Ферменты растительного происхождения. Реферат ферменты растительного происхождения


Ферменты растительного происхождения — реферат

Министерство образования  и науки РФ

Федеральное бюджетное государственное  образовательное учреждение высшего  профессионального образования

Ивановский государственный  химико-технологический университет

 

 

 

 

 

 

 

РЕФЕРАТ

Ферменты растительного  происхождения.

 

 

Выполнил

Студент группы 2/29

Трошкова Р.В.

 

 

 

2013

 

Содержание

1.Введение

2.Основные источники растительных ферментов

3.Применение ферментов в различных областях промышленности

4. 5.Заключение

6.Список литературы

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение.

Все жизненные процессы в человеческом организме связаны  с тысячами химических реакций. Эти  реакции протекают в каждой клетке, в мягких условиях - при нормальной температуре и давлении, - но в  то же время быстро и эффективно, а окисление участвующих в  них веществ является источником энергии и строительных материалов для клеток.

Быстрота и эффективность  метаболических процессов в живом  организме, в том числе переваривания  пищи, обеспечивается присутствием в  каждой клетке особых веществ - катализаторов  биохимических реакций, или ферментов.

 

Ферменты - это "рабочая  сила", которая выстраивает наш  организм подобно тому, как строители  строят дома. У нас могут быть все необходимые строительные материалы, но чтобы построить дом, нам будут  нужны рабочие, которыми и являются ферменты.

Прекрасным сырьем для получения ферментов или  энзимов являются зеленые растения, их структурные компоненты, корни  и плоды. Растительные ферменты используются в различных областях промышленности: в пищевой, косметической, лекарственной.

 

 

 

 

 

 

 

 

 

Основные источники  для получения растительных ферментов.

Источником ферментов  может быть пророщенное зерно  различных злаков (солод). В тропических  и субтропических странах в качестве сырья для промышленного производства протеиназ используют латекс дынного  дерева, латекс растений, относящихся  к виду фикусовых, например листья, побеги инжира, сок зеленой массы  ананаса. Особенно богаты ферментами: хрен, чеснок, авокадо, киви, папайя, бананы, манго, соевый соус - это натуральный продукт ферментации соевых бобов с морской солью, используемый в качестве добавки в суп, каши, овощи. Такая крупа, как перловка, и овощи — брокколи, капуста белокочанная, брюссельская, цветная, трава пшеницы, содержащая хлорофилл, и большинство зеленых овощей содержат естественную, натуральную форму фермента, необходимого для нормальной работы организма.

Особо часто используются для получения растительных энзимов  зерна злаков, богатые запасными  веществами, которые используются в  энергетическом и конструктивном метаболизме  при прорастании зерна. Превращение  крахмала, крахмальных полисахаридов, белка, липидов начинается с их гидролитического расщепления. Продукты расщепления  используются в циклах дыхания и  биосинтеза структурных элементов  растения. В покоящемся зерне имеются  ферменты, необходимые для гидролиза  всех видов полимеров. Значительная часть гидролитических ферментов  находится в связанном, неактивном состоянии. Активность свободных форм гидролаз не проявляется из-за отсутствия свободной воды, необходимой для  протекания реакций гидролиза. В  зерне имеются ингибиторы протеолитических ферментов и α-амилазы. Ингибиторы протеаз превращают протеолитический процессинг связанных ферментов и их переход в свободные, активные формы.

При соответствующей температуре  и влажности зерно набухает и  прорастает. Процесс прорастания  сопровождается увеличением активности большинства ферментов. Ингибиторы протеаз – белки низкой молекулярной массы – диффундируют во внешнюю  среду, что создает условия для  проявления активности протеаз. Под  действием протеаз активируются связанные формы ферментов. Параллельно  происходит новообразование ферментов.

Ферментативный комплекс солода включает: амилолитические ферменты (α-амилазу, β-амилазу, α-глюкозидазу, пуллуланазу, предельную декстриназу), β-фруктофуранозидазу, целлюлолитические ферменты (эндо- и экзоглюканазы, целлобиазу), гемицеллюлазы (эндо-β-1,3-глюканазу, ламинарибиазу, эндо- и экзосиланазы, ксилобиазу, арабинозидазу), протеазы эндо- и экзо-типов, липазы, фосфотазы, окислительно-восстановительные ферменты (каталазу, пероксидазу, о-дифенолоксидазу).

Рациональная технология солода обеспечивает получение максимальной активности гидролитических ферментов  при минимальных затратах массы  зерна на дыхание. Активность ферментов  в процессе прорастания изменяется в зависимости от влажности зерна, температуры среды, продолжительности  выращивания, способа аэрации.

Так же активно перерабатывается для получения ферментов виноград. Он являются хорошим источников различных ферментов. Так же ферментативная деятельность протекает активно и в самом растении.  Наивысшая интенсивность накопления сахарозы в листьях винограда наблюдается в полуденные часы. Вечером и ночью гидролиз сахарозы резко преобладает над синтезом, что способствует более полному освобождению листьев от продуктов фотосинтеза. Каждый вид и сорт винограда обладает определенным соотношением синтезирующего и гидролизирующего действия ферментов. Скороспелым сортам обычно свойственна более высокая активность гидролитических ферментов. Установлено некоторое преобладание, особенно в листьях и побегах, оксидоредуктаз, что связано с наличием большого количества органических кислот, фенолов и др. Исследования активности ферментов и их множественных форм у винограда в основном касаются изменчивости углеводного и азотного обменов, окислительно - восстановительных процессов, связанных с зимостойкостью растений. Установлена корреляция между активностью амилаз, протеаз, ряда оксидоредуктаз (пероксидаза, каталаза и др.) в тканях побегов, зимостойкостью и действием морозов.

 

 

Так же, некоторые источники, ферментов приведены в следующей  таблице:                 

Применение и  функции растительных ферментов  в различных сферах промышленности.

Ферменты растительного  происхождения очень важны для  жизнедеятельности человека. Эволюционно сложилось, что лучший путь пополнения «ферментного запаса» включает в себя потребление свежих фруктов, овощей и зерновых культур в нашем ежедневном питании. Исследования в области нутрициологии свидетельствуют о том, что в сутки мы должны съедать 3-5 порций свежих овощей от суточного рациона и 2-3 порции — свежих фруктов, являющиеся источником ферментов, витаминов и минералов. А сколько съедаете вы? В США меньше 10% из опрошенных придерживаются данных рекомендаций. Около 50% — не употребляют свежих овощей; 70% — не употребляют свежих фруктов и овощей, богатых витамином С и почти 80% — не употребляют фрукты и овощи, богатые каротиноидами. Однако, по мимо непосредственных источников необходимых ферментов, можно  использовать биологически активные комплексы, выпускаемые медицинской промышленностью.  Такие комплексы включают в себя большое количество необходимых ферментов, выполняющих жизненноважные функции в организме.

Например, протеазы расщепляют белки до аминокислот. Сюда входят истинные протеазы, которые гидролизуют природные протеины, и пептидаза, расщепляющие ди- и полипептиды.

Бромелайн представляют собой концентрированную смесь протеолитических ферментов (протеазы, пептидазы), экстрагированных из свежих плодов ананаса и его ветвей. Бромелайн эффективен в широком диапазоне рН, обладает активностью как в слабокислой, так и в нейтральной, слабощелочной среде, что имеет важное значение. Так, например, пепсин желудка активен только в кислой среде и при пониженной кислотности (у лиц пожилого возраста) уже теряет свою активность.

Амилазы, ферменты, катализирующие гидролиз крахмала, гликогена и родственных  им полисахаридов путем расщепления  глюкозидных связей между 1-м и 4-м атомами углерода. Различают три типа амилазы: альфа-амилаза встречается у животных, растений и микроорганизмов, в реакциях с её участием образуются главным образом декстрины. Бета-амилаза типична для высших растений, катализирует образование мальтозы и крупномолекулярных декстринов. Гамма-амилаза содержится в крови животных, плесневых грибах, бактериях, катализирует образование глюкозы и декстринов. Инвертаза разлагает (инвертирует) тростниковый сахар на d-глюкозу и d-фруктозу.

Мальтаза — фермент растительного происхождения под влиянием которой мальтоза распадается на 2 молекулы глюкозы. Мальтаза находится как в растительном, так и в животном царстве и всегда сопровождает амилазные ферменты.

Лактаза — фермент, который переводит молочный сахар (лактозу) в d-глюкозу и d-галактозу. Липаза участвует в расщеплении жиров, которые являются сложными эфирами глицерина с высшими жирными кислотами. Липаза растительного происхождения содержится преимущественно в семенах, плодах, клубнях, корневищах злаковых (кукуруза, овес и др.), в семенах крестоцветных (горчичное семя), в особенности в семенах бобовых (фасоль, горох), а также и в подсолнечном семени. 

Гемицеллюлаза и целлюлаза  — способствуют расщеплению полисахаридов  растительного происхождения, уменьшают  газообразование.

Так же ферменты растительного  происхождения применяют не только в медицинской отрасли, но и в  следующих:

Отрасль

Этапы технологических  процессов и технологические  цели применения ферментов

Технология переработки зерна

Повышение выхода муки и  круп, улучшение качества клейковины, производство модифицированной муки зернобобовых

Хлебопечение

Сокращение расхода муки, улучшение теста, замедление черстеения изделий, улучшение цвета корочки, производство охлажденного и замороженного теста

Пивоварение

Использование неосоложенного сырья, разжижение, усиление ферментируемое™, улучшение фильтрации, контроль содержания ззота, получение низкокалорийного пива, стабилизация пива

Технология молочных продуктов

Коагуляция молока, замена сычужного фермента в производстве сыра, модификация молочного белка, создание сырного аромата, получение  ферментативно модифицированных сыров, удаление перекиси водорода, получение молочного сахара

Производство вина, фруктовых  соков, газированных напитков, консервов

Осветление, мацерация сырья, удаление крахмала из сока, увеличение выхода, получение сладких ликеров, стабилизация вин и соков, производство соков с мякотью и пюре

Переработка крахмала

Увеличение выхода, модификация  крахмала, разжижение, осахаривание, получение глюкозо-фруктовых и зерновых сиропов

Спиртовая промышленность

Конверсия сырья, разжижение крахмала, осахаривание, улучшение роста дрожжей, увеличение выхода спирта

Производство кофе

Сепарация зерен, контроль вязкости экстрактов, улучшение вкуса и аромата

Производство белков

Гидролиз белков и полисахаридов, снижение вязкости, производство модифицированных пептидов и белков

Производство сахара

Удаление крахмала, белков и полисахаридов

Производство ароматизаторов

Синтез тонких ароматов, получение натуральных ароматических  эфиров и т.д.

