Профессия "Машиностроение". Реферат математика в машиностроении


Реферат - Механика - Математика

Курсовая работа

Вопросы для программированного

контроля по курсу Механика

РУКОВОДИТЕЛЬ:

Сабирова Файруза Мусовна Выполнил:

студент 426 группы

Ерёменко А.С.

КИНЕМАТИКА

1)Перемещением называют:

а) линию в пространстве, описываемую точкой при движении

б)вектор, соединяющий начальное и конечное положение точки

в) длину пути

г) вектор, соединяющий начало координат и конечную точку пути

2 Средней скоростью перемещения называют :

а)б) в)г)

3 Тангенциальное ускорение имеет обозначение:

а)б)в)г)

4 Нормальное ускорение имеет обозначение:

а)б)в)г)

5 Полное ускорение при равнопеременном криволинейном движении имеет обозначение:

а)б)в)г)

6 Как взаимно расположены касательная к траектории и ускорение :

тангенциальное нормальное

а) перпендикулярно под острым углом

б) перпендикулярно сонаправленно

в) сонаправленно перпендикулярно

г) под острым углом перпендикулярно

ДИНАМИКА ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ 7 Первый закон Ньютона имеет следующую формулировку:

а) существуют такие СО, в которых свободные тела движутся прямолинейно и равномерно

б) сила есть произведение массы на ускорение

в) силы в природе возникают симметричными парами

г) в НИСО свободные тела движутся прямолинейно и равномерно

8 Второй закон Ньютона имеет следующую формулировку:

а) существуют такие СО, в которых свободные тела движутся прямолинейно и равномерно

б) сила есть произведение массы на ускорение

в) силы в природе возникают симметричными парами

г) ускорение, с которым движется тело, под воздействием силы, прямо пропорционально ускорению и обратно пропорционально массе

9 Третий закон Ньютона имеет следующую формулировку:

а) существуют такие СО, в которых свободные тела движутся прямолинейно и равномерно

б) сила есть произведение массы на ускорение

в) силы в природе возникают симметричными парами

г) два тела взаимодействуют друг на друга с силами, равными по модулю, но противоположными по направлению

10 Основной закон динамики поступательного движения выражается следующим выражением:

а)б)в)г)

11 Первый закон Кеплера имеет следующую трактовку:

а) тела в центральных полях движутся по траекториям конического сечения: парабола, гипербола, эллипс б) радиус-вектор движущегося в центральных поле тела за равные промежутки ометает равные площади в) для двух движущихся в центральных поле тел отношение квадратов времён обращения равно отношению кубов больших полуосей их орбит

12 Второй закон Ньютона имеет следующую трактовку:

а) тела в центральных полях движутся по траекториям конического сечения: парабола, гипербола, эллипс б) радиус-вектор движущегося в центральных поле тела за равные промежутки ометает равные площади в) для двух движущихся в центральных поле тел отношение квадратов времён обращения равно отношению кубов больших полуосей их орбит

13 Третий закон Ньютона имеет следующую трактовку:

а) тела в центральных полях движутся по траекториям конического сечения: парабола, гипербола, эллипс б) радиус-вектор движущегося в центральных поле тела за равные промежутки ометает равные площади в) для двух движущихся в центральных поле тел отношение квадратов времён обращения равно отношению кубов больших полуосей их орбит

14 После упругого центрального удара тел 1(м, в ) и 2( м1, ) скорости их будут равными:

а)

б)

в)

г)

15 После неупругого центрального удара тел 1(м1, в ) и 2( м1, ) скорости их будут равными:

а)

б)

в)

г)

16 Сила, вызывающая упругую деформацию, зависит от смещения:

а)прямо пропорционально

б) обратно пропорционально

в) экспоненциально

г) пропорционально квадрату смещения

ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ

17 Момент инерции сплошного однородного цилиндра равен:

а) б) В)Г)

18 Момент инерции полого однородного цилиндра равен:

а) б) В)Г)

19 Момент инерции однородного шара равен:

б) обратно пропорционально

в) экспоненциально

г) пропорционально квадрату смещения

а) б) В)Г)

20 Момент инерции однородного стержня длины R относительно относително центра масс равен:

а) б) В)Г)

