Реферат: История и устройство микрофонов. Реферат микрофон


Реферат - История и устройство микрофонов

История и устройство микрофонов

Собственно, первым термин «микрофон» предложил использовать британский изобретатель Сэр Чарльз Уитстоун в 1827 году. Его нехитрый инструмент для усиления слабых звуков — две тонкие рейки, сообщавшие механические колебания ушам, не имел ничего общего с тем, что теперь называется микрофоном. Ничего, кроме названия. Микрофон как устройство для преобразования акустического сигнала в электрический с сохранением волновых характеристик — появился в 1876 году. Правда, назывался он совершенно иначе — жидкостный передатчик (liquid transmitter).

Жидкостный передатчик

Принцип работы жидкостного передатчика достаточно прост. В трубообразный резервуар налито немного воды, на которой «плавает» пергаментная диафрагма.

К диафрагме присоединён провод — так, чтобы лишь едва соприкасаться с водой. В воду добавлено небольшое количество кислоты, чтобы улучшить её электропроводимость.

Когда человек что-то говорит в трубку, диафрагма начинает колебаться, так что провод соприкасается с водой то больше, то меньше. Соответственным образом изменяется сопротивление электрической цепи.

4 марта 1877 года американский изобретатель Эмиль Берлинер построил первый угольный микрофон. Однако развитие получил микрофон американского изобретателя Дэвида Юза (в мае 1878 года). Микрофон Юза содержал угольный стержень с заострёнными концами, упиравшийся в две угольные же чашечки, и соединённый с подвижной мембраной. Площадь контакта угольного стержня с чашечками сильно менялась при колебаниях мембраны, соответственно менялось и сопротивление угольного микрофона, а с ним и ток в цепи. Микрофон Юза совершенствовался многими изобретателями. Весьма значительно усовершенствовал этот тип микрофонов Эдисон. Он предложил использовать угольный порошок вместо угольного стержня, т. е. изобрёл новый вид угольного микрофона с угольным порошком. Автор наиболее прижившейся конструкции угольного микрофона — Энтони Уайт (1890).

Угольный микрофон практически не требует усиления сигнала, сигнал с его выхода можно подавать непосредственно на высокоомный наушник или громкоговоритель. Из-за этого свойства угольные микрофоны использовались до недавнего времени в телефонных аппаратах (с дисковым номеронабирателем). Однако угольный микрофон отличается плохой амплитудно-частотной характеристикой (он нечувствителен к слишком низким и слишком высоким частотам). Кроме того, в отличие от наиболее распространённого динамического микрофона, угольный требует питания постоянным током.

Первый «ленточный» микрофон «44А» изобретён в 1942 году сотрудниками американской компании RCA. Ему суждено было стать одним из самых популярных микрофонов для студийных записей. Собственно говоря, больше он нигде и не применялся: слишком тяжёл (3,5 килограмма). Однако он обладал и рядом заметных преимуществ: высокая чувствительность и узкая направленность, за счёт чего отсекались посторонние шумы.

В микрофоне использовалась лента длиной 50 мм и шириной 2,4 мм, которая двигалась в магнитном поле в соответствии со звуковым давлением. Впоследствии вес ленточных микрофонов значительно уменьшился, а для увеличения чувствительности стали использовать два ленточных капсюля сразу.

В настоящее время в профессиональной практике используются только динамические и конденсаторные микрофоны. Первый динамический микрофон ДМК изготовили на заводе «Октава» в 1936 году. Динамический микрофон — это наиболее распространённый тип конструкции микрофона. Диафрагма динамического микрофона связана с катушкой, находящейся в зазоре вокруг магнита.

Продольные колебания прилегающего воздуха смещают диафрагму с катушкой относительно постоянного магнитного поля, что приводит к появлению на концах катушки переменного электрического потенциала, напряжение и частота которого пропорциональны силе и частоте звука, воздействующего на диафрагму.

В отличие от конденсаторных, динамические микрофоны не требуют фантомного питания.

Компания AKG в 1947 году представила свой первый конденсаторный микрофон, но до 1962 года, когда Белл Лабс начали выпускать свою версию таких микрофонов, особой популярностью они не пользовались. А уже концу 1970-х годов приблизительно треть всех выпускаемых в мире микрофонов были конденсаторными.

В конденсаторном микрофоне звук воздействует на мембрану, являющуюся одной из обкладок конденсатора.

Этот конденсатор включен в последовательную цепь с источником постоянного тока. При звуковом воздействии на мембрану она начинает колебаться, вызывая изменение емкости, которое, в свою очередь, превращает постоянное напряжение источника в переменное.

Конденсаторный микрофон имеет очень высокое выходное сопротивление. В связи с этим, внутри его корпуса располагают предусилитель с высоким входным сопротивлением. Конденсаторные микрофоны обладают весьма равномерной амплитудно-частотной характеристикой и обеспечивают высококачественное звучание, в связи с чем широко используются в студиях звукозаписи, на радио и телевидении.

Недостатками их являются высокая стоимость, необходимость во внешнем питании и высокая чувствительность к ударам и климатическим воздействиям — влажности воздуха и перепадам температуры. Однако существует тип конденсаторного микрофона — электретный микрофон, который свободен от большинства перечисленных недостатков.

Принцип действия электретного конденсаторного микрофона основан на способности некоторых диэлектрических материалов (электретов) сохранять поверхностную неоднородность распределения заряда в течение длительного времени. Тонкая плёнка из гомоэлектрета помещается в зазор конденсатора, у которого мембрана имеет возможность перемещаться под действием внешнего акустического сигнала, либо пленка наносится на одну из обкладок. Это приводит к появлению некоторого постоянного заряда конденсатора. При изменении ёмкости, из-за смещения мембраны, на конденсаторе проявляется изменение напряжения, соответствующее акустическому сигналу.

Электретный микрофон имеет очень высокое сопротивление (несколько сотен кОм или Мом), что вынуждает подключать их к усилителям с высоким входным сопротивлением.

Заключение

Итак, самый первый микрофон, появившийся на свет в 1876 году, назывался жидкостный передатчик. Через год американский изобретатель Эмиль Берлинер построил первый угольный микрофон. Первый динамический микрофон был выпущен спустя почти 60 лет. «Ленточный» микрофон появился в 1942 году. А спустя еще 5 лет был представлен первый конденсаторный микрофон.

Сейчас в профессиональной практике используются только динамические и конденсаторные микрофоны. Динамические микрофоны довольно надёжны и крепки — во всяком случае, крепче конденсаторных, поэтому их, в основном, и используют на концертах. Но в связи с тем, что масса подвижных элементов в динамических микрофонах больше, их чувствительность заведомо ниже, чем в конденсаторных. Последние же имеют тенденцию записывать звук как он есть, со всеми недостатками. Поэтому даже те, кто способен петь «вживую» безупречно, предпочитают даже в студии использовать динамические микрофоны.

Список использованной литературы

· Вейценфельд, А. Устройство и технические параметры микрофонов / А. Вейценфельд // Звукорежиссер. – 2000. — №1.

· Избранные главы из истории микрофонов // Кладезь знаний — статьи, обзоры, новости, 2006. Режим доступа: Art.Thelib.Ru

· Микрофон // Википедия — свободная энциклопедия, 2008. Режим доступа: ru.wikipedia.org

www.ronl.ru

Реферат Микрофон

скачать

Реферат на тему:

Microphone studio.jpg

План:

Введение

Microphone studio.jpg

Микрофо́н (от греч. μικρός — маленький, φωνη — звук) — электроакустический прибор, преобразовывающий звуковые колебания в колебания электрического тока, устройство ввода. Служит первичным звеном в цепочке звукозаписывающего тракта или звукоусиления. Микрофоны используются во многих устройствах, таких как телефоны и магнитофоны, в звукозаписи и видеозаписи, на радио и телевидении, для радиосвязи, а также для ультразвукового контроля и измерения.

