|
|
File
managers and best utilites |
Каталог :: Безопасность жизнедеятельности. Ионизирующее излучение реферат
Реферат Безопасность жизнедеятельности Ионизирующие излучения | МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ДАЛЬНЕВОСТОЧНЫЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНСТИТУТ МЕНЕДЖМЕНТА И БИЗНЕСА КАФЕДРА БЕЗОПАСТНОСТИ ЖИЗНЕДЕЯТЕЛЬНОСТИ И ГО ИОНИЗИРУЮЩИЕ ИЗЛУЧЕНИЯ. ВНЕШНЕЕ И ВНУТРЕННЕЕ ОБЛУЧЕНИЕ. ДЕЙСТВИЕ НА ОРГАНИЗМ. ПРОФИЛАКТИКА. Реферат студента 23 гр. Журавлева В. М. Спасск-Дальний 2002 ВВЕДЕНИЕ.......................................................................3 Виды ионизирующих излучений....................................................4 Источники радиоактивного облучения.............................................6 Влияние ионизирующих излучений на живые организмы и защита от них..............7 Вывод.........................................................................10 Список использованной литературы..............................................11 ИЛИ С ЧЕГО ВСЕ НАЧИНАЛОСЬ Радиоактивность – отнюдь не новое явление; новизна состоит лишь в том, как люди пытались ее использовать. И радиоактивность, и сопутствующие ей ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни и присутствовали в космосе до возникновения самой Земли. Ионизирующее излучение сопровождало и Большой взрыв, с которого, как мы сейчас полагаем, началось существование нашей Вселенной около 20 миллиардов лет назад. С того времени радиация наполняет космическое пространство. Радиоактивные материалы вошли в состав Земли с самого ее рождения. Даже человек слегка радиоактивен, так как во всякой живой ткани присутствует в следовых количествах радиоактивные вещества. Но с момента открытия этого универсального фундаментального открытия прошло лишь немногим более ста лет. В 1896 году французский ученый Анри Беккерель положил несколько фотографических пластинок в ящик стола, придавив их кусками какого-то материала, содержащего уран. Когда он проявил пластинки, то, к своему удивлению, обнаружил на них следы каких-то излучений, которые он приписал урану. Вскоре этим явлением заинтересовалась Мария Кюри, молодой химик, полька по происхождению, которая и ввела в обиход слова “радиоактивность”. В 1898 году она и ее муж Пьер Кюри обнаружили, что уран после излучения превращается в другие химические элементы. Один из этих элементов супруги назвали полонием в память о родине Марии Кюри, а еще один – радием, поскольку по-латыни это слово обозначает “испускающий лучи”. И открытие Беккереля, и исследования супругов Кюри были подготовлены более ранним, очень важным событием в научном мире – открытием в 1895 году рентгеновских лучей; эти лучи были названы так по имени открывшего их (тоже, в общем, случайно) немецкого физика Вильгельма Рентгена. Беккерель один из первых столкнулся с самым неприятным свойством радиоактивного излучения: речь идет о его воздействии на ткани живого организма. Ученый положил пробирку с радием в карман и получил в результате ожог кожи. Мария Кюри умерла, по всей видимости, от одного из злокачественных заболеваний крови, поскольку слишком часто подвергалась воздействию радиоактивного излучения. По крайней мере 336 человек, работавших с радиоактивными материалами в то время, умерли в результате облучения. Несмотря на это, небольшая группа талантливых и большей частью молодых ученых направила свои усилия на разгадку одной из самых волнующих загадок всех времен, стремясь проникнуть в самые сокровенные тайны материи. Главным объектом исследования ученых был сам атом, вернее – его строение. Мы знаем теперь, что атом похож на Солнечную систему в миниатюре: вокруг крошечного ядра движутся по орбитам “планеты” – электроны. Размеры ядра в сто тысяч раз меньше размеров самого атома, но плотность его очень велика, поскольку масса ядра почти равна массе самого атома. Ядро, как правило, состоит из нескольких более мелких частиц, которые плотно сцеплены друг с другом. Некоторые из этих частиц имеют положительный заряд и называются протонами . Число протонов в ядре и определяет, к какому химическому элементу относится данный атом: ядро атома водорода содержит всего один протон, атома кислорода – 8, урана – 92. В каждом атоме число электронов в точности равно числу протонов в ядре; каждый электрон несет отрицательный заряд, равный по абсолютной величине заряду протона, так что в целом атом нейтрален. В ядре, как правило, присутствуют и частицы другого типа, называемые нейтронами, поскольку они нейтральны. Ядра атомов одного и того же элемента всегда содержат одно и то же число протонов, но число нейтронов в них может быть различным. Атомы, имеющие ядра с одинаковым числом протонов, но различающиеся по числу нейтронов, относятся к разным разновидностям одного и того же химического элемента, называемым изотопами данного элемента. Чтобы отличить их друг от друга, к символу приписывают число, равное сумме всех частиц в ядре данного изотопа. Так, уран-238 содержит 92 протона, но 143 нейтрона; в уране-235 тоже 92 протона, но 143 нейтрона. Ядра всех изотопов химических элементов образуют группу нуклидов. Некоторые нуклиды стабильны, то есть в отсутствии внешнего воздействия никогда не претерпевают никаких превращений. Большинство же нуклидов нестабильны, они все время превращаются в другие нуклиды. В качестве примера возьмем хотя бы атом урана-238, в ядре которого протоны и нейтроны едва удерживаются вместе силами сцепления. Время от времени из него вырывается компактная группа из четырех частиц: двух протонов и двух нейтронов (α-излучение). Уран-238 превращается, таким образом, в торий-234, в ядре которого содержатся 90 протонов и 144 нейтрона. Далее следуют иные превращения (показанные ниже в таблице), сопровождаемые излучениями, и вся цепочка в конце концов оканчивается стабильным нуклидом свинца. Разумеется, существует много таких цепочек самопроизвольных превращений разных нуклидов по разным схемам превращений и их комбинациям. Вид излучения | Нуклид | Период полураспада | α | Уран-238 | 4,47 млрд. лет | β | Торий-234 | 21,4 суток | β | Проактиний-234 | 1,17 минут | α | Уран-234 | 245000 лет | α | Торий-230 | 8000 лет | α | Радий-226 | 1600 лет | α | Радон-222 | 3,823 суток | α | Полоний-218 | 3,05 минут | β | Свинец-214 | 26,8 минут | β | Висмут-214 | 19,7 минут | α | Полоний-214 | 0,000164 секунды | β | Свинец-210 | 22,3 лет | β | Висмут-210 | 5,01 суток | α | Полоний-210 | 134,8 суток | | Свинец-206 | стабильный |
| | | | | | | | | | | | | | | | | | | Рис. Три вида излучений и их проникающая способность |