21 Основной закон динамики вращательного движения выражается уравнением:

а)б)в)г)

ДИНАМИКА ЖИДКОСТЕЙ И ГАЗОВ

22 Уравнение Бернулли имеет следующий вид:

а)

б)

в)

г)

23 Формула Стокса имеет следующий вид

а)

б)

в)

г)

24 Формула Пуазейля имеет следующий вид:

а)

б)

в)

г)

25 Число Рейнольдса равно:

а)

б)

в)

г)

www.ronl.ru

Профессия технология машиностроения: описание, учеба, работа, должности

Машиностроение - это комплекс отраслей тяжелой промышленности. Основных направлений машиностроения несколько: станкостроение, автомобилестроение, авиационная промышленность, космическое машиностроение, судостроение, разработка и производство добывающего и обрабатывающего оборудования, подъемно-транспортные машины и механизмы.

Технологическая деталь

Содержание статьи

Рейтинг профессии

Востребованность

Оплачиваемость

Входной барьер

Наряду с металлургией, добывающей и обрабатывающей промышленностью, машиностроение составляет основу мощи и обороноспособности любого государства. Около двадцати лет назад, одновременно с распадом СССР, многие заводы, НИИ, КБ временно встали или вовсе закрылись: не поступали новые заказы, финансирование практически прекратилось. Приток новых кадров остановился. Большинство молодых людей выбирали тогда профессию экономиста или юриста, - а те немногие, кто всё-таки шел тогда в машиностроительные вузы, не хотели работать за мизерную зарплату. В начале XXI века ситуация изменилась в лучшую сторону: заводы, НИИ и КБ были переформированы в новые структуры, как правило, включенные в «оборонку»; появились госзаказы, начали поступать деньги на зарплаты и переоборудование.

Чему учиться

Какие предметы надо освоить будущему инженеру завода или КБ?

В некоторых машиностроительных вузах на подготовительных курсах специально учат чертить. Если с карандашом и линейкой не дружите, если интереса к черчению нет, лучше даже не мечтать о дипломе инженера: не по силам будет и первый курс, черчение отнимет всё ваше время. Зачастую оно преподается 2 года. Это головная боль для многих студентов, которые поступили на машиностроительные факультеты, не зная об особенностях предстоящей им учебы. Здесь не терпят тех, кто пришел ради корочек или ради спасения от службы в армии; таким тут делать нечего.

Рассказ на примере про машиностроениеЧтобы учиться на машиностроительном факультете, предварительно требуется также знать физику и математику - большего не требуется, так как при желании студента преподаватели с удовольствием поделятся с ним знаниями и опытом. А осваивать придется материаловедение, конструкционные материалы, теоретическую механику, сопромат, теорию машин и механизмов, строительную механику, детали машин, термодинамику и теплотехнику, основы конструирования и проектирования. На старших курсах вы будете изучать системы автоматизированного проектирования, конструирование и проектирование агрегатов, испытания агрегатов, технологию изготовления и сборки. Плюс к этому выполните многочисленные курсовые работы и проекты, для которых количество чертежей формата А2 или А1 может доходить до 10, а число более мелких «форматов» - до 15-20.

Следует помнить, что машиностроительные факультеты дают не столько чистые знания, сколько профессию (за редким исключением, каждая из них - это тема для отдельного рассказа).

Практике - как летней, так и в процессе учебы (курсовые работы и проекты) - уделяется огромное значение. Теории не так уж и много - теоретическая механика, высшая математика, физика, сопромат, строительная механика, САПР - вот и весь «джентльменский набор». Все остальные предметы почти полностью утилитарные: только дадут немного теории - и пожалуйста, тут же практическое применение, реальные задачи, проектирование. Зато позднее, на работе, не придется заново постигать многие очень важные вещи.

К примеру, концепция предмета «Конструирование самолетов» кажется совсем простой, укладывающейся в небольшую вузовскую методичку. Однако это один из самых объемных предметов: практика занимает огромную часть курса, а про лабораторные занятия и говорить не приходится - все постигается на реальных объектах и примерах.