1. История

Вначале наибольшее распространение получил угольный микрофон Эдисона, об изобретении которого также независимо заявляли Г.Махальский в 1878 и П. М. Голубицкий в 1883. Угольный микрофон до сих пор используется в аппаратах аналоговой телефонии. Действие его основывается на изменении сопротивления между зёрнами угольного порошка при изменении давления на их совокупность.

Конденсаторный микрофон был изобретён американским учёным Э. Венте в 1917 году. В нём звук воздействует на тонкую металлическую мембрану, изменяя расстояние между мембраной и металлическим корпусом. Тем самым образуемый мембраной и корпусом конденсатор меняет ёмкость. Если подвести к пластинам постоянное напряжение, изменение ёмкости вызовет ток через конденсатор, тем самым образуя электрический сигнал во внешней цепи.

Более массовыми стали динамические микрофоны, отличающиеся от угольных гораздо лучшей линейностью характеристик и хорошими частотными свойствами, а от конденсаторных — более приемлемыми электрическими свойствами.

Первым динамическим микрофоном стал изобретённый в 1924 году немецкими учёными Э. Герлахом и В. Шоттки электродинамический микрофон ленточного типа. Они расположили в магнитном поле гофрированную ленточку из очень тонкой (ок. 2 мкм) алюминиевой фольги. Такие микрофоны до сих пор применяются в студийной записи благодаря чрезвычайно высоким частотным характеристикам, однако их чувствительность невелика, выходное сопротивление очень мало (доли Ома), что значительно осложняло проектирование усилителей. Кроме того, достаточная чувствительность достижима только при значительной площади ленточки (а значит, и размерах магнита), в результате такие микрофоны имеют большие размеры и массу по сравнению со всеми остальными типами.

Пьезоэлектрический микрофон, сконструированный советскими учёными С. Н. Ржевкиным и А. И. Яковлевым в 1925 году, имеет в качестве датчика звукового давления пластинку из вещества, обладающего пьезоэлектрическими свойствами. Работа в качестве датчика давления позволила создать первые гидрофоны и записать сверхнизкочастотные звуки, характерные для морских обитателей.

В 1931 году американские учёные Э. Венте и А. Терас изобрели динамический микрофон с катушкой, приклееной к тонкой мембране из полистирола или фольги. В отличие от ленточного, он имел существенно более высокое выходное сопротивление (десятки Ом и сотни кило Ом), мог быть изготовлен в меньших размерах и является обратимым.

Совершенствование характеристик именно этих микрофонов, в сочетании с совершенствованием звукоусилительной и звукозаписывающей аппаратуры, позволило развиться индустрии звукозаписи. Создание малых по размеру (даже несмотря на массу постоянного магнита, необходимого для работы микрофона), а также чрезвычайно чувствительных и узконаправленных динамических микрофонов в заметной степени изменило представление о приватности и породило ряд изменений в законодательстве (в частности, о применении подслушивающих устройств).

Тогда же разработанные электромагнитные микрофоны, в отличие от электродинамических, имеют закреплённый на мембране постоянный магнит и неподвижную катушку. Благодаря отсутствию жёстких требований к массе катушки (характерном для динамических микрофонов) такие микрофоны делались высокоомными, а также порой имели многоотводные катушки, что делало их более универсальными. Такие микрофоны, наряду с пьезоэлектрическими, позволили создать эффективные слуховые аппараты, а также ларингофоны.

Электретный микрофон, изобретённый японским учёным Ёгути в начале 20-х гг. XX века по принципу действия и конструкции близок к конденсаторному, однако в качестве неподвижной обкладки конденсатора и источника постоянного напряжения выступает пластина из электрета. Долгое время такие микрофоны были относительно дороги, а их очень высокое выходное сопротивление (как и конденсаторных, единицы мегаОм и выше) заставляло применять исключительно ламповые схемы.

Создание полевых транзисторов привело к появлению чрезвычайно эффективных, миниатюрных и лёгких электретных микрофонов, совмещённых с собранным в том же корпусе предусилителем на полевом транзисторе.

2. Устройство микрофона

Принцип действия микрофона с подвижной катушкой

Конденсаторный микрофон Октава МК-319 внутри

Принцип работы микрофона заключается в том, что давление звуковых колебаний воздуха, воды или твердого вещества действует на тонкую мембрану микрофона. В свою очередь, колебания мембраны возбуждают электрические колебания; в зависимости от типа микрофона для этого используются явление электромагнитной индукции, изменение ёмкости конденсаторов или пьезоэлектрический эффект.

Свойства акустико-механической системы сильно зависят от того, воздействует ли звуковое давление на одну сторону диафрагмы (микрофон давления) или на обе стороны, а во втором случае от того, симметрично ли это воздействие (микрофон градиента давления) или на одну из сторон диафрагмы действуют колебания, непосредственно возбуждающие её, а на вторую — прошедшие через какое-либо механическое или акустическое сопротивление или систему задержки времени (асимметричный микрофон градиента давления).

Большое влияние на характеристики микрофона оказывает его механоэлектрическая часть.

3. Классификация микрофонов

Конденсаторный микрофон Октава МК-319

Динамический микрофон Sennheiser

3.1. Типы микрофонов по принципу действия

Сравнительные характеристики основных типов микрофонов (устаревшие данные из «БСЭ» 1967 год.):

Тип микрофона диапазон воспроизводимых частот, гц неравномерность частотной характеристики, дб осевая чувствительность на частоте 1000 гц, мв×м2/н
Угольный 300—3400 20 1000
Электродинамический катушечного типа 100—10 000 (1 класса)

30—15 000 (высшего класса)

12 0,5

~1,0

Электродинамический ленточного типа 50—10 000 (1 класса)

70—15 000 (высшего класса)

10 1

1,5

Конденсаторный 30—15 000 5 5
Пьезоэлектрический 100—5 000 15 50
Электромагнитный 300—5 000 20 5

3.2. Функциональные виды микрофонов

4. Характеристики микрофонов

Схематическое обозначение микрофона

Микрофоны любого типа оцениваются следующими характеристиками:

  1. чувствительность
  2. амплитудно-частотная характеристика
  3. акустическая характеристика микрофона
  4. характеристика направленности
  5. уровень собственных шумов микрофона

4.1. Чувствительность

Чувствительность микрофона определяется отношением напряжения на выходе микрофона к звуковому давлению Р0 в свободном звуковом поле, т. е. при отсутствии сигнала. При распространении синусоидальной звуковой волны в направлении акустической оси микрофона, это направление называется осевой чувствительностью: M0 = U / P0(мВ/н/м²)

Акустическая ось совпадает с осью симметрии микрофона. Если конструкция микрофона не имеет оси симметрии, то направление акустической оси указывается в технических условиях. Чувствительность современных микрофонов составляет от 1-2 (динамические микрофоны) до 10-15 (конденсаторные микрофоны) мВ/Па

4.2. Амплитудно-частотная характеристика

АЧХ микрофонов Октава МК-319 и Shure SM58

Амплитудно-частотная характеристика (АЧХ), или просто частотная характеристика - это зависимость осевой чувствительности от частоты звуковых колебаний. Эта характеристика связана с зависимостью чувствительности микрофона от частоты звуковых колебаний. Неравномерность амплитудно-частотной характеристики измеряют в децибелах как отношение чувствительности микрофона на определенной частоте к чувствительности на средней частоте, например 1000 Гц.

4.3. Акустическая характеристика

Влияние звукового поля микрофона оценивается акустической характеристикой, которая определяется отношением силы, действующей на диафрагму микрофона, и звуковым давлением в свободном звуковом поле: A = F/P, а потому, что чувствительность микрофона M = U/P можно представить как U/P = U/F • F/P и выразить через А. Тогда получим: M = A • U / F. Отношение напряжения на выходе микрофона к силе, действующей на диафрагму U/F, характеризует микрофон как электромеханический преобразователь. Акустическая характеристика определяет характеристику направленности микрофона. По виду акустической характеристики, а следовательно и характеристики направленности, отличают три типа микрофонов, как приемников звука: приемники давления; градиента давления; комбинированые.

