|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Реферат: Ионизирующие излучения. Реферат ионизирующее излучениеРеферат - Ионизирующие излучения - БиологияК ионизирующим излучениям относятся рентгеновские и гамма-лучи, являющиеся электромагнитными колебаниями с очень небольшой длиной волны, а также альфа- и бета-частицы, позитроны и нейтроны – частицы с положительным или отрицательным зарядом или не несущие его. Все эти виды излучений наблюдаются при естественном самопроизвольном распаде ядер некоторых так называемых радиоактивных элементов (радий, торий и др.) или могут быть получены искусственно, например рентгеновские лучи, позитроны. Основным свойством радиоактивных лучей является ионизирующее действие: при прохождении их в тканях нейтральные атомы или молекулы приобретают положительный или отрицательный заряд и превращаются в ионы. Наибольшую плотность ионизации вызывают -лучи, представляющие собой положительно заряженные ядра гелия. -лучи — поток электронов, который выбрасывается из атомных ядер и может нести большую или меньшую энергию, но ионизирующие свойства их выражены слабее, чем у -лучей. Позитронные частицы отличаются от -лучей только положительным знаком заряда. -лучи и рентгеновские лучи обладают наименьшей плотностью ионизации, но наибольшей проникающей способностью. Ионизирующие излучения могут оказывать влияние на организм как при внешнем, так и внутреннем облучении. При внешнем облучении возможно попадание лучей на кожу или более глубокое прохождение их в ткани, что зависит от проникающей способности. Например, -лучи, хотя и обладают большой ионизирующей способностью, при внешнем облучении почти не проникают в ткани (0,02 0,06 мм). Большей проникающей способностью обладают -лучи, но особенно — и рентгеновские лучи. Эти лучи даже в таких материалах, как свинец, бетон, вода, которые хорошо их поглощают и применяются для защиты от ионизирующих излучений, могут проходить расстояние в десятки сантиметров. По мере удаления от источника интенсивность излучения падает прямо пропорционально квадрату расстояния. Очень большой проникающей способностью обладает нейтронное излучение: проходя через ткани, нейтроны вызывают образование в них радиоактивных веществ — так называемую наведенную активность. Внутреннее облучение наблюдается при попадании радиоактивных веществ в органы дыхания, желудочно-кишечный тракт или при всасывании через поврежденную кожу. При внутреннем облучении наиболее опасны -излучатели, меньше — - и -излучатели. Попадая в легкие при вдыхании радиоактивных газов и пылей или в пищеварительный тракт, такие вещества не только облучают эти органы и близ лежащие ткани, но всасываются и распространяются по организму с током крови. При этом некоторые из них, например радиоактивный натрий, распространяются в организме равномерно, другие накапливаются в определенных, так называемых критических, органах и тканях: радиоактивный йод – в щитовидной железе, радий и стронций – в костях и т. д. Длительность задержки радиоактивных веществ в организме зависит от скорости выведения и распада. Например, активность излучений такого радиоактивного газа, как торон, уменьшается вдвое в течение минуты, а такого элемента, как радий – за период около 1600 лет. Радиоактивные вещества выводятся из организма главным образом через желудочно-кишечный тракт, почки и легкие (газообразные соединения). Некоторые соединения могут выделяться через кожу, слизистую оболочку рта, частично с потом и молоком. В первые дни после поступления в организм радиоактивные вещества выводятся быстрее; в дальнейшем этот процесс замедляется. Биологическое действие ионизирующей радиации связано с тем, что в облучаемых жидкостях и тканях происходит ионизация: некоторые атомы и молекулы теряют электроны и становятся положительно заряженными, другие соединяются с электронами и приобретают отрицательный заряд. Основную роль играет ионизация молекул воды с образованием свободных радикалов H, OH, h3O2, HO2. Взаимодействие их друг с другом и тканями ведет к возникновению перекисей и других биологически активных продуктов, которые являются сильными окислителями и ядовитыми для тканей веществами. Свободные радикалы действуют на сульфгидрильные группы (SH) белков и инактивируют их. Ионизирующая радиация также непосредственно влияет на белки и липоиды, вызывая их денатурацию. Действие ионизирующих излучений может вызывать местные и общие поражения. Местные поражения кожи бывают главным образом в форме ожогов (острое действие), дерматитов и других форм. Иногда возникают доброкачественные новообразования, но возможно развитие кожного рака. Длительное действие