Или взять «расчетные» предметы:

Машиностроение тесно связано с приборостроением, материаловедением, металлообработкой: в процессе учебы студенты часто сталкиваются с соответствующими предметами, да и в работе их знание будет совсем не лишним. Однако в отличие от приборостроения или, скажем, радиотехники, машиностроение не терпит ошибок и не позволяет их исправить. Лонжерон самолетного крыла должен быть сделан точно по чертежу, из определенного материала, обязан точно попадать в систему допусков: отклонения от расчетных значений могут обойтись слишком дорого. И переделать этот лонжерон «на коленках» не получится - надо будет отправлять детали на переплавку, повторять весь производственный цикл. В радиотехнике всё гораздо проще: изначально отклонения в значениях пассивных компонентов (резисторов, конденсаторов, катушек) допускаются до 15%, да и в собранном устройстве зачастую можно многое подправить; выпаять тот или иной элемент из схемы и заменить на другой труда не составляет. Более того, все радиокомпоненты давно унифицированы и выпускаются серийно.

Как учат

На лекциях по машиностроениюВ машиностроительных вузах и на соответствующих факультетах учатся, как правило, 5 с половиной лет на дневном отделении и 6 - на вечернем. Образовательные программы давно стандартизированы, и нововведения встречаются довольно редко. Средний возраст преподавателей перевалил за 50-60 лет - аспирантов и молодых педагогов мало (такая же возрастная ситуация и в машиностроении в целом). Однако всё чаще на базе зарекомендовавших себя вузов создаются методические и учебные центры с соответствующим финансированием и материальным обеспечением.

Выбрав машиностроительную специальность, будьте готовы к нелегкой и вдумчивой учебе. Совокупность предметов и вложенных в головы студиозусов знаний дает свой результат курсу к третьему - восприятие мира в целом и многих конкретных вещей меняется до неузнаваемости. Дело не в трудной учебе, забирающей последние силы и заставляющей просыпаться посреди ночи, а в практикоориентированной специфике машиностроения. Практика здесь такая, что, не прибегая к крайне специальному подходу, можно долго ломать голову - а ответ всё равно не найти. Конструирование или методика испытаний полны нюансов и развивают нелинейность мышления - не зря конструкторы Туполев, Миль, Камов, Королев были в высшей степени неординарными людьми. Многие ноу-хау в рассматриваемой отрасли, на первый взгляд, довольно просты. Зато додуматься до них не так-то легко. Сколько было случаев в советском и мировом машиностроении, когда важнейшая проблема решалась интуитивно, за пять минут, появлялась в уме создателя мгновенно - и лишь потом подгонялась под теоретические выкладки!

Но, прежде чем научится самому видеть проблему в целом и уметь решать ее интуитивно, заранее прикидывая в уме ответ, нужно пройти дебри механики, физики, химии, сопромата, деталей машин - а с младшекурсниками преподаватели бывают ох как строги. Машиностроение - это совершенно определенный образ мышления и подход к решению задач, формируемый за пять лет довольно напряженной учебы.

Где учиться

Список вузов велик - от Калининграда до Владивостока. В каждом городе-центре субъекта Российской Федерации найдется свой машиностроительный вуз.

  1. В Сибири и на Урале такие вузы, как правило, ориентированы на добывающую и обрабатывающую промышленность: добыча полезных ископаемых, выплавка и изготовление металлоизделий требуют огромного количества сложнейших механизмов и специалистов по их эксплуатации. Следовательно, специалисты должны разбираться в станках, в горнодобывающем, обогатительном и плавильном оборудовании, в двигателях и приводах.
  2. В Центральном федеральном округе, в Приволжском ФО машиностроение напрямую связано с конструированием и эксплуатацией самих машин. Это авиастроение, создание космической техники, двигателестроение, автомобилестроение, станкостроение.
  3. В Северо-Западном и Дальневосточном федеральных округах на первом месте машиностроение для моря - судостроение, тяжелое и легкое автомобилестроение, двигателестроение.
  4. В ЮФО и Приволжском ФО также востребовано машиностроение для сельского хозяйства - создание посевной и уборочной техники.

Независимо от региона востребована погрузочно-разгрузочная техника. Речь идет о так называемых подъемно-транспортных механизмах.