4.4. Характеристика направленности

Направленность микрофонов. Представление в полярных координатах
приемники давления
Polar pattern omnidirectional.png Ненаправленный
приемники градиента давления
Polar pattern figure eight.png Двунаправленный«Восьмерка»
комбинированные
Polar pattern cardioid.png Кардиоид
Polar pattern hypercardioid.png Гиперкардиоид

Характеристикой направленности называют зависимость чувствительности микрофона от направления падения звуковой волны по отношению к оси микрофона. Она определяется отношением чувствительности Мα при падении звуковой волны под углом α относительно акустической оси микрофона к его осевой чувствительности:

φ = Mα/M0

Направленность микрофона означает его возможное расположение относительно источников звука. Если чувствительность не зависит от угла падения звуковой волны, т. е. φ = 1, то микрофон называют ненаправленным, и источники звука могут располагаться вокруг него. А если чувствительность зависит от угла, то источники звука должны располагаться в пространственном угле, в пределах которого чувствительность микрофона мало отличается от осевой чувствительности.

4.4.1. Ненаправленные микрофоны

В микрофонах - приемниках давления сила, действующая на диафрагму, определяется звуковым давлением у поверхности диафрагмы. Звуковое поле может действовать только на одну сторону диафрагмы. Вторая сторона конструктивно защищена. Если размеры микрофона малы по сравнению с длиной звуковой волны, то микрофон не изменяет звукового поля. А если больше, тогда за счет дифракции звуковых волн давление меняется. На низких частотах от 1000 Гц и ниже такие микрофоны не имеют направленного действия.

Ненаправленные микрофоны удобны, например, для записи разговора людей, сидящих за круглым столом.

4.4.2. Микрофоны двустороннего направления

В микрофонах - приемниках градиента давления сила, действующая на движущуюся систему микрофона, определяется разностью звуковых давлений на двух сторонах диафрагмы. То есть, звуковое поле действует на две стороны диафрагмы. Характеристика направленности имеет вид восьмерки.

Двусторонние микрофоны удобны, например, для записи разговора двух собеседников, сидящих друг напротив друга.

4.4.3. Микрофоны одностороннего направления

Односторонняя направленность достигается в микрофонах комбинированного типа. Их диаграммы направленности близки по форме к кардиоиде, поэтому нередко их называют кардиоидными. Модификации микрофонов, имеющих еще меньшую направленность, чем кардиоидные, называют суперкардиоидными и гиперкардиоидными, однако эти разновидности, в отличие от кардиоидного микрофона, также чувствительны к сигналам с противоположной стороны.

Эти микрофоны имеют определенные преимущества в эксплуатации: источник звука располагается с одной стороны микрофона в пределах достаточно широкого пространственного угла, а звуки, распространяющиеся за его пределами микрофон не воспринимает.

4.5. Уровень шумов

Уровень собственных шумов микрофона Nш определяется отношением эффективного напряжения на выходе микрофона при отсутствии звукового поля Uш к напряжению U1 при наличии звукового поля с эффективным давлением в 0,1 н/м²:

Nш = 20 lg Uш/U1, дБ.

Напряжение Uш обусловлено главным образом тепловыми шумами в опорах электрической схемы микрофона.

5. Микрофон в искусстве

6. В фольклоре

Тема подслушивающих устройств получила отражение в общеизвестном устном народном творчестве.

 — А у нас в квартире газ. А у вас?  — А у нас — микрофон. Вон, вон и вон! Говорили, что стены американского посольства в Москве сделаны из микробетона — смеси бетона с микрофонами.

Источники

wreferat.baza-referat.ru

Реферат : История и устройство микрофонов

История и устройство микрофонов

Собственно, первым термин "микрофон" предложил использовать британский изобретатель Сэр Чарльз Уитстоун в 1827 году. Его нехитрый инструмент для усиления слабых звуков — две тонкие рейки, сообщавшие механические колебания ушам, не имел ничего общего с тем, что теперь называется микрофоном. Ничего, кроме названия. Микрофон как устройство для преобразования акустического сигнала в электрический с сохранением волновых характеристик — появился в 1876 году. Правда, назывался он совершенно иначе — жидкостный передатчик (liquid transmitter).

Жидкостный передатчик

Принцип работы жидкостного передатчика достаточно прост. В трубообразный резервуар налито немного воды, на которой "плавает" пергаментная диафрагма.

К диафрагме присоединён провод — так, чтобы лишь едва соприкасаться с водой. В воду добавлено небольшое количество кислоты, чтобы улучшить её электропроводимость.

Когда человек что-то говорит в трубку, диафрагма начинает колебаться, так что провод соприкасается с водой то больше, то меньше. Соответственным образом изменяется сопротивление электрической цепи.

4 марта 1877 года американский изобретатель Эмиль Берлинер построил первый угольный микрофон. Однако развитие получил микрофон американского изобретателя Дэвида Юза (в мае 1878 года). Микрофон Юза содержал угольный стержень с заострёнными концами, упиравшийся в две угольные же чашечки, и соединённый с подвижной мембраной. Площадь контакта угольного стержня с чашечками сильно менялась при колебаниях мембраны, соответственно менялось и сопротивление угольного микрофона, а с ним и ток в цепи. Микрофон Юза совершенствовался многими изобретателями. Весьма значительно усовершенствовал этот тип микрофонов Эдисон. Он предложил использовать угольный порошок вместо угольного стержня, т. е. изобрёл новый вид угольного микрофона с угольным порошком. Автор наиболее прижившейся конструкции угольного микрофона — Энтони Уайт (1890).

Угольный микрофон практически не требует усиления сигнала, сигнал с его выхода можно подавать непосредственно на высокоомный наушник или громкоговоритель. Из-за этого свойства угольные микрофоны использовались до недавнего времени в телефонных аппаратах (с дисковым номеронабирателем). Однако угольный микрофон отличается плохой амплитудно-частотной характеристикой (он нечувствителен к слишком низким и слишком высоким частотам). Кроме того, в отличие от наиболее распространённого динамического микрофона, угольный требует питания постоянным током.

Первый "ленточный" микрофон "44А" изобретён в 1942 году сотрудниками американской компании RCA. Ему суждено было стать одним из самых популярных микрофонов для студийных записей. Собственно говоря, больше он нигде и не применялся: слишком тяжёл (3,5 килограмма). Однако он обладал и рядом заметных преимуществ: высокая чувствительность и узкая направленность, за счёт чего отсекались посторонние шумы.

В микрофоне использовалась лента длиной 50 мм и шириной 2,4 мм, которая двигалась в магнитном поле в соответствии со звуковым давлением. Впоследствии вес ленточных микрофонов значительно уменьшился, а для увеличения чувствительности стали использовать два ленточных капсюля сразу.

В настоящее время в профессиональной практике используются только динамические и конденсаторные микрофоны. Первый динамический микрофон ДМК изготовили на заводе "Октава" в 1936 году. Динамический микрофон — это наиболее распространённый тип конструкции микрофона. Диафрагма динамического микрофона связана с катушкой, находящейся в зазоре вокруг магнита.

Продольные колебания прилегающего воздуха смещают диафрагму с катушкой относительно постоянного магнитного поля, что приводит к появлению на концах катушки переменного электрического потенциала, напряжение и частота которого пропорциональны силе и частоте звука, воздействующего на диафрагму.

В отличие от конденсаторных, динамические микрофоны не требуют фантомного питания.

Компания AKG в 1947 году представила свой первый конденсаторный микрофон, но до 1962 года, когда Белл Лабс начали выпускать свою версию таких микрофонов, особой популярностью они не пользовались. А уже концу 1970-х годов приблизительно треть всех выпускаемых в мире микрофонов были конденсаторными.