| | | | | При каждом акте распада нуклида высвобождается энергия, которая и передается дальше в виде излучения. Существуют три вида ионизирующих излучений: · α-излучение: Представляет собой поток ядер атомов гелия, называемых α–частицами. Начальная скорость альфа-частиц достигает 10000-20000 км./сек. Они обладают большой ионизирующей способностью. Длина пробега альфа-частиц в воздухе составляет всего 10 см., а в твердых телах еще меньше. Одежда, индивидуальные средства защиты полностью задерживают альфа-частицы. Внешнее их воздействие не опасно для человека. Из-за высокой ионизирующей способности альфа-частицы крайне опасны при попадании внутрь организма. · β-излучение: Это поток электронов, называемых β–частицами. Скорость бета-частиц может в некоторых случаях достигать скорости света. Проникающая способность их меньше, чем гамма-излучения. Одежда и индивидуальные средства защиты значительно ослабляют бета-излучение. Ионизирующее действие бета-излучения в сотни раз сильнее гамма-излучения. · γ-излучение: Это электромагнитные волны, аналогичные рентгеновским лучам и лучам света, распространяющиеся в воздухе со скоростью 300000км./сек. На сотни метров. Они способны проникнуть через толщи защитных материалов и через индивидуальные средства защиты. Гамма излучение представляет основную опасность для людей. При радиоактивном заражении местности гамма-излучение действует в течение суток, недель и месяцев. Все источники радиации можно условно разделить на два вида: · Естественные источники радиации; · Источники, созданные человеком; Естественные источники радиации · Космические лучи: Радиационный фон, создаваемый космическими лучами, дает чуть меньше половины внешнего облучения, получаемого населением от естественных источников радиации. Космические лучи в основном приходят к нам из глубин Вселенной, но некоторая их часть рождается на Солнце во время вспышек. Они взаимодействуют с атмосферой Земли, порождая вторичное излучение и приводя к образованию различных радионуклидов. · Земная радиация: Основные радиоактивные изотопы, встречающиеся в горных породах Земли, - это калий-40, рубидий-87 и члены двух радиоактивных семейств, берущих начало соответственно от урана-238 и тория-232 – долгоживущих изотопов, включившихся в состав Земли с самого ее рождения. Средняя эффективная эквивалентная доза, которую человек получает за год от земных источников радиации, составляет примерно 350 микрозивертов. · Внутреннее облучение: В среднем примерно 2/3 эффективной эквивалентной дозы облучения, которую человек получает от естественных источников радиации, поступает от радиоактивных веществ (калий-40, свинец-210, полоний-210 и пр.), попавших в организм с пищей, водой и воздухом. · Радон: Это невидимый, не имеющий вкуса и запаха тяжелый (в 7,5 раза тяжелее воздуха) газ. Радон вместе со своими дочерними продуктами распада ответствен примерно за 3/4 годовой индивидуальной эффективной эквивалентной дозы. Встречается в двух основных формах: радон-222 и радон-220. Он высвобождается из земной коры повсеместно, но основную часть дозы облучения человек получает, находясь в закрытом, непроветриваемом помещении. Источники, созданные человеком · Источники, использующиеся в медицине: Это: Рентген; Компьютерная томография; Радиотерапевтические установки для лечения рака; Радиоизотопы, использующиеся для исследования различных процессов в организме; Средняя индивидуальная доза за счет этого источника во всем мире составляет ~ 400 мкЗв на человека в год. Таким образом, коллективная эффективная эквивалентная доза для всего населения равна примерно 1600000 чел-Зв в год. · Ядерные взрывы: Наиболее опасны воздушные взрывы. Часть радиоактивного материала выпадает неподалеку от места испытания, какая-то часть задерживается тропосфере (самом нижнем слое атмосферы), подхватывается ветром и перемещается на большие расстояния, оставаясь примерно на одной и той же широте. Находясь в воздухе в среднем около месяца, радиоактивные вещества во время этих перемещений постепенно выпадают на землю. Однако большая часть радиоактивного материала выбрасывается в стратосферу – следующий слой атмосферы, лежащий на высоте 10- 50 км., где он остается многие месяцы, медленно опускаясь и рассеиваясь по всей поверхности земного шара. · АЭС: Вносят весьма незначительный вклад в суммарное облучение населения. При нормальной работе ядерных установок выбросы радиоактивных материалов очень невелики. Влияние ионизирующих излучений на живые организмы и защита от них Приведем ниже поэтапное воздействие всех видов ионизирующих излучений на любой живой организм. Заряженные частицы: Проникающие в ткани организма альфа- и бета-частицы теряют энергию вследствие электрических взаимодействий с электронами тех атомов, близ которых они проходят. Гамма-излучение и рентгеновские лучи передают свою энергию веществу несколько иными способами, которые, в конечном счете, также приводят к электрическим взаимодействиям. Электрические взаимодействия: За время порядка десяти триллионных секунды после того, как проникающее излучение достигнет соответствующего атома в ткани организма, от этого атома отрывается электрон. Последний заряжен отрицательно, поэтому остальная часть исходно нейтрального атома становится положительно заряженной. Этот процесс называется ионизацией. Оторвавшийся электрон может далее ионизировать другие атомы. Физико-химические изменения: И свободный электрон, и ионизированный атом обычно не могут долго пребывать в таком состоянии и в течение следующих десяти миллиардных долей секунды участвуют в сложной цепи реакций, в результате которых образуются новые молекулы, включая и такие чрезвычайно реакционно-способные, как свободные радикалы. Химические изменения: В течение следующих миллионных долей секунды образовавшиеся свободные радикалы реагируют как друг с другом, так и с другими молекулами и через цепочку реакций , еще не изученных до конца, могут вызвать химическую модификацию важных в биологическом отношении молекул, необходимых для нормального функционирования клетки. Биологические эффекты: Биохимические изменения могут произойти как через несколько секунд, так и через десятилетия после облучения и явиться причиной немедленной гибели клеток или таких изменений в них, которые могут привести к раку. Еще ниже приведем разновидности доз радиоактивного облучения. Поглощенная доза – энергия ионизирующего излучения, поглощенная облучаемым телом, в пересчете на единицу массы. Эквивалентная доза – поглощенная доза, умноженная на коэффициент, отражающий способность данного излучения повреждать ткани организма. Коллективная эквивалентная доза – эффективная эквивалентная доза, полученная группой людей от какого-либо источника радиации. Полная коллективная эффективная эквивалентеая доза – коллективная эффективная эквивалентная доза, которую получат поколения людей, от какого-либо источника за все время его дальнейшего существования. Приведем некоторые внесистемные, но широко