cwetochki.ru

Реферат - Взаимосвязь космоса и живой природы 2

Содержание

Введение. 2

1. Взаимосвязь космоса и живой природы… 3

2. Ближний космос и экология. 3

Заключение. 3

Список литературы… 3

Космос – это синоним астрономического определения Вселенной. Выделяют так называемый ближний космос, исследуемый с помощью космических аппаратов и межпланетных станций, и дальний космос – мир звезд и галактик.

Живая природа – это окружающая среда, которая включает в себя, помимо поверхности Земли и ее недр, часть Солнечной системы попадаемое в сферу деятельности человека, а также материальный мир, созданный человеком.

Благодаря взаимосвязи всего существующего космос оказывает активное влияние на самые различные процессы жизни на Земле.

В.И. Вернадский, говоря о факторах, влияющих на развитие биосферы, указывал среди прочих и космическое влияние. Так, он подчеркивал, что без космических светил, в частности без Солнца, жизнь на Земле не могла бы существовать. Живые организмы трансформируют космическое излучение в земную энергию (тепловую, электрическую, химическую, механическую) в масштабах, определяющих существование биосферы.

На существенную роль космоса в появлении жизни на Земле указывал шведский ученый, Нобелевский лауреат С. Аррениус. По его мнению, занос жизни на Землю из космоса был возможен в виде бактерий благодаря космической пыли и энергии. Не исключал возможности появления жизни на Земле из космоса и В.И. Вернадский.

Влияние космоса на происходящие на Земле процессы (например, Луны на морские приливы и отливы, солнечные затмения) люди подметили еще в древности. Однако многие века связь космоса с Землей осмысливалась чаще на уровне научных гипотез и догадок или вообще вне рамок науки. Во многом это было обусловлено ограниченными возможностями человека, научной базы и имевшегося инструментария. В XX столетии знания о влиянии космоса на Землю существенно пополнились. И в этом есть заслуга и российских ученых, в первую очередь представителей русского космизма — А.Л. Чижевского, К.Э. Циолковскoro, Л.Н. Гумилева, В.И. Вернадского и др.

Понять, оценить и выявить масштабы влияния космоса, и, прежде всего Солнца, на земную жизнь и ее проявления во многом удалось А.Л. Чижевскому. Об этом красноречиво свидетельствуют названия его работ: «Физические факторы исторического процесса», «Земное эхо солнечных бурь» и т.п.

Ученые давно обратили внимание на проявления активности Солнца (пятна, факелы на его поверхности, протуберанцы). Эта активность в свою очередь оказалась связанной с электромагнитными и другими колебаниями мирового пространства. А.Л. Чижевский, проведя многочисленные научные исследования по астрономии, биологии и истории, пришел к выводу об очень значительном влиянии Солнца и его активности на биологические и социальные процессы на Земле («Физические факторы исторического процесса»).

В 1915 г. 18-летний А.Л. Чижевский, самозабвенно изучавший астрономию, химию и физику, обратил внимание на синхронность образования солнечных пятен и на одновременную активизацию боевых действий на фронтах первой мировой войны. Накопленный и обобщенный статистический материал позволил ему сделать данное исследование научным и убедительным.

Смысл его концепции, основанной на богатом фактическом материале, состоял в доказательстве существования космических ритмов и зависимости биологической и общественной жизни на Земле от пульса космоса. К.Э. Циолковский так оценил труд своего коллеги: «Молодой ученый пытается обнаружить функциональную зависимость между поведением человечества и колебаниями в деятельности Солнца, и путем вычислений определить ритм, циклы и периоды этих изменений и колебаний, создавая, таким образом, новую сферу человеческого знания. Все эти широкие обобщения и смелые мысли высказываются Чижевским впервые, что придает им большую ценность и возбуждает интерес. Этот труд является примером слияния различных наук воедино на монистической почве физико-математического анализа».

Лишь через много лет высказанные А.Л. Чижевским мысли и выводы о влиянии Солнца на земные процессы были подтверждены на практике. Многочисленные наблюдения показали неоспоримую зависимость массовых всплесков нервно-психических и сердечнососудистых заболеваний у людей при периодических циклах активности Солнца. Прогнозы так называемых «неблагоприятных дней» для здоровья — обычное дело в наши дни.

Интересна мысль Чижевского о том, что магнитные возмущения на Солнце в силу единства Космоса могут серьезно сказываться на проблеме здоровья руководителей государств. Ведь во главе большинства правительств многих стран стоят немолодые люди. Происходящие на Земле и в космосе ритмы, конечно же, влияют и на их здоровье и самочувствие. Особенно это опасно в условиях тоталитарных, диктаторских режимов. А если во главе государства стоят аморальные или психически ущербные личности, то их патологические реакции на космические возмущения могут привести к непредсказуемым и трагическим последствиям, как для народов своих стран, так и всего человечества в условиях, когда многие страны обладают мощным оружием уничтожения.

Особое место занимает утверждение Чижевского о том, что Солнце существенно влияет не только на биологические, но и социальные процессы на Земле. Социальные конфликты (войны, бунты, революции), по убеждению А.Л. Чижевского, во многом предопределяются поведением и активностью нашего светила. По его подсчетам, во время минимальной солнечной активности происходит минимум массовых активных социальных проявлений в обществе (примерно 5%). Во время же пика активности Солнца их число достигает 60%.

Многие идеи А.Л. Чижевского нашли свое применение в области космических и биологических наук. Они подтверждают неразрывное единство человека и космоса, указывают на их тесное взаимовлияние.

Весьма оригинальными были космические идеи первого представителя русского космизма Н.Ф. Федорова. Он возлагал большие надежды на будущее развитие науки. Именно она, по мнению Н.Ф. Федорова, поможет человеку продлить его жизнь, а в перспективе сделать бессмертным. Расселение людей на другие планеты из-за большого скопления станет необходимой реальностью. Космос для Федорова — активное поприще человеческой деятельности. В середине XIX века он предлагал свой вариант перемещения людей в космическом пространстве. По мнению мыслителя, для этого надо будет овладеть электромагнитной энергией земного шара, что позволит регулировать его движение в мировом пространстве и превратит Землю в космический корабль («земноход») для полетов в космос. В перспективе, по замыслам Федорова, человек объединит все миры и станет «планетоводом». В этом особенно тесно проявится единство человека и космоса.

Идеи Н.Ф. Федорова о расселении людей на другие планеты развивал гениальный ученый в области ракетостроения К.Э. Циолковский. Ему принадлежит также ряд оригинальных философских идей. Жизнь, по Циолковскому, вечна. «После каждой смерти получается одно и то же — рассеяние… Мы всегда жили, и всегда будем жить, но каждый раз в новой форме и, разумеется, без памяти о прошлом… Кусочек материи подвержен бесчисленному ряду жизней, хотя и разделенных громадными промежутками времени...» В этом мыслитель весьма близок к индусским учениям о переселении душ, а также к Демокриту.