Производство масел и жиров

Увеличение выхода, модификация  жиров, экстракция масла, получение  биологически активных веществ (лецитина, токоферолов, каротинов и др.)

Технология мясопродуктов

Увеличение выхода, тендеризация мыса, получение мясных экстрактов, текстуризация белков, продление сроков хранения

Производство растительных экстрактов

Увеличение экстрактивности, сокращение длительности экстракции, улучшение фильтрации, повышение выхода пигментов, производство чая и чайных экстрактов, сокращение времени экстракции, усиление аромата и цвета

Производство пектина

Упрощение технологии, увеличение выхода, регулирование степени этерификации

 

Отдельно хотелось бы выделить такую медицинскую составляющую функций растительных ферментов, как  препараты для регулирования  работы кишечно-желудочного тракта. На сегодняшний день очень много  препаратов именно ферментативного  предназначения. В состав всех лекарственных  средств, представленных в этой категории, входят именно растительные ферменты, которые легко усваиваются пищеварительной  системой человека.

 

 

 

 

 

 

 

Заключение.

 Как мы видим, растительные ферменты играют большую роль в жизни человека, в промышленности, в медицине. Самое важное назначение ферментов – это его каталитические функции в человеческом организме. Поэтому, нужно стараться больше употреблять в пищу продуктов, содержащих активные ферменты. Но если у вас нет никакой возможности употреблять сырую пищу хотя бы в ограниченном количестве, то пейте соки овощей, только сразу 5 видов (в одном стакане), можете принимать ферменты 1—3 раза в день во время еды в виде диетических добавок. Пищевые ферменты помогают сохранять энергию нашим органам, мышцам, тканям. Они превращают диетический фосфор в костную ткань; выводят токсические вещества из кишечника, печени, почек, легких, кожи; концентрируют железо в крови; защищают кровь от нежелательных продуктов, превращая их в субстанции, легко выделяемые из организма.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Список использованной литературы:

  1. Егоров Н.С., Олескин А.В., Самуилов В.Д. Биотехнология. - М.: Высшая школа, 1987. 159 с.
  2. Интернет-журнал Планета здоровья. // http://www.fit-leader.com/ (дата обращения 12.10.13, 13:50)
  3. Инернет журнал  Коммерческая биотехнология: Биотехнология на охране здоровья// диагностика.- http://cbio.ru/page/51/id/2704/ (дата обращения 20.09.2013, 00:00)
  4. Интернет  ресурс  http://food-chem.ru/ (дата обращения 15.10.13, 18:57)
  5. Интернет ресурс   http://vitatest-nn.ru/fermenty.html (дата обращения 20.10.13, 19:44)
  6. Кустова Т.П., Кочетова Л.Б., Введение в биотехнологию: Учеб.пособие / Т.П. Кустова, Л.Б. Кочетова. – Иваново: Иван.гос. ун-т, 2007. – 140 с.: ил.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

referat911.ru

Реферат - Лекарственные препараты, получаемые биотехнологическими методами. Ферменты

Государственное образовательное учреждение

высшего профессионального образования

Курский государственный медицинский университет

Министерства здравоохранения РФ

Кафедра БХТ

Курсовая работа по

Дисциплине «Теоретические основы биотехнологии» на тему:

«Лекарственные препараты, получаемые биотехнологическими методами. Ферменты»

Выполнил: студентка 4 курса 1 гр. Копыченкова А.В.

Проверил: Шубина Г. Н.

Курск – 2010

Содержание

Введение

1 Классификация и номенклатура ферментов………………………..4

2 Продуценты ферментов и условия их культивировании…………..7

3 Промышленные названия препаратов ферментов………………..10

4 Твердофазная поверхностная ферментация……………………….11

5 Метод глубинной фементации……………………………………..15

6 Получение ферментных препаратов из растительного и

животного сырья……………………………………………………...18

7 Стандартизация ферментный препаратов…………………………20

8 Использование ферментных препаратов в медицине…………….22

Заключение…………………………………………………………….27

Список использованных источников………………………………...28

Введение

В конце 60-х – начале 70-х гг. на базе технической биохимии, химической технологии, химической энзимологии и ряда инженерных дисциплин возникло новое научно-техническое направление биотехнологии – инженерная энзимология, к которой относят систему методов получения, очистки, стабилизации и применения ферментов. Основной задачей инженерной энзимологии является конструирование биоорганических катализаторов с заданными свойствами на основе ферментов или ферментных комплексов и разработка на их базе различных эффективных и экологически чистых биотехнологических процессов. Высокая субстратная специфичность ферментативного катализа и уникальная способность ускорять реакции в десятки и сотни раз в условиях нормального давления и физиологических температур позволяют получать высокие выходы продуктов и создавать практически безотходные биотехнологические процессы, не загрязняющие окружающую среду.

Ферменты широко используются:

Производство ферментных препаратов является одним из перспективных направлений в биотехнологии. Промышленностью выпускается около 250 наименований ферментных препаратов, причем 99% общей суммы приходится только на 18 ферментов. [4]

1 Классификация и номенклатура ферментов

Современные классификация и номенклатура ферментов были разработаны Комиссией по ферментам Международного биохимического союза и утверждены на V Международном биохимическом конгрессе в 1961 г. в Москве.

Необходимость систематики номенклатуры диктовалась прежде всего стремительным ростом числа вновь открываемых ферментов, которым разные исследователи присваивали названия по своему усмотрению. Более того, одному и тому же ферменту часто давали два или несколько названий, что вносило путаницу в номенклатуру. Некоторые названия ферментов вообще не отражали тип катализируемой реакции, а при наименовании фермента исходили из названия субстрата, на который действует фермент, с добавлением окончания -аза: в частности, амилазы (ферменты, гидро-лизирующие углеводы), липазы (действующие на липиды), протеиназы (гидролизирующие белки) и т.д.

До 1961 г. не было и единой классификацииферментов. Трудности заключались в том, что разные исследователи за основу классификацииферментовбрали различные принципы. Комиссией были рассмотрены 3 принципа, которые могли служить основой для классификацииферментов и их обозначения. Первый принцип – химическая природа фермента, т.е. принадлежность к флавопротеинам, пиридоксальфосфатпротеинам, гемо-протеинам, металлопротеинам и т. д. Однако этот принцип не мог служить общей основой для классификации, так как только для небольшого числа ферментов известны простетические группы, доступные идентификации и прямому определению. Второй принцип – химическая природа субстрата, на который действует фермент. По этому принципу трудно классифицировать фермент, так как в качестве субстрата могут служить разнообразные соединения внутри определенного класса веществ (белки, углеводы, липиды, нуклеиновые кислоты) и бесчисленное множество промежуточных продуктов обмена. В основу принятой классификации положен третий принцип – тип катализируемой реакции, который является специфичным для действия любого фермента. Этот принцип логично использовать в качестве основы для классификации и номенклатуры ферментов.

Таким образом, тип катализируемой химической реакции в сочетании с названием субстрата (субстратов) служит основой для систематического наименования ферментов. Согласно Международной классификации, ферменты делят на шесть главных классов, в каждом из которых несколько подклассов: 1) оксидоредуктазы; 2) трансферазы; 3) гидролазы; 4) лиазы; 5) изомеразы; 6) лигазы (синтетазы) (рис. 1).

Оксидоредуктазы. К классу оксидоредуктаз относят ферменты, катализирующие с участием двух субстратовокислительно-восстановительные реакции, лежащие в основе биологического окисления. Систематические названия их составляют по форме «донор: акцептор оксидоредуктаза». Например, лактат: НАД+ оксидоредуктаза для лактатдегидрогеназы (ЛДГ).

Различают следующие основные оксидоредуктазы: аэробные дегидро-геназы или оксидазы, катализирующие перенос протонов (электронов) непосредственно на кислород; анаэробные дегидрогеназы, ускоряющие перенос протонов (электронов) на промежуточный субстрат, но не на кислород; цитохромы, катализирующие перенос только электронов. К этому классу относят также гемсодержащие ферменты каталазу и пероксидазу, катализирующие реакции с участием перекиси водорода.

Трансферазы. К классу трансфераз относят ферменты, катализирующие реакции межмолекулярного переноса различных атомов, групп атомов и радикалов. Наименование их составляется по форме «донор: транспортируемая группа – трансфераза». [6]

Рисунок 1. Международная классификация ферментов

2 Продуценты ферментов и условия их культивирования

Выбор продуцента необходимого фермента сопряжен с проверкой активности огромного количества культур, приводящей к отбору наиболее активного продуцента. Природные штаммы обычно не синтезируют ферменты в избыточных количествах, так как процесс их синтеза находится под строгим генетическим контролем. Исключение составляют конститутивные ферменты, например ферменты гексозомонофосфатного пути, которые синтезируются в больших количествах в любых условиях роста.

Наряду с отбором наиболее активных штаммов-продуцентов ферментов из микробных коллекций или выделенных из природных источников, продуцирующих конститутивные ферменты, широко используют индуцибельные и репрессибельные ферменты, которые синтезируются клетками в результате изменения условий ферментации или генетического аппарата клетки. К индуцибельным относятся многие ферменты, имеющие коммерческую ценность.

Индукция – это универсальный контроль для катаболических путей. Процесс ферментации с целью получения индуцибельных ферментов ведут в присутствии субстрата-индуктора. Так, для получения амилаз в среду вносят крахмал, рибонуклеазы – РНК, липаз – жиры, инвертазы – сахарозу и т.д. В результате способности синтезироваться индуцированно в ответ на заданный субстрат, возможно использование одной культуры для получения различных ферментов (табл. 3.1). Это свойство широко используется в промышленности для получения различных ферментов.

Репрессии синтеза фермента конечным продуктом можно избежать, не допуская накопления последнего. При выращивании ауксотрофных штаммов на средах с дефицитом факторов роста накопления конечного продукта не происходит, и фермент дерепрессируется. В результате этого активность целевого фермента удается повысить многократно (табл. 3.2). Дерепрессии синтеза ферментов можно добиться, выращивая частичный ауксотрофный организм, который медленно растет на минимальной среде. Но стимулируется ростовым фактором. Возможно получение конститутивных мутантов, которые не репрессируются конечным продуктом. Такие мутанты получают, адаптируя организмы к токсическому аналогу конечного продукта с последующей селекцией на устойчивость.