ионизирующей радиации на хрусталик может вызвать катаракту. Общие поражения протекают в виде острой и хронической лучевой болезни. Для острой формы характерны общетоксические симптомы (слабость, тошнота и др.) и специфическое поражение кроветворных органов, желудочно-кишечного тракта, нервной системы и др. Для ранних стадий хронической формы характерны нарастающая астения, угнетение белого, а затем и красного кровяного ростка (лейкопения, тромбоцитопения, эритропения), повышенная кровоточивость. Вдыхание радиоактивной пыли может вызвать пневмосклероз, а иногда рак бронхов и легкого. Наблюдаются случаи развития лейкоза. Ионизирующая радиация оказывает угнетающее действие на генеративную функцию мужского и женского организма и может отрицательно влиять на потомство. www.ronl.ru Реферат - Свойства ионизирующих излученийСВОЙСТВА ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ Взаимодействие ионизирующих излучений с веществом. В веществе быстрые заряженные частицы взаимодействуют с электронными оболочками и ядрами атомов. В результате взаимодействия с быстрой заряженной частицей электрон получает дополнительную энергию и переходит на один из удаленных от ядра энергетических уровней или совсем покидает атом. В первом случае происходит возбуждение, во втором — ионизация атома. При прохождении вблизи атомного ядра быстрая частица испытывает торможение в его электрическом поле. Торможение заряженных частиц сопровождается испусканием квантов тормозного рентгеновского излучения. Наконец, возможно упругое и неупругое соударение заряженных частиц с атомными ядрами. Длина пробега частицы зависит от ее заряда, массы, начальной энергии, а также от свойств среды, в которой частица движется. Пробег увеличивается с возрастанием начальной энергии частицы и уменьшением плотности среды. При одинаковой начальной энергии массивные частицы обладают меньшими скоростями, чем легкие. Медленно движущиеся частицы взаимодействуют с атомами более эффективно и быстрее растрачивают имеющуюся у них энергию. Проникающую способность бета-частиц обычно характеризуют минимальной толщиной слоя вещества, полностью поглощающего все бета-частицы. Например, от потока бета-частиц, максимальная энергия которых 2 МэВ, полностью защищает слой алюминия толщиной 3,5 мм. Альфа-частицы, обладающие значительно большей массой, чем бета-частицы, при столкновениях с электронами атомных оболочек испытывают очень небольшие отклонения от своего первоначального направления и движутся почти прямолинейно. Пробеги альфа-частиц в веществе очень малы. Например, у альфа-частицы с энергией 4 МэВ длина пробега в воздухе примерно 2,5 см, в воде или в мягких тканях животных и человека — сотые доли миллиметра. Благодаря небольшой проникающей способности альфа- и бета-излучения обычно не представляют большой опасности при внешнем облучении. Плотная одежда может поглотить значительную часть бета-частиц и совсем не пропускает альфа-частицы. Однако при попадании внутрь человеческого организма с пищей, водой и воздухом или при загрязнении радиоактивными веществами поверхности тела альфа- и бета-излучения могут причинить человеку серьезный вред. Нейтроны, не имеющие электрического заряда, при движении в веществе не взаимодействуют с электронными оболочками атомов. При столкновениях с атомными ядрами они могут выбивать из них заряженные частицы, которые ионизируют и возбуждают атомы среды. Гамма-кванты взаимодействуют в основном с электронными оболочками атомов, передавая часть своей энергии электронам — это явления фотоэффекта (см. § 58), эффекта Комптона (см. § 63) или рождения электронно-позитронных пар (см. § 90). Возникающие быстрые электроны производят ионизацию атомов среды. Пути пробега гамма-квантов и нейтронов в воздухе измеряются сотнями метров, в твердом веществе — десятками сантиметров и даже метрами. Проникающая способность гамма-излучения увеличивается с ростом энергии гамма-квантов и уменьшается с увеличением плотности вещества-поглотителя. В таблице 5 приведены в качестве примера значения толщины слоев воды, бетона и свинца, ослабляющих потоки гамма-излучения различной энергии в десять раз. Потоки гамма-квантов и нейтронов — наиболее проникающие виды ионизирующих излучений, поэтому при внешнем облучении они представляют для человека наибольшую опасность. Поглощенная доза ионизирующего излучения. Универсальной мерой воздействия любого вида излучения на вещество является поглощенная доза излучения, равная отношению энергии, переданной ионизирующим излучением веществу, к массе вещества: D = E / m За единицу поглощенной дозы в СИ принят грей (Гр). 