На основании диалектической в своей основе идеи о всеобщей жизни, везде и всегда существующей посредством перемещающихся и вечно живых атомов, Циолковский пытался построить целостный каркас «космической философии».

Ученый полагал, что жизнь и разум на Земле не являются единственными во Вселенной. Правда, в качестве доказательства он использовал лишь утверждение о том, что Вселенная безгранична, и считал это вполне достаточным. Иначе, «какой бы смысл имела Вселенная, если бы не была заполнена органическим, разумным, чувствующим миром?». На основании сравнительной молодости Земли им делается вывод о том, что на других «старших планетах жизнь гораздо более совершенна». Более того, она активно влияет на другие уровни жизни, включая земную.

В своей философской этике Циолковский сугубо рационалистичен и последователен. Возводя в абсолют идею постоянного совершенствования материи, Циолковский видит этот процесс следующим образом. Не имеющее границ космическое пространство населено разумными существами различного уровня развития. Есть планеты, которые по развитию разума и могущества достигли высшей степени и опередили другие. Эти «совершенные» планеты, пройдя все муки эволюции и зная свое печальное прошедшее и былое несовершенство, обладают моральным правом регулировать жизнь на других, примитивных пока планетах, избавлять их население от мук развития.

Именно таким образом Циолковский представляет себе технологию «гуманитарной помощи». «Совершенный мир» берет все заботы на себя. На других, более низких по развитию планетах им поддерживается и поощряется «только хорошее». «Всякое уклонение к злу или страданиям тщательно исправляется. Каким путем? Да, путем отбора: плохое, или уклонившееся к дурному, оставляется без потомства… Могущество совершенных проникает на все планеты, на все возможные места жизни и всюду. Эти места заселяются их собственным зрелым родом. Не подобно ли это тому, как огородник уничтожает на своей земле все негодные растения и оставляет только самые лучшие овощи! Если и вмешательство не помогает, и ничего, кроме страданий, не предвидится, то и весь живой мир безболезненно уничтожается...».

К.Э. Циолковский наиболее глубоко из современников изучал и освещал философские проблемы освоения космоса. Он полагал, что Земле во Вселенной принадлежит особая роль. Земля относится к более поздним планетам, «подающим надежду».

Лишь небольшому числу таких планет будет дано право на самостоятельное развитие и мучения, в том числе и Земле.

В ходе эволюции со временем будет образован союз всех разумных высших существ космоса. Сначала — в виде союза населяющих ближайшие солнца, затем — союза союзов и так далее, до бесконечности, поскольку бесконечна сама Вселенная.

Нравственная, космическая задача Земли — внести свой вклад в совершенствование космоса. Оправдать свое высокое предназначение в деле совершенствования мира земляне могут, лишь покинув Землю и выйдя в космос. Поэтому Циолковский видит свою личную задачу в помощи землянам по организации переселения на другие планеты и расселения их по всей Вселенной. Он подчеркивал, что суть его космической философии заключается «в переселении с Земли и в заселении Космоса». Именно поэтому изобретение ракеты для Циолковского было отнюдь не самоцелью (как полагают некоторые, видя в нем лишь ученого-ракетостроителя), а методом проникновения в глубины космоса.

Ученый полагал, что многие миллионы лет постепенно совершенствуют природу человека и его общественную организацию. В ходе эволюции человеческий организм претерпит существенные изменения, которые превратят человека, по существу, в разумное «животное-растение», искусственно перерабатывающее солнечную энергию. Тем самым будет достигнут полный простор для его воли и независимости от среды обитания. В конце концов, человечество сможет эксплуатировать все околосолнечное пространство и солнечную энергию. А со временем земное население расселится по всему околосолнечному пространству.

Идеи К.Э. Циолковского о единстве разнообразных миров космоса, его постоянном совершенствовании, в том числе и самого человека, о выходе человечества в космос заключают в себе важный мировоззренческий и гуманистический смысл.

Стихийное, неуправляемой развитие научно-технической и хозяйственной деятельности общества, особенно активна в последние годы, стало существенно нарушать природные механизмы компенсации и саморегуляции не только на Земле, но и в околоземном космическом пространстве.

«Надо мною небо – синий шелк» — писал поэт. За шелком неба, начиная с высоты 50 – 60 км, простирается гигантская плазменная оболочка планеты, слой ионизованного газа толщиной несколько тысяч километров – ионосфера. С нейтральным газом здесь смещены положительные ионы и свободные электроны, возникающие в результате ионизации – разрушения молекул воздуха под действием космических лучей, ультрафиолетового и рентгеновского излучения Солнца.

В ионосфере расположен озоновый слой Земли. Его не зря называют «щитом Земли»: несмотря на небольшую толщину, он играет важную роль в защите живых организмов от ультрафиолетового излучения Солнца, которое способно повреждать биологические молекулы, в том числе ДНК, вызывает рак кожи и заболевания глаз. Сокращение количества озона на 15% приводит к потерям в сельском хозяйстве всего мира на миллиарды долларов в год. Появление «озонной дыры» над Антарктидой, судя по всему, — процесс естественный и локальный и поэтому ощутимых последствий пока не имеющий.

Озон химически активен. Он образуется в результате присоединения к молекуле кислорода еще одного атома, возникающего при распаде кислорода воздуха под действием коротковолнового солнечного излучения. Возникший озон разрушается, реагирует с оксидом азота естественного атмосферного происхождения. При этом образуется двуокись азота и кислород.

В присутствии кислорода двуокись азота снова превращается в оксид.

Таким образом, в этих реакциях оксид азота ведет себя, как катализатор, он не исчезает в реакциях, приводящих к уничтожению озона, и препятствует его накоплению. Для поддержания естественного равновесия достаточно, чтобы концентрация оксида азота составляла всего 0,1% концентрации озона.

Но оксид азота интенсивно образуется в области высокочастотного разряда, и заманчивый на первый взгляд проект создания плазменных зеркал оказывается экологически опасным и чреватым катастрофической деградацией озонного слоя.

Этой же опасностью грозит и еще один вариант применения сфокусированных пучков излучения: прямая передача энергии с Земли на борт космического аппарата или наоборот — с орбитальной солнечной электростанции на Землю. Выгоды он сулит немалые: появится возможность использовать уникальные условия космоса — невесомость и вакуум для производства сверхчистых материалов и биологических препаратов и получения энергии. Но что станет с озонным слоем и ионосферой при его реализации? И не лучше ли будет энергию, полученную в космосе, там же в космосе и использовать, не подвергая опасности «озонный щит»? Все это, естественно, требует тщательного анализа и элементарной проверки, без чего приступать к осуществлению подобных проектов было бы опрометчиво.