распространенные единицы. Беккерель (Бк, Bq) – единица активности нуклида в радиоактивном источнике (в системе СИ). Один беккерель соответствует одному распаду в секунду для любого радионуклида. Грей (Гр, Gy) – единица поглощенной дозы в системе СИ. Представляет собой количество энергии ионизирующего излучения, поглощенной единицей массы какого-либо физического тела, например, тканями организма. Зиверт (Зв,Sv) – единица эквивалентной дозы в системе СИ. Представляет собой единицу поглощенной дозы, умноженную на коэффициент, учитывающий неодинаковую радиационную опасность разных видов ионизирующих излучений. Один зиверт соответствует поглощенной дозе в 1 Дж/кг (для рентгеновского, b- и g- излучений). Стоит также привести некоторые широко распространенные внесистемные единицы и их связь с единицами СИ: Кюри (Ки, Сu) – единица активности изотопа: 1 Ки = 3,700*1010 Бк; рад (рад, rad) – единица поглощенной дозы излучения: 1 рад = 0,01 Гр; бэр (бэр, rem) – единица эквивалентной дозы: 1 бэр = 0,01 Зв. Защита от ионизирующих излучений · Защита от a- и b-излучения: Для защиты от данных видов излучений достаточно слоя воздуха в 10 см, тонкой фольги. Одежда, как было сказано выше, тоже полностью ослабляет a–частицы, а экран из алюминия, плексигласа, стекла толщиной несколько миллиметров полностью экранирует поток b–частиц. Однако при энергии b–частиц ε>2 МэВ существенную роль начинает играть тормозное излучение, которое требует более усиленной защиты. · Защита от нейтронного излучения: При проектировании защиты от нейтронного излучения необходимо учитывать, что процесс поглощения эффективен для тепловых, медленных и резонансных нейтронов, поэтому быстрые нейтроны должны быть предварительно замедленны. Тяжелые материалы хорошо ослабляют быстрые нейтроны. Промежуточные нейтроны эффективнее ослаблять водородосодержащими веществами. Это означает, что следует искать такую комбинацию тяжелых водосодержащих веществ, которые давали бы наибольшую эффективность (например, используют комбинации h3 O+Fe,h30+Pb). Поражение людей и животных проникающей радиацией. При воздействии проникающей радиации у людей и животных может возникнуть лучевая болезнь. Степень поражения зависит от экспозиционной дозы излучения, времени, в течение которого эта доза получена, площади облучения тела, общего состояния организма. Также учитывают, что облучение может быть однократным и многократным. Однократным считается облучение, полученное за первые четверо суток. Облучение, полученное за время, превышающее четверо суток, является многократным. При однократном облучении организма человека в зависимости от полученной экспозиционной дозы различают 4 степени лучевой болезни. Лучевая болезнь первой (легкой) степени возникает при общей экспозиционной дозе излучения 100-200 Р. Скрытый период может продолжаться 2-3 недели, после чего появляется недомогание, общая слабость, чувство тяжести в голове, стеснение в груди, повышение потливости, может наблюдаться периодическое повышение температуры. В крови уменьшается содержание лейкоцитов. Лучевая болезнь первой степени излечима. Лучевая болезнь второй (средней) степени возникает при общей экспозиционной дозе излучения 200-400 Р. Скрытый период длится около недели. Лучевая болезнь проявляется в более тяжелом недомогании, расстройстве функций нервной системы, головных болях, головокружениях, вначале часто бывает рвота, возможно повышение температуры тела; количество лейкоцитов в крови, особенно лимфоцитов, уменьшается более чем наполовину. При активном лечении выздоровление наступает через 1,5-2 месяца. Возможны смертельные исходы (до 20%). Лучевая болезнь третьей (тяжелой) степени возникает при общей экспозиционной дозе 400-600 Р. Скрытый период- до нескольких часов. Отмечают тяжелое общее состояние, сильные головные боли, рвоту, иногда потерю сознания или резкое возбуждение, кровоизлияния в слизистые оболочки и кожу, некроз слизистых оболочек в области десен. Количество лейкоцитов, а затем эритроцитов и тромбоцитов резко уменьшается. Ввиду ослабления защитных сил организма появляются различные инфекционные осложнения. Без лечения болезнь в 20-70% случаев заканчивается смертью, чаще от инфекционных осложнений или от кровотечений. При облучении экспозиционной дозой более 600 Р. развивается крайне тяжелая четвертая степень лучевой болезни, которая без лечения обычно заканчивается смертью в течение двух недель. Летальные дозы при их измерении в греях: 3-5 Гр Самые опасные с точки зрения общественности факторы, угрожающие здоровью и жизни людей, далеко не всегда являются таковыми на самом деле. Трем группам граждан США – членам лиги Женщин-избирательниц, студентам высших учебных заведений и представителям деловых и промышленных кругов – было предложено расположить 30 всевозможных источников, приводящих к преждевременной гибели людей, в порядке убывания их опасности для человека. Эти три последовательности, представленные ниже в трех столбцах, сравниваются с результатами статистических оценок числа людей в США, погибших за год от соответствующего источника. Можно делать выводы. Число случаев со смертельным исходом |
| Таблица | | А | Курение | 150000 | Б | Спиртные напитки | 100000 | В | Автомобили | 50000 | Г | Ручное огнестрельное оружие | 17000 | Д | Электричество | 14000 | Е | Мотоциклы | 3000 | Ж | Плавание | 3000 | З | Хирургическое вмешательство | 2800 | И | Рентгеновское облучение | 2300 | К | Железные дороги | 1950 | Л | Авиация общего назначения | 1300 | М | Большая стройка | 1000 | Н | Велосипеды | 1000 | О | Охота | 800 | П | Бытовые травмы | 200 | Р | Тушение пожаров | 195 | С | Работа в полиции | 160 | Т | Противозачаточные средства | 150 | У | Гражданская авиация | 130 | Ф | Атомная энергетика | 100 | Х | Альпинизм | 30 | Ц | Сельскохозяйственная техника | 24 | Ч | Национальный футбол | 23 | Ш | Лыжи | 18 | Щ | Прививки | 10 | Э | Пищевые красители | 0 | а | Консерванты | 0 | б | Пестициды | 0 | в | Применение антибиотиков | 0 | г | Применение аэрозолей в быту | 0 |
|
| 1. Безопасность жизнедеятельности/ Под ред. С. В. Белова.- 3-е изд., перераб.- М.: Высш. шк., 2001.-485с. 2. Гражданская оборона/ Под ред. П. Г. Якубовского.- 5-е изд., испр.- М.: Просвещение, 1972.-224c. 3. Радиация. Дозы, эффекты, риск: Пер. с англ.- М.: Мир,-79c., ил. | works.tarefer.ru
Реферат - Ионизирующее излучение - Физика
Экспозиционная доза — это количественная характеристика гамма- и рентгеновского излучения, связанная со способностью излучения ионизировать воздух. (Кл/кг). Ионизирующим называется излучение, взаимодействие которого со средой приводит к образованию ионов разных знаков. Корпускулярное излучение – поток элементарных частиц с массой покоя, отличной от нуля (a и b — частицы, нейтроны, протоны, электроны и др.).