1 Гр равен поглощенной дозе излучения, при которой облученному веществу массой 1 кг передается энергия ионизирующего излучения 1 Дж: 1 Гр=1 Дж/1 кг=1 Дж/кг Отношение поглощенной дозы излучения ко времени облучения называется мощностью дозы излучения: D = D / t Единица мощности поглощенной дозы в СИ — грей в секунду (Гр/с). Эквивалентная доза. Поглощенная доза D , умноженная на коэффициент качества k , характеризует биологическое действие поглощенной дозы и называется эквивалентной дозой Н: H = Dk Единицей эквивалентной дозы в СИ является з и вер т (Зв). 1 Зв равен эквивалентной дозе, при которой поглощенная доза равна 1 Гр и коэффициент качества равен единице. Биологическое действие ионизирующих излучений. Основа физического воздействия ядерных излучений на живые организмы — ионизация атомов и молекул в клетках. При облучении человека смертельной дозой гамма-излучения, равной 6 Гр, в его организме выделяется энергия, равная примерно: E = mD =70 кг · 6 Гр=420 Дж. Такая энергия передается организму человека одной чайной ложкой горячей воды. Поскольку эта энергия мала, естественно предположить, что тепловое воздействие ионизирующей радиации не является непосредственной причиной лучевой болезни и гибели человека. Действительно, основной механизм биологического воздействия ионизирующей радиации на живой организм обусловлен химическими процессами, происходящими в живых клетках после их облучения. Организм млекопитающего состоит примерно на 75% из воды. При дозе 6 Гр в 1 см3 ткани происходит ионизация примерно 1015 молекул воды. Процессы ионизации и химических взаимодействий продуктов ионизации происходят в клетке за миллионные доли секунды. Биохимические изменения в клетке, обусловленные образованием новых молекул, чуждых нормальной клетке, начинаются сразу после момента облучения, но не завершаются за короткое время. Некоторые следствия биохимических изменений в клетке проявляются уже через несколько секунд после облучения, другие могут привести к гибели клетки или ее раковому перерождению через десятилетия. Одним из первых следствий действия облучения на живую клетку является нарушение ее функции деления как самой сложной функции. Поэтому в первую очередь нарушаются функции органов и тканей организма, в которых происходит деление клеток, образование новых клеток. Острое поражение. Острым поражением называют повреждение живого организма, вызванное действием больших доз облучения и проявляющееся в течение нескольких часов или дней после облучения. Первые признаки общего острого поражения организма взрослого человека обнаруживаются, начиная примерно с 0,5—1,0 Зв. Эту эквивалентную дозу можно считать пороговой для общего острого поражения при однократном облучении. При такой эквивалентной дозе начинаются нарушения в работе кроветворной системы человека. При эквивалентных дозах облучения всего тела 3—5 Зв около 50% облученных умирает от лучевой болезни в течение 1—2 месяцев. Главной причиной гибели людей при таких дозах облучения является поражение костного мозга, приводящее к резкому снижению числа лейкоцитов в крови. При дозах облучения в 10—50 Зв смерть наступает через 1—2 недели от кровоизлияний в желудочно-кишечном тракте. Эти кровоизлияния происходят в результате гибели клеток слизистых оболочек кишечника и желудка. Отдаленные последствия облучения. Значительная часть повреждений, вызванных радиацией в живых клетках, является необратимыми. Эти повреждения увеличивают вероятность возникновения различных заболеваний, из которых наиболее опасны раковые заболевания. Средняя продолжительность времени от момента облучения до гибели от лейкоза составляет 10 лет. Вероятность возникновения ракового заболевания увеличивается пропорционально дозе облучения. Эквивалентная доза облучения 1 Зв в среднем приводит к 2 случаям лейкоза, 10 случаям рака щитовидной железы, 10 случаям рака молочной железы у женщин, 5 случаям рака легких на 1000 облученных. Раковые заболевания других органов под действием облучения возникают значительно реже. Ядерные взрывы. Ядерные взрывы, производимые с 1945 г. в атмосфере и под водой, привели к загрязнению атмосферы Земли и земной поверхности радиоактивными продуктами деления ядер урана. Среди продуктов деления ядер урана наибольшую роль в длительном облучении играют радиоактивные изотопы стронция-90 и цезия-137 с периодами полураспада около 30 лет. Эти изотопы усваиваются из почвы растениями, затем с пищей попадают в организм человека и надолго задерживаются в его тканях и органах, подвергая организм внутреннему облучению. Биологическое влияние малых доз излучения. Приносят ли дозы ионизирующего излучения, сравнимые с естественным фоном, какой-то