Обратимся снова к естественной невозмущенной ионосфере. Разумеется, мы благодарны ей за возможность дальней радиосвязи, но главное ее значение для нас, землян, в другом. Возникнув под действием ионизирующих излучений на верхнюю атмосферу, она сама же и задерживает большую их часть. Сезонные и суточные изменения параметров ионосферы — процессы естественные и ее защитных свойств не нарушают.

Как уже отмечалось выше, на ионосферу может быть оказано и внешнее воздействие. Понижение концентрации электронов ионосферы было выявлено по нарушению коротковолновой радиосвязи при запусках спутников еще в 1973 г. Исследования показали, что свободные электроны реагируют с парами воды, углекислым газом и другими продуктами сгорания ракетного топлива. Их концентрация падает, и отражательная способность ионосферы снижается. Возмущенная область на время становится радиопрозрачной — возникает «ионосферная дыра». Чем больше выброшенных газов, тем больше ее размеры. Реагирует с газами ракетного выброса и озон, но кратковременно. Поэтому если в озонном слое и образуется дыра, то она довольно быстро растягивается.

А могут ли запуски больших ракет влиять на погоду, ведь и в приземном слое атмосфера взаимодействует с продуктами сгорания и вслед за запусками отмечается смена погоды? Однозначного ответа пока нет, но предполагается, что запуски крупных ракет стимулируют рост циклической активности: атмосферное давление в приземном слое падает, усиливаются осадки, возникают сильные ветры.

Если раны, нанесенные атмосфере и ионосфере, рано или поздно так или иначе залечиваются, то загрязнение околоземного пространства обломками космических аппаратов может перерасти в серьезную проблему. Космическое пространство и раньше не было абсолютно пустым и чистым. Его заполняют материальные тела различных размеров и мельчайшая космическая пыль, а между орбитами Марса и Юпитера вращается множество малых планет — астероидов. Так как орбиты космических аппаратов (а их вращалось вокруг Земли около 7000 к 1989 г.) занимают меньший объем пространства, чем орбиты астероидов, вероятность образования и дробления обломков космических аппаратов гораздо больше, чем в поясе астероидов.

Средний срок службы спутника — около 10 лет. Единственную опасность для него пока представляют метеориты. И хотя она, судя по опыту, накопленному космонавтикой, очень мала (все спутники имеют метеорную защиту), в скором будущем космические аппараты придется защищать уже от наиболее опасных обломков искусственного происхождения.

Есть и еще повод для беспокойства. На некоторых космических аппаратах стоят ядерные силовые установки. При их падении предусматривается отделение блока, содержащего обогащенный уран, и выведение его на удаленную орбиту, но бывали случаи отказов и загрязненные обломки выпадали на Землю.

Ясно, что с «космическим мусором» нужно что-то делать. Для начала, возможно, следует сократить запуск спутников, одновременно их срок службы, использовать возвращаемые элементы ракетоносителей и корабли типа «Шатл». Наиболее эффективной была радикальная уборка мусора в космосе, освобождающая околоземное пространство от мертвых аппаратов и их частей, так как даже при полном прекращении запусков число обломков все равно будет увеличиваться.

Сегодня уже возникают и практические проблемы влияния человека на космос. Так, в связи с регулярными космическими полетами есть вероятность непреднамеренного заноса в космос, в частности на другие планеты, живых организмов. Ряд земных бактерий способны подолгу выдерживать самые экстремальные температурные, радиационные и иные условия существования. Температурная амплитуда существования у некоторых видов одноклеточных достигает 600 градусов. Как они себя поведут в иной неземной среде – предсказать невозможно.

В настоящее время человек начинает активно использовать космос для решения конкретных технологических задач, будь то выращивание редких кристаллов, сварка и другие работы. И уже давно получили признание космические спутники как средства сбора и передачи разнообразной информации.

1. Константинов Б.П. Населенный космос. Москва, Наука, 2001.

2. 3-е изд., перераб. и доп. — М.: ЮНИТИ-ДАНА, 2006.

3. Экология. Человек — Экономика — Биота — Среда. 3-е изд., перераб. и доп., 2008.

4. Я познаю мир: Дет энцикл.: Космос/Авт. сост. Т.И. Гонтарук.-М.: ООО «Изд-во АСТ», 2000.

www.ronl.ru

 

Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Реферат: Роль водорослей в освоении космоса. Реферат космическая биология


Космическая биология » Привет Студент!

 

 

Обособление новых научных дисциплин начинается с возникновения новых направлений в экспериментальных исследованиях. Так произошло и с космической биологией, в задачу которой входит изучение действия экстремальных факторов на живые существа, оценка различных методов обнаружения внеземной жизни и выяснение наиболее результативных методов стерилизации космических объектов. Естественно, что возникновение новой научной дисциплины невозможно без предварительного обобщения всех ранее полученных данных, имеющих прямое отношение к этой дисциплине. Что касается действия большинства экстремальных факторов, имеющихся в свободном космосе и на планетах, то в распоряжении исследователей было большое научное наследство, которое предоставили им экология, биофизика, биохимия и микробиология.

После систематизации этих данных стало очевидным, что по ряду физических факторов, имеющихся в космосе, существует обширная литература. Это касается действия низких и высоких температур, ионизирующей и ультрафиолетовой радиации, действия различных газов, вибрации, высушивания, ускорений и т. д. В то же время космическая биология должна была начать исследование физических факторов космического полета и пространства, не изученных ранее.

При этом следует учитывать, что некоторые экстремальные факторы не могут быть полностью воспроизведены в лабораторных условиях, например невесомость и вакуум, достигающий в космосе 10-16 мм рт. ст.; однако это не помешало получению интересных результатов при их изучении.

Изучение ультразвука, действия различных химических, в том числе поверхностно-активных, веществ, концентрации водородных ионов не представляет специального интереса для космической биологии.

Основными объектами исследования стали микроорганизмы, что объясняется несколькими причинами. Повсеместное распространение микроорганизмов говорит об их исключительной приспособляемости к самым различным экологическим нишам. Другая причина заключается в необычайно высокой устойчивости микроорганизмов к действию экстремальных факторов. И, наконец, подавляющее большинство методов обнаружения внеземной жизни основано на поисках микроорганизмов в грунте планет, для размножения которых на планету вместе с биологической станцией должна быть доставлена питательная среда. Поэтому при изучении действия экстремальных факторов излюбленным объектом стали микроорганизмы. Это, однако, не означает, что не проводятся исследования различных других объектов, в том числе высших растений и низших животных.