Непосредственно ионизирующим называется корпускулярное излучение, если кинетическая энергия частиц достаточна для ионизации атомов при столкновении.Радиоактивность – свойство неустойчивых атомных ядер одних химических элементов самопроизвольно превращаться в ядра атомов других химических элементов с испусканием одной или нескольких ионизирующих частиц. Радиоактивным распадом называется процесс спонтанного ядерного превращения. Естественная радиоактивность наблюдается у существующих в природе неустойчивых изотопов (расположены в Периодической системе за свинцом). Искусственной называется радиоактивность изотопов, полученных в результате ядерных реакций в ядерных реакторах, на ускорителях, при ядерных взрывах и др. Активность радионуклида А в источнике (образце) есть отношение числа dN спонтанных ядерных превращений, происходящих в источнике (образце) за интервал времени dt, к этому интервалу А= dN/dt. T1/2 — период полураспада — время, в течение которого распадается половина первоначального количества ядер, при этом активность радионуклида уменьшается в 2 раза. Поглощенная доза ионизирующего излучения D — отношение средней энергии, переданной ионизирующим излучением веществу в элементарном объеме, к массе dm вещества в этом объеме:
Эквивалентная доза ионизирующего излучения Hт — произведение «тканевой дозы» (дозы на орган) Dт на взвешивающий коэффициент wR для излучения R:
Hт= wR× Dт .Эффективная доза ионизирующего излучения Е — величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов с учетом их радиочувствительности. Она представляет собой сумму произведений эквивалентной дозы HTt в органе или ткани Т за время t на соответствующий взвешивающий коэффициент wТ для данного органа или ткани:
Коллективная доза ионизирующего излучения S — величина, определяющая полное воздействие от всех источников на группу людей. Она представляет собой сумму произведений средней эффективной дозы Еi для i-ой подгруппы большой группы людей на число людей Ni в подгруппе:
Экспозиционная доза Х фотонного излучения — это отношение суммарного заряда dQ всех ионов одного знака, созданных в сухом атмосферном воздухе при полном торможении электронов и позитронов, которые были образованы фотонами в элементарном объеме воздуха с массой dm, к массе воздуха в указанном объеме:
Х=dQ/dm. Радионуклиды — Атомы радиоактивных изотопов какого-либо химического элемента.
АКТИВНОСТЬ УДЕЛЬНАЯ — величина, характеризующая содер. атомов радиоактивного изотопа в данном элементе; выражается числом единиц радиоактивности (кюри) на единицу веса вещества (г, моль) или объема раствора (л, мл).
Объемная активность радиоактивного вещества — отношение активности радиоактивного вещества к объему этого вещества. Единицей объемной активности радиоактивного вещества является Бк/куб.м.
Удельная активность радиоактивного вещества — отношение активности радиоактивного вещества к массе этого вещества. Единицей удельной активности радиоактивного вещества является Бк/кг.
Беккерель — единица активности радиоактивного вещества в системе единиц СИ.
1 Бк = активность радиоактивного источника, при которой за время 1 с происходит 1 акт распада.
Альфа-излучение — это поток положительно заряженных частиц, каждая из которых состоит из двух протонов и двух нейтронов. Проникающая способность этого вида излучения невелика. Оно задерживается несколькими сантиметрами воздуха, несколькими листами бумаги, обычной одеждой.
Бета-излучение — это поток движущихся с огромной скоростью отрицательно заряженных электронов, размеры и масса которых значительно меньше, чем альфа-частиц. Это излучение обладает большей проникающей способностью по сравнению с альфа-излучением. От него можно защититься тонким листом металла типа алюминия или слоем дерева толщиной 1.25 см.
Гамма-излучение, подобно рентгеновским лучам, представляет собой электромагнитное излучение сверхвысоких энергий. Это излучение очень малых длин волн и очень высоких частот. обладает высокой проникающей способностью, защититься от него можно лишь толстым слоем свинца или бетона. Рентгеновские и гамма-лучи не несут электрического заряда.
www.ronl.ru
Реферат Физика Ионизирующее излучение и радиоактивность
Ионизирующее излучение и радиоактивность Ионизирующее излучение – поток заряженных или нейтральных частиц и квантов электромагнитного излучения, прохождение которых через вещество приводит к ионизации и возбуждению атомов или молекул среды. Все ионизирующие излучения по своей природе делятся на фотонные и корпускулярные. К фотонному ионизирующему излучению относятся гамма- излучение, возникающее при изменении энергетического состояния атомных ядер или аннигиляции частиц, тормозное излучение, возникающее при уменьшении кинетической энергии заряженных частиц, характеристическое излучение с дискретным энергетическим спектром, возникающее при изменении энергетического состояния электронов атома и рентгеновское излучение, состоящее из тормозного и/или характеристического излучений. К корпускулярному ионизирующему излучению относят альфа-излучение, электронное, протонное, нейтронное и мезонное излучения. Корпускулярное излучение, состоящее из потока заряженных частиц (альфа-, бета-частиц, протонов, электронов), кинетическая энергия которых достаточна для ионизации атомов при столкновении, относится к классу непосредственно ионизирующего излучения. Нейтроны и другие элементарные частицы непосредственно не производят ионизацию, но в процессе взаимодействия со средой высвобождают заряженные частицы (электроны, протоны), способные ионизировать атомы и молекулы среды, через которую проходят. Соответственно, корпускулярное излучение, состоящее из потока незаряженных частиц, называют косвенно ионизирующим излучением. Источником ионизирующего излучения называют объект, содержащий радиоактивный материал, или техническое устройство, испускающее или способное (при определенных условиях) испускать ионизирующее излучение. Классификация источников излучения. Современные ядерно-технические установки обычно представляют собой сложные источники излучений. Например, источниками излучений действующего ядерного реактора, кроме активной зоны, являются система охлаждения, конструкционные материалы, оборудование и др. Поле излучения таких реальных сложных источников обычно представляется как суперпозиция полей излучения отдельных, более элементарных источников. Любой источник излучения характеризуется: 1. Видом излучения – основное внимание уделяется наиболее часто встречающимся на практике источникам g-излучения, нейтронов, a-, b+ -, b--частиц. 2. Геометрией источника (формой и размерами) – геометрически источники могут быть точечными и протяженными. Протяженные источники представляют суперпозицию точечных источников и могут быть линейными, поверхностными или объемными с ограниченными, полубесконечными или бесконечными размерами. Физически точечным можно считать такой источник, максимальные размеры которого много меньше расстояния до точки детектирования и длины свободного пробега в материале источника (ослаблением излучения в источнике можно пренебречь). Поверхностные источники имеют толщину много меньшую, чем расстояние до точки детектирования и длина свободного пробега в материале источника. В объемном источнике излучатели распределены в трехмерной области пространства. 3. Мощностью и ее распределением по источнику – источники излучения наиболее часто распределяются по протяженному излучателю равномерно, экспоненциально, линейно или по косинусоидальному закону. 4. Энергетическим составом – энергетический спектр источников может быть моноэнергетическим (испускаются частицы одной фиксированной энергии), дискретным (испускаются моноэнергетические частицы нескольких энергий) или непрерывным (испускаются частицы разных энергий в пределах некоторого энергетического диапазона). 