Многие ферменты, в основном катаболического индуцибельного типа, репрессируются при быстром росте клеток на легко утилизируемом субстрате. Для того чтобы избежать катаболитной репрессии, в среду не вносят репрессирующий субстрат, и применяют мутанты, устойчивые к катаболитной репрессии. Выход ферментов можно увеличить также с помощью новейших методов биотехнологии. С помощью плазмид или трансдуцирующих фагов можно увеличить копийность генов, кодирующих синтез целевых ферментов. Усиление экспрессии генов возможно также в результате включения сильных промоторов в ДНК.

Помимо генетического фактора, огромное влияние на продукцию ферментов оказывают состав среды и условия культивирования микроорганизмов. При этом не только наличие индуктора в среде способно увеличить выход фермента. Чрезвычайно важным является качественный и количественный состав питательных сред. Например, большинство видов плесневых грибов рода Aspergillus хорошо растут на достаточно простой синтетической среде Чапека с сахарозой и нитратом. Для синтеза амилазы, однако, сахарозу следует заменить крахмалом и увеличить концентрацию углерода и азота в среде. После этого активность фермента возрастает в 3 раза. Добавление аминокислот в виде экстракта солодовых ростков выход фермента повышает дополнительно в 4–5 раз. Оптимизируя состав питательной среды, можно повысить активность амилазы более чем в 500 раз. При подборе состава среды учитывают все факторы: вид и концентрацию источника углерода и энергии, факторы роста, минеральные элементы, индуцирующие субстраты. В качестве источников углерода и азота чаще всего применяют различное природное органическое сырье: крахмал, кукурузный экстракт, соевую муку, гидролизаты дрожжевых биомасс. Помимо источника углерода, азота и факторов роста, большое влияние на синтез ферментов оказывают минеральные соли магния, марганца, кальция, железа, цинка, меди и др., многие из которых входят в состав ферментов.

Биотехнологическое производство ферментов реализуется двумя способами – поверхностным и глубинным. Твердофазная поверхностная ферментация заключается в выращивании продуцента на поверхности тонкого слоя твердой сыпучей среды. Глубинная ферментация в жидкой среде может быть реализована как в условиях периодического процесса, так и с применением проточных систем. [1]

3 Промышленные названия препаратов ферментов

Препараты ферментов, вырабатываемые промышленностью, кроме основного фермента (комплекса ферментов) содержат различные балластные вещества. Название ферментных препаратов складывается из сокращенного названия основного фермента и видового названия микроорганизма-продуцента. Например, препарат, содержащий в своей основе амилолитические ферменты и полученный при помощи культуры Aspergillus oryzae, называется амилоризин. В названии препарата указывается также способ культивирования и степень концентрирования и очистки:

Амил ори зин Г 10Х

IIIIII IV V

I – название основного фермента; II – название микроорганизма-продуцента; III – окончание; IV – способ культивирования:

«П» – поверхностный, «Г» – глубинный; V – степень очистки (концентрирования):

«Х» – поверхностная культура или культуральная жидкость;

«2Х» – концентрированные растворы ферментов, освобожденные от биомассы;

«3Х» – высушенные препараты «2Х»;

«10Х» – осажденные органическими растворителями и солями;

«15Х» –«30Х» – очищенные от балластных веществ и других ферментов с использованием различных методов очистки и фракционирования. [2]

4 Твердофазная поверхностная ферментация

Основные параметры процесса приведены в таблице 2 [3]:

Таблица 2. Основные параметры твёрдофазной поверхностной ферментации

Параметры стадии Значения параметров
Продуценты

Микроскопические грибы родов Aspergillus,

Rhizopus, Penicillium, Trichoderma, Mucor, Fusarium

Компоненты питательной среды

Пшеничные отруби, солодовые ростки,

свекловичный жом, пивная дробина, опилки (W = 58…60 %)

Температура культивирования

30…32 → 28…30 °С
Режим аэрации

Кондиционированный воздух W от 98…99 до

92…94 % и температурой от 30…32 °С до 28…30 °С, расход 0,1…0,2 м3 / кг⋅ч

Продолжительность культивирования

От 36 до 52 ч в зависимости от продуцента

Содержание ферментов

0,006…0,007 % от массы сухих веществ

При поверхностном методе культура растет на поверхности твердой увлажненной питательной среды. Мицелий полностью обволакивает и довольно прочно скрепляет твердые частицы субстрата, из которого получают питательные вещества. Поскольку для дыхания клетки используют кислород, то среда должна быть рыхлой, а слой культуры-продуцента небольшим.

Выращивание производственной культуры происходит обычно в асептических условиях, но среду и кюветы необходимо простерилизовать. Перед каждой новой загрузкой также необходима стерилизация оборудования.

Преимущества поверхностной культуры: значительно более высокая конечная концентрация фермента на единицу массу среды (при осахаривании крахмала 5 кг поверхностной культуры заменяют 100 кг культуральной жидкости), поверхностная культура относительно легко высушивается, легко переводится в товарную форму.

Посевной материал может быть трёх видов:

— культура, выросшая на твердой питательной среде;

— споровый материал;

— мицелиальная культура, выращенная глубинным способом.

В три этапа получают и посевную культуру. Сначала музейную культуру продуцента пересевают на 1 — 1.5 г увлажненных стерильных пшеничных отрубей в пробирку и выращивают в термостате до обильного спорообразования. Второй этап — аналогично, но в колбах, третий — в сосудах с 500 г среды. [14]

Основу питательной среды составляют пшеничные отруби, как источник необходимых питательных и ростовых веществ. Кроме того, они создают необходимую структуру среды. Для повышения активности ферментов к отрубям можно добавлять свекловичный жом, соевый шрот, крахмал, растительные отходы. Стерилизуют среду острым паром при помешивании (температура — 105-140 С, время 60-90 минут). После этого среду засевают и раскладывают ровным слоем в стерильных кюветах. Кюветы помещают в растильные камеры. Культивируют в течение 36-48 часов.

Рост делится на три периода, примерно равных по времени. Сначала происходит набухание конидий и их прорастание (температура не ниже 28о С), затем рост мицелия в виде пушка серовато-белого цвета (необходимо выводить выделяемое тепло) и образование конидий. Для создания благоприятных условий роста и развития продуцента необходима аэрация и поддержание оптимальной влажности (55-70%).

Выросшая в неподвижном слое при поверхностном культивировании культура представляет корж из набухших частиц среды, плотно связанных сросшимся мицелием. Массу размельчают до гранул 5-5 мм. Культуру высушивают до 10-12% влажности при температурах не выше 40оС, не долее 30 минут. Иногда препарат применяют прямо в неочищенном виде — в кожевенной и спиртовой промышленности. В пищевой и особенно медицинской промышленности используются ферменты только высокой степени очистки.

Схема очистки сводится к следующему:

· освобождение от нерастворимых веществ;

· освобождение от сопутствующих растворимых веществ;

· фракционирование (как правило, хроматографическими методами).

Для выделения фермента из поверхностной культуры необходима экстракция. Как правило, экстраген — вода. При этом в раствор переходят сахара, продукты гидролиза пектиновых веществ и целлюлозы. Стадию выделения и очистки завершает сушка. После сушки препарат должен содержать не более 6-8% влаги, тогда он может в герметичной упаковке храниться до года без потери активности.

Стандартизация ферментного препарата — доводка активности фермента до стандартной, соответствующей требованиям ГОСТ. Для этого используются различные нейтральные наполнители — крахмал, лактоза и др.

Учитывая огромные перспективы применения ферментных препаратов в различных отраслях промышленности и сельского хозяйства, медицине, можно сделать заключение о необходимости расширения исследований в этой области для оптимизации технологии и гарантийного получения высокоактивных и стабильных препаратов микробных ферментов. [10]

Технологическая схема поверхностной ферментации представлена на схеме:

5 Метод глубинной фементации

Таблица 3 Условия проведения глубинной ферментации

Параметры стадии

Значения параметров

Продуценты

Микроскопические грибы родов Aspergillus,

Rhizopus, Penicillium, Trichoderma, Mucor,

Fusarium, бактерииродов Baccillus и Clostridium

Компоненты

питательной среды

Кукурузная мука, крахмал, патока, гидролизаты

казеина, дрожжей, древесины, минеральные соли

(содержание СВ от 1,5 до 15,5, pH от 3,5 до 8,5)

Температура

культивирования

26…32 °С для грибов

32…37 для бактерий

Режим аэрации

50…60 м3 / ч*м3

Продолжительность

культивирования

От 24 до 54 ч

В этом случае микроорганизмы выращиваются в жидкой питательной среде. Технически более совершенен, чем поверхностный, так как легко поддается автоматизации и механизации. Концентрация фермента в среде при глубинном культивировании обычно значительно ниже, чем в водных экстрактах поверхностной культуры. Это вызывает необходимость предварительного концентрирования фильтрата перед его выделением.

При глубинном культивировании продуцентов ферментов выделяют, как и в любом биотехнологическом процессе, 5 этапов.

Некоторые предварительно измельчают, отваривают или гидролитически расщепляют. Готовые к растворению компоненты подают при постоянном помешивании в емкость для приготовления среды в определенной последовательности. Стерилизацию среды проводят либо путем микрофильтрации с помощью полупроницаемых мембран, либо при помощи высоких температур. Время обработки в этом случае зависит как от интенсивности фактора, так и от уровня обсемененности объекта. Стерилизуются также все коммуникации и аппараты. Воздух очищается до и после аэрирования. До — потому что содержит частицы пыли органической и неорганической природы, после — так как несет клетки продуцента.[13]

Для засева питательной среды материал готовят также глубинным методом. Вид его зависит от продуцента: для грибов это мицелиальная вегетативная масса, для бактерий — молодая растущая культура на начальной стадии спорообразования. Получение посевного материала состоит в увеличении массы продуцента в 3-4 стадии. Объем посевного материала зависит от физиологических особенностей продуцента. Если продуцент размножается только вегетативно, он резко возрастает (до 5-20%). Если же происходит обильное спороношение — сокращается до 1%.

Биосинтез ферментов в глубинной культуре протекает в течение 2-4 суток при непрерывной подаче воздуха и перемешивании. Высокая концентрация питательных веществ на первых этапах могут тормозить рост биомассы продуцента, поэтому часто свежая среда или некоторые её компоненты вводятся в ферментер на стадии активного роста. Температурный оптимум находится в интервале 22-32оС. В современных технологических процессах ведется непрерывное автоматическое определение содержания в среде углеводов, количества образовавшихся метаболитов и концентрации клеток. Данные поступают в компьютер, который определяет стратегию коррекции процесса и автоматически регулирует его. Этим достигается максимальная производительность и наилучшее качество продуктов.