Для изучения действия экстремальных факторов существует несколько возможностей: исследования в лаборатории, в открытом космосе, на поверхности планет или их спутников и, наконец, внутри летящего космического аппарата. В последнем случае стенки летящего космического объекта защищают изучаемые живые существа от действия некоторых экстремальных факторов открытого космического пространства. В то же время в этих условиях может быть изучено влияние невесомости и вибрации.

Несмотря на обширную литературу, посвященную действию экстремальных факторов на живые существа, обобщение этих данных сопряжено с большими трудностями, что связано со значительным расхождением результатов, полученных при описании устойчивости живых объектов к определенному внешнему фактору. Приемлемыми могут считаться лишь данные, установленные неоднократно несколькими исследователями. Результаты, отличающиеся от последних, могут быть упомянуты, но как не получившие пока подтверждения.

В этом обзоре после рассмотрения границ биосферы и характеристики экстремальных факторов будет последовательно рассмотрено действие отдельных физических и химических факторов на живые организмы.

 

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера. КАК ТУТ СКАЧИВАТЬ

Пароль на архив: privetstudent.com

privetstudent.com

Реферат - Космические скорости - Биология

Министерство образования и науки РФ

Государственное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный университет экономики и финансов»

Кафедра систем технологий и товароведения

Доклад по курсу концепции современного естествознания на тему «Космические скорости»

Выполнила:

Проверил:

г. Санкт-Петербург

2009

Космические скорости.

Космическая скорость (первая v1, вторая v2, третья v3 и четвёртая v4) — это минимальная скорость, при которой какое-либо тело в свободном движении сможет:

v1 — стать спутником небесного тела (то есть способность вращаться по орбите вокруг НТ и не падать на поверхность НТ).

v2 — преодолеть гравитационное притяжение небесного тела.

v3 — покинуть Солнечную систему, преодолев притяжение Солнца.

v4 — покинуть галактику Млечный Путь.

Первая космическая скорость или Круговая скорость V1 — скорость, которую необходимо придать объекту без двигателя, пренебрегая сопротивлением атмосферы и вращением планеты, чтобы вывести его на круговую орбиту с радиусом, равным радиусу планеты. Иными словами, первая космическая скорость — это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.

Для вычисления первой космической скорости необходимо рассмотреть равенство центробежной силы и силы тяготения действующих на объект на круговой орбите.

где m — масса объекта, M — масса планеты, G — гравитационная постоянная (6,67259·10−11 м³·кг−1·с−2), — первая космическая скорость, R — радиус планеты. Подставляя численные значения (для Земли M = 5,97·1024 кг, R = 6 378 км), найдем

7,9 км/с

Первую космическую скорость можно определить через ускорение свободного падения — так как g = GM/R², то

Вторая космическая скорость (параболическая скорость, скорость убегания) — наименьшая скорость, которую необходимо придать объекту (например, космическому аппарату), масса которого пренебрежимо мала относительно массы небесного тела (например, планеты), для преодоления гравитационного притяжения этого небесного тела. Предполагается, что после приобретения телом этой скорости оно не получает негравитационного ускорения (двигатель выключен, атмосфера отсутствует).

Вторая космическая скорость определяется радиусом и массой небесного тела, поэтому она своя для каждого небесного тела (для каждой планеты) и является его характеристикой. Для Земли вторая космическая скорость равна 11,2 км/с. Тело, имеющее около Земли такую скорость, покидает окрестности Земли и становится спутником Солнца. Для Солнца вторая космическая скорость составляет 617,7 км/с.

Параболической вторая космическая скорость называется потому, что тела, имеющие вторую космическую скорость, движутся по параболе.

Вывод формулы:

Для получения формулы второй космической скорости удобно обратить задачу — спросить, какую скорость получит тело на поверхности планеты, если будет падать на неё из бесконечности. Очевидно, что это именно та скорость, которую надо придать телу на поверхности планеты, чтобы вывести его за пределы её гравитационного влияния.

Запишем закон сохранения энергии

где слева стоят кинетическая и потенциальная энергии на поверхности планеты (потенциальная энергия отрицательна, так как точка отсчета взята на бесконечности), справа то же, но на бесконечности (покоящееся тело на границе гравитационного влияния — энергия равна нулю). Здесь m — масса пробного тела, M — масса планеты, R — радиус планеты, G — гравитационная постоянная, v2 — вторая космическая скорость.

Разрешая относительно v2, получим

Между первой и второй космическими скоростями существует простое соотношение:

Третья космическая скорость — минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение Солнца и в результате уйти за пределы Солнечной системы в межзвёздное пространство.

Взлетая с поверхности Земли и наилучшим образом используя орбитальное движение планеты космический аппарат может достичь третей космической скорости уже при 16,6 км/с относительно Земли, а при старте с Земли в самом неблагоприятном направлении его необходимо разогнать до 72,8 км/с. Здесь для расчёта предполагается, что космический аппарат приобретает эту скорость сразу на поверхности Земли и после этого не получает негравитационного ускорения (двигатели выключены и сопротивление атмосферы отсутствует). При наиболее энергетически выгодном старте скорость объекта должна быть сонаправлена скорости орбитального движения Земли вокруг Солнца. Орбита такого аппарата в Солнечной системе представляет собой параболу (скорость убывает к нулю асимптотически).

Четвёртая космическая скорость — минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение галактики Млечный Путь. Четвёртая космическая скорость не постоянна для всех точек Галактики, а зависит от расстояния до центральной массы (для нашей галактики таковой является объект Стрелец A*, сверхмассивная чёрная дыра). По грубым предварительным расчётам в районе нашего Солнца четвёртая космическая скорость составляет около 550 км/с. Значение сильно зависит не только (и не столько) от расстояния до центра галактики, а от распределения масс вещества по Галактике, о которых пока нет точных данных, ввиду того что видимая материя составляет лишь малую часть общей гравитирующей массы, а все остальное — скрытая масса.

www.ronl.ru

Космическая биология

Запуск в 1957 г. первого искусственного спутника Земли и дальнейшее развитие астронавтики поставили перед различными областями науки большие и сложные проблемы. Возникли новые отрасли знания. Одна из них — космическая биология.