В конденсаторном микрофоне звук воздействует на мембрану, являющуюся одной из обкладок конденсатора.

Этот конденсатор включен в последовательную цепь с источником постоянного тока. При звуковом воздействии на мембрану она начинает колебаться, вызывая изменение емкости, которое, в свою очередь, превращает постоянное напряжение источника в переменное.

Конденсаторный микрофон имеет очень высокое выходное сопротивление. В связи с этим, внутри его корпуса располагают предусилитель с высоким входным сопротивлением. Конденсаторные микрофоны обладают весьма равномерной амплитудно-частотной характеристикой и обеспечивают высококачественное звучание, в связи с чем широко используются в студиях звукозаписи, на радио и телевидении.

Недостатками их являются высокая стоимость, необходимость во внешнем питании и высокая чувствительность к ударам и климатическим воздействиям — влажности воздуха и перепадам температуры. Однако существует тип конденсаторного микрофона — электретный микрофон, который свободен от большинства перечисленных недостатков.

Принцип действия электретного конденсаторного микрофона основан на способности некоторых диэлектрических материалов (электретов) сохранять поверхностную неоднородность распределения заряда в течение длительного времени. Тонкая плёнка из гомоэлектрета помещается в зазор конденсатора, у которого мембрана имеет возможность перемещаться под действием внешнего акустического сигнала, либо пленка наносится на одну из обкладок. Это приводит к появлению некоторого постоянного заряда конденсатора. При изменении ёмкости, из-за смещения мембраны, на конденсаторе проявляется изменение напряжения, соответствующее акустическому сигналу.

Электретный микрофон имеет очень высокое сопротивление (несколько сотен кОм или Мом), что вынуждает подключать их к усилителям с высоким входным сопротивлением.

Заключение

Итак, самый первый микрофон, появившийся на свет в 1876 году, назывался жидкостный передатчик. Через год американский изобретатель Эмиль Берлинер построил первый угольный микрофон. Первый динамический микрофон был выпущен спустя почти 60 лет. "Ленточный" микрофон появился в 1942 году. А спустя еще 5 лет был представлен первый конденсаторный микрофон.

Сейчас в профессиональной практике используются только динамические и конденсаторные микрофоны. Динамические микрофоны довольно надёжны и крепки — во всяком случае, крепче конденсаторных, поэтому их, в основном, и используют на концертах. Но в связи с тем, что масса подвижных элементов в динамических микрофонах больше, их чувствительность заведомо ниже, чем в конденсаторных. Последние же имеют тенденцию записывать звук как он есть, со всеми недостатками. Поэтому даже те, кто способен петь "вживую" безупречно, предпочитают даже в студии использовать динамические микрофоны.

Список использованной литературы

topref.ru

Реферат - Устройство микрофонов - Коммуникации и связь

Тема

Устройство микрофонов

Звуковые колебания, воспринятые мембраной, должны быть преобразованы в электрические сигналы. Для этого к мембране присоединяют электромеханический преобразователь, работающий в генераторном режиме.

В зависимости от того, какая система преобразования использована в микрофоне, различают электродинамические, электромагнитные, электростатические, пьезоэлектрические и угольные микрофоны.

Микрофоны электромагнитной системы. Разборчивая передача речи по проводам впервые была осуществлена 3 июля 1875 г. А. Беллом (1847 – 1922) при помощи микрофона электромагнитной системы. Микрофон запатентован в 1876 г.

Конструкция микрофона показана на рис. 1, где в роли якоря выступает мембрана микрофона. Однако, такая конструкция мало пригодна для практического применения, т. к.:

— на мембрану действует постоянная составляющая силы, прогибающая мембрану, и мембрана должна быть достаточной толщины, чтобы противостоять этому воздействию;

— магнитное сопротивление мембраны должно быть небольшим, что также требует увеличения её толщины.

Толстая мембрана обладает большой инерцией и, следовательно, будет плохо воспроизводить верхние частоты звукового диапазона. Для улучшения характеристик микрофона необходимо компенсировать постоянную составляющую силы. Это можно сделать, поместив мембрану между полюсами двух магнитов. Так, например, устроен распространенный в СНГ микрофон ДЭМШ (см. рис. 1).

Устройство микрофона ДЭМШ Рисунок 1

Диапазон воспроизводимых частот микрофона ДЭМШ 300 – 3000 Гц, средняя чувствительность при работе на нагрузку 600 Ом – 0.22 мВ/Па, модуль полного сопротивления — Ом, габариты мм, масса – 14 г.

Как видим, парметры микрофона обеспечивают запись речи, но не позволяют осуществить запись музыкальных программ.

Ещё можно встретить микрофон электромагнитной системы МЭМ-60. Этот микрофон воспроизводит диапазон частот Гц.

Имеет чувствительность на нагрузке 600 Ом и частоте 1000 Гц равную ~ 10 мВ/Па. Модуль полного сопротивления 300 Ом. Габариты мм и массу 400 г.

Микрофоны электромагнитной системы отличаются высокой vеханической прочностью, надежностью и применяются на транспорте, в армии – там, где тяжелые условия эксплуатации.

Первые идеи и работы по созданию микрофона электродинамической системы связаны с именами Каттриса, Реддинга и Сименса (C. Cuttris, J. Redding патент США № 242.816, 1881 г.; SimensE.W. немецкий патент № 2355, 1878 г.).

Однако, первые образцы микрофона, пригодные для практического применения, созданы Вентом и Тьюрасом (WenteE.C., ThurasA.L. J. Ac. Soc. Am. Vol. 3, july 1931). Различают катушечные и ленточные микрофоны этой системы.

Катушечный микрофон представляет собой мембрану, к которой прикреплена катушка, содержащая несколько десятков витков провода. Катушка помещена в радиальное магнитное поле, создаваемое постоянным магнитом.

При воздействии на мембрану звуковых волн, колебания мембраны передаются катушке и в ней возникает э.д.с. е = . Частотная характеристика микрофона (т.е. зависимость е от частоты f) должна быть равномерной.

Чтобы выяснить, при каких условиях это возможно, напишем выражение для чувствительности микрофона:

(1)

где = — коэффициент нагрузки микрофона, — коэффициент электромеханической связи, — механическое сопротивление колебательной системы микрофона. — акустическая чувствительность микрофона. Единственный член в формуле (1.), который зависит от частоты – механическое сопротивление z.

Следовательно, механическая и акустическая часть должна быть построена так, чтобы в пределах рабочей полосы частот сопротивление z оставалось неизменным или менялось незначительно.

Практически это достигается созданием сложных (состоящих из нескольких колебательных контуров) резонансных систем. Таким способом удаётся получить частотную характеристику микрофона с полосой частот Гц и неравномерностьюдБ. На рис. 2 показана конструкция микрофона МД-85А.

1 – капсюль, 2 – корпус, 3 – крышка, 4 – кабель, 5 – прижимная деталь, 6 – манжета, 7 – амортизатор, 8 – мембрана, 9 – звуковая катушка, 10 – магнит, 11 – стакан, 12 – фланец, 13 – полюсный наконечник, 14 – ткань, 15 – накладка, 16 – объём в корпусе, 17 – отверстия в дне корпуса, 18 – боковые отверстия корпуса. Рисунок 2

Полости капсюля и корпуса, связанные между собой через отверстия, образуют сложную резонансную систему.

Благодаря простоте и надежности конструкции, хорошим электроакустическим параметрам катушечные микрофоны получили широкое распространение.

Ленточный микрофон представляет собой гибкую ленточку длиной см, помещенную между полюсными наконечниками постоянного магнита (см. рис. 3).

В полюсных наконечниках делают ряд отверстий для того, чтобы уменьшить разность хода волн, действующих на ленточку с разных сторон. Расстояние между отверстиями не превышает 1.7 см, что обеспечивает равномерность частотной характеристики до ~ 15000 Гц.