ущерб здоровью человека? На этот вопрос невозможно дать точный и однозначный ответ, подобно тому, как нельзя дать однозначный ответ на вопрос о влиянии на организм человека обычного солнечного света. Солнечный свет, безусловно, необходим человеку, без него жизнь на Земле невозможна. Но ультрафиолетовое излучение Солнца может вызвать ожог кожи, быть причиной заболеваний кожи и крови. Аналогична картина и с естественным фоном ионизирующей радиации. С одной стороны, человек как вид появился на Земле в результате эволюции живой природы. Необходимыми условиями эволюции являются изменчивость и естественный отбор. Изменчивость есть следствие мутаций генов, а одним из факторов, вызывающих мутации, является естественный фон ионизирующей радиации. По современным представлениям, без участия естественного радиационного фона, вероятно, не было бы и жизни на Земле в настоящем ее виде. Поэтому нет оснований сетовать на судьбу, что нам досталась планета, содержащая в себе радиоактивные изотопы. Не будь радиоактивности и космического излучения, видимо, не было бы и человека на Земле. Но может быть, естественный фон ионизирующей радиации был полезным для эволюции жизни на ранних этапах ее развития, но вреден сейчас? Против такого предположения свидетельствует ряд фактов.Опытыс растениями показали, что если их практически полностью защитить от внешнего ионизирующего излучения, удалить из почвы естественные радиоактивные изотопы, то развитие растений замедляется, их продуктивность снижается. Многократно повторенные опыты показали, что небольшие дозы излучения, сравнимые с уровнем естественного фона, стимулируют развитие растений. Сходные результаты получены и в опытах на животных. Безвредность малых доз облучения для человеческого организма подтверждается исследованиями средней продолжительности жизни людей в зависимости от уровня естественного фона ионизирующей радиации. Предельно допустимые дозы. Люди некоторых профессий подвергаются дополнительному облучению ионизирующей радиацией. Это врачи-рентгенологи, работники атомных электростанций, ученые и технический персонал, работающие в области ядерной физики и физики элементарных частиц, космонавты. Полностью устранить дополнительное действие ионизирующей радиации на их рабочих местах оказывается невозможным. Поэтому нужно было определить допустимую границу дополнительной дозы облучения. Предельно допустимой дозой (ПДД) облучения для лиц, профессионально связанных с использованием источников ионизирующей радиации, является 50 мЗв за год. Этот уровень облучения был принят за допустимый на том основании, что он близок к уровню естественного радиационного фона в некоторых местах на Земле и никаких отрицательных последствий для человека при действии таких доз не обнаружено. Санитарными нормами установлен допустимый уровень разового аварийного облучения для населения—0,1 Зв. Это примерно равно дозе фонового облучения человека за всю жизнь. В качестве предельно допустимой дозы систематического облучения населения установлена эквивалентная доза облучения 5 мЗв за год, т. е. 0,1 ПДД. За все время жизни человека (70 лет) допустимая доза облучения для населения составляет 5 мЗв/год-70 лет= =350 м3в=0,35 Зв. Радиофобия. Паническую боязнь любого ионизирующего излучения в любом количестве называют радиофобией (от греч. phobos — страх). Неразумно выбегать из комнаты, в которой работает счетчик Гейгера и регистрирует естественный радиоактивный фон. Он лишь регистрирует то, что есть в природе. Неразумно пугаться радиоактивного препарата, от которого счетчик регистрирует 100 или даже 1000 импульсов в минуту. Нужно понимать, что такой препарат не более опасен, чем любой человек, так как в теле человека происходит примерно 5-Ю5 распадов в минуту. Скорость счета счетчика почти не увеличивается при приближении к нему человека не потому, что человек не радиоактивен, а лишь потому, что практически все бета-частицы, испускаемые радиоактивными ядрами в теле человека, поглощаются в тканях его организма. Радиофобия в настоящее время распространилась на телевизор как источник рентгеновского излучения и на самолет как транспортное средство, выносящее человека в верхние слои атмосферы, где более высок уровень космического излучения. Телевизор действительно является источником рентгеновского излучения, но очень мягкого и малой мощности. При ежедневном просмотре телевизионных программ по три-четыре часа в день за год будет получена доза порядка 10 -5 Зв. Это в 100—200 раз меньше уровня естественного фона. Полет в современном самолете на расстояние 2000 км обусловливает примерно такое же облучение, т.