Еще в 1908 г. К. Э. Циолковский высказывал мысль, что после создания искусственного спутника Земли, способного без повреждения возвратиться на Землю, на очередь встанет решение биологических проблем, связанных с обеспечением жизни экипажей космических кораблей. Действительно, прежде чем первый землянин — гражданин Советского Союза Юрий Алексеевич Гагарин — отправился в космический полет на корабле «Восток-1», были проведены обширные медико-биологические исследования на искусственных спутниках Земли и космических кораблях. На них в космический полет отправлялись морские свинки, мыши, собаки, высшие растения и водоросли (хлорелла), различные микроорганизмы, семена растений, изолированные культуры тканей человека и кролика и другие биологические объекты. Эти эксперименты позволили ученым сделать вывод — жизнь в условиях космического полета (по крайней мере не слишком длительного) возможна. Это было первое важное достижение новой области естествознания — космической биологии.

1320-1.jpg

Мыши проходят испытание в условиях невесомости.

Каковы же задачи космической биологии? Что является предметом ее исследований? В чем особенность методов, которыми она пользуется? Ответим сначала на последний вопрос. Помимо физиологических, генетических, радиобиологических, микробиологических и других биологических методов исследования космическая биология широко использует достижения физики, химии, астрономии, геофизики, радиоэлектроники и многих других наук.

Результаты любых измерений в полете необходимо передавать по радиотелеметрическим линиям. Поэтому биологическая радиотелеметрия (биотелеметрия) — основной метод исследования. Она же является средством контроля во время проведения опытов в космическом пространстве. Использование радиотелеметрии накладывает определенный отпечаток на методику и технику биологических экспериментов. То, что в обычных земных условиях можно довольно легко учесть или измерить (например, посеять культуры микроорганизмов, взять пробу для анализа, зафиксировать ее, измерить скорость роста растений или бактерий, определить интенсивность дыхания, частоту пульса и т. д.), в космосе превращается в сложную научную и техническую проблему. Особенно, если эксперимент проводится на непилотируемых спутниках Земли или космических кораблях без экипажа. В этом случае все воздействия на изучаемый живой объект и все измеряемые величины необходимо с помощью соответствующих датчиков и радиотехнических устройств превратить в электрические сигналы, которые выполняют разную роль. Одни из них могут служить командой для какой-либо манипуляции с растениями, животными или другими объектами исследования, другие нести информацию о состоянии изучаемого объекта или процесса.

Таким образом, методы космической биологии отличаются высокой степенью автоматизации, тесно связаны с радиоэлектроникой и электротехникой, с радиотелеметрией и вычислительной техникой. Исследователю необходимо хорошо знать все эти технические средства, и, кроме того, ему необходимо глубокое знание механизмов различных биологических процессов.

Каковы же проблемы, которые стоят перед космической биологией? Главнейшие из них три: 1. Изучение влияния условий полета в космос и факторов космического пространства на живые организмы Земли. 2. Исследование биологических основ обеспечения жизни в условиях космических полетов, на внеземных и планетных станциях. 3. Поиски живой материи и органических веществ в мировом пространстве и изучение особенностей и форм внеземной жизни. Расскажем о каждой из них.

Похожие статьи

zoodrug.ru

Реферат - Роль водорослей в освоении космоса

Реферат выполнил студент IV курса 5 группы Данилишин Андрей.

Одесский национальный университет имени И. И. Мечникова.

Кафедра ботаники.

Одесса 2002 г.

Вступление.

В наш технически развитый век когда исследованы буквально все уголки нашей Земли человечество стремится покорить ранее не изученные участки окружающего нас мира. Одним из таких участков является безгранично интересная область под названием космос. И как не парадоксально но человек не смог бы проникнуть на современный уровень развития и не сможет в дальнейшем без примитивных форм жизни, таких как водоросли. Ведь они умеют расти и размножаться в совершенно неблагоприятных условиях. И тем самым имея положительные и отрицательные стороны своих свойств.

С первым проникновением человека в космос вместе с ним проникли и некоторые простейшие водоросли. Которые и на сегодняшний день также присутствуют и на современных космических кораблях, и наверняка будут присутствовать в кораблях будущего.

Использование водорослей в космосе.

Одну из задач которую выполняют водоросли на космических кораблях это снабжение экипажа кислородом. Для этих целей используют простейшую водоросль – хлореллу. Которая интенсивно делится, обладает высокой активностью фотосинтеза. Суспензия водорослей хлореллы массой 25-35 кг способна полностью снабдить одного человека кислородом в космическом полёте. Кроме того, процесс выращивания водорослей можно полностью автоматизировать для повышения продуктивности фотосинтеза. Эта водоросль способна увеличить свою массу в течение суток более чем в 6 раз, а это можно использовать при длительных полётах для кормления животных и людей.

На для питания полноценной пищей космонавты используют другую простейшую водоросль спирулину.

Более того, они выращивают её в космосе, и сразу употребляют в пищу. Сине-зеленая водоросль, сохранившаяся до наших дней — одна из первых форм растительной жизни на Земле.

Во всем мире пищевая микроводоросль СПИРУЛИНА названа — «зеленым чудом природы», за тот уникальный биохимический состав, которым она обладает, один из самых популярных продуктов на земле

Биомасса спирулины содержит абсолютно все вещества, которые необходимы человеку для нормальной жизнедеятельности.

Ряд биопротекторов, биокорректоров и биостимуляторов не содержится больше ни в одном натуральном продукте !

Всего в состав спирулины входит около 2000 витаминов, минералов, аминокислот, полиненасыщенных жирных кислот и ферментов.

Белки. Содержание белка в спирулине достигает 70%.Это в десятки, сотни раз превышает наличие белка (легко усвояемого) в мясе.

Содержание Бета- каротина в спирулине столько, сколько в 10 кг сухой моркови — одном, из самых богатейших источников этого вещества.

Усвояемость белка 87%.

Спирулина — единственный растительный продукт, белки которого содержат полный набор аминокислот в необходимых пропорциях!, включая 8 незаменимых.

Коэффициент усвояемости 95%.

В составе спирулины:

— глютаминовая кислота — стабилизирующая умственные способности, основная пища для клеток мозга.

— тирозин — эликсир молодости, замедляет процессы старения.

— тиамин — укрепляет нервную систему, снижает утомляемость,

нормализует сон, сердечный ритм, устраняет одышку.

— цистин — обеспечивает нормальную работу поджелудочной железы,

— аргинин — способствует очищению крови.

— фолиевая кислота — необходима для образования гемоглобина.

— инозитол — поддерживает в здоровом состоянии печень, способствует выведению канцерогенов, нормализует уровень холестерина .

— спирулина содержит фикоцианин, не найденный больше ни в одном продукте!

Исследования ученых показывают, что это основной пигмент, укрепляющий иммунную систему, способствующий нормальной работе лимфосистемы — поддерживать здоровыми органы, защищать от рака инфекционных заболеваний!