Магнитная индукция в зазоре ~ 1 Тл. Э.д.с. порядка 1 мВ. Для повышения выходного напряжения микрофон снабжен трансформатором с коэффициентом трансформации 50 или более.

При этом выходное сопротивление микрофона получается около Ом. Осевая чувствительность микрофона:

где n – коэффициент трансформации, S – площадь ленточки, l – длина ленточки, — резонансная частота подвижной системы, СМ – гибкость ленточки.

Из этой формулы следует, что для повышения чувствительности ленточного микрофона необходимо увеличивать площадь ленточки, индукцию в щели и гибкость ленточки.

Эти требования – противоречивы, т.к. увеличение площади (за счет увеличения ширины ленточки) приводит к уменьшению гибкости. Обычно ленточку делают гофрированной и уменьшают её толщину до 2 микрон, но при этом теряется прочность. Поэтому ленточные микрофоны используют только в помещениях, т.к. даже дуновение ветра может порвать ленточку

1 – гофрированная ленточка, 2 – полюсные наконечники с отверстиями, 3 – постоянный магнит, 4 – щель между полюсными наконечниками, 5 – отверстия в полюсных наконечниках, 6 – изоляционные планки.Устройство ленточного микрофона.Рисунок 3

Отечественные микрофоны электродинамической системы маркируют буквами: МД – катушечные микрофоны, МЛ – ленточные микрофоны.

Микрофоны электростатической системы. Электростатические преобразователи были предложены Эдисоном и Долбье. Однако, первый микрофон электростатической системы создан Вентом (E.C. Wente. Phys. Rev., Vol. 10., pp. 39-63, July, 1917).

Микрофон представляет собой конденсатор, образованный массивным основанием и тонкой мембраной, изолированной от основания прокладкой (см. рис. 2). На этот конденсатор через резистор R подано поляризующее напряжение U=.

Под действием звуковых волн мембрана совершает колебательное движение. Расстояние между мембраной и основанием d изменяется. Следовательно, изменяется ёмкость микрофона С. Относительное изменение ёмкости микрофона

Период звуковых колебаний обычно меньше постоянной времени . Поэтому заряд конденсатора не успевает измениться за время одного периода, т.е.

.

Но тогда

и

Изменения напряжения на конденсаторе пропорциональны изменениям расстояния между обкладками конденсатора. Эти изменения и являются э.д.с. микрофона е.

Если колебания происходят по гармоническому закону

то скорость колебаний

Коэффициент электромеханической связи

Чувствительность микрофона:

Чтобы чувствительность микрофона не зависела от частоты необходимо, чтобы

Это возможно, если резонансная частота мембраны выше верхней частоты рабочего диапазона частот. Тогда осевая чувствительность микрофона

. напряженность электрического поля между обкладками микрофона

Пробивная напряженность электрического поля для воздуха равна 30 кВ/см. При величине зазора между обкладками d = 20 мкм пробой может наступить при напряжении U= = 60 В. По этому в конденсаторных микрофонах величина напряжения U= обычно не превышает 150 В ( в зависимости от размера d)/

При заданной резонансной частоте мембраны её масса должна быть как можно меньшей. Обычно мембрану изготовляют из дюраля или полимерной пленки, покрытой тонким слоем золота.

Частотная характеристика микрофонов отличается высокой равномерностью, поэтому их часто используют как измерительные.

Диапазон частот конденсаторных микрофонов от Гц до кГц с неравномерностью дБ до 10 кГц идБ на более высоких частотах.

Недостатком конденсаторных микрофонов является необходимость подавать достаточно высокое напряжение на микрофон. От этого недостатка свободны электретные микрофоны, в которых электрическое поле создаётся электретной пленкой, применяемой в качестве материала мембраны. В последнее время электретные микрофоны получили широкое распространение благодаря небольшим габаритам и весу.

Микрофоны электростатической системы маркируются буквами: МК – конденсаторные микрофоны и МКЭ – электретные микрофоны.

Угольные микрофоны. Электромагнитный микрофон А. Белла оказался недостаточно чувствительным для практического применения в телефонной связи.и был вытеснен более чувствительным угольным микрофоном. Угольный микрофон был создан благодаря экспериментам Эдисона, Берлинера и Юза (1-й патент выдан Эдисону 27.04.1877.). Микрофон состоит из корпуса, заполненного угольным порошком и мембраны из проводящего материала.

К корпусу и мембране через обмотку трансформатора приложено постоянное напряжение U=.

При воздействии на мембрану звуковых колебаний угольный порошок сжимается или отпускается мембраной, его сопротивление изменяется и изменяется ток в цепи микрофона.

Переменная составляющая тока создаёт во вторичной обмотке трансформатора полезный сигнал.

Частотная характеристика микрофона близка к оптимальной для передачи речи. Динамический диапазон ~ 30 дБ.

Нелинейные искажения микрофона могут достигать 15 – 20 %. Угольные микрофоны можно встретить в телефонных аппаратах выпуска прежних лет с маркировкой МК-10 или МК-16.

www.ronl.ru

История и устройство микрофонов

История и устройство микрофонов

Собственно, первым термин "микрофон" предложил использовать британский изобретатель Сэр Чарльз Уитстоун в 1827 году. Его нехитрый инструмент для усиления слабых звуков — две тонкие рейки, сообщавшие механические колебания ушам, не имел ничего общего с тем, что теперь называется микрофоном. Ничего, кроме названия. Микрофон как устройство для преобразования акустического сигнала в электрический с сохранением волновых характеристик — появился в 1876 году. Правда, назывался он совершенно иначе — жидкостный передатчик (liquid transmitter).

Жидкостный передатчик

Принцип работы жидкостного передатчика достаточно прост. В трубообразный резервуар налито немного воды, на которой "плавает" пергаментная диафрагма.

К диафрагме присоединён провод — так, чтобы лишь едва соприкасаться с водой. В воду добавлено небольшое количество кислоты, чтобы улучшить её электропроводимость.

Когда человек что-то говорит в трубку, диафрагма начинает колебаться, так что провод соприкасается с водой то больше, то меньше. Соответственным образом изменяется сопротивление электрической цепи.

4 марта 1877 года американский изобретатель Эмиль Берлинер построил первый угольный микрофон. Однако развитие получил микрофон американского изобретателя Дэвида Юза (в мае 1878 года). Микрофон Юза содержал угольный стержень с заострёнными концами, упиравшийся в две угольные же чашечки, и соединённый с подвижной мембраной. Площадь контакта угольного стержня с чашечками сильно менялась при колебаниях мембраны, соответственно менялось и сопротивление угольного микрофона, а с ним и ток в цепи. Микрофон Юза совершенствовался многими изобретателями. Весьма значительно усовершенствовал этот тип микрофонов Эдисон. Он предложил использовать угольный порошок вместо угольного стержня, т. е. изобрёл новый вид угольного микрофона с угольным порошком. Автор наиболее прижившейся конструкции угольного микрофона — Энтони Уайт (1890).

Угольный микрофон практически не требует усиления сигнала, сигнал с его выхода можно подавать непосредственно на высокоомный наушник или громкоговоритель. Из-за этого свойства угольные микрофоны использовались до недавнего времени в телефонных аппаратах (с дисковым номеронабирателем). Однако угольный микрофон отличается плохой амплитудно-частотной характеристикой (он нечувствителен к слишком низким и слишком высоким частотам). Кроме того, в отличие от наиболее распространённого динамического микрофона, угольный требует питания постоянным током.

Первый "ленточный" микрофон "44А" изобретён в 1942 году сотрудниками американской компании RCA. Ему суждено было стать одним из самых популярных микрофонов для студийных записей. Собственно говоря, больше он нигде и не применялся: слишком тяжёл (3,5 килограмма). Однако он обладал и рядом заметных преимуществ: высокая чувствительность и узкая направленность, за счёт чего отсекались посторонние шумы.