В мицелии трёхсуточной культуры обычно остается не более 15% ферментов. Остальные выделяются в окружающую клетки жидкую среду. В этом случае препараты ферментов выделяют из фильтратов после отделения биомассы. [8]

Технологическая схема получения ферментов глубинным способом:

6 Получение ферментных препаратов из растительного и животного сырья.

Для получения ферментных препаратов пригодны только некоторые растения или отдельные органы растений и животных, способные накапливать значительное количество ферментов. Источники некоторых ферментов приведены в табл.4.

Таблица 4 Источники ферментов растительного происхождения

Ферменты Источник, из которого получают
Амилазы Ячмень
Протеазы:
папаин Дынное дерево
фицин Фиговое дерево
бромелаин Ананас
Кислая фосфатаза Картофель
Пероксидаза Хрен
Уреаза Канавалия мечевидная

Из ферментов растительного происхождения наиболее широко в пищевой промышленности используют амилазы и папаин. Источником ферментов могут быть пророщенные зерна различных злаков. Условно ферментным препаратом можно считать и ячменный солод, в котором содержится до 1 % амилаз.

Растительная протеаза – папаин – содержится в плодах дынного дерева. Только в США ежегодно расходуют около 1 т папаина для обработки (размягчения) мяса. Папаин, а также протеазы фицин и бромелаин при контакте с мясом в течение 2 ч при комнатной температуре расщепляют белки соединительной ткани – коллаген и эластин.

Из растительного сырья получают также фосфатазы, пероксидазы, уреазы, гемицеллюлазы и другие ферменты.

Органы и ткани животных (поджелудочная железа, слизистые оболочки желудков и тонких кишок свиней и т.п.), содержащие ферменты, на мясоперерабатывающих комбинатах консервируют и используют для получения ферментов. Из слизистой желудка свиней и крупного рогатого скота получают препарат пепсина. Из поджелудочной железы свиней получают панкреатин, смеси трипсина, химотрипсина, липаз и амилаз. Пепсин, трипсин и химотрипсин применяют для размягчения мяса, однако бόльший эффект получен при обработке мяса панкреатином. Из желудка (сычуга) молодых телят выделяют сычужный фермент (реннин), широко используемый в сыроделии. Сычужный фермент осуществляет процесс превращения жидкого молока в гель (сгусток), а кроме того участвует в протеолизе, происходящем в сыре при созревании. Некоторые наиболее известные ферменты животного происхождения, а также органы и ткани животных, из которых их получают, представлены в табл. 5.[9]

Таблица 5. Источники ферментов животного происхождения

Ферменты Источник, из которого получают
Сычужный фермент Крупный рогатый скот – сычуг
Щелочная фосфатаза Крупный рогатый скот — кишечник
Лактатдегидрогеназа Крупный рогатый скот — сердце
Гиалуронидаза Крупный рогатый скот — семенники
Каталаза Крупный рогатый скот, свиньи — печень
Пепсин Свинья — желудок
Трипсин, химотрипсин, карбоксинпептидаза, панкреатин, эластаза Свинья – поджелучная железа
Фумараза и трансаминаза Свинья — сердце
Аминоацилаза Свинья — почки
Ацетилхолинэстераза Электрический угорь – мышечная ткань

7 Стандартизация ферментный препаратов

Очень часто ферментативная активность партии готового препарата заметно отличается от предыдущих. Потребитель же дол-150 жен получать препарат с определенной стандартной активностью. Поэтому на основе длительного анализа практической работы предприятий по данной технологии для каждого выпускаемого препарата устанавливается средний уровень активности с запасом 20—30%. Активность стандартного препарата определяется в единицах ФА на I г. [5]

Для получения постоянной активности в препараты вводится наполнитель в определенном количестве, которое зависит от полученной на данном предприятии активности в культуре и препарате. Желательно, чтобы наполнитель по отношению к ферменту выступал и в роли стабилизатора, а не просто инертного соединения. Важно также учитывать свойство наполнителей сорбировать водяные пары. Так, например, крахмал, добавленный к ферментному препарату, препятствует его увлажнению, а хлористые соли калия и натрия способствуют увлажнению препаратов, поэтому при использовании последних возникает необходимость в герметической упаковке препаратов.

Стандартизацию препарата можно проводить, добавляя наполнитель, например, перед концентрированием, если продукт выпускается в жидком виде, или же перед сушкой распылением с учетом потерь на стадии концентрирования или при распылительной сушке, или в уже готовый сухой препарат. При смешивании готового сухого препарата с наполнителем необходимо, чтобы препарат и наполнитель имели приблизительно одну и ту же степень измельчения и влажность не более 10—12 %. При перемешивании наполнителя и препарата, например, в шаровой мельнице за 30— 40 мин получаются вполне однородные ферментные препараты.

Количество наполнителя можно рассчитать по формуле:

S = a*b/c

где S — количество наполнителя, необходимое для получения стандартного по активности препарата, кг; а — активность исходного препарата, ед. ФА/г; Ь — количество исходного препарата, кг; с — стандартная активность препарата, ед. ФА/г. [11]

Известно, что хорошим стабилизатором амилолитических ферментов является крахмал, пектолитических — крахмал или хлористый натрий. Стандартизировать пектолитические препараты можно также диатомитом, желатином, бентонитом. Выбор наполнителя и стабилизатора, определение дозировки, необходимых условий хранения и длительности сохранения активности осуществляются экспериментально.

8 Использование ферментных препаратов в медицине

По особенностям клинического применения среди ферментных препаратов обычно выделяют:

1) препараты, применяемые при гнойно-некротических процессах;

2) препараты, улучшающие процессы пищеварения;

3) препараты, обладающие фибринолитическими свойствами.

1) Препараты, применяемые при гнойно-некротических процессах.

К этой группе относятся протеолитические ферменты трипсин, химотрипсин и препарат химопсин, содержащий смесь этих ферментов, а также дезоксирибонуклеаза, рибонуклеаза, коллагеназа и террилитин. Первые три препарата используют гл. обр. для лечения гнойных ран, трофических язв, пролежней и в качестве отхаркивающих средств при заболеваниях легких и дыхательных путей. [5]

Дезоксирибонуклеаза (Desoxyribonucleasa) вызывает разжижение гноя и угнетает развитие вирусов. Применяется местно для лечения вирусных кератитов и конъюнктивитов, а также для уменьшения вязкости мокроты и гноя при заболеваниях легких и дыхательных путей (пневмонии, абсцессах легкого, бронхоэктазах и др. ). Назначают в виде 0,2% р-ра в изотоническом растворе хлорида натрия для закапывания в конъюнктивальный мешок и в нос или для ингаляций (по соответствующим показаниям). Срок годности растворов 12 ч. Форма выпуска: во флаконах по 0, 005; 0, 01; 0, 025 и 0, 05 г.

Рибонуклеаза аморфная (Ribonucleasum amorphum) применяется для лечения гнойных ран, разжижения гноя и мокроты при заболеваниях легких и дыхательных путей, а также для лечения клещевого энцефалита. Назначают рибонуклеазу наружно, в виде ингаляций, а при клещевом энцефалите — внутримышечно. Местно препарат используют в дозах 0, 025-0, 05 г. Для ингаляций 0, 025 г препарата растворяют в 3-4 мл изотонического раствора натрия хлорида или 0,5% р-ра новокаина. Внутримышечно вводят по 0, 005-0, 01 г в 1 мл изотонического раствора натрия хлорида или 0,5% р-ра новокаина. Форма выпуска: во флаконах по 0, 01; 0, 025 и 0, 05 г.

Коллагеназа (Collagenasum) способствует расплавлению струпов и некротизированных тканей. В связи с этим ее применяют в основном при ожогах, отморожениях, трофических язвах. Перед употреблением коллагеназу растворяют изотоническим раствором натрия хлорида или новокаина, а затем смачивают салфетки и накладывают их на пораженные участки. Форма выпуска: во флаконах по 65 и 1625 ЕД. Сходными с коллагеназой свойствами обладает мазь ируксол (Irucsol), к-рая применяется по тем же показаниям.

Террилитин (Terrilytinum) — продукт жизнедеятельности одного из видов плесневых грибов. Обладает протеолитической активностью. Применяется местно (при гнойных ранах, ожогах и др. ) или в виде ингаляций (при заболеваниях легких и дыхательных путей). Для местного применения 200 ПЕ (протеолитических единиц) препарата растворяют в 4-5 мл воды для инъекций, изотонического раствора натрия хлорида или 0,25% р-ра новокаина. Для ингаляций ту же дозу препарата растворяют в 5-8 мл одного из указанных растворителей. Форма выпуска: во флаконах, содержащих по 200 ПЕ препарата.

2) Препараты, улучшающие процессы пищеварения.

К данной группе относят пепсин, абомин, панзинорм, панкреатин и другие препараты, содержащие отдельные ферменты или комплексы ферментов жел. -киш. тракта.

Пепсин (Pepsinum) применяют при ахилии, гипо- и анацидных гастритах, диспепсии и др. Назначают препарат обычно в сочетании с разведенной хлористоводородной кислотой (1-3% р-р) и в порошках по 0,2-0,5 г (детям от 0, 05 до 0,3 г) 2-3 раза в день перед едой или во время еды. По действию и применению пепсину соответствуют таблетки ацидин-пепсина (Tabulettae Acidin-pepsini), содержащие 1 ч. пепсина и 4 ч. ацидина (бетаина гидрохлорида), выделяющего в желудке свободную хлористоводородную кислоту). Назначают взрослым по 1 таблетке, детям по 1/4-1/2 таблетки 3-4 раза в день перед едой или после еды. Перед употреблением таблетки растворяют в 1/4-1/2 стакана воды. Формы выпуска: таблетки по 0,25 и 0,5 г; за рубежом аналогичные таблетки выпускают под названиями «Бетацид», «Аципепсол», «Пепсамин».