— Хелатные агенты (сидерохромы) — обеспечивают защиту организма от действия радиации, выводят из организма тяжелые металлы, в том числе радиоактивные ( плутоний, стронций, др.).

Спирулина, она необходима в тяжелых и экстремальных состояниях, и условиях.

Витамины, минеральные вещества: важнейшие витамины, практически весь набор необходимых организму человека минеральных веществ находится в спирулине.

Но кроме дыхания и питания водоросли выполняют и другие возложенные на них задачи, такие как изучение биохимических и физиологических реакций в невесомости и неблагоприятных условиях внешней среды. Ведь в невесомости можно проводить такие реакции, которые на Земле невозможны из-за факторов внешней среды, которых в космосе нет.

Также на водорослях проводятся и эксперименты по генной инженерии. Где с помощью изменений в генетическом материале можно «научить» водоросли перерабатывать мусор или синтезировать новые органические вещества: аминокислоты, углеводы, жиры. Но эта отрасль находиться в состоянии разработки. Эксперименты, которые сейчас проходят в космических лабораториях на околоземных орбитах.

Но сфера применения водорослей не ограничивается стенами космических станций. Человек планирует поселиться и на других планетах и одна из этих планет станет Марс. И здесь человек не может обойтись без простейших водорослей.

Покорение Марса — как же! — немыслимо без подспорья микробов. Без них не озеленить Марс. Имена будущих астронавтов, быть может, пока на устах лишь их матерей, ведь НАСА планирует запуск пилотируемого корабля на Марс лишь на 20 июля 2019 года, к полувековому юбилею высадки человека на Луну. Имена же бактерий, отправляемых на Красную планету, известны уже сейчас.

По сообщению Имре Фридмана из Института астробиологических исследований при НАСА, среди них:

Matteia specifica — синезеленая водоросль, или цианобактерия, то есть бактерия со свойствами растений; она может превращать солнечный свет в энергию. Она питается минералами, выделяя азот; может подолгу существовать в условиях крайне низкой влажности.

Chroococcidiopsis specifica — еще одна цианобактерия, которая прекрасно чувствует себя в сухой и соленой, жаркой и холодной среде.

С помощью генетических манипуляций можно заранее, еще при подготовке к полету, изменить ДНК этих микроорганизмов, приспособив их к марсианскому образу жизни. Со временем, когда климат на Марсе удастся изменить, а бактерии взрыхлят его почву и насытят ее питательными веществами, можно будет выселять на Марс высшие растения. Постепенно атмосфера планеты заполнится кислородом.

Но это уже — тема других разговоров, окрашенных только в радужные тона. Переделав на чужой страх и риск Землю, технократы готовы начать «перестройку» Марса. Так, пустившись по следам неприметных бактерий, мы неожиданно перебрались из одной крайности в другую, словно доказывая, что этим микробам, в самом деле, подвластно все.

Отрицательные стороны.

Но мы рассмотрели только положительные стороны применения водорослей. Но это только вершина айсберга, существует другая противоположная сторона сожительства человека с водорослями.

По словам космонавта А. Сереброва (один из последних космонавтов побывавший на станции «Мир»). Его поразила колония водорослей. Словно лента, мелькнувшая из кармана иллюзиониста, эта омерзительная тварь длилась и длилась, растянувшись на восемь метров. За несколько недель она превратилась в нечто чужое, готовое занять весь корабль и, может быть, вернуться на Землю. В тот момент я подумал, что мы, сами того не подозревая, вот уже сорок лет запускаем в космос корабли, чтобы только вывести какую-то невероятно плодовитую породу водорослей, плесневых грибов или микробов.

Мы посылаем туда экипаж за экипажем только ради того — сами об этой цели мы не догадываемся, — чтобы под действием космической радиации некий микроб из тех, что во множестве населяют корабль, стал смертельно опасен для человечества. И будучи доставлен тем же «Шаттлом» на Землю, как греки чревом Троянского коня в Илион, истребил весь род людской.

Но ведь, в самом деле, космические полеты совершают не только командиры, бортинженеры и — с недавних пор — туристы, но и мириады незримых организмов — микробы. Что ожидать от них? Можем ли мы оценить опасность, грозящую нам?

Вот впечатления космонавтов, бывавших на станции «Мир» в последние годы: мутный свет, влажный, жаркий воздух, запах плесени, металла и резины. На стенках станции виднелись огромные — размером с тарелку — пузыри: это конденсировались воздух, выдыхаемый космонавтами, и испарения их тел. Здешний климат напоминал тропический. Зеленая плесень ковром покрывала установку для электролиза. Металлическая обшивка была испятнана следами ржавчины. Окно люка затянула студенистая слизь. Все эти беды натворили нежеланные спутники космонавтов — микроорганизмы.

Многие аварии, из-за которых злопыхатели ругали российскую космонавтику, на самом деле были вызваны проблемой, которую пока не могут решить ни создатели Международной космической станции (МКС), ни руководители НАСА, планирующие экспедицию на Марс, которая продлится более двух лет. Эта проблема — микробы.

Всего на станции «Мир» проживало более 230 видов микроорганизмов, в том числе 63 вида водорослей. Одни попали на борт станции еще во время ее монтажа, другие — вместе с космонавтами, прибывавшими туда.

В основе всех неприятных явлений, перечисленных нами выше, а также целого ряда поломок, например выхода из строя радио- и видеоаппаратуры, систем снабжения водой и воздухом, лежат два процесса: биокоррозия и образование биопленок.

В первом случае виной всему — вещества, выделяемые водорослями: органические (щавелевая, лимонная, фумаровая) и неорганические кислоты (азотная и серная), а также ферменты и биогенные окислители.

Во втором случае грибы и водоросли образуют колонию на поверхности металлических, пластмассовых или стеклянных предметов, покрывая их слизистым налетом. По отзывам специалистов, «это меняет структурные свойства материала, что может привести к крупным авариям». Водонепроницаемые поверхности начинают впитывать воду. Мутнеют стекла. Засоряются трубопроводы. Меняются термические и диффузионные свойства материалов.

«Бороться с микроорганизмами на борту корабля очень трудно, — признает эксперт НАСА Монси Роман, — поскольку они чувствительны к космической радиации и под действием ее быстро мутируют и размножаются». Действительно, уровень радиации там примерно в сто раз выше, чем на Земле. Это ведет к жесткой селекции среди водорослей: слабые гибнут. Зато те, кто выживает, оказываются более стойкими и агрессивными, чем исходные формы. Вот такими они могут вернуться на Землю — микробы, воспитанные Космосом.

