем не ограниченному. Но это вовсе не эллиптическая туманность наоборот, пока в протогалактике не возникнут звезды, она не может излучать, и мы не можем ее заметить.

Но вот на некоторой стадии сжатия и уплощения в протогалактике возникают сгущения, сначала большие, в тысячи световых лет диаметром, потом все более и более мелкие. Самые большие дадут потом начало звездным облакам, меньшие звездным скоплениям, еще меньшие звездам. Образование звезд происходит путем гравитационной конденсации, механизм который был уже описан в главе I I I. Звезды появляются в наиболее уплощенных галактиках в спиральных. Спиральные ветви возникают потому, что в сильно уплощенных системах это энергетически выгодно (то есть не требует затраты энергии). Наоборот, при малом уплощении (как у эллиптических галактик, даже класса Е7) ни формирование спиралей, ни образование звездных облаков не возможны.

Но вот образовалось первое поколение звезд, свет горячих сверхгигантов возбудили свечение газа протогалактика превратилась в галактику, стала наблюдаемой. Между тем звездообразование продолжается, галактика живет и эволюционирует. Как же именно это происходит?

Теорию дальнейшей эволюции молодой спиральной галактики разработал Л. Э. Гуревич. Он доказал математически, что с образованием звезд в галактике начинается перераспределение момента количества движения, который выносится с небольшими массами наружу. Система разделяется на центральную часть, ядро, и периферическую часть, сильно сплющенную. Дальше гравитационные взаимодействия звезд и звездных скоплений приводят к постепенному росту отклонения их движений от круговых и к раскачке их в направлении, перпендикулярном экватору галактики. Галактика продолжает сжиматься в направлении ее радиусов, но расширяется вдоль оси. Сплющенность ее уменьшается. Происходит разбрасывание звезд из центральной части галактики во все стороны- образуется сферическая подсистема. А в плоской подсистеме продолжается образование молодых звезд из диффузной материи. Вновь образовавшиеся звезды со временем тоже уйдут из галактической плоскости. Гравитационные взаимодействия разрушат звездные скопления и ассоциации, потом распадутся звездные облака и спиральные ветви. Галактика превратится в эллиптическую. Ввиду исчерпания диффузной материи звездообразование прекратится.

Теория Л. Э. Гуревича объяснила и многие другие проблемы, как, например, образование межзвездных магнитных полей и полей около звезд, процессы ускорения заряженных частиц, образование сложных элементов.

Космогоническая концепция А. И. Лебединского и Л. Э. Гуревича явилась важным этапом в развитии космогонии галактики. Конечно, и в ней были свои слабые стороны. Во-первых, в ней постулировалось существование никем не наблюдавшихся (ни раньше, ни потом) протогалактик. Во-вторых, авторы гипотезы не дали объяснения спиральной структуры галактик, ограничившись замечанием об энергетической выгодности этой структуры. Обсуждение этого вопроса А. И. Лебединский обещал провести во второй части работы. Увы, ни он, не Л. Э. Гуревич так и не сделали этого, и вторая часть работы не была опубликована. Постигла ли авторов теории неудача в их попытке рассмотреть образование спиралей, или их отвлекли другие исследования, - нам не известно.

Работу над этой проблемой продолжил в 1958 году ленинградский теоретик - звездник Т. А. Агекян. Изучив эволюцию вращающихся систем взаимно притягивающихся тел, имеющих форму фигур равновесия, Т. А. Агекян учел возможность их диссипации, то есть покидания системы отдельными ее членами (звездами).

В наше время имеются уже довольно хорошо разработанные модели превращения огромного облака газа сначала в протогалактику, а затем и в галактику. Начнем с самого начала.

Во время эры излучения продолжалось стремительное расширение космической материи, состоящей из фотонов, среди которых встречались свободные протоны или электроны и крайне редко альфа частицы. (Не надо забывать, что фотонов было в миллиард раз больше чем протонов и электронов). В период эры излучения протоны и электроны в основном оставались без изменений, уменьшалась только их скорость. С фотонами дело обстояло намного сложнее. Хотя скорость их осталась прежней, в течении эры излучения гамма фотоны постепенно превращались в фотоны рентгеновские, ультрафиолетовые и фотоны света. Вещество и фотоны к концу эры остыли уже настолько, что каждому из протонов мог, присоединится один электрон. При этом происходило излучение одного ультрафиолетового фотона (или же нескольких фотонов света) и, таким образом, возник атом водорода. Это была первая система частиц во Вселенной.

С возникновением атомов водорода начинается звездная эра эра частиц, точнее говоря, эра протонов и электронов.

Вселенная вступает в звездную эру в форме водородного газа с огромным количеством световых и ультрафиолетовых фотонов. Водородный газ расширялся в различных частях Вселенной с разной скоростью. Неодинаковой была так же и его плотность. Он образовывал огромные сгустки, во много миллионов световых лет. Масса таких космических водородных сгустков была в сотни тысяч, а то и в миллионы раз больше, чем масса нашей теперешней Галактики. Расширение газа внутри сгустков шло медленнее, чем расширение разреженного водорода между самими сгущениями. Позднее из отдельных участков с помощью собственного притяжения образовались сверхгалактики и скопления галактик. Итак, крупнейшие структурные единицы Вселенной - сверхгалактики - являются результатом неравномерного распределения водорода, которое происходило на ранних этапах истории Вселенной.