Где работать

Работать нужно там, где есть желание приложить силы и ум. С одной стороны, выпускнику прямой путь в НИИ, КБ, на завод: после выпуска, прошедший все практики, это почти готовый специалист, практически не требующий доучивания. С другой - профессия профессией, но спектр полученных навыков и знаний велик настолько, что выпускник может успешно работать и в других отраслях и направлениях. Изучал он теплотехнику, технологию сборки, испытания? Добро пожаловать в фирму по эксплуатации, продаже и монтажу теплового и холодильного оборудования. Знает выпускник технологию изготовления металлоизделий и проката? Его с удовольствием возьмут в фирму по изготовлению изделий из металла конструктором или технологом.

Отзывы, комментарии и обсуждения

edunews.ru

“Роль математики в инженерном образовании” — Мегаобучалка

Реферат

По высшей математике

Тема: “Роль математики в инженерном образовании”.

Выполнил: студент 1 ХТ 5группы

Александров И.В.

Проверила: Спиридонова Н.В.

 

Самара 2011

 

Уникальный расцвет фундаментальной науки в античной Греции в V - III веках до н. э. сменился в эпоху Римской империи периодом внедрения технических изобретений, базировавшихся на достижениях древних греков в математике и механике.

В период расцвета Римской Империи ко II в. н.э. население ее составляло 50 - 60 миллионов человек. По современным меркам - это население крупного европейского государства, той же Италии, Франции или Англии. При этом, по оценкам историков, уровень потребления был выше, чем в Англии конца XVII века (в то время Англия была наиболее промышленно развитым государством Европе). Факторами, способными объяснить высокий жизненный уровень римлян, являются технологические нововведения и уровень образования в Древнем Риме.

Для обеспечения такого уровня жизни необходимо развитое сельское хозяйство, мощное строительство: жилые и общественные здания в городах, дороги, мосты, акведуки, торговля, сфера обслуживания, финансовая и юридическая системы, не говоря об армии и полиции. Финансовый рынок в Древнем Риме существовал и был весьма развит. Существовало огромное количество всевозможных займов, процентная ставка за использование которых была близка к 1% в месяц, или 12% годовых, что являлось максимально допустимой величиной процента.

Стройная, эффективно работающая юридическая система явилась одним из основных достижений древнеримской цивилизации. Важнейшим атрибутом римской системы была безопасность индивидуумов. Когда общество делает переход от системы, где правитель требует дань взамен на безопасность, к системе с более умеренным правителем, собирающим налоги в рамках существующего законодательства, появляются благоприятные условия для экономического роста. Экономический рост обеспечивался также наличием четких законов для бизнеса, в рамках римского права, которое стало основой для создания правовой базы для многих современных стран Европы.

Функционирование всех этих атрибутов государства осуществляется благодаря работе большого числа квалифицированных специалистов. Подготовку такого количества специалистов может обеспечить мощная система образования, которая, таким образом, составляет одну из основных государственных структур.

В Риме образование получало не только высшее сословие, но и большинство свободных граждан и даже рабов. Система образования В Древнем Риме стала создаваться с V века до н.э., когда возникли элементарные (в переводе из латыни - основные) школы, где учились главным образом дети свободных граждан. Предметы - латинский и греческий языки, письмо, чтение и счет. Позже среди знатных и зажиточных семей получило распространение домашнее образование. Во II в. до н.э. возникли школы грамматики и риторики, которые также были доступны только для детей богатых римлян. Школы риторики были своеобразными высшими учебными заведениями (ораторское искусство, право, философия, поэзия). Постепенно юристы-учители образовали достаточно стойкие группы, которые получили название «кафедры». По такому же принципу оформляются кафедры риторики и философии, медицины и архитектуры. Несколько высших школ возникает в II в. н.э. (Рим, Афины). Студенты, которые приезжали получать образование из разных частей Римского государства, объединялись в землячество - «хоры».

В период республики учеба была частной, и государство в него не вмешивалось. Однако во времена империи государство начало контролировать систему образования. Учителя превратились в оплачиваемых государственных служащих. В соответствии с размерами каждого города устанавливались количество риторов и грамматиков. Учителя пользовались рядом привилегий, а в IV в. н.э. все кандидатуры преподавателей подлежали утверждению императором..