По наблюдению ученых, у многих водорослей и грибов в космосе увеличивается толщина клеточных стенок; причиной этого является, очевидно, пребывание их в невесомости. Вирулентность, (ядовитость), бактерий растет. В свою очередь, иммунная система человека во время пребывания в космосе слабеет. Ей все труднее справиться с микробами. «У некоторых космонавтов в организме появляются кишечные палочки, которые не удается идентифицировать, — вспоминал в том же интервью А. Серебров. — В космосе очень опасная, враждебная человеку среда… Случайно или намеренно мы сотворим вирус, который уничтожит нас».

Понятно, что будущих участников экспедиций надо обезопасить от незваных врагов. В целом ряде стран ведутся работы по защите МКС от микроорганизмов. В НАСА разрабатывают узкопористые фильтры, а также аппарат «Catalytic Oxidator» для обработки воды: ее нагревают до 130оС под давлением, при этом большая часть микробов гибнет. По словам Монси Романа, «вода на МКС будет намного чище той, что мы пьем обычно дома»

В московском Институте биомедицинских проблем используют иную тактику борьбы с водорослями. Как известно, в неблагоприятных условиях те впадают в анабиоз. У них исчезают все видимые проявления жизни. Российским ученым удалось с помощью особых бензольных дериватов вызывать это состояние у микроорганизмов. После обработки помещений подобными химикатами все водоросли в них будут на какое-то время парализованы.

Выводы.

В данной статье рассмотрены основные значения водорослей в покорении человеком космоса. Но не смотря на продолжительность запуска ракет эта тема довольно актуальна в современной науке. И требует внимательного изучения этой многогранной отрасли. Ведь при правильном применении водорослей человечество может получить блага которые нам сейчас недоступны. Космос всегда был ресурсоёмким и что наиболее важно и наукоёмким. Наука, которая занимается проблемами биологии в космосе — называется — космическая биология. Одна из проблем, которых применение водорослей на блага человечества в покорении космоса.

Список литературы

Мир растений. В 7 т. / Редкол. А. Л. Тахтаджян (гл.ред.) и др. Т.3. Водоросли. / Под ред. М. В. Горленко. – М.: Просвещение, 1991. – 475с.,

Бологiя: Навч. посiбник /А. О.Слюсарев, О. В. Самсонов, В. М. Мухiн та iн.; За ред. Та пер.з рос. В. О. Мотузного. – 2-ге вид., випр. – К.: Вища шк., 1997. – 607с.: iл.

“Водоросли. Справочник.” Вассер и др. Киев. Наукова думка. 1998.

www.ronl.ru

Реферат: Космическая медицина

Космическая биология и медицина — комплексная наука, изучающая особенности жизнедеятельности человека и других организмов в условиях космического полета. Основной задачей исследований в области космической биологии и медицины является разработка средств и методов жизнеобеспечения, сохранения здоровья и работоспособности членов экипажей космических кораблей и станций в полетах различной продолжительности и степени сложности. Космическая биология и медицина неразрывно связана с космонавтикой, астрономией, астрофизикой, геофизикой, биологией, авиационной медициной и многими другими науками.

Отправными в становлении космической биологии и медицины считаются следующие вехи: 1949 г. — впервые появилась возможность проведения биологических исследований при полетах ракет; 1957 г. — впервые живое существо (собаку Лайку) отправили в околоземный орбитальный полет на втором искусственном спутнике Земли; 1961 г. — первый пилотируемый полет в космос, совершенный Ю.А. Гагариным. С целью научного обоснования возможности безопасного в медицинском отношении полета человека в космос исследовалась переносимость воздействий, характерных для старта, орбитального полета, спуска и посадки на Землю космических летательных аппаратов (КЛА), а также испытывалась работа биотелеметрической аппаратуры и систем обеспечения жизнедеятельности космонавтов. Основное внимание уделялось изучению влияния на организм невесомости и космического излучения.

Результаты, полученные при проведении биологических экспериментов на ракетах, втором искусственном спутнике (1957) и возвращаемых космических кораблях-спутниках (1960—1961), в совокупности с данными наземных клинических, физиологических, психологических, гигиенических и других исследований фактически открыли путь человеку в космос. Кроме этого, биологические эксперименты в космосе на этапе подготовки первого космического полета человека позволили выявить ряд функциональных изменений, возникающих в организме при действии факторов полета, что явилось основанием для планирования последующих экспериментов на животных и растительных организмах в полетах пилотируемых космических кораблей, орбитальных станций и биоспутников.

Достижения в области космической биологии и медицины во многом предопределили успехи в развитии пилотируемой космонавтики. Наряду с полетом Ю.А. Гагарина, совершенном 12 апреля 1961 г., следует отметить такие эпохальные события в истории космонавтики, как высадку 21 июля 1969 г. астронавтов Армстронга (N. Armstrong) и Олдрина (Е. Aldrin) на поверхность Луны и многомесячные (до года) полеты экипажей на орбитальных станциях «Салют» и «Мир». Это стало возможным благодаря разработке теоретических основ космической биологии и медицины, методологии проведения медико-биологических исследований в космических полетах, обоснованию и внедрению методов отбора и предполетной подготовки космонавтов, а также разработке средств жизнеобеспечения, медицинского контроля, сохранения здоровья и работоспособности членов экипажа в полете.

Возможно вы искали - Контрольная работа: Медицинское обеспечение воспитанников детских дошкольных образовательных учреждений

В успешном развитии космической биологии и медицины большую роль играет участие в космических полетах врачей-исследователей. Они проводят сложные медико-биологические исследования, строго контролируют состояние здоровья космонавтов и своевременно принимают меры по профилактике и лечению заболеваний, что приобретает особое значение в длительных космических полетах. В связи с созданием орбитальных медико-биологических лабораторий планируется расширить участие врачей в космических полетах и привлечь биологов различных специальностей для проведения в космосе экспериментов на животных и растительных организмах.

В космическом полете на организм человека воздействует комплекс факторов, связанных с динамикой полета (ускорения, вибрация, шум, невесомость), пребыванием в герметичном помещении ограниченного объема (измененная газовая среда, гипокинезия, нервно-эмоциональное напряжение и т.д.), а также факторы космического пространствакак среды обитания (космическое излучение, ультрафиолетовое излучение и др.).

В начале и конце космического полета на организм оказывают влияние линейные ускорения (см. Авиационная медицина ). Их величины, градиент нарастания, время и направление действия в период запуска и выведения КЛА на околоземную орбиту зависят от особенностей ракетно-космического комплекса, а в период возвращения на Землю — от баллистических характеристик полета и типа КЛА. Выполнение маневров на орбите также сопровождается воздействием ускорений на организм, однако их величины при полетах современных КЛА незначительны.