Сок желудочный натуральный (Succus gastricus naturalis), получаемый по методу И. П. Павлова от здоровых собак, применяют по тем же показаниям, что и пепсин. Назначают внутрь взрослым по 1-2 стол. л., детям в возрасте до 3 лет — по 0.5-1 чайн. л., от 3 до 6 лет — по 1 десерт. л., от 7 до 14 лет — по 1 десерт. л. — 1 стол. л. 2-3 раза в день во время или после еды. Пепсидил (Pepsidilum) - препарат, получаемый из слизистой оболочки желудка свиней; по свойствам и применению соответствует описанным выше Ф. п. Его назначают внутрь по 1-2 стол. л. 3 раза в день во время еды. Абомин (Abominum) — препарат, получаемый из слизистой оболочки желудка телят и ягнят; содержит сумму протеолитических ферментов. Применяют при заболеваниях, сопровождающихся нарушениями секреторной функции желудка (гастритах, гастроэнтероколитах и др. ). Назначают внутрь во время еды по 1 таблетке 3 раза в день. Комплексные препараты (панкреатин, панзинорм, фестал и др. ) содержат главным образом ферменты поджелудочной железы, а также (не все препараты) компоненты желчи и некоторые другие ингредиенты. Применяются преимущественно при нарушениях пищеварения, связанных с заболеваниями поджелудочной железы и печени (хрон. панкреатитах, гепатитах и др. ), а также при некоторых заболеваниях жел. -киш. тракта (гастритах, энтероколитах и др. ).

Панкреатин (Pancreatinum) получают из поджелудочных желез убойного скота. Содержит гл. обр. трипсин и амилазу. Назначают внутрь взрослым по 0,5-1 г 3-6 раз в день перед едой (запивать следует боржоми или водой с натрия гидрокарбонатом). Детям панкреатин назначают в следующих разовых дозах: в возрасте до 1 года — по 0,1-0,15 г; 2 лет — по 0,2 г; 3-4 лет — по 0,25 г; 5- 6 — лет по 0,3 г; 7-9 лет — по 0,4 г; 10- 14 лет — по 0,5 г. Форма выпуска: порошок и таблетки по 0,5 г.

Панзинорм форте (Panzynorm forte) содержит панкреатин, экстракты желчи и слизистой оболочки желудка, аминокислоты. Назначают внутрь во время еды взрослым по 1-2 таблетки 3 раза в день. Форма выпуска: таблетки, покрытые оболочкой.

Фестал (Festal) содержит основные компоненты поджелудочной железы и желчи. Назначают внутрь во время и тотчас после еды взрослым по 1-3 драже. Форма выпуска: драже.

Прочие данной группы (панкурмен, дигестал, котазим-форте, мезим-форте) по свойствам соответствуют перечисленным выше препаратам, содержащим ферменты поджелудочной железы и компоненты желчи. [7]

3) Препараты, обладающие фибринолитическими свойствами, напр. фибринолизин (син.: плазмин), стрептодеказа и др., используемые для растворения свежих тромбов, обычно выделяются в самостоятельную группу Другие препараты, обладающие ферментативной активностью. К ним относят лидазу, ронидазу, пенициллиназу, L-acпaрагиназу. Лидаза ( Lydasum) и ронидаза (Ronidasum) — препараты, получаемые из семенников крупного рогатого скота. Содержат фермент гиалуронидазу, к-рая расщепляет один из основных компонентов соединительной ткани — гиалуроновую кислоту. Эти препараты увеличивают проницаемость тканей, способствуют рассасыванию рубцов, в связи с чем их применяют в основном при контрактурах, для рассасывания гематом и рубцов (после операций, ожогов, травм) и т. д. Лидазу вводят подкожно (вблизи мест поражения) или под рубцово-измененные ткани. Формы выпуска лидазы: ампулы или флаконы по 64 УЕ (условных единиц). Содержимое каждой ампулы или флакона перед употреблением растворяют в 1 мл 0,5% р-ра новокаина. Ронидазу применяют местно, нанося 0,5 г препарата и более на пораженные участки кожи. Форма выпуска: во флаконах по 5 и 10 г.

Пенициллиназа (Penicillinasum ) — фермент, инактивирующий чувствительные к нему препараты пенициллина — бензилпенициллин и др. Применяют при тяжелых аллергических реакциях и анафилактическом шоке, вызываемых антибиотиками группы пенициллина. Назначают внутримышечно по 1 000 000 ЕД, растворяя это количество препарата в 2 мл воды для инъекций или изотонического раствора натрия хлорида. Формы выпуска: флаконы и ампулы по 500 000 и 1 000 000 ЕД.

L-аспарагиназа относится к противоопухолевым средствам.[8]

Заключение

В промышленных масштабах ферменты получают из растений, животных и микроорганизмов. Использование последних имеет то преимущество, что позволяет производить ферменты в огромных количествах с помощью стандартных методик ферментации. Кроме того, повысить продуктивность микроорганизмов несравненно легче, чем растений или животных, а применение технологии рекомбинантных ДНК позволяет синтезировать животные ферменты в клетках микроорганизмов. Ферменты, полученные таким путем, используются главным образом в пищевой промышленности и смежных областях. Синтез ферментов в клетках контролируется генетически, и поэтому имеющиеся промышленные микроорганизмы-продуценты были получены в результате направленного изменения генетики микроорганизмов дикого типа.

Список использованных источников

1. www.biotechnolog.ru/prombt/prombt8_3.htm

2. www.chem.msu.su/rus/teaching/biotech/all.pdf

3. www.food-industry.ru/articles/articles_2214.html

4. www.ximicat.com/ebook.php?file=gracheva_bio.djvu&page=63

5. www.xumuk.ru/biologhim/057.html

6. medbad.ru/Spravochnick/GroupB/B13_gnoi-necros.html

7. www.med74.ru/infoitem2481.html

8. www.curemed.ru/medarticle/articles/43691.htm

9. Биотехнология органических кислот и белковых препаратов: учебное пособие / Е.И. Муратова, О.В. Зюзина, О.Б. Шуняева. – Тамбов: Изд-во Тамб. гос. техн. ун-та, 2007. – 80 с

10. Биотехнология: Учебное пособие для ВУЗов в 8 кн./ под ред. Н.С. Егорова, В.Д. Самуилова. Кн. 7: Иммобилизованные ферменты. – М.: 1987 г. – 763 с.

11. Гореликова Г. А. Основы современной пищевой биотехнологии: Учебное пособие. — Кемеровский технологический институт пищевой промышленности. – Кемерово, 2004. – 100 с.

12. Елинов Н.П. Основы биотехнологии,- М.:1996 — 600с.

13. И.М. Грачева, А.Ю. Кривова. Технология ферментных препаратов. –М.: Элевар, 2000 — 512с.

14. Свитцов А.А., Тарасова Н.В., Крылов И.А.Технология ферментных препаратов. Учебное пособие — Москва: РХТУ, 1986.- 48 с.

www.ronl.ru

Реферат - Ферменты - Рефераты на репетирем.ру

Реферат по биологиина тему:“Ферменты”

Москва 1996

Оглавление

1. Общие положения

2. Свойства ферментов

3. Строение ферментов

4. Номенклатура ферментов

5. Классификация ферментов и характеристика некоторых групп

6. Локализация ферментов в клетке

7. Методы выделения и очистки ферментов

Литература

1. Общие положения

Ферменты (от лат. fermentum - брожение, закваска), специфические белки, присутствующие во всех живых клетках и играющие роль биологических катализаторов. Через их посредство реализуется генетическая информация и осуществляются все процессы обмена веществ и энергии в живых организмах. Ферменты бывают простыми или сложными белками, в состав которых наряду с белковым компонентом (апоферментом) входит небелковая часть - кофермент. Эффективность действия ферментов определяется значительным снижением энергии активации катализируемой реакции в результате образования промежуточных фермент-субстратных комплексов. Присоединение субстратов происходит в активных центрах, которые обладают сходством только с определенными субстратами, чем достигается высокая специфичность (избирательность) действия ферментов. Одна из особенностей ферментов - способность к направленному и регулируемому действию. За счёт этого контролируется согласованность всех звеньев обмена веществ. Эта способность определяется пространственность структурной молекулы ферментов. Она реализуется через изменение скорости действия ферментов и зависит от концентрации соответствующих субстратов и кофакторов, рH среды, температуры, а также от присутствия специфических активаторов и ингибиторов (например, адениловых нуклеотидов, карбонильных, сульфгидрильных соединений и др.). Некоторые ферменты помимо активных центров имеют дополнительные, т.н. аллостерические регуляторные центры. Биосинтез ферментов находится под контролем генов. Различают конститутивные ферменты, постоянно присутствующие в клетках, и индуцируемые ферменты, биосинтез которых активируется под влиянием соответствующих субстратов. Некоторые функционально взаимосвязанные ферменты образуют в клетке структурно организованные полиферментные комплексы. Многие ферменты и ферментные комплексы прочно связаны с мембранами клетки или её органоидов (митохондрий, лизосом, микросом и т.д.) и участвуют в активном транспорте веществ через мембраны.

Известно более 20000 различных ферментов, из которых многие выделены из живых клеток и получены в индивидуальном состоянии. Первый кристаллический фермент (уреаза) выделен американским биохимиком Д.Самнером в 1926 г. Для ряда ферментов изучена последовательность аминокислот и выяснено расположение полипептидных цепей в трёхмерном пространстве. В лабораторных условиях осуществлен искусственный химический синтез фермента рибонуклеазы. Ферменты используют для количественного определения и получения различных веществ, для модификации молекул нуклеиновых кислот методами генной инженерии, диагностики и лечения ряда заболеваний, а также в ряде технологических процессов, применяемых в лёгкой, пищевой и фармацевтической промышленностях.

2. Свойства ферментов

Будучи белками, ферменты обладают всеми их свойствами. Вместе с тем биокатализаторы характеризуются рядом специфических качеств, тоже вытекающих из их белковой природы. Эти качества отличают ферменты от катализаторов обычного типа. Сюда относятся термолабильность ферментов, зависимость их действия от значения рН среды, специфичность и, наконец, подверженность влиянию активаторов и ингибиторов.

Термолабильность ферментов объясняется тем, что температура, с одной стороны, воздействует на белковую часть фермента, приводя при слишком высоких значениях к денатурации белка и снижению каталитической функции, а с другой стороны, оказывает влияние на скорость реакции образования фермент-субстратного комплекса и на все последующие этапы преобразования субстрата, что ведет к усилению катализа.

Зависимость каталитической активности фермента от температуры выражается типичной кривой. До некоторого значения температуры (в среднем до 5О°С) каталитическая активность растет, причем на каждые 10°С примерно в 2 раза повышается скорость преобразования субстрата. В то же время постепенно возрастает количество инактивированного фермента за счет денатурации его белковой части. При температуре выше 50°С денатурация ферментного белка резко усиливается и, хотя скорость реакций преобразования субстрата продолжает расти, активность фермента, выражающаяся количеством превращенного субстрата, падает.