е. одну сотую долю среднего значения уровня естественного облучения в год. Уменьшение дозы излучения при необходимости работы с источником ионизирующего излучения может быть осуществлено тремя путями: увеличением расстояния от источника; уменьшением времени пребывания около источника; установкой экрана, поглощающего излучение. При удалении от точечного источника доза излучения убывает обратно пропорционально квадрату расстояния. www.ronl.ru Реферат - Ионизирующие излучения - Безопасность жизнедеятельностиМИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ДАЛЬНЕВОСТОЧНЫЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНСТИТУТ МЕНЕДЖМЕНТА И БИЗНЕСА КАФЕДРА БЕЗОПАСТНОСТИ ЖИЗНЕДЕЯТЕЛЬНОСТИ И ГО ИОНИЗИРУЮЩИЕ ИЗЛУЧЕНИЯ. ВНЕШНЕЕ И ВНУТРЕННЕЕ ОБЛУЧЕНИЕ . ДЕЙСТВИЕ НА ОРГАНИЗМ . ПРОФИЛАКТИКА . Реферат студента 23 гр. Журавлева В. М. Спасск-Дальний2002 Оглавление ВВЕДЕНИЕ… 3 Виды ионизирующих излучений… 4 Источники радиоактивного облучения… 6 Влияние ионизирующих излучений на живые организмы и защита от них… 7 Вывод… 10 Список использованной литературы… 11 ВВЕДЕНИЕ ИЛИ С ЧЕГО ВСЕ НАЧИНАЛОСЬ Радиоактивность – отнюдь не новое явление; новизна состоит лишь в том, как люди пытались ее использовать. И радиоактивность, и сопутствующие ей ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни и присутствовали в космосе до возникновения самой Земли. Ионизирующее излучение сопровождало и Большой взрыв, с которого, как мы сейчас полагаем, началось существование нашей Вселенной около 20 миллиардов лет назад. С того времени радиация наполняет космическое пространство. Радиоактивные материалы вошли в состав Земли с самого ее рождения. Даже человек слегка радиоактивен, так как во всякой живой ткани присутствует в следовых количествах радиоактивные вещества. Но с момента открытия этого универсального фундаментального открытия прошло лишь немногим более ста лет. В 1896 году французский ученый Анри Беккерель положил несколько фотографических пластинок в ящик стола, придавив их кусками какого-то материала, содержащего уран. Когда он проявил пластинки, то, к своему удивлению, обнаружил на них следы каких-то излучений, которые он приписал урану. Вскоре этим явлением заинтересовалась Мария Кюри, молодой химик, полька по происхождению, которая и ввела в обиход слова “радиоактивность”. В 1898 году она и ее муж Пьер Кюри обнаружили, что уран после излучения превращается в другие химические элементы. Один из этих элементов супруги назвали полонием в память о родине Марии Кюри, а еще один – радием, поскольку по-латыни это слово обозначает “испускающий лучи”. И открытие Беккереля, и исследования супругов Кюри были подготовлены более ранним, очень важным событием в научном мире – открытием в 1895 году рентгеновских лучей; эти лучи были названы так по имени открывшего их (тоже, в общем, случайно) немецкого физика Вильгельма Рентгена. Беккерель один из первых столкнулся с самым неприятным свойством радиоактивного излучения: речь идет о его воздействии на ткани живого организма. Ученый положил пробирку с радием в карман и получил в результате ожог кожи. Мария Кюри умерла, по всей видимости, от одного из злокачественных заболеваний крови, поскольку слишком часто подвергалась воздействию радиоактивного излучения. По крайней мере 336 человек, работавших с радиоактивными материалами в то время, умерли в результате облучения. Несмотря на это, небольшая группа талантливых и большей частью молодых ученых направила свои усилия на разгадку одной из самых волнующих загадок всех времен, стремясь проникнуть в самые сокровенные тайны материи. Виды ионизирующих излучений Главным объектом исследования ученых был сам атом, вернее – его строение. Мы знаем теперь, что атом похож на Солнечную систему в миниатюре: вокруг крошечного ядра движутся по орбитам “планеты” – электроны. Размеры ядра в сто тысяч раз меньше размеров самого атома, но плотность его очень велика, поскольку масса ядра почти равна массе самого атома. Ядро, как правило, состоит из нескольких более мелких частиц, которые плотно сцеплены друг с другом. Некоторые из этих частиц имеют положительный заряд и называются протонами. Число протонов в ядре и определяет, к какому химическому элементу относится данный атом: ядро атома водорода содержит всего один протон, атома кислорода – 8, урана – 92. В каждом атоме число электронов в точности равно числу протонов в ядре; каждый электрон несет отрицательный заряд, равный по абсолютной величине заряду протона, так что в целом атом нейтрален. В ядре, как правило, присутствуют и частицы другого типа, называемые нейтронами, поскольку они нейтральны. Ядра атомов одного и того же элемента