Рождение галактик

Колоссальные водородные сгущения зародыш сверх галактики и скоплений галактик медленно вращались. Внутри их образовывались вихри, похожие на водовороты. Их диаметр достигал примерно ста тысяч световых лет. Мы называем эти системы протогалактиками, то есть зародыш галактик. Несмотря на свои невероятные размеры, вихри протогалактик были всего лишь ничтожной частью сверхгалактик и по размеру не превышали одну тысячную сверхгалактики. Сила гравитации образовывала из этих вихрей системы звезд, которые мы называем галактиками. Некоторые из галактик до сих пор напоминают нам гигантское завихрение.

Астрономические исследования показывают, что скорость вращения завихрения предопределила форму галактик, родившейся из этого вихря. Выражаясь научным языком, скорость осевого ращения определяет тип будущей галактики. Из медленно вращающихся вихрей возникли эллиптические галактики, в то время как из быстро вращающихся родились сплющенные спиральные галактики.

В результате силы тяготения очень медленно вращающийся вихрь сжимался в шар или несколько сплюснутый эллипсоид. Размеры такого правильного гигантского водородного облака были от нескольких десятков до нескольких сотен тысяч световых лет. Не трудно определить, какие из водородных атомов вошли в состав рождающейся эллиптической, точнее говоря эллипсоидальной галактики, а какие остались в космическом пространстве вне ее. Если энергия связи сил гравитации атома на периферии превышала его кинетическую энергию, атом становился составной частью галактики. Это условие называется критерием Джинса. С его помощью можно определить, в какой степени зависела масса и величена протогалактики от плотности и температуры водородного газа.

Протогалактика, которая вообще не вращалась, становилась родоначальницей шаровой галактики. Сплющенные эллиптические галактики рождались из медленно вращающихся протогалактик. Из-за недостаточной центробежной силы преобладала сила гравитационная. Протогалактика сжималась и плотность водорода в ней возрастала. Как только плотность достигала определенного уровня, начали выделяться и сжиматься сгустки водорода. Рождались протозвезды, которые позже эволюционировали в звезды. Рождение всех звезд в шаровой или слегка приплюснутой галактике происходило почти одновременно. Этот процесс продолжается относительно недолго, примерно сто миллионов лет. Это значит, что в эллиптических галактиках все звезды приблизительно одинакового возраста, то есть очень старые. В эллиптических галактиках весь водород был исчерпан сразу же в самом начале, примерно в первую сотую существования галактики. На протяжении последующих 99 сотых этого периода звезды уже не могли возникать. Таким образом, в эллиптических галактиках количество межзвездного вещества ничтожно.

Спиральные галактики, в том числе и наша, состоят из очень старой сферической составляющей (в этом они похожи на эллиптические галактики) и из более молодой плоской составляющей, находящейся в спиральных рукавах. Между этими составляющими существует несколько переходных компонентов разного уровня сплюснутости, разного возраста и скорости вращения. Строение спиральных галактик, таким образом, сложнее и разнообразнее, чем строение эллиптических. Спиральные галактики кроме того вращаются значительно быстрее, чем галактики эллиптические. Не следует забывать, что они образовались из быстро вращающихся вихрей. Поэтому в создании спиральных галактик участвовали и гравитационная центробежная силы.

Если бы из нашей галактики через сто миллионов лет после ее возникновения (это время формирования сферической составляющей) улетучился весь межзвездный водород, новые звезды не смогли бы рождаться, и наша галактика стала бы эллиптической.

Но межзвездный газ в те далекие времена не улетучился, и, таким образом гравитация и вращение могли продолжать строительство нашей и других спиральных галактик. На каждый атом межзвездного газа действовали две силы гравитация, притягивающая его к центру галактики и центробежная сила, выталкивающая его по направлению от оси вращения. В конечном итоге газ сжимался по направлению к галактической плоскости. В настоящее время межзвездный газ сконцентрирован к галактической плоскости в весьма тонкий слой. Он сосредоточен прежде всего в спиральных рукавах и представляет собой плоскую или промежуточную составляющую, названную звездным населением второго типа. На каждом этапе сплющивания межзвездного газа во все более утончающемся диске рождались звезды. Поэтому в нашей галактике можно найти, как старые, возникшие примерно десять миллиардов лет назад, так и звезды родившиеся недавно в спиральных рукавах, в так называемых ассоциациях и рассеянных скоплениях. Можно сказать, что чем более сплющена система, в которой родились звезды, тем она моложе.

Дальнейшее развитие науки покажет, какие из сегодняшних представлений о происхождении галактик и звезд окажутся правильными. Но уже теперь нет сомнения в том, что звезды, во- первых, подчиняясь законам природы, рождаются, живут и умирают, а не есть однажды созданные и вечно неизменные объекты Вселенной, и, во вторых, звезды рождаются группами, причем процесс звездообразования продолжается в настоящее время.

1. А. В. Засов, К. А. Постнов. Галактики и скопления галактик // Общая астрофизика. — Фрязино: Век 2, 2006

2. А. В. Засов, К. А. Постнов. Общая астрофизика. — Фрязино: Век 2, 2006.

3. Левченко И. В. Многоликая Вселенная // Открытия и гипотезы, ТОВ «Интеллект Медиа»

4. И. А. Климишин Астрономия наших дней 3-е изд., перераб., и доп. М.: Наука. Гл. ред. физ. мат. лит. 1986

5. Шварцшильд М., Строение и эволюция звезд, пер. с англ., M., 1961

6. Масевич А. Г., Тутуков А. В., Эволюция звезд; теория и наблюдения, M., 1988

www.yurii.ru


Смотрите также