Детальные исследования роста активности ферментов с повышением температуры, проведенные в последнее время, показали более сложный характер этой зависимости, чем указано выше: во многих случаях она не отвечает правилу удвоения активности на каждые 10°С в основном из-за постепенно нарастающих конформационных изменений в молекуле фермента.

Температура, при которой каталитическая активность фермента максимальна, называется его температурным оптимумом.

Температурный оптимум для различных ферментов неодинаков. В общем для ферментов животного происхождения он лежит между 40 и 50°С, а растительного - между 50 и 60°С. Однако есть ферменты с более высоким температурным оптимумом, например, у папаина (фермент растительного происхождения, ускоряющий гидролиз белка) оптимум находится при 8О°С. В то же время у каталазы (фермент, ускоряющий распад Н2О2 до Н2О и О2) оптимальная температура действия находится между 0 и -10°С, а при более высоких температурах происходит энергичное окисление фермента и его инактивация.

Зависимость активности фермента от значения рН среды была установлена свыше 50 лет назад. Для каждого фермента существует оптимальное значение рН среды, при котором он проявляет максимальную активность. Большинство ферментов имеет максимальную активность в зоне рН поблизости от нейтральной точки. В резко кислой или резко щелочной среде хорошо работают лишь некоторые ферменты.

Переход к большей или меньшей (по сравнению с оптимальной) концентрации водородных ионов сопровождается более или менее равномерным падением активности фермента.

Влияние концентрации водородных ионов на каталитическую активность ферментов состоит в воздействии ее на активный центр. При разных значениях рН в реакционной среде активный центр может быть слабее или сильнее ионизирован, больше или меньше экранирован соседними с ним фрагментами полипептидной цепи белковой части фермента и т.п. Кроме того, рН среды влияет на степень ионизации субстрата, фермент-субстратного комплекса и продуктов реакции, оказывает большое влияние на состояние фермента, определяя соотношение в нем катионных и анионных центров, что сказывается на третичной структуре белковой молекулы. Последнее обстоятельство заслуживает особого внимания, так как определенная третичная структура белка-фермента необходима для образования фермент-субстратного комплекса.

Специфичность - одно из наиболее выдающихся качеств ферментов. Эго свойство их было открыто еще в прошлом столетии, когда было сделано наблюдение, что очень близкие по структуре вещества - пространственные изомеры (- и -метилглюкозиды) расщепляются по эфирной связи двумя совершенно разными ферментами.

Таким образом, ферменты могут различать химические соединения, отличающиеся друг от друга очень незначительными деталями строения, такими, например, как пространственное расположение метоксильного радикала и атома водорода при 1-м углеродном атоме молекулы метилглюкозида.

По образному выражению, нередко употребляемому в биохимической литературе, фермент подходит к субстрату, как ключ к замку. Это знаменитое правило было сформулировано Э. Фишером в 1894 г. исходя из того, что специфичность действия фермента предопределяется строгим соответствием геометрической структуры субстрата и активного центра фермента.

В 50-е годы нашего столетия это статическое представление было заменено гипотезой Д. Кошланда об индуцированном соответствии субстрата и фермента. Сущность ее сводится к тому, что пространственное соответствие структуры субстрата и активного центра фермента создается в момент их взаимодействия друг с другом, что может быть выряжено формулой “перчатка - рука”. При этом в субстрате уже деформируются некоторые валентные связи и он, таким образом, подготавливается к дальнейшему каталитическому видоизменению, а в молекуле фермента происходят конформационные перестройки. Гипотеза Кошланда, основанная на допущении гибкости активного центра фермента, удовлетворительно объясняла активирование и ингибирование действия ферментов и регуляцию их активности при воздействии различных факторов. В частности, конформационные перестройки в ферменте в процессе изменения его активности Кошланд сравнивал с колебаниями паутины, когда в нее попала добыча (субстрат), подчеркивая этим крайнюю лабильность структуры фермента в процессе каталитического акта.

В настоящее время гипотеза Кошланда постепенно вытесняется гипотезой топохимического соответствия. Сохраняя основные положения гипотезы взаимоиндуцированной настройки субстрата и фермента, она фиксирует внимание на том, что специфичность действия ферментов объясняется в первую очередь узнаванием той части субстрата, которая не изменяется при катализе. Между этой частью субстрата и субстратным центром фермента возникают многочисленные точечные гидрофобные взаимодействия и водородные связи.

3. Строение ферментов

По строению ферменты могут быть однокомпонентными, простыми белками, и двухкомпонентными, сложными белками. Во втором случае в составе фермента обнаруживается добавочная группа небелковой природы.

В разное время возникли различные наименования белковой части и добавочной группы в двухкомпонентных ферментах. Все они до сих пор употребляются в литературе, например:

Фермент в целом Белковая часть Добавочная группа

Симплекс Ферон (носитель) Агон (активная группа)

Холофермент Апофермент Кофермент

Добавочную группу, прочно связанную, не отделяемую от белковой части, называют простетической группой; в отличие от этого добавочную группу, легко отделяющуюся от апофермента и способную к самостоятельному существованию, обычно именуют коферментом.

Химическая природа важнейших коферментов была выяснена в 30-е годы нашего столетия благодаря трудам О. Варбурга, Р. Куна, П. Каррера и др. Оказалось, что роль коферментов в двухкомпонентных ферментах играют большинство витаминов (Е, К, Q, В1, В2, В6 В12, С, Н и др.) или соединений, построенных с участием витаминов (коэнзим А, НАД+ и т. п.). Кроме того, функцию коферментов выполняют такие соединения, как НS-глутатион, многочисленная группа нуклеотидов и их производных, фосфорные эфиры некоторых моносахаридов и ряд других веществ.

Характерной особенностью двухкомпонентных ферментов является то, что ни белковая часть, ни добавочная группа в отдельности не обладают заметной каталитической активностью. Только их комплекс проявляет ферментативные свойства. При этом белок резко повышает каталитическую активность добавочной группы, присущую ей в свободном состоянии в очень малой степени; добавочная же группа стабилизирует белковую часть и делает ее менее уязвимой к денатурирующим агентам. Таким образом, хотя непосредственным исполнителем каталитической функции является простетическая группа, образующая каталитический центр, ее действие немыслимо без участия полипептидных фрагментов белковой части фермента. Более того, в апоферменте есть участок, характеризующийся специфической структурой, избирательно связывающий кофермент. Это так называемый кофермент связывающий домен; его структура у различных апоферментов, соединяющихся с одним и тем же коферментом, очень сходна. Таковы, например, пространственные структуры нуклеотидсвязывающих доменов ряда дегидрогеназ.

Иначе обстоит дело у однокомпонентных ферментов, не имеющих добавочной группы, которая могла бы входить в непосредственный контакт с преобразуемым соединением. Эту функцию выполняет часть белковой молекулы, называемая каталитическим центром. Предполагают, что каталитический центр однокомпонентного фермента представляет собой уникальное сочетание нескольких аминокислотных остатков, располагающихся в определенной части белковой молекулы.

Чаще всего в каталитических центрах однокомпонентных ферментов встречаются остатки сер, гис, три, арг, цис, асп, глу и тир. Радикалы перечисленных аминокислот выполняют здесь ту же функцию, что и кофермент в составе двухкомпонентного фермента.

Аминокислотные остатки, образующие каталитический центр однокомпонентного фермента, расположены в различных точках единой полипептидной цепи. Поэтому каталитический центр возникает в тот момент, когда белковая молекула приобретает присущую ей третичную структуру. Следовательно, изменение третичной структуры фермента под влиянием тех или иных факторов может привести к деформации каталитического центра и изменению ферментативной активности.

Кроме каталитического центра, образованного сочетанием аминокислотных радикалов или присоединением кофермента, у ферментов различают еще два центра: субстратный и аллостерический.

Под субстратным центром понимают участок молекулы фермента, ответственный за присоединение вещества (субстрата), подвергающегося ферментативному превращению. Часто этот участок называют “якорной площадкой” фермента, где, как судно на якорь, становится субстрат. Во многих случаях прикрепление субстрата к ферменту идет за счет взаимодействия с -аминогрулпой радикала лиз, расположенного в субстратном центре. Эту же роль может выполнять СООН-группа глу, а также НS-группа цис. Однако работы последних лет показали, что гораздо большее значение здесь имеют силы гидрофобных взаимодействий и водородные связи, возникающие между радикалами аминокислотных остатков субстратного центра фермента и соответствующими группировками в молекуле субстрата.

Понятие о каталитическом и субстратном центре не следует абсолютизировать. В реальных ферментах субстратный центр может совпадать (или перекрываться) с каталитическим центром. Более того, каталитический центр может окончательно формироваться в момент присоединения субстрата. Поэтому часто говорят об активном центре фермента, представляющем сочетание первого и второго. Активный центр у ферментов располагается на две щели при двухъядерной структуре, например у лизоцима и рибонуклеазы, или на дне глубокой впадины, как у химотрипсиногена.

Аллостерический центр представляет собой участок молекулы фермента, в результате присоединения к которому определенного низкомолекулярного (а иногда - и высокомолекулярного) вещества изменяется третичная структура белковой молекулы. Вследствие этого изменяется конфигурация активного центра, сопровождающаяся либо увеличением, либо снижением каталитической активности фермента. Это явление лежит в основе так называемой аллостерической регуляции каталитической активности ферментов.

Значения молекулярных масс ферментов колеблются в широких пределах: от нескольких тысяч до нескольких миллионов. В природе насчитывается несколько десятков ферментов, обладающих сравнительно небольшими молекулами (до 50 тыс.). Однако большинство ферментов представлено белками более высокой молекулярной массы, построенными из субъединиц. Так, каталаза (М=25200) содержит в молекуле шесть протомеров с М=42000 каждый. Молекула фермента, ускоряющего реакцию синтеза рибонуклеиновых кислот (РНК-полимераза, М = 400000), состоит из 6 неравных субъединиц. Полная молекула глутаматдегидрогеназы, ускоряющей процесс окисления глутаминовой кислоты (М=336000), построена из 6 субъединиц с М=56000.

Способы компоновки протомеров в мультимеры разнообразны. Крайне важно, что достроенный из субъединиц фермент проявляет максимальную каталитическую активность именно в виде мультимера: диссоциация на протомеры резко снижает активность фермента. Не все ферменты-мультимеры построены исключительно из каталитически активных протомеров. Наряду с каталитическими в их составе отмечены регуляторные субъединицы, как, например, у аспартат-карбамилтрансферазы.