всегда содержат одно и то же число протонов, но число нейтронов в них может быть различным. Атомы, имеющие ядра с одинаковым числом протонов, но различающиеся по числу нейтронов, относятся к разным разновидностям одного и того же химического элемента, называемым изотопами данного элемента. Чтобы отличить их друг от друга, к символу приписывают число, равное сумме всех частиц в ядре данного изотопа. Так, уран-238 содержит 92 протона, но 143 нейтрона; в уране-235 тоже 92 протона, но 143 нейтрона. Ядра всех изотопов химических элементов образуют группу нуклидов . Некоторые нуклиды стабильны, то есть в отсутствии внешнего воздействия никогда не претерпевают никаких превращений. Большинство же нуклидов нестабильны, они все время превращаются в другие нуклиды. В качестве примера возьмем хотя бы атом урана-238, в ядре которого протоны и нейтроны едва удерживаются вместе силами сцепления. Время от времени из него вырывается компактная группа из четырех частиц: двух протонов и двух нейтронов (α-излучение). Уран-238 превращается, таким образом, в торий-234, в ядре которого содержатся 90 протонов и 144 нейтрона… Далее следуют иные превращения (показанные ниже в таблице), сопровождаемые излучениями, и вся цепочка в конце концов оканчивается стабильным нуклидом свинца. Разумеется, существует много таких цепочек самопроизвольных превращений разных нуклидов по разным схемам превращений и их комбинациям.
При каждом акте распада нуклида высвобождается энергия, которая и передается дальше в виде излучения. Существуют три вида ионизирующих излучений: · α-излучение : Представляет собой поток ядер атомов гелия, называемых α–частицами. Начальная скорость альфа-частиц достигает 10000-20000 км./сек. Они обладают большой ионизирующей способностью. Длина пробега альфа-частиц в воздухе составляет всего 10 см., а в твердых телах еще меньше. Одежда, индивидуальные средства защиты полностью задерживают альфа-частицы. Внешнее их воздействие не опасно для человека. Из-за высокой ионизирующей способности альфа-частицы крайне опасны при попадании внутрь организма. · β-излучение : Это поток электронов, называемых β–частицами. Скорость бета-частиц может в некоторых случаях достигать скорости света. Проникающая способность их меньше, чем гамма-излучения. Одежда и индивидуальные средства защиты значительно ослабляют бета-излучение. Ионизирующее действие бета-излучения в сотни раз сильнее гамма-излучения. · γ-излучение : Это электромагнитные волны, аналогичные рентгеновским лучам и лучам света, распространяющиеся в воздухе со скоростью 300000км./сек. На сотни метров. Они способны проникнуть через толщи защитных материалов и через индивидуальные средства защиты. Гамма излучение представляет основную опасность для людей. При радиоактивном заражении местности гамма-излучение действует в течение суток, недель и месяцев. Источники радиоактивного облучения Все источники радиации можно условно разделить на два вида: · Естественные источники радиации; · Источники, созданные человеком;Естественные источники радиации · Космические лучи: Радиационный фон, создаваемый космическими лучами, дает чуть меньше половины внешнего облучения, получаемого населением от естественных источников радиации. Космические лучи в основном приходят к нам из глубин Вселенной, но некоторая их часть рождается на Солнце во время вспышек. Они взаимодействуют с атмосферой Земли, порождая вторичное излучение и приводя к образованию различных радионуклидов. · Земная радиация: Основные радиоактивные изотопы, встречающиеся в горных породах Земли, — это калий-40, рубидий-87 и члены двух радиоактивных семейств, берущих начало соответственно от урана-238 и тория-232 – долгоживущих изотопов, включившихся в состав Земли с самого ее рождения. Средняя эффективная эквивалентная доза, которую человек получает за год от земных источников радиации, составляет примерно 350 микрозивертов. · Внутреннее облучение: В среднем примерно 2/3 эффективной эквивалентной дозы облучения, которую человек получает от естественных источников радиации, поступает от радиоактивных веществ (калий-40, свинец-210, полоний-210 и пр.), попавших в организм с пищей, водой и воздухом. · Радон: Это невидимый, не имеющий вкуса и запаха тяжелый (в 7,5 раза тяжелее воздуха) газ. Радон вместе со своими дочерними продуктами распада ответствен примерно за 3/4 годовой индивидуальной эффективной эквивалентной дозы. Встречается в двух основных формах: радон-222 и радон-220. Он высвобождается из земной коры повсеместно, но основную часть дозы облучения человек получает, находясь в закрытом, непроветриваемом помещении. Источники , созданные человеком · Источники, использующиеся в медицине: Это: Рентген; Компьютерная томография; Радиотерапевтические установки для лечения рака; Радиоизотопы, использующиеся для исследования различных процессов в организме; Средняя индивидуальная доза за счет этого источника во всем мире составляет ~ 400 мкЗв на человека в год. Таким образом, коллективная эффективная эквивалентная доза для всего населения равна примерно 1600000 чел-Зв в год. · Ядерные взрывы: Наиболее опасны воздушные взрывы. Часть радиоактивного материала выпадает неподалеку от места испытания, какая-то часть задерживается тропосфере (самом нижнем слое атмосферы), подхватывается ветром и перемещается на большие расстояния, оставаясь примерно на одной и той же широте. Находясь в воздухе в среднем около месяца, радиоактивные вещества во время этих перемещений постепенно выпадают на землю. Однако большая часть радиоактивного материала выбрасывается в стратосферу – следующий слой атмосферы, лежащий на высоте 10-50 км., где он остается многие месяцы, медленно опускаясь и рассеиваясь по всей поверхности земного шара. · АЭС: Вносят весьма незначительный вклад в суммарное облучение населения. При нормальной работе ядерных установок выбросы радиоактивных материалов очень невелики. Влияние ионизирующих излучений на живые организмы и защита от них Приведем ниже поэтапное воздействие всех видов ионизирующих излучений на любой живой организм. Заряженные частицы : Проникающие в ткани организма альфа- и бета-частицы теряют энергию вследствие электрических взаимодействий с электронами тех атомов, близ которых они проходят. Гамма-излучение и рентгеновские лучи передают свою энергию веществу несколько иными способами, которые, в конечном счете, также приводят к электрическим взаимодействиям. Электрические взаимодействия : За время порядка десяти триллионных секунды после того, как проникающее излучение достигнет соответствующего атома в ткани организма, от этого атома отрывается электрон. Последний заряжен отрицательно, поэтому остальная часть исходно нейтрального атома становится положительно заряженной. Этот процесс называется ионизацией. Оторвавшийся электрон может далее ионизировать другие атомы. Физико-химические изменения : И свободный электрон, и ионизированный атом обычно не могут долго пребывать в таком состоянии и в течение следующих десяти миллиардных долей секунды участвуют в сложной цепи реакций, в результате которых образуются новые молекулы, включая и такие чрезвычайно реакционно-способные, как свободные радикалы. Химические изменения : В течение следующих миллионных долей секунды образовавшиеся свободные радикалы реагируют как друг с другом, так и с другими молекулами и через цепочку реакций, еще не изученных до конца, могут вызвать химическую модификацию важных в биологическом отношении молекул, необходимых для нормального функционирования клетки. Биологические эффекты : Биохимические изменения могут произойти как через несколько секунд, так и через десятилетия после облучения и явиться причиной немедленной гибели клеток или таких изменений в них, которые могут привести к раку. Еще ниже приведем разновидности доз радиоактивного облучения. Поглощенная доза – энергия ионизирующего излучения, поглощенная облучаемым телом, в пересчете на единицу массы. Эквивалентная доза – поглощенная доза, умноженная на коэффициент, отражающий способность данного излучения повреждать ткани организма. Коллективная эквивалентная доза – эффективная эквивалентная доза, полученная группой людей от какого-либо источника радиации. Полная коллективная эффективная эквивалентеая доза – коллективная эффективная эквивалентная доза, которую получат поколения людей, от какого-либо источника за все время его дальнейшего существования. Приведем некоторые внесистемные, но широко распространенные единицы. Беккерель (Бк , Bq ) – единица активности нуклида в радиоактивном источнике (в системе СИ). Один беккерель соответствует одному распаду в секунду для любого радионуклида. Грей (Гр , Gy ) – единица поглощенной дозы в системе СИ. Представляет собой количество энергии ионизирующего излучения, поглощенной единицей массы какого-либо физического тела, например, тканями организма. Зиверт (Зв ,Sv ) – единица эквивалентной дозы в системе СИ. Представляет собой единицу поглощенной дозы, умноженную на коэффициент, учитывающий неодинаковую радиационную опасность разных видов ионизирующих излучений. Один зиверт соответствует поглощенной дозе в 1 Дж/кг (для рентгеновского, b- и g- излучений). Стоит также привести некоторые широко распространенные внесистемные единицы и их связь с единицами СИ: Кюри (Ки, С u) – единица активности