5. Угловым распределением излучения – среди многообразия угловых распределений излучений источников для решения большинства практических задач достаточно рассматривать следующие: изотропное, косинусоидальное, мононаправленное. Иногда встречаются угловые распределения, которые можно записать в виде комбинаций изотропных и косинусоидальных угловых распределений излучений. (На практике источники встречаются в неограниченном многообразии указанных характеристик.) Гамма-лучи, альфа- и бета-частицы обладают различной проникающей способностью. Пробег альфа-частицы в воздухе не превышает нескольких сантиметров; бета-частицы могут пройти в воздухе несколько метров, а гамма- кванты – десятки, сотни метров. При внешнем облучении человека альфа-частицы полностью задерживаются поверхностным слоем кожи; бета-частицы не могут проникнуть в глубь человеческого организма больше, чем на несколько миллиметров; гамма-кванты способны вызвать облучение всего тела. Клинические аспекты действия малых доз ионизирующего излучения на человека Нарушение здоровья тесно связано с ростом числа общесоматических заболеваний. Пусть здоровье – это состояние организма, которое можно охарактеризовать соответствующими уровнями физических и умственных способностей, а также возможностями приспособления к меняющимся условиям работы и жизни. В этом случае в понятие «нарушение здоровья» входит снижение функциональных способностей организма. Для оценки нарушения здоровья, а вместе с этим и для прогноза роста заболеваний, применяют критерии изменения гематологических, биохимических и морфологических параметров организма, которые имеют количественные лабораторные оценки, и эти изменения могут быть результатом неблагоприятного воздействия факторов на различные физиологические системы. Рассмотрим клинические проявления, которые возникают у практически здорового человека при действии малых доз ионизирующего излучения на примере медицинских и дозиметрических исследований заболеваемости ликвидаторов аварии на ЧАЭС по данным Российского государственного медико-дозиметрического регистра. Таблица 2. Показатели заболеваемости на 100 тыс. человек в 1993 году по основным классам болезней среди ликвидаторов различных дозовых групп и населения России в целом <TBODY>Класс болезней | Население России | Ликвидаторы | 0 – 5 сГр | 5 – 20 сГр | Более 20сГр | Болезни эндокринной системы | 327 | 5170 | 6120* | 6075* | Болезни крови и кроветворных органов | 94 | 213 | 354* | 450* | Психические расстройства | 599 | 5178 | 5490 | 5472 | Болезни органов кровообращения | 1472 | 5287 | 6090* | 6648** | Болезни органов пищеварения | 2535 | 9106 | 9743 | 9515 </TBODY> | Примечания: * - показатели, достоверно отличающиеся от соответствующих показателей в дозовой группе 0 - 5 сГр; ** - те же различия с дозовой группой 5 - 20 сГр. В таблице представлены показатели заболеваемости на 100 тыс. человек в 1993 г. по основным классам болезней среди ликвидаторов различных дозовых групп и населения России в целом. Из данных таблицы видно, что показатели заболеваемости среди ликвидаторов превышают таковые для населения России. Рост заболеваемости (сумма заболеваний по классам болезней) по группам ликвидаторов составляет соответственно 20; 22,8 и 23,2 %. Эффективная доза Dэф рассчитывалась из предположения, что ликвидаторы на ЧАЭС подвергались равномерному облучению в течение трех - шести месяцев. Мы считаем, что столь высокий рост заболеваний объясняется тем, что уровень, полнота и качество диспансеризации ликвидаторов значительно отличаются от общероссийской практики. Поэтому группу, получившую дозу 0 - 5 сГр (Dэф £ 2 сГр), мы принимаем в качестве контрольной группы сравнения. Из данных таблицы следует, что во второй и третьей группе имеет место достоверный рост заболеваний примерно на 3 %. Этим группам с дозой облучения 20 - 35 сГр Dэф соответствует 7 - 11 сГр, то есть у части лиц она несколько превышала условный порог (Dэф=8 сГр). Нарушение здоровья есть нестохастический эффект. При достижении пороговой дозы он выявляется у части лиц (до 5 %). На этом основании мы принимаем Dэф=8 сГр за порог нарушения здоровья. Имеющиеся в литературе клинические данные об изменениях в основных регуляторных системах организма при действии ионизирующего излучения в дозах, не вызывающих острую или хроническую лучевую болезнь, указывают на то, что функциональные изменения деятельности основных физиологических систем чаще всего носят полисиндромный характер. Это проявляется в первичных функциональных отклонениях на уровне многих физиологических систем организма, развитию донозологических состояний, переходящих с ростом дозы к клинической патологии. Как показывает анализ заболеваемости ликвидаторов аварии на ЧАЭС, при дозах более 5 сГр через четыре года имеет место достоверный рост заболеваний по следующим классам болезней: болезни нервной системы, психические расстройства, болезни крови и кроветворных органов, болезни органов пищеварения. По другим классам болезней различия в показателях заболеваемости не выявлены. Рассмотрим данные о состоянии различных систем организма у лиц, подвергшихся облучению в малых дозах, и на этой основе попытаемся установить, к каким клиническим последствиям приводит облучение в установленных выше диапазонах дозы. В структуре неврологической заболеваемости особое место занимает синдром вегетативной дистонии. Стойкие и выраженные нарушений вегетативной регуляции выявлены при дозе внешнего облучения выше 25 - 50 сГр. Психологические и психосоциальные скрининговые исследования больших контингентов пострадавших вследствие аварии на ЧАЭС выявили универсальную реакцию в виде повышения тревожности как устойчивой личностной черты, характерной для состояния стресса со всеми его тремя компонентами: соматическим, эмоционально-волевым, поведенческим. При этом отмечается ускорение перехода психофизиологических расстройств в стойкие психосоматические у 30 % обследованных. Анализ клинических данных обследованных лиц с установленными дозовыми нагрузками показывает, что при облучении в диапазоне дозы от 5 - 15 сГр до 25 - 50 сГр психофизиологические и психологические изменения можно рассматривать как функциональный или рефлекторный ответ нервной системы в виде неспецифической ориентировочной реакции при восприятии облучения как раздражителя. При больших дозовых нагрузках (от 60 до 100 - 200 сГр) физиологическая реакция трансформируется в реакцию повреждения. Наблюдаемую реакцию нервной системы на ионизирующее излучение можно оценить как дизрегуляторный синдром, который в свою очередь модифицирует клиническое течение ранее существовавшей патологии, способствует более торпидному ее течению и снижает в ряде случае эффективность терапии. Гематологический мониторинг показывает, что признаки функциональной дезорганизации в системе гомеостаза и морфофункциональных свойств клеток крови выявляются при воздействии ионизирующего излучения в дозе порядка 5 - 30 сГр. Такого рода изменения по отношению к контрольной группе находятся в пределах физиологических колебаний и нормализуются в течение шести месяцев. При исследовании периферической крови лиц, работавших в 30 км зоне ЧАЭС, в 11 % случаев выявлена преходящая и стойкая лейкопения при поглощенной дозе порядка 36 - 72 сГр. Изучение состояния здоровья этих лиц позволяет выделить их в группу риска развития гематологических заболеваний. Изучение особенностей течения острой лучевой болезни пострадавших с относительно равномерным облучением показало, что при дозе около 1 Гр постлучевая динамика клеток крови выражена минимально. Острая лучевая болезнь (ОЛБ) первой степени тяжести (доза