Среди ферментов-мультимеров безусловно преобладают димеры и тетрамеры (их несколько сотен), в меньшей мере распространены гексамеры и октамеры (несколько десятков) и необыкновенно редко встречаются тримеры и пентамеры.

Молекулы ферментов-мультимеров в ряде случаев составлены из субъединиц двух типов, обозначаемых условно как субъединицы типа А и В. Они сходны друг с другом, но отличаются по некоторым деталям первичной и третичной структур. В зависимости от соотношения протомеров типа А и В в мультимере последний может существовать в виде нескольких изомеров, которые называют изозимами. Так, при четырех субъединицах возможны 5 изозимов:

I II III IV V

AAAA AAAB AABB ABBB BBBB

В настоящее время интерес к изозимам резко повысился. Оказалось, что кроме генетически детерминированных изозимов существует большая группа ферментов, обладающая множественными формами, возникающими в результате их посттрансляционной модификации. Множественные формы ферментов и изозимы в частности используются сейчас для диагностики болезней в медицине, прогнозирования продуктивности животных подбора родительских пар при скрещивании для обеспечения максимального гетерозиса в потомстве и т. п.

Значение пространственной организации ферментов особенно ярко выявляется при изучении строения так называемых мультиэнзимов, т.е. ферментов, обладающих способностью ускорять одновременно несколько химических реакций и осуществлять сложные превращения субстрата. Примером может служить мультиэнзим, ускоряющий реакцию окислительного декарбоксилирования пировиноградной кислоты. Этот многоферментный комплекс с М=4500000 состоит из трех видов ферментов. Первый из них (E1) ускоряет реакцию декарбоксилирования пировиноградной кислоты. В состав комплекса входит 12 димерных молекул этого фермента (К=19200). Второй и третий ферменты, катализирующие окислительно-восстановительные процессы при окислении пировиноградной кислоты, сосредоточены внутри мультиэнзимного комплекса. Один из них (Е3) представлен шестью димерными молекулами (М=112 000), другой (Е2) - 24 протомерами (М=70000).

В тех случаях, когда мультиэнзимный комплекс обслуживает единый, многоступенчатый процесс биохимических превращений, его называют метаболоном (от слова метаболизм - обмен веществ). Таковы метаболоны гликолиза, биосинтеза ряда аминокислот, цикла дикарбоновых и трикарбоновых кислот и др.

В результате слаженного во времени и пространстве действия всех трех видов входящих в его состав ферментов мультиэнзим с огромной скоростью осуществляет превращение пировиноградной кислоты. Именно в кооперативном характере каталитического процесса и кроется главное отличие биокатализаторов от катализаторов неорганической природы, именно поэтому интенсивность биокатализа в десятки, сотни и тысячи раз превосходит мощность действия неорганических катализаторов.

Сравнительно недавно выявлена еще одна своеобразная черта в строении ферментов: некоторые из них являются полифункциональными, т.е. обладают несколькими энзиматическими активностями, но всего лишь одной полипептидной цепью. Дело в том, что эта единая цепь при формировании третичной структуры образует несколько функционально и стерически обособленных глобулярных участков - доменов, каждый из которых характеризуется своей каталитической активностью.

При изучении мультиэнзимных комплексов и полифункциональных ферментов удалось понять наиболее важную особенность ферментативного катализа, а именно - эстафетную передачу промежуточных продуктов реакции от одного компонента каталитической системы к другому без их высвобождения.

4. Номенклатура ферментов

Ферментология очень долго не располагала строго научной номенклатурой ферментов. Наименования ферментам давали по случайным признакам (тривиальная номенклатура), по названию субстрата (рациональная), по химическому составу фермента, наконец, по типу катализируемой реакции и характеру субстрата.

Примерами тривиальной номенклатуры могут служить названия таких ферментов, как пепсин (от греч. пепсис - пищеварение), трипсин (от греч. трипсис - разжижаю) и папаин (от названия дынного дерева Carica papaja, из сока которого он выделен). По действию все эти ферменты являются протеолитическими, т. е. ускоряют гидролиз протеинов (белков). Характерное название была дано группе окрашенных внутриклеточных ферментов, ускоряющих окислительно-восстановительные реакции в клетке, - цитохромы (от лат. citos - клетка и chroma - цвет).

Наибольшее распространение получила рациональная номенклатура, согласно которой название фермента составляется из названия субстрата характерного окончания -аза. Она была предложена более столетия тому назад, в 1883 г. Э. Дюкло - учеником Л. Пастера. Так, фермент, ускоряющий реакцию гидролиза крахмала, получил название амилаза (от греч. амилон - крахмал), гидролиза жиров - липаза (от греч. липос - жир), белков (протеинов) - протеаза, мочевины - уреаза (от греч. уреа - мочевина) и т. п.

Когда методами аналитической химии были достигнуты известные успехи в расшифровке химической природы простетических групп, возникла новая номенклатура ферментов. Их стали именовать по названию простетической группы, например, геминфермент (простетическая группа - гем), пиридоксаль-фермент (простетическая группа - пиридоксаль) и т.п.

Затем в названии фермента стали указывать как на характер субстрата, так и на тип катализируемой реакции. К примеру, фермент, отнимающий водород от молекулы янтарной кислоты, называют сукцинатдегидрогеназой, подчеркивая этим одновременно и химическую природу субстрата, и отнятие атомов водорода в процессе ферментативного действия:

- 2Н

НООС Сh3  СН2  CООН  НООС  СН = СН  СООН

Янтарная кислота Дегидрирование

В 1961 г. Международная комиссия по номенклатуре ферментов представила V Международному биологическому конгрессу проект номенклатуры, построенный на строго научных принципах. Проект был утвержден конгрессом, и новая номенклатура прочно вошла в ферментологию. Согласно этой (Московской) номенклатуре название ферментов составляют из химического названия субстрата и названия той реакции, которая осуществляется ферментом. Если химическая реакция, ускоряемая ферментом, сопровождается переносом группировки атомов от субстрата к акцептору, название фермента включает также химическое наименование акцептора.

Например, пиридоксальфермент, катализируюший реакцию переаминирования между L-аланином и -кетоглутаровой кислотой, называется L-аланин: 2-оксоглутарат аминотрансфераза. В этом названии отмечены сразу три особенности: 1) субстратом является L-аланин; 2) акцептором служит 2-окcоглутаровая кислота; З) от субстрата к акцептору передается аминогруппа.

Названия ферментов по научной номенклатуре неизмеримо выигрывают в точности, но становятся в ряде случаев гораздо сложнее старых, тривиальных. Так, уреаза (тривиальное название), ускоряющая реакцию гидролиза - мочевины на оксид углерода (IV) и аммиак, по научной номенклатуре именуется карбамид - амидогидролазой:

Н2N  СО  NН2 + Н2О  2NН3 + СО2

В этом названии дано точное химическое наименование субстрата и указано, что фермент катализирует реакцию гидролиза амидогруппы. Трегалаза, ускоряющая реакцию гидролиза трегалозы, называется трегалоза-1-глюко-гидролазой.

В связи со значительным усложнением научных названий в новой номенклатуре допускается сохранение наряду с новыми старых тривиальных, рабочих названий ферментов. Международной комиссией был составлен детальный список всех известных в то время ферментов, существенно дополненный в 1972 г. при пересмотре как классификации, так и номенклатуры некоторых ферментов, где рядом с новым научным названием каждого фермента приведено старое, а также указан химизм катализируемой ферментом реакции и в некоторых случаях природа фермента. Таким образом, исключается возможность путаницы в наименовании ферментов. В 1964 г. список включал 874 фермента; в последующее время он был существенно дополнен и возрос до 1770 ферментов в 1972 г. и до 2003 ферментов в 1979 г.

Каждому ферменту в указанном списке присвоен индивидуальный номер (шифр). Например, шифр уреазы выражается цифрами 3.5.1.5. Это означает, что уреаза относится к 3-му классу (первая цифра) ферментов, все представители которого катализируют реакции гидролиза. Вторая цифра (5) говорит о том, что уреаза принадлежит к 5-му подклассу этого класса, куда зачислены все ферменты, ускоряющие гидролиз С - N-связей, не являющихся пептидными. Третья цифра шифра (1) указывает на принадлежность уреазы к подподклассу 5-го подкласса, члены которого ускоряют гидролиз линейных амидов, а последняя цифра (5) - порядковый номер уреазы в этом подподклассе.

Упоминавшаяся ранее лактатдегидрогенеза имеет шифр 1.1.1.27, т. е. относится к 1-му классу ферментов (оксидоредуктазы), к 1-му подклассу (оксидоредуктазы, действующие на СН - ОН-группировки в качестве доноров атомов водорода), к 1-му подподклассу (акцептором атомов водорода служит никотинамидадениндинуклеотид) и занимает 27-е место в перечне ферментов упомянутого подподкласса. Таким образом, шифр абсолютно точно указывает место фермента в общем списке. В настоящее время принято в научных публикациях при первом упоминании фермента указывать в скобках его шифр.

5. Классификация ферментови характеристика некоторых групп

По первой в истории изучения ферментов классификации их делили на две группы: гидролазы, ускоряющие гидролитические реакции, и десмолазы, ускоряющие реакции негидролитического распада. Затем была сделана попытка разбить ферменты на классы по числу субстратов, участвующих в реакции. В соответствии с этим ферменты классифицировали на три группы. 1. Катализирующие превращения двух субстратов одновременно в обоих направлениях: А+В)С+D. 2. Ускоряющие превращения двух субстратов в прямой реакции и одного в обратной: А+В)С. 3. Обеспечивающие каталитическое видоизменение одного субстрата как в прямой, так и в обратной реакции: А)В.

Одновременно развивалось направление, где в основу классификации ферментов был положен тип реакции, подвергающейся каталитическому воздействию. Наряду с ферментами, ускоряющими реакции гидролиза (гидролазы), были изучены ферменты, участвующие в реакциях переноса атомов и атомных групп (феразы), в изомеризации (изомеразы), расщеплении (лиазы), различных синтезах (синтетазы) и т. д. Это направление в классификации ферментов оказалось наиболее плодотворным, так как объединяло ферменты в группы не по надуманным, формальным признакам, а по типу важнейших биохимических процессов, лежащих в основе жизнедеятельности любого организма. По этому принципу все ферменты делят на 6 классов.