изотопа: 1 Ки = 3 , 700*1010 Бк ; рад (рад , rad ) – единица поглощенной дозы излучения: 1 рад = 0 ,01 Гр ; бэр (бэр, rem) – единица эквивалентной дозы : 1 бэр = 0,01 Зв . Защита от ионизирующих излучений · Защита от a- и b-излучения: Для защиты от данных видов излучений достаточно слоя воздуха в 10 см, тонкой фольги. Одежда, как было сказано выше, тоже полностью ослабляет a–частицы, а экран из алюминия, плексигласа, стекла толщиной несколько миллиметров полностью экранирует поток b–частиц. Однако при энергии b–частиц ε>2 МэВ существенную роль начинает играть тормозное излучение, которое требует более усиленной защиты. · Защита от нейтронного излучения: При проектировании защиты от нейтронного излучения необходимо учитывать, что процесс поглощения эффективен для тепловых, медленных и резонансных нейтронов, поэтому быстрые нейтроны должны быть предварительно замедленны. Тяжелые материалы хорошо ослабляют быстрые нейтроны. Промежуточные нейтроны эффективнее ослаблять водородосодержащими веществами. Это означает, что следует искать такую комбинацию тяжелых водосодержащих веществ, которые давали бы наибольшую эффективность (например, используют комбинации h3 O+Fe,h3 0+Pb). Поражение людей и животных проникающей радиацией . При воздействии проникающей радиации у людей и животных может возникнуть лучевая болезнь. Степень поражения зависит от экспозиционной дозы излучения, времени, в течение которого эта доза получена, площади облучения тела, общего состояния организма. Также учитывают, что облучение может быть однократным и многократным. Однократным считается облучение, полученное за первые четверо суток. Облучение, полученное за время, превышающее четверо суток, является многократным. При однократном облучении организма человека в зависимости от полученной экспозиционной дозы различают 4 степени лучевой болезни. Лучевая болезнь первой (легкой) степени возникает при общей экспозиционной дозе излучения 100-2 00 Р. Скрытый период может продолжаться 2-3 недели, после чего появляется недомогание, общая слабость, чувство тяжести в голове, стеснение в груди, повышение потливости, может наблюдаться периодическое повышение температуры. В крови уменьшается содержание лейкоцитов. Лучевая болезнь первой степени излечима. Лучевая болезнь второй (средней) степени возникает при общей экспозиционной дозе излучения 200-400 Р. Скрытый период длится около недели. Лучевая болезнь проявляется в более тяжелом недомогании, расстройстве функций нервной системы, головных болях, головокружениях, вначале часто бывает рвота, возможно повышение температуры тела; количество лейкоцитов в крови, особенно лимфоцитов, уменьшается более чем наполовину. При активном лечении выздоровление наступает через 1,5-2 месяца. Возможны смертельные исходы (до 20%). Лучевая болезнь третьей (тяжелой) степени возникает при общей экспозиционной дозе 400-600 Р. Скрытый период- до нескольких часов. Отмечают тяжелое общее состояние, сильные головные боли, рвоту, иногда потерю сознания или резкое возбуждение, кровоизлияния в слизистые оболочки и кожу, некроз слизистых оболочек в области десен. Количество лейкоцитов, а затем эритроцитов и тромбоцитов резко уменьшается. Ввиду ослабления защитных сил организма появляются различные инфекционные осложнения. Без лечения болезнь в 20-70% случаев заканчивается смертью, чаще от инфекционных осложнений или от кровотечений. При облучении экспозиционной дозой более 600 Р. развивается крайне тяжелая четвертая степень лучевой болезни, которая без лечения обычно заканчивается смертью в течение двух недель. Летальные дозы при их измерении в греях : 3-5 Гр Вывод Самые опасные с точки зрения общественности факторы, угрожающие здоровью и жизни людей, далеко не всегда являются таковыми на самом деле. Трем группам граждан США – членам лиги Женщин-избирательниц, студентам высших учебных заведений и представителям деловых и промышленных кругов – было предложено расположить 30 всевозможных источников, приводящих к преждевременной гибели людей, в порядке убывания их опасности для человека. Эти три последовательности, представленные ниже в трех столбцах, сравниваются с результатами статистических оценок числа людей в США, погибших за год от соответствующего источника. Можно делать выводы.
Список использованной литературы 1. Безопасность жизнедеятельности/ Под ред. С. В. Белова.- 3-е изд., перераб.- М.: Высш. шк., 2001.-485с. 2. Гражданская оборона/ Под ред. П. Г. Якубовского.- 5-е изд., испр.- М.: Просвещение, 1972.-224c. 3. Радиация. Дозы, эффекты, риск: Пер. с англ.- М.: Мир,-79c., ил. www.ronl.ru |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|