облучения 1 - 2 Гр) характеризовалась только клинико- лабораторными находками и умеренными астеническими последствиями. Однако необходимо отметить, что при ретроспективном анализе гематологических показателей (по факту волнообразного снижения нейтрофилов и тромбоцитов) выявлена группа пострадавших с зарегистрированной дозой 50 - 75 сГр. Однако избыточная заболеваемость болезнями крови и кроветворных органов у профессионалов - ликвидаторов аварии на ЧАЭС не была выявлена. Результаты многолетнего изучения иммунитета у населения Южного Урала, подвергшегося облучению в дозе 10 - 85 сГр (средние значения), указывают на изменения в иммунной системе. Через два - четыре года наблюдалось угнетение фагоцитарной активности нейтрофилов крови, снижение содержания лизоцима в слюне, незначительное нарушение продукции антител. Через пять-шесть лет изменения показателей факторов естественного иммунитета были менее выраженными. Однако при функциональных нагрузочных пробах выявилось снижение резервной возможности иммунной системы, которое сохранялось в течение 20 лет. Сопоставляя лабораторные показатели и клинические проявления, можно применить разработанные дозовые критерии для оценки изменений интегрального показателя - нарушения здоровья, то есть для прогноза возникновения ряда общесоматических заболеваний при действии ионизирующего излучения в малых дозах. На практике достаточно сложно определить порог вредного действия, так как трудно провести различия между физиологическими колебаниями, физиологическими процессами адаптации и патологическими процессами. Так наряду с клинико-эпидемиологическими данными, указывающими на рост общесоматических заболеваний при действии малых доз, имеют место исследования, по данным которых рост заболеваемости не был выявлен. В частности, данные за 1979 - 1988 гг. о влиянии радиационного фактора риска на распространенность ишемических и геморрагических инсультов в зоне предприятий атомной промышленности и работников предприятия, которые подвергались воздействию внешнего гамма-облучения со средней суммарной дозой 62 - 81 сГр за 16,9 - 23,5 лет указывают, что эти показатели не превышают таковые по другим регионам страны. По расчетным оценкам Dэф для профессиональных работников составляла 9,5 - 11,5 сГр. Заболеваемость с временной утратой трудоспособности (ВУТ) при неврологических проявлениях остеохондроза не превышала таковую среди лиц контрольной группы других производств, не имеющих контактов с ионизирующим излучением. Данные по персоналу атомных реакторов, облучавшемуся в большой дозе (годовая доза составляла 100 сГр и более, 266 сГр за 5 лет; частота заболеваемости хронической лучевой болезни 0,5 % в год), указывают на то, что после прекращения контакта с радиационным фактором показатели морфологического состава периферической крови восстанавливались до исходного уровня в течение 5 - 10 лет. Анализируя данные, приведенные выше, можно предложить следующие дозовые критерии для ранжирования состояния организма по гематологическим, иммунологическим и биохимическим показателям. Уровень воздействия с эффективной дозой, равной 2 - 8 сГр, характеризуется изменениями, не указывающими на нарушение здоровья. Можно считать, что вклад радиационного фактора в рост общесоматических заболеваний в данном диапазоне дозы практически не значим. Уровень воздействия с эффективной дозой, равной 8 - 30 сГр, характеризуется изменениями показателей перечисленных систем, которые значимо отличаются от контроля или от исходных значений, выявляются общепринятыми лабораторными методами исследования, но лежат в пределах физиологической нормы. В этих условиях воздействия активно работают компенсаторные механизмы. При этом имеют место скрытые нарушения, выявляемые, в частности, при помощи функциональных и экстремальных нагрузок. Такой сдвиг может быть неблагоприятным. Таким образом, эффективная доза, равная 8 сГр, является пороговой, начиная с которой могут иметь место случаи, указывающие на нарушение здоровья. При дополнительном воздействии других неблагоприятных факторов существует вероятность роста общесоматических заболеваний. Радиационный фактор выступает лишь как одно из условий этого роста. Уровень воздействия с эффективной дозой, равной 30 - 60 сГр, характеризуется изменениями в кроветворной, иммунной и нейроэндокринной системах, которые достоверно (р < < 0,05) отличаются от контроля, более стойко сохраняются и (или) выходят за пределы физиологических колебаний. Перечисленные признаки характеризуют этот уровень как перенапряжение механизмов адаптации или недостаточность адаптации. Такой результат воздействия является по общепринятому мнению неприемлемым. Таким образом, эффективная доза, равная 30 сГр, является пороговой, начиная с которой радиационный фактор выступает как причина развития и роста общесоматических заболеваний. Особый интерес представляет вопрос о длительной потере трудоспособности в результате общесоматических заболеваний при радиационном воздействии на человека. На основе предложенных данных можно сделать следующий вывод. Предположим, что длительная потеря трудоспособности может наступить только при возникновении устойчивой совокупности ряда симптомов - синдрома. Из приведенных данных следует, что такая ситуация может возникнуть при эффективной дозе, превышающей 30 сГр. Отсюда следует, что при облучении (однократно и кратковременно) практически здорового трудоспособного человека ионизирующим излучением в дозе менее 30 сГр опасность длительной потери трудоспособности отсутствует. При хроническом воздействии в течение года такой вывод справедлив для дозы менее 1 Гр. Воздействие различных видов излучения малых мощностей на человека Радиация, электромагнитные поля СВЧ и КВЧ диапазонов, ультразвук и экраны дисплеев, имеющие широкий спектр излучений – все эти факторы широко представлены в нашей повседневной жизни. Это телевизоры, компьютеры, печи СВЧ, сотовые телефоны, различные ультразвуковые устройства и т.д., а также проживание вблизи линий высоковольтной передачи, теле - и ретрансляционных башен, объектов использующих радиационные материалы. На протяжении последних почти двадцати лет небольшая группа сотрудников Института проблем управления РАН занимается созданием методов обработки медицинской информации. В частности созданием объективных методов диагностики и управления лечением ряда неврологических заболеваний. Разрабатываемые методы базируются на обработке электрических потенциалов мышц человека. Запись электрических потенциалов называется электромиограммой (ЭМГ). Исследование физиологического и патологического тремора человека позволили разработать новый метод компьютерной обработки ЭМГ. Метод основан на спектрально-статистическом анализе кривых электрической активности мышц. При проведение различных экспериментальных исследований параллельно с подопытной группой экспериментатор всегда использует контрольную группу. Обычно это субъекты, которые не несут в себе те или иные заболевания (если речь идет об исследованиях различных заболеваний) или не подвергаются тем или иным воздействиям в отличие от подопытной группы. В качестве контрольной группы часто выступали сотрудники Института проблем управления РАН. Для многих из них накапливались данные на протяжении более десятка лет. Эти исследования показали, что усредненные спектры человека сохраняются неизменными на протяжении этого времени. Эти спектры отражают физиологический тремор человека в норме. Усредненный спектр одного из испытуемых показан на рис.1. Предварительный анализ результатов обследования группы здоровых испытуемых (около 100 человек) позволил определить среднестатистические значения спектральных параметров нормы. Проводя очередные экспериментальные