Вероятно, подавляющее большинство римлян, занимавших должности, связанные с управлением, были грамотными. Древний Рим, в отличии от Англии XVIII века, где показатели грамотности были довольно низки по стандартам Европы, был, несомненно, грамотным обществом, что, конечно, помогло римлянам повысить общий уровень своих доходов.

 

Особые требования предъявлялись к уровню подготовки инженеров - строителей, механиков, дорожников, гидрологов, которым приходилось решать сложные и, главное, зачастую новые технические задачи. Успехи, достигнутые римскими инженерами, мы можем наблюдать воочию: различные архитектурные сооружения в Риме (прежде всего, Колизей и Пантеон), акведуки, дороги. Самый большой из акведуков - Пон-дю-Гар - входит в систему крупнейшего водопровода в Европе, построенного римлянами. Пон-дю-Гар не только обеспечивал горожан водой для питья, купания и развлечений у фонтанов, но и служил в качестве ирригационной системы для сельского хозяйства, а также обеспечивал необходимую энергию для работы мельниц. Гидроресурсы для получения энергии использовалась римлянами повсеместно уже в раннюю эпоху Империи. Эти сооружения имеют двухтысячелетний период эксплуатации, и их ресурс далеко не исчерпан.

В наши дни, на новом этапе технического развития, разрабатываются программы перехода к использованию альтернативных (по отношению к нефти и газу) источников энергии. Это не только планы. В 2009 году в Испании заработала крупнейшая в мире солнечная электростанция мощностью 20 мегаватт. По словам создателей, новая электростанция способна обеспечить электричеством более 10 тысяч домов. Принцип ее работы известен со времен Архимеда, который сумел с помощью зеркал сконцентрировать отраженные солнечные лучи и поджечь римский флот. Основная деталь электростанции - башня высотой почти 170 метров. Более 1200 специальных зеркал направляют солнечные лучи на башню, превращая воду внутри в пар. Полученный пар вращает турбину, которая вырабатывает электрический ток.

Технические новшества влияли на уровень экономического благосостояния римлян. Доходы, получаемые государством, позволяли властям реализовывать различные социальные программы: на регулярной основе проводилась бесплатная раздача пищи населению; римское государство обеспечивало всех своих жителей коммунальными услугами и даже развлечениями (известный лозунг «хлеба и зрелищ!»).

Во времена Римской империи для записей использовались чаще всего таблички, покрытые воском - материал весьма недолговечный. И до наших дней, по-видимому, не дошли «учебные программы», по которым готовились инженеры тех времен. Думается, современные инженеры это также принесло бы пользу.

Сведения об уровне технических и научных знаний времен Римской империи мы имеем, в основном, из работ Витрувия (I век) «Десять книг по архитектуре» (автор обобщил в трактате опыт греческого и римского зодчества, рассмотрел комплекс сопутствующих градостроительных, инженерно-технических вопросов и принципов художественного восприятия.) и серии трудов Герона Александрийского. В наше время имя Герона, жившего в I - II веке, связывается с формулой Герона для вычисления площади треугольника по его сторонам (эту формулу открыл Архимед). Основная же заслуга Герона в том, что в своих трудах он изложил известные в его время открытия в области прикладной математики, физики, механики. Герон впервые исследовал пять типов простейших машин: рычаг, ворот, клин, винт и блок, заложил основы автоматики. В работах Герона рассмотрены принципы действия военных машин (в том числе метательных). Поэтому его можно считать одним из основоположников артиллерии.

Основываясь на своих исследованиях, Герон изобрел ряд приборов и автоматов, в частности, прибор для измерения протяженности дорог, действовавший по тому же принципу, что и современные таксометры; разработал различные конструкции водяных часов. Он описал прибор - прапрадед современного теодолита, и схему производимых с его помощью измерений, позволявших вести прокладку тоннеля сразу с двух концов. В труде "Пневматика" Герон Александрийский описал ряд "волшебных фокусов", основанных на принципах использования теплоты и перепада давлений. Люди удивлялись его чудесам: двери храма сами открывались, когда над жертвенником зажигался огонь. Этот ученый придумал автомат для продажи "святой" воды, сконструировал шар, вращаемый силой струи пара (прообраз паровой машины и ракетного двигателя).

 

megaobuchalka.ru


Смотрите также