В микрофоне использовалась лента длиной 50 мм и шириной 2,4 мм, которая двигалась в магнитном поле в соответствии со звуковым давлением. Впоследствии вес ленточных микрофонов значительно уменьшился, а для увеличения чувствительности стали использовать два ленточных капсюля сразу.

В настоящее время в профессиональной практике используются только динамические и конденсаторные микрофоны. Первый динамический микрофон ДМК изготовили на заводе "Октава" в 1936 году. Динамический микрофон — это наиболее распространённый тип конструкции микрофона. Диафрагма динамического микрофона связана с катушкой, находящейся в зазоре вокруг магнита.

Продольные колебания прилегающего воздуха смещают диафрагму с катушкой относительно постоянного магнитного поля, что приводит к появлению на концах катушки переменного электрического потенциала, напряжение и частота которого пропорциональны силе и частоте звука, воздействующего на диафрагму.

В отличие от конденсаторных, динамические микрофоны не требуют фантомного питания.

Компания AKG в 1947 году представила свой первый конденсаторный микрофон, но до 1962 года, когда Белл Лабс начали выпускать свою версию таких микрофонов, особой популярностью они не пользовались. А уже концу 1970-х годов приблизительно треть всех выпускаемых в мире микрофонов были конденсаторными.

В конденсаторном микрофоне звук воздействует на мембрану, являющуюся одной из обкладок конденсатора.

Этот конденсатор включен в последовательную цепь с источником постоянного тока. При звуковом воздействии на мембрану она начинает колебаться, вызывая изменение емкости, которое, в свою очередь, превращает постоянное напряжение источника в переменное.

Конденсаторный микрофон имеет очень высокое выходное сопротивление. В связи с этим, внутри его корпуса располагают предусилитель с высоким входным сопротивлением. Конденсаторные микрофоны обладают весьма равномерной амплитудно-частотной характеристикой и обеспечивают высококачественное звучание, в связи с чем широко используются в студиях звукозаписи, на радио и телевидении.

Недостатками их являются высокая стоимость, необходимость во внешнем питании и высокая чувствительность к ударам и климатическим воздействиям — влажности воздуха и перепадам температуры. Однако существует тип конденсаторного микрофона — электретный микрофон, который свободен от большинства перечисленных недостатков.

Принцип действия электретного конденсаторного микрофона основан на способности некоторых диэлектрических материалов (электретов) сохранять поверхностную неоднородность распределения заряда в течение длительного времени. Тонкая плёнка из гомоэлектрета помещается в зазор конденсатора, у которого мембрана имеет возможность перемещаться под действием внешнего акустического сигнала, либо пленка наносится на одну из обкладок. Это приводит к появлению некоторого постоянного заряда конденсатора. При изменении ёмкости, из-за смещения мембраны, на конденсаторе проявляется изменение напряжения, соответствующее акустическому сигналу.

Электретный микрофон имеет очень высокое сопротивление (несколько сотен кОм или Мом), что вынуждает подключать их к усилителям с высоким входным сопротивлением.

Заключение

Итак, самый первый микрофон, появившийся на свет в 1876 году, назывался жидкостный передатчик. Через год американский изобретатель Эмиль Берлинер построил первый угольный микрофон. Первый динамический микрофон был выпущен спустя почти 60 лет. "Ленточный" микрофон появился в 1942 году. А спустя еще 5 лет был представлен первый конденсаторный микрофон.

Сейчас в профессиональной практике используются только динамические и конденсаторные микрофоны. Динамические микрофоны довольно надёжны и крепки — во всяком случае, крепче конденсаторных, поэтому их, в основном, и используют на концертах. Но в связи с тем, что масса подвижных элементов в динамических микрофонах больше, их чувствительность заведомо ниже, чем в конденсаторных. Последние же имеют тенденцию записывать звук как он есть, со всеми недостатками. Поэтому даже те, кто способен петь "вживую" безупречно, предпочитают даже в студии использовать динамические микрофоны.

Список использованной литературы

Ссылки (links):
  • http://art.thelib.ru/
  • www.coolreferat.com

    Реферат Микрофон

    скачать

    Реферат на тему:

    Microphone studio.jpg

    План:

    Введение

    Microphone studio.jpg

    Микрофо́н (от греч. μικρός — маленький, φωνη — звук) — электроакустический прибор, преобразовывающий звуковые колебания в колебания электрического тока, устройство ввода. Служит первичным звеном в цепочке звукозаписывающего тракта или звукоусиления. Микрофоны используются во многих устройствах, таких как телефоны и магнитофоны, в звукозаписи и видеозаписи, на радио и телевидении, для радиосвязи, а также для ультразвукового контроля и измерения.

    1. История

    Вначале наибольшее распространение получил угольный микрофон Эдисона, об изобретении которого также независимо заявляли Г.Махальский в 1878 и П. М. Голубицкий в 1883. Угольный микрофон до сих пор используется в аппаратах аналоговой телефонии. Действие его основывается на изменении сопротивления между зёрнами угольного порошка при изменении давления на их совокупность.

    Конденсаторный микрофон был изобретён американским учёным Э. Венте в 1917 году. В нём звук воздействует на тонкую металлическую мембрану, изменяя расстояние между мембраной и металлическим корпусом. Тем самым образуемый мембраной и корпусом конденсатор меняет ёмкость. Если подвести к пластинам постоянное напряжение, изменение ёмкости вызовет ток через конденсатор, тем самым образуя электрический сигнал во внешней цепи.

    Более массовыми стали динамические микрофоны, отличающиеся от угольных гораздо лучшей линейностью характеристик и хорошими частотными свойствами, а от конденсаторных — более приемлемыми электрическими свойствами.

    Первым динамическим микрофоном стал изобретённый в 1924 году немецкими учёными Э. Герлахом и В. Шоттки электродинамический микрофон ленточного типа. Они расположили в магнитном поле гофрированную ленточку из очень тонкой (ок. 2 мкм) алюминиевой фольги. Такие микрофоны до сих пор применяются в студийной записи благодаря чрезвычайно высоким частотным характеристикам, однако их чувствительность невелика, выходное сопротивление очень мало (доли Ома), что значительно осложняло проектирование усилителей. Кроме того, достаточная чувствительность достижима только при значительной площади ленточки (а значит, и размерах магнита), в результате такие микрофоны имеют большие размеры и массу по сравнению со всеми остальными типами.

    Пьезоэлектрический микрофон, сконструированный советскими учёными С. Н. Ржевкиным и А. И. Яковлевым в 1925 году, имеет в качестве датчика звукового давления пластинку из вещества, обладающего пьезоэлектрическими свойствами. Работа в качестве датчика давления позволила создать первые гидрофоны и записать сверхнизкочастотные звуки, характерные для морских обитателей.

    В 1931 году американские учёные Э. Венте и А. Терас изобрели динамический микрофон с катушкой, приклееной к тонкой мембране из полистирола или фольги. В отличие от ленточного, он имел существенно более высокое выходное сопротивление (десятки Ом и сотни кило Ом), мог быть изготовлен в меньших размерах и является обратимым.

    Совершенствование характеристик именно этих микрофонов, в сочетании с совершенствованием звукоусилительной и звукозаписывающей аппаратуры, позволило развиться индустрии звукозаписи. Создание малых по размеру (даже несмотря на массу постоянного магнита, необходимого для работы микрофона), а также чрезвычайно чувствительных и узконаправленных динамических микрофонов в заметной степени изменило представление о приватности и породило ряд изменений в законодательстве (в частности, о применении подслушивающих устройств).

    Тогда же разработанные электромагнитные микрофоны, в отличие от электродинамических, имеют закреплённый на мембране постоянный магнит и неподвижную катушку. Благодаря отсутствию жёстких требований к массе катушки (характерном для динамических микрофонов) такие микрофоны делались высокоомными, а также порой имели многоотводные катушки, что делало их более универсальными. Такие микрофоны, наряду с пьезоэлектрическими, позволили создать эффективные слуховые аппараты, а также ларингофоны.