Основные сведения о влиянии ускорений на организм человека и способах защиты от их неблагоприятного действия были получены при исследованиях в области авиационной медицины, космическая биология и медицина лишь дополнили эти сведения. Было установлено, что пребывание в условиях невесомости, особенно длительное время, приводит к снижению устойчивости организма к действию ускорений. В связи с этим за несколько суток до спуска с орбиты космонавты переходят на специальный режим физических тренировок, а непосредственно перед спуском получают водно-солевые добавки для увеличения степени гидратации организма и объема циркулирующей крови. Разработаны специальные кресла — ложементы и противоперегрузочные костюмы, что обеспечивает повышение переносимости ускорений при возвращении космонавтов на Землю.

Среди всех факторов космического полета постоянным и практически невоспроизводимым в лабораторных условиях является невесомость. Влияние ее на организм многообразно. Возникают как неспецифические адаптационные реакции, характерные для хронического стресса, так и разнообразные специфические изменения, обусловленные нарушением взаимодействия сенсорных систем организма, перераспределением крови в верхнюю половину тела, уменьшением динамических и практически полным снятием статических нагрузок на опорно-двигательный аппарат.

Похожий материал - Реферат: Анализ крови и мочи

Обследования космонавтов и многочисленные эксперименты на животных в полетах биоспутников «Космос» позволили установить, что ведущая роль в возникновении специфических реакций, объединяемых в симптомокомплекс космической формы болезни движения (укачивание), принадлежит вестибулярному аппарату. Это связано с повышением в условиях невесомости возбудимости рецепторов отолитов и полукружных каналов и нарушением взаимодействия вестибулярного анализатора и других сенсорных систем организма. В условиях невесомости у человека и животных обнаруживаются признаки детренированности сердечно-сосудистой системы, увеличение объема крови в сосудах грудной клетки, застойные явления в печени и почках, изменение мозгового кровообращения, уменьшение объема плазмы. В связи с тем, что в условиях невесомости изменяются секреция антидиуретического гормона, альдостерона и функциональное состояние почек, развивается гипогидратация организма. При этом уменьшается содержание внеклеточной жидкости и увеличивается выведение из организма солей кальция, фосфора, азота, натрия, калия и магния. Изменения в опорно-двигательном аппарате возникают преимущественно в тех отделах, которые в обычных условиях жизнедеятельности на Земле несут наибольшую статическую нагрузку, т.е. мышцах спины и нижних конечностей, в костях нижних конечностей и позвонках. Отмечаются снижение их функциональных возможностей, замедление скорости периостального костеобразования, остеопороз губчатого вещества, декальцинация и другие изменения, которые приводят к снижению механической прочности костей.

В начальный период адаптации к невесомости (занимает в среднем около 7 суток) примерно у каждого второго космонавта возникают головокружение, тошнота, дискоординация движений, нарушение восприятия положения тела в пространстве, ощущение прилива крови к голове, затруднение носового дыхания, ухудшение аппетита. В ряде случаев это приводит к снижению общей работоспособности, что затрудняет выполнение профессиональных обязанностей. Уже на начальном этапе полета появляются начальные признаки изменений в мышцах и костях конечностей.

По мере увеличения продолжительности пребывания в условиях невесомости многие неприятные ощущения исчезают или сглаживаются. Одновременно с этим практически у всех космонавтов, если не принять должных мер, прогрессируют изменения состояния сердечно-сосудистой системы, обмена веществ, мышечной и костной ткани. Для предупреждения неблагоприятных сдвигов используется широкий комплекс профилактических мер и средств: вакуумная емкость, велоэргометр, бегущая дорожка, тренировочно-нагрузочные костюмы, электромиостимулятор, тренировочные эспандеры, прием солевых добавок и т.д. Это позволяет поддерживать хорошее состояние здоровья и высокий уровень работоспособности членов экипажей в длительных космических полетах.

Неизбежным сопутствующим фактором любого космического полета является гипокинезия — ограничение двигательной активности, которая, несмотря на интенсивные физические тренировки во время полета, приводит в условиях невесомости к общей детренированности и астенизации организма. Многочисленные исследования показали, что длительная гипокинезия, создаваемая пребыванием в постели с наклоном головного конца (—6°), оказывает на организм человека практически такое же влияние, как и длительная невесомость. Этот способ моделирования в лабораторных условиях некоторых физиологических эффектов невесомости широко используется в СССР и США. Максимальная длительность такого модельного эксперимента, проведенного в Институте медико-биологических проблем МЗ СССР, составила один год.

Специфической проблемой является исследование воздействия на организм космических излучений. Дозиметрические и радиобиологические эксперименты позволили создать и внедрить в практику систему обеспечения радиационной безопасности космических полетов, которая включает средства дозиметрического контроля и локальной защиты, радиозащитные препараты (радиопротекторы).

Очень интересно - Реферат: Трансфузионная терапия

В задачи космической биологии и медицины входит изучение биологических принципов и методов создания искусственной среды обитания на космических кораблях и станциях. Для этого отбирают живые организмы, перспективные для включения их в качестве звеньев в замкнутую экологическую систему, исследуют продуктивность и устойчивость популяций этих организмов, моделируют экспериментальные единые системы живых и неживых компонентов — биогеоценозы, определяют их функциональные характеристики и возможности практического использования в космических полетах.

Успешно развивается и такое направление космической биологии и медицины, как экзобиология, изучающая наличие, распространение, особенности и эволюцию живой материи во Вселенной. На основании наземных модельных экспериментов и исследований в космосе получены данные, свидетельствующие о теоретической возможности существования органической материи за пределами биосферы. Проводится также программа поиска внеземных цивилизаций путем регистрации и анализа радиосигналов, идущих из космоса.

Достижения в области космической биологии и медицины внесли существенный вклад в решение проблем общей биологии и медицины. Расширились представления о границах жизни в пределах биосферы, а созданные экспериментальные модели искусственных биогеоценозов — относительно замкнутым круговоротом веществ позволили дать определенную количественную оценку антропогенных воздействий на биосферу. Большое влияние космическая биология оказала на экологию, в первую очередь экологию человека и изучение взаимосвязи процессов жизнедеятельности с абиотическими факторами окружающей среды. Проведенные исследования позволили лучше познать биологию человека и животных, механизмы регуляции и функционирования многих систем организма.

Библиогр.: Газенко О.Г., Григорьев А.И. и Наточин Ю.В. Водно-солевой гомеостаз и космический полет, М., 1986; Основы космической биологии и медицины, под ред. О.Г. Газенко и М. Кальвина, т. 2, М., 1975; Тигранян Р.А. Метаболические аспекты проблемы стресса в космическом полете, М., 1985.


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.