исследования в сентябре 1986 с участием контрольной группы, состоящей из наших сотрудников, мы столкнулись с резким изменением их спектральных характеристик. Все, ранее стабильные на протяжении нескольких лет, показатели контрольной группы изменились. На рис.2 показано как изменился усредненный спектр одного из участников контрольной группы. Поиски причин изменения ранее стабильных характеристик нормы привели к мысли о влиянии Чернобыльской катастрофы на жителей Москвы. Было решено провести исследования людей, непосредственно попавших в зону Чернобыльской аварии. Просмотр характеристик этой группы, позволил бы определить, реагирует ли ЦНС человека на радиационные воздействия малых доз. В декабре 1986- январе 1987 года проведено обследование группы людей (34 человека), попавших в аварию на Чернобыльской АЭС и участвовавших в ее ликвидации в период апрель - август 1986 года. Исследования проводились на базе отделения радиационной неврологии Института биофизики МЗ СССР. Больные находились на лечении в клинике. Среди них 21 человек с диагнозом острая лучевая болезнь (ОЛБ) различной степени тяжести. Остальные 13 человек подверглись облучению в дозах, не приведших к возникновению ОЛБ. Дозы, полученные этими людьми, варьировались от 15 до 800 рентген. Возраст обследованных от 17 до 55 лет. Обследование и анализ результатов позволили получить признак реакции ЦНС человека на радиационное облучение. Выявленный признак не коррелировал со стадией заболевания или полученной дозой. Напротив, чаще он был выявлен у лиц, не имеющих диагноз лучевая болезнь. Это можно объяснить, по сей видимости, тем, что люди, заболевшие лучевой болезнью, получили дозы, вызвавшие "глобальные изменения" в организме. Эти больные получали интенсивную терапию, перенесли несколько процедур переливания крови, все это могло "замазать" картину. Выявление же признака у людей, которые находились на профилактическом осмотре, т.к. не получили повышенных доз радиации, и по клинике не считались пораженными, заставил обратить внимание на людей, профессионально связанных с радиационными воздействиями и получивших нормативные для этой отрасли дозы. В 1988- 1990 годах для исследования влияния длительного воздействия малых мощностей облучения было проведено обследования персонала Калининской АЭС (84 человека) и Ленинградской АЭС (47 чел.). В эти группы входили работники различных цехов (реакторного, турбинного, электро-, химического и ремонтного, а также отдел охраны труда и радиационной безопасности) в возрасте от 22 до 55 лет и стажем работы на АЭС от 2 до 30 лет. Для определения длительности периода сохранения признаков реакции на радиационное воздействие у людей, получивших малые и средние дозы облучения, в 1990г. проводилось обследование участников ликвидации аварии на ЧАЭС. Обследовано 24 мужчин в возрасте от 33 до 56 лет, получивших в период 1986 - 1988 гг. дозы, не превышающие 30 рентген. Обследование проводилось в клинике кафедры военно-полевой терапии Военно-медицинской академии им. С.М.Кирова (г.Санкт-Петербург). В контрольную группу людей, профессионально не связанных с радиационным фактором, вошли: 1.Курсанты Военно-медицинской академии им.С.М.Кирова -20 чел.; 2.Студенты и преподаватели Санкт-Петербургского технического университета- 24чел.; 3.Сотрудники Института проблем управления РАН г.Москва -20 чел 4.Рабочие завода по обработке цветных металлов г.Москва - 44 чел. Для всех исследуемых групп людей, получивших различные дозы радиационного облучения непосредственно после облучения или через несколько лет после него, а также находящихся в зоне длительного влияния малых мощностей радиации, было получено статистически достоверное различие значения параметра, определяющего реакцию человека на радиационное воздействие, от значений этого параметра для групп людей профессионально не связанных с этим фактором. На диаграмме ( рис.3) показано в % число людей, имеющих признак реакции ЦНС на радиационное воздействие во всех исследуемых группах. Все контрольные группы слиты в одну группу "норма". Наблюдение за контрольной группой "норма ИПУ", изменивших свои характеристики в 1986 году, на протяжении 1987-1993 годов показало, что уже в 1987 году характеристики некоторых испытуемых стали смещаться в сторону нормализации. Отметим, что до 1986 года группа "норма" имела 4% людей с признаком, соответствующим реакции на воздействие. На диаграмме (рис.4) показано как менялся % людей в группе "норма", имеющих отклонения, по годам Таким образом, обследование ликвидаторов аварии на ЧАЭС через 3-4 года после облучения и наблюдение за "нормой" на протяжении 7 лет показало, что признак реакции человека на воздействие малых доз радиации сохраняется не менее года. Характеристики нормализуются в течение 2-4 лет после воздействия. По всей видимости, возникновение реакции человека на воздействие, а также время сохранения признака реакции зависит от индивидуальных особенностей организма человека. Дисплей Люди, работающие на персональных компьютерах (ПК), часто жалуются на головные боли, повышенную утомляемость и ухудшение зрения. Но влияние ПК характеризуется не только этими симптомами. Экран дисплея ПК является источником широкого спектра излучения малой интенсивности. Проводились обследования людей, работающих на ПК от 2 до 6 лет по 3-6 часов в день (32 человека). У 64% были обнаружены отклонения характеристик. Экспериментальные исследования воздействия электромагнитных волн СВЧ-диапазон. В Исследованиях участвовала группа врачей-добровольцев, подвергавшихся специальному локальному облучению кистей рук электромагнитным полем СВЧ - диапазона (F=2450 МГц, W=50 мВт/см2). Работа проводилась совместно с Институтом гигиены труда и профзаболевания. Каждый испытуемый облучался 4 раза с промежутками в несколько дней. Длительность сеанса облучения 20 мин. До 1 сеанса и через 1 - 1,5 часа после каждого сеанса испытуемых обследовали по разработанной методике. Анализ полученных данных показал, что после первого сеанса у всех испытуемых изменился характер спектров ОЭМГ. Причем изменения произошли не только в спектрах ОЭМГ мышц рук (облучались кисти рук), но и в спектрах ОЭМГ мышц ног. Этот эффект сохранялся после последующих сеансов без изменения, что говорит о том, что даже локальное облучение электромагнитным полем СВЧ-диапазона вызывает общую реакцию организма. Эти же испытуемые проходили параллельно подробное клиническое обследование. Никаких клинических проявлений эти обследования не выявили. Через год выявленные нами признаки сохранились у всех испытуемых, а через 2 года у одного испытуемого признаки нормализовались, т.е. вернулись к фоновому значению, а у остальных испытуемых наблюдалась тенденция к нормализации. КВЧ-диапазон. Исследования проводились совместно с Институтом высшей нервной деятельности (лабораторией электромагнитных воздействий) с участием 3 испытуемых, на которых осуществлялось воздействие и контрольной группы из 5 человек. Осуществлялось локальное воздействие на кисть руки электромагнитным полем ММ диапазона. Для воздействия использовался специальный КВЧ - излучатель, применяемым для физиотерапевтических процедур в медицине. Длина волны излучения 5,6 мм, мощность излучателя 10мВт/см2. Время воздействия 20 минут. Проводилось воздействие на правую руку (от 3 до 6 сеансов) и спустя 3-5 месяцев на левую руку (также до 6 сеансов). До начала сеанса воздействия и после сеанса регистрировалась электрическая активность мышц испытуемых. Сеансы проводились с двух - трехдневными перерывами. Для контрольной группы в 5 экспериментах регистрировалась электрическая активность мышц. Каждое обследование проводилось также с двух- трехдневным разрывом. Условия проведения эксперимента для всех испытуемых были одинаковы. Перед каждым сеансом проводилась запись исходного состояния испытуемого и запись после воздействия. Изменения в спектрах подопытной группы были зафиксированы после второго сеанса воздействия. Причем эти изменения вначале фиксировались на стороне, контрлатеральной воздействию. Исследование, проведенное через год после второй серии экспериментов, показало нормализацию спектров, т.