    Электретный микрофон, изобретённый японским учёным Ёгути в начале 20-х гг. XX века по принципу действия и конструкции близок к конденсаторному, однако в качестве неподвижной обкладки конденсатора и источника постоянного напряжения выступает пластина из электрета. Долгое время такие микрофоны были относительно дороги, а их очень высокое выходное сопротивление (как и конденсаторных, единицы мегаОм и выше) заставляло применять исключительно ламповые схемы.

    Создание полевых транзисторов привело к появлению чрезвычайно эффективных, миниатюрных и лёгких электретных микрофонов, совмещённых с собранным в том же корпусе предусилителем на полевом транзисторе.

    2. Устройство микрофона

    Принцип действия микрофона с подвижной катушкой

    Конденсаторный микрофон Октава МК-319 внутри

    Принцип работы микрофона заключается в том, что давление звуковых колебаний воздуха, воды или твердого вещества действует на тонкую мембрану микрофона. В свою очередь, колебания мембраны возбуждают электрические колебания; в зависимости от типа микрофона для этого используются явление электромагнитной индукции, изменение ёмкости конденсаторов или пьезоэлектрический эффект.

    Свойства акустико-механической системы сильно зависят от того, воздействует ли звуковое давление на одну сторону диафрагмы (микрофон давления) или на обе стороны, а во втором случае от того, симметрично ли это воздействие (микрофон градиента давления) или на одну из сторон диафрагмы действуют колебания, непосредственно возбуждающие её, а на вторую — прошедшие через какое-либо механическое или акустическое сопротивление или систему задержки времени (асимметричный микрофон градиента давления).

    Большое влияние на характеристики микрофона оказывает его механоэлектрическая часть.

    3. Классификация микрофонов

    Конденсаторный микрофон Октава МК-319

    Динамический микрофон Sennheiser

    3.1. Типы микрофонов по принципу действия

    Сравнительные характеристики основных типов микрофонов (устаревшие данные из «БСЭ» 1967 год.):

    Тип микрофона диапазон воспроизводимых частот, гц неравномерность частотной характеристики, дб осевая чувствительность на частоте 1000 гц, мв×м2/н
    Угольный 300—3400 20 1000
    Электродинамический катушечного типа 100—10 000 (1 класса)

    30—15 000 (высшего класса)

    12 0,5

    ~1,0

    Электродинамический ленточного типа 50—10 000 (1 класса)

    70—15 000 (высшего класса)

    10 1

    1,5

    Конденсаторный 30—15 000 5 5
    Пьезоэлектрический 100—5 000 15 50
    Электромагнитный 300—5 000 20 5

    3.2. Функциональные виды микрофонов

    4. Характеристики микрофонов

    Схематическое обозначение микрофона

    Микрофоны любого типа оцениваются следующими характеристиками:

    1. чувствительность
    2. амплитудно-частотная характеристика
    3. акустическая характеристика микрофона
    4. характеристика направленности
    5. уровень собственных шумов микрофона

    4.1. Чувствительность

    Чувствительность микрофона определяется отношением напряжения на выходе микрофона к звуковому давлению Р0 в свободном звуковом поле, т. е. при отсутствии сигнала. При распространении синусоидальной звуковой волны в направлении акустической оси микрофона, это направление называется осевой чувствительностью: M0 = U / P0(мВ/н/м²)

    Акустическая ось совпадает с осью симметрии микрофона. Если конструкция микрофона не имеет оси симметрии, то направление акустической оси указывается в технических условиях. Чувствительность современных микрофонов составляет от 1-2 (динамические микрофоны) до 10-15 (конденсаторные микрофоны) мВ/Па

    4.2. Амплитудно-частотная характеристика

    АЧХ микрофонов Октава МК-319 и Shure SM58

    Амплитудно-частотная характеристика (АЧХ), или просто частотная характеристика - это зависимость осевой чувствительности от частоты звуковых колебаний. Эта характеристика связана с зависимостью чувствительности микрофона от частоты звуковых колебаний. Неравномерность амплитудно-частотной характеристики измеряют в децибелах как отношение чувствительности микрофона на определенной частоте к чувствительности на средней частоте, например 1000 Гц.

    4.3. Акустическая характеристика

    Влияние звукового поля микрофона оценивается акустической характеристикой, которая определяется отношением силы, действующей на диафрагму микрофона, и звуковым давлением в свободном звуковом поле: A = F/P, а потому, что чувствительность микрофона M = U/P можно представить как U/P = U/F • F/P и выразить через А. Тогда получим: M = A • U / F. Отношение напряжения на выходе микрофона к силе, действующей на диафрагму U/F, характеризует микрофон как электромеханический преобразователь. Акустическая характеристика определяет характеристику направленности микрофона. По виду акустической характеристики, а следовательно и характеристики направленности, отличают три типа микрофонов, как приемников звука: приемники давления; градиента давления; комбинированые.

    4.4. Характеристика направленности

    Направленность микрофонов. Представление в полярных координатах
    приемники давления
    Polar pattern omnidirectional.png Ненаправленный
    приемники градиента давления
    Polar pattern figure eight.png Двунаправленный«Восьмерка»
    комбинированные
    Polar pattern cardioid.png Кардиоид
    Polar pattern hypercardioid.png Гиперкардиоид

    Характеристикой направленности называют зависимость чувствительности микрофона от направления падения звуковой волны по отношению к оси микрофона. Она определяется отношением чувствительности Мα при падении звуковой волны под углом α относительно акустической оси микрофона к его осевой чувствительности:

    φ = Mα/M0

    Направленность микрофона означает его возможное расположение относительно источников звука. Если чувствительность не зависит от угла падения звуковой волны, т. е. φ = 1, то микрофон называют ненаправленным, и источники звука могут располагаться вокруг него. А если чувствительность зависит от угла, то источники звука должны располагаться в пространственном угле, в пределах которого чувствительность микрофона мало отличается от осевой чувствительности.

    4.4.1. Ненаправленные микрофоны

    В микрофонах - приемниках давления сила, действующая на диафрагму, определяется звуковым давлением у поверхности диафрагмы. Звуковое поле может действовать только на одну сторону диафрагмы. Вторая сторона конструктивно защищена. Если размеры микрофона малы по сравнению с длиной звуковой волны, то микрофон не изменяет звукового поля. А если больше, тогда за счет дифракции звуковых волн давление меняется. На низких частотах от 1000 Гц и ниже такие микрофоны не имеют направленного действия.

    Ненаправленные микрофоны удобны, например, для записи разговора людей, сидящих за круглым столом.

    4.4.2. Микрофоны двустороннего направления

    В микрофонах - приемниках градиента давления сила, действующая на движущуюся систему микрофона, определяется разностью звуковых давлений на двух сторонах диафрагмы. То есть, звуковое поле действует на две стороны диафрагмы. Характеристика направленности имеет вид восьмерки.

    Двусторонние микрофоны удобны, например, для записи разговора двух собеседников, сидящих друг напротив друга.

    4.4.3. Микрофоны одностороннего направления

    Односторонняя направленность достигается в микрофонах комбинированного типа. Их диаграммы направленности близки по форме к кардиоиде, поэтому нередко их называют кардиоидными. Модификации микрофонов, имеющих еще меньшую направленность, чем кардиоидные, называют суперкардиоидными и гиперкардиоидными, однако эти разновидности, в отличие от кардиоидного микрофона, также чувствительны к сигналам с противоположной стороны.

    Эти микрофоны имеют определенные преимущества в эксплуатации: источник звука располагается с одной стороны микрофона в пределах достаточно широкого пространственного угла, а звуки, распространяющиеся за его пределами микрофон не воспринимает.

    4.5. Уровень шумов

    Уровень собственных шумов микрофона Nш определяется отношением эффективного напряжения на выходе микрофона при отсутствии звукового поля Uш к напряжению U1 при наличии звукового поля с эффективным давлением в 0,1 н/м²:

    Nш = 20 lg Uш/U1, дБ.

    Напряжение Uш обусловлено главным образом тепловыми шумами в опорах электрической схемы микрофона.

    5. Микрофон в искусстве

    6. В фольклоре

    Тема подслушивающих устройств получила отражение в общеизвестном устном народном творчестве.

     — А у нас в квартире газ. А у вас?  — А у нас — микрофон. Вон, вон и вон! Говорили, что стены американского посольства в Москве сделаны из микробетона — смеси бетона с микрофонами.

    Источники

    www.wreferat.baza-referat.ru

    Реферат: История и устройство микрофонов

    История и устройство микрофонов

    Собственно, первым термин "микрофон" предложил использовать британский изобретатель Сэр Чарльз Уитстоун в 1827 году. Его нехитрый инструмент для усиления слабых звуков — две тонкие рейки, сообщавшие механические колебания ушам, не имел ничего общего с тем, что теперь называется микрофоном. Ничего, кроме названия. Микрофон как устройство для преобразования акустического сигнала в электрический с сохранением волновых характеристик — появился в 1876 году. Правда, назывался он совершенно иначе — жидкостный передатчик (liquid transmitter).

    Жидкостный передатчик

    Принцип работы жидкостного передатчика достаточно прост. В трубообразный резервуар налито немного воды, на которой "плавает" пергаментная диафрагма.

    К диафрагме присоединён провод — так, чтобы лишь едва соприкасаться с водой. В воду добавлено небольшое количество кислоты, чтобы улучшить её электропроводимость.

    Когда человек что-то говорит в трубку, диафрагма начинает колебаться, так что провод соприкасается с водой то больше, то меньше. Соответственным образом изменяется сопротивление электрической цепи.

    4 марта 1877 года американский изобретатель Эмиль Берлинер построил первый угольный микрофон. Однако развитие получил микрофон американского изобретателя Дэвида Юза (в мае 1878 года). Микрофон Юза содержал угольный стержень с заострёнными концами, упиравшийся в две угольные же чашечки, и соединённый с подвижной мембраной. Площадь контакта угольного стержня с чашечками сильно менялась при колебаниях мембраны, соответственно менялось и сопротивление угольного микрофона, а с ним и ток в цепи. Микрофон Юза совершенствовался многими изобретателями. Весьма значительно усовершенствовал этот тип микрофонов Эдисон. Он предложил использовать угольный порошок вместо угольного стержня, т. е. изобрёл новый вид угольного микрофона с угольным порошком. Автор наиболее прижившейся конструкции угольного микрофона — Энтони Уайт (1890).

    Угольный микрофон практически не требует усиления сигнала, сигнал с его выхода можно подавать непосредственно на высокоомный наушник или громкоговоритель. Из-за этого свойства угольные микрофоны использовались до недавнего времени в телефонных аппаратах (с дисковым номеронабирателем). Однако угольный микрофон отличается плохой амплитудно-частотной характеристикой (он нечувствителен к слишком низким и слишком высоким частотам). Кроме того, в отличие от наиболее распространённого динамического микрофона, угольный требует питания постоянным током.

    Первый "ленточный" микрофон "44А" изобретён в 1942 году сотрудниками американской компании RCA. Ему суждено было стать одним из самых популярных микрофонов для студийных записей. Собственно говоря, больше он нигде и не применялся: слишком тяжёл (3,5 килограмма). Однако он обладал и рядом заметных преимуществ: высокая чувствительность и узкая направленность, за счёт чего отсекались посторонние шумы.

    В микрофоне использовалась лента длиной 50 мм и шириной 2,4 мм, которая двигалась в магнитном поле в соответствии со звуковым давлением. Впоследствии вес ленточных микрофонов значительно уменьшился, а для увеличения чувствительности стали использовать два ленточных капсюля сразу.

    В настоящее время в профессиональной практике используются только динамические и конденсаторные микрофоны. Первый динамический микрофон ДМК изготовили на заводе "Октава" в 1936 году. Динамический микрофон — это наиболее распространённый тип конструкции микрофона. Диафрагма динамического микрофона связана с катушкой, находящейся в зазоре вокруг магнита.

    Продольные колебания прилегающего воздуха смещают диафрагму с катушкой относительно постоянного магнитного поля, что приводит к появлению на концах катушки переменного электрического потенциала, напряжение и частота которого пропорциональны силе и частоте звука, воздействующего на диафрагму.

    В отличие от конденсаторных, динамические микрофоны не требуют фантомного питания.

    Компания AKG в 1947 году представила свой первый конденсаторный микрофон, но до 1962 года, когда Белл Лабс начали выпускать свою версию таких микрофонов, особой популярностью они не пользовались. А уже концу 1970-х годов приблизительно треть всех выпускаемых в мире микрофонов были конденсаторными.

    В конденсаторном микрофоне звук воздействует на мембрану, являющуюся одной из обкладок конденсатора.

    Этот конденсатор включен в последовательную цепь с источником постоянного тока. При звуковом воздействии на мембрану она начинает колебаться, вызывая изменение емкости, которое, в свою очередь, превращает постоянное напряжение источника в переменное.

    Конденсаторный микрофон имеет очень высокое выходное сопротивление. В связи с этим, внутри его корпуса располагают предусилитель с высоким входным сопротивлением. Конденсаторные микрофоны обладают весьма равномерной амплитудно-частотной характеристикой и обеспечивают высококачественное звучание, в связи с чем широко используются в студиях звукозаписи, на радио и телевидении.

    Недостатками их являются высокая стоимость, необходимость во внешнем питании и высокая чувствительность к ударам и климатическим воздействиям — влажности воздуха и перепадам температуры. Однако существует тип конденсаторного микрофона — электретный микрофон, который свободен от большинства перечисленных недостатков.

    Принцип действия электретного конденсаторного микрофона основан на способности некоторых диэлектрических материалов (электретов) сохранять поверхностную неоднородность распределения заряда в течение длительного времени. Тонкая плёнка из гомоэлектрета помещается в зазор конденсатора, у которого мембрана имеет возможность перемещаться под действием внешнего акустического сигнала, либо пленка наносится на одну из обкладок. Это приводит к появлению некоторого постоянного заряда конденсатора. При изменении ёмкости, из-за смещения мембраны, на конденсаторе проявляется изменение напряжения, соответствующее акустическому сигналу.

    Электретный микрофон имеет очень высокое сопротивление (несколько сотен кОм или Мом), что вынуждает подключать их к усилителям с высоким входным сопротивлением.

    Заключение

    Итак, самый первый микрофон, появившийся на свет в 1876 году, назывался жидкостный передатчик. Через год американский изобретатель Эмиль Берлинер построил первый угольный микрофон. Первый динамический микрофон был выпущен спустя почти 60 лет. "Ленточный" микрофон появился в 1942 году. А спустя еще 5 лет был представлен первый конденсаторный микрофон.

    Сейчас в профессиональной практике используются только динамические и конденсаторные микрофоны. Динамические микрофоны довольно надёжны и крепки — во всяком случае, крепче конденсаторных, поэтому их, в основном, и используют на концертах. Но в связи с тем, что масса подвижных элементов в динамических микрофонах больше, их чувствительность заведомо ниже, чем в конденсаторных. Последние же имеют тенденцию записывать звук как он есть, со всеми недостатками. Поэтому даже те, кто способен петь "вживую" безупречно, предпочитают даже в студии использовать динамические микрофоны.

    Список использованной литературы

    · Вейценфельд, А. Устройство и технические параметры микрофонов / А. Вейценфельд // Звукорежиссер. – 2000. - №1.

    · Избранные главы из истории микрофонов // Кладезь знаний - статьи, обзоры, новости, 2006. Режим доступа: http://Art.Thelib.Ru

    · Микрофон // Википедия - свободная энциклопедия, 2008. Режим доступа: http://ru.wikipedia.org

    superbotanik.net


    Смотрите также