е. возврат к первоначальному фону. В контрольной группе никаких закономерных изменений выявлено не было. Таким образом, экспериментальное исследование реакции человека на воздействие электромагнитных полей КВЧ диапазона показало, что эта реакция наблюдается и первые ее признаки появляются на контрлатеральной стороне. Ультразвук. Воздействие ультразвука на организм человека исследовалось с участием врачей, работающих с ультразвуковой диагностической аппаратурой (15 человек). Стаж работы с УЗ аппаратурой у обследуемых лежал в диапазоне от 1 до 10 лет. У всех обследуемых были выявлены изменения спектрально - статистических характеристик по сравнению с нормой. При этом многие испытуемые жаловались на частые головные боли, усталость, вялость. Клинические исследование данной группы не показали каких-либо характерных изменений. ВЫВОДЫ Приведенные примеры, отвечают на вопрос, поставленный в заглавии. Центральная нервная система человека является тонко реагирующим датчиком на различные внешние воздействия. Эта система управляет не только мышцами человека, но и другими органами. Можно сделать предположение, что если ЦНС меняет свое состояние (под воздействием какого-либо фактора), то это может найти свое отражение и в нарушении работы любого органа. Если предположить, что выявленный нами признак реакции человека на воздействия различных физических факторов есть показатель изменений ЦНС, то это может найти свое отражение и в различного рода вегетативных нарушениях. В [25] показано, что Чернобыльская катастрофа привела к тенденции роста заболеваемости по всем основным классам болезни населения, проживающего на загрязненных территориях. Таким образом, если действие фактора малой интенсивности было не однократным, то можно предположить, что это отразиться на состоянии здоровья человека. Разработанный метод компьютерной обработки сигналов электрической активности мышц может использоваться для: · определения реакции индивидуума на рассматриваемые в работе физические факторы воздействия; · мониторинга состояния населения, живущего в экологически неблагоприятных районах, а также людей профессионально связанных с различными ионизирующими и неионизирующими воздействиями. Ранее выявление реакции позволит своевременно принять профилактические меры для уменьшения риска заболевания. | works.tarefer.ru
Реферат по безопасности жизнедеятельности "Ионизирующее излучение"
ООО Учебный центр
«ПРОФЕССИОНАЛ»
Реферат по дисциплине:
«Основы безопасности жизнедеятельности»
По теме:
«Ионизирующие излучения,
Виды, физическая природа и основные свойства»
Исполнитель:
Кириченко Андрей Владимирович
ФИО
Москва 2017год
Содержание
Введение…………………………………………………………….3 стр.
1.Природа ионизирующего излучения……………………………4 - 5 стр.
2. Виды ионизирующего излучения………………………………6 – 8 стр.
3. Влияние ионизирующего излучения на живые организмы ….9 - 11стр.
4. Естественные источники радиоактивности на Земле…………12 - 14 стр.
Заключение…………………………………………………………15 стр.
Список литературы…………………………………………………16 стр.
Введение.
Развитие ядерной энергетики во многих странах мира в последние годы сделало угрозу радиоактивного заражения обширных территорий реальной не только в случае применения ядерного оружия, но и разрушения радиационно опасных объектов обычным оружием , при ведении боевых действий, в ходе террористических актов, а также при аварии во время эксплуатации ядерно-энергетических объектов промышленности. Поэтому вопросы защиты от ионизирующего излучения являются одной из главных задач по обеспечению безопасности жизнедеятельности человека.
Что же такое понятие радиоактивность и откуда она появилась, радиоактивность – это способность некоторых химических элементов распадаться и переходить в другие элементы при этом испускать невидимое излучение. Одним из первых природных радиоактивных элементов был назван «радием» что в переводе с латинского означает испускающий лучи, излучающий. В конце 1895 года в печати появились сообщения об открытии профессором Вильгельмом Конрадом Рентгеном лучей способных свободно проходить сквозь дерево, картон и другие предметы не прозрачные для обычного света, названные Рентгеном Х-лучами, в последствии названные рентгеновскими в честь открывшего их учёного. В 1896году другой учёный француз Анри Беккерель на заседании Академии наук сообщил что наблюдаемые им лучи, проникающие через непрозрачные предметы подобно рентгеновским вызывают почернение фотопластинок излучением веществ в состав которых входит уран. Открытые лучи Беккерель назвал урановыми. Дальнейшая история новооткрытых лучей связана с работой польского физика Марии Склодовской и её мужа француза Пьера Кюри тщательно и всесторонне изучивших вновь открытое явление, которое по предложению Марии Склодовской-Кюри, было названо радиоактивностью. Но давайте отойдём от истории и поговорим о том, что такое радиация и ионизирующее (т.е. радиоактивное) излучение.
Природа ионизирующего излучения
Глубокое изучение свойств радиоактивных элементов привело к так называемой планетарному образу строения атома. Строение атома схоже с солнечной системой в миниатюре вокруг крошечного ядра движутся по орбитам крошечные «планеты» - электроны. Ядро состоит из более мелких частиц протонов и нейтронов которые плотно сцеплены с друг с другом, протоны имеют положительный заряд, количество протонов определяет к какому химическому элементу относится данный атом: в ядре водорода один протон, атом кислорода – 8, а в уране – 92. В каждом атоме число электронов, которые содержат отрицательный заряд и равных заряду протонов, равно числу протонов в ядре, поэтому атом сам по себе нейтрален. Но в ядре присутствуют частицы другого типа это нейтроны, они электрически нейтральны, но количество их по отношению к протонам может быть разным. Атомы, имеющие ядра с одинаковым числом протонов но различающиеся по числу нейтронов относятся к разным разновидностям одного и того же химического элемента, называются изотопами. Так уран-238 содержит 92 протона и 146 нейтронов, а в уране-235 тоже 92 протона, но нейтронов 143. Ядра всех изотопов химических элементов образуют группу нуклидов. Ядра некоторых изотопов стабильны, то есть в отсутствии внешнего воздействия никогда не претерпевают никаких превращений. Большинство же нуклидов нестабильны и всё время превращаются в другие нуклиды. При каждом акте распада высвобождается энергия, которая и передаётся в виде ионизирующего (радиоактивного) излучения. Для примера возьмём атом урана-238, время от времени из него вырывается группа из четырёх частиц: двух протонов и двух нейтронов – α (альфа) частица. Уран-238 таким образом превращается в элемент у которого в ядре содержится 90 протонов и 144 нейтрона – торий-234. Но торий тоже не стабилен : один из его нейтронов превращается в протон, и торий-234 превращается в элемент в ядре которого содержится 91 протон и 143 нейтрона. Это превращение оказывает на движущиеся по своим орбитам электронах β(бета): один из них становится лишним, не удерживается протоном, так как не имеет пары, поэтому покидает атом. Таким образом цепочка из многочисленных превращений, сопровождающаяся α или β — излучениями, завершается стабильным нуклидом свинца. Отрезок времени , за который исходное число радиоактивных ядер в среднем уменьшается в два раза называется периодом полураспада.
infourok.ru
|
|