1. Оксидоредуктазы - ускоряют реакции окисления - восстановления. 2. Трансферазы - ускоряют реакции переноса функциональных групп и молекулярных остатков. 3. Гидролазы - ускоряют реакции гидролитического распада. 4. Лиазы - ускоряют негидролитическое отщепление от субстратов определенных групп атомов с образованием двойной связи (или присоединяют группы атомов по двойной связи). 5. Изомеразы - ускоряют пространственные или структурные перестройки в пределах одной молекулы. 6. Лигазы - ускоряют реакции синтеза, сопряженные с распадом богатых энергией связей. Эти классы и положены в основу новой научной классификации ферментов.

К классу оксидоредуктаз относят ферменты, катализирующие реакции окисления - восстановления. Окисление протекает как процесс отнятия атомов Н (электронов) от субстрата, а восстановление - как присоединение атомов Н (электронов) к акцептору.

В класс трансфераз входят ферменты, ускоряющие реакции переноса функциональных групп и молекулярных остатков от одного соединения к другому. Это один из наиболее обширных классов: он насчитывает около 500 индивидуальных ферментов. В зависимости от характера переносимых группировок различают фосфотрансферазы, аминотрансферазы, гликозилтрансферазы, ацилтрансферазы, трансферазы, переносящие одноуглеродные остатки (метилтрансферазы, формилтрансферазы), и др. Например, амидазы ускоряют гидролиз амидов кислот. Из них важную роль в биохимических процессах в организме играют уреаза, аспарагиназа и глутаминаза.

Уреаза была одним из первых белков-ферментов, полученным в кристаллическом состоянии. Это однокомпонентный фермент (М=480000), молекула его глобулярна и состоит из 8 равных субъединиц. Уреаза ускоряет гидролиз мочевины до NН3 и СО2.

Характерные черты действия ферментов класса лигаз (синтетаз) выявлены совсем недавно в связи со значительными успехами в изучении механизма синтеза жиров, белков и углеводов: Оказалось, что старые представления об образовании этих соединений, согласно которым они возникают при обращении реакций гидролиза, не соответствуют действительности. Пути их синтеза принципиально иные.

Главная их особенность - сопряженность синтеза с распадом веществ, способных поставлять энергию для осуществления биосинтетического процесса. Одним из таких природных соединений является АТФ. При отрыве от ее молекулы в присутствии лигаз одного или двух концевых остатков фосфорной кислоты выделяется большое количество энергии, используемой для активирования реагирующих веществ. Лигазы же каталитически ускоряют синтез органических соединений из активированных за счет распада АТФ исходных продуктов. Таким образом, к лигазам относятся ферменты, катализирующие соединение друг с другом двух молекул, сопряженное с гидролизом пирофосфатной связи в молекуле АТФ или иного нуклеозидтрифосфата.

Механизм действия лигаз изучен еще недостаточно, но, несомненно, он весьма сложен. В ряде случаев доказано, что одно из участвующих в основной реакции веществ сначала дает промежуточное соединение с фрагментом распадающейся молекулы АТФ, а вслед за этим указанный промежуточный продукт взаимодействует со вторым партнером основной химической реакции с образованием конечного продукта.

6. Локализация ферментов в клетке

Одним из принципиальных отличий ферментов от катализаторов небиологического происхождения является кооперативный характер их действия. На уровне одиночной молекулы фермента кооперативный принцип реализуется в тонком взаимодействии субстратного, активного и аллостерического центров. Однако гораздо большее значение имеет кооперативное осуществление реакций на уровне ансамблей ферментов. Именно благодаря наличию систем ферментов - в виде мультиэнзимных комплексов или еще более сложных образований - метаболонов, обеспечивающих каталитические превращения всех участников единого метаболического цикла - в клетках с большой скоростью осуществляются многостадийные процессы как распада, так и синтеза органических молекул. Ферментативный катализ в многостадийных реакциях идет без выделения промежуточных продуктов: только возникнув, они тут же подвергаются дальнейшим преобразованиям.

Это возможно лишь потому, что в клеточном содержимом ферменты распределены не хаотически, а строго упорядоченно. С современной точки зрения клетка представляется высокоорганизованной системой, в отдельных частях которой осуществляются строго определенные биохимические процессы. В соответствии с приуроченностью их к определенным субклеточным частицам или отсекам (компартментам) клетки в них локализованы те или иные индивидуальные ферменты, мультиэнзимные комплексы, полифункциональные ферменты или сложнейшие метаболоны.

Разнообразные гидролазы и лиазы сосредоточены преимущественно в лизосомах. Внутри этих сравнительно небольших (несколько нанометров в диаметре) пузырьков, ограниченных мембраной от гиалоплазмы клетки, протекают процессы деструкции различных органических соединений до тех простейших структурных единиц, из которых они построены. Сложные ансамбли окислительно-восстановительных ферментов, такие, например, как цитохромная система, находятся в митохондриях. В этих же субклеточных частицах локализован набор ферментов цикла дикарбоновых и трикарбоновых кислот. Ферменты активирования аминокислот распределены в гиалоплазме, но они же есть и в ядре. В гиалоплазме присутствуют многочисленные метаболоны гликолиза, структурно объединенные с таковыми пентозофосфатного цикла, что обеспечивает взаимопереключение дихотомического и апотомического путей распада углеводов. В то же время ферменты, ускоряющие перенос аминокислотных остатков на растущий конец полипептидной цепи и катализирующие некоторые другие реакции в процессе биосинтеза белка, сосредоточены в рибосомальном аппарате клетки. Нуклеотидилтрансферазы, ускоряющие реакцию переноса нуклеотидных остатков при новообразовании нуклеиновых кислот, локализованы в основном в ядерном аппарате клетки. Таким образом, системы ферментов, сосредоточенные в тех или иных структурах, участвуют в осуществлении отдельных циклов реакций. Будучи тонко координированы друг с другом, эти отдельные циклы реакций обеспечивают жизнедеятельность клеток, органов, тканей и организма в целом.

7. Методы выделения и очистки ферментов

Долгое время вполне обоснованно считали, что все ферменты - тела белковой природы. Однако в начале 80-х годов была неожиданно открыта способность низкомолекулярных рибонуклеиновых кислот ускорять реакцию превращения предшественников РНК в функционально значимый продукт, т. е. возникло представление о полирибонуклеотидной природе некоторых ферментов, названных рибозимами.

Хотя уже осуществлен лабораторный синтез ряда ферментов - рибонуклеазы, лизоцима, ферредоксина и цитохрома с, трудно ожидать, что синтетическое получение ферментов получит широкое распространение в ближайшие десятилетия ввиду его сложности и дороговизны, поэтому единственный реальный в настоящее время способ получения ферментов - это выделение их из биологических объектов.

Выделяют ферменты так же, как и другие белки, хотя есть приемы, применяемые преимущественно для ферментов. Из них можно отметить экстракцию глицерином, в котором сохраняются нативные свойства ферментов, а также метод ацетоновых порошков, состоящий в осаждении и быстром обезвоживании при температуре не выше -10°С тканей или вытяжек из них, содержащих ферменты. К их числу относится также получение ферментов путем адсорбции с последующей элюцией (снятием) с адсорбента. Этот метод был введен в химию ферментов А. Я. Данилевским и дал мощный толчок развитию ферментологии. Сейчас адсорбционный метод выделения и очистки ферментов разработан детально. Наряду с ним широко применяют метод ионообменной хроматографии, метод молекулярных сит, электрофорез и особенно изоэлектрофокусирование. Одна из модификаций адсорбционного метода - афинная хроматография, где адсорбентом служит вещество, с которым фермент взаимодействует избирательно. В результате лишь один этот фермент задерживается на колонке, а все сопутствующие ему выходят с током проявителя. Изменяя характер проявителя, исследуемый фермент элюирует с колонки. Этим методом достигают очистки фермента в несколько тысяч раз, применяя всего лишь одноэтажную (аффинная сорбция - элюция) схему выделения.

Для успешного выделения ферментов из клеточного содержимого необходимо очень тонкое измельчение исходного материала, вплоть до разрушения субклеточных структур: лизосом, митохондрий, ядер и др., которые несут в своем составе многие индивидуальные ферменты. Особое внимание при выделении ферментов уделяют проведению всех операций в условиях, исключающих денатурацию белка, так как она всегда связана с потерей ферментативной активности. Этому способствует проведение операций в присутствии защитных добавок, в частности HS-содержащих соединений (цистеина, глутатиона, меркаптоэтанола, цистеамина, дитиотреитола и др.):

HS Ch3  СН2  NН HSCh3CH(ОН)  СН (ОН)  Сh3  SH

Цистеамин Дитиотреитол

Очень важно поддерживать на всех этапах выделения ферментов низкую температуру, так как некоторые из них даже при -80°С теряют активность.

Для оценки гомогенности ферментного препарата прибегают к обычным методам белковой химии. Переломным моментом в усовершенствовании методов получения высокоочищенных, гомогенных препаратов ферментов было открытие способности их кристаллизоваться, осуществленное впервые в 1906 г. А. Д. Розенфельдом (им была получена в виде кристаллов оксидаза из корней редьки) и приобретшее с 1926 г. широкую известность после работы Д. Самнера по получению кристаллической уреазы из бобов канавалии. Нередко о степени чистоты ферментного препарата судят по его биологической активности; если активность при дальнейшей очистке не возрастает, препарат можно считать гомогенным. Из 2003 включенных в список ферментов более 1500 выделено и в той или иной мере очищено, третья часть их закристаллизована, у нескольких сотен выяснена первичная, а у нескольких десятков - третичная структура.

Литература

1. Власова З.А. Биология. Справочник школьника. М., Всероссийское слово, 1995 г.

2. Хомченко Г.Л. Химия для поступающих в ВУЗы. Учебное пособие. М., Высшая школа, 1993 г.

3. Биологический энциклопедический словарь. Под ред. Гилярова М.С. М., Советская энциклопедия, 1987 г.

referat.store

Реферат Ферменты, их сущность и виды

Муниципальное общеобразовательное учреждение

“ Cредняя общеобразовательная школа с.Ивантеевка Ивантеевского района Саратовской области ”.Сообщение

На тему: “ Ферменты”Выполнила:ученица 9 “А” класса

Ермольчева Д.Проверила:учитель химии

Мальшина Н.Г.с.Ивантеевка

2010г. Оглавление

1. Общие положения...........................................................................................................

2. Свойства ферментов.......................................................................................................

3. Строение ферментов.......................................................................................................

4. Номенклатура ферментов..............................................................................................

5. Классификация ферментов и характеристика некоторых групп...............................

6. Локализация ферментов в клетке.................................................................................

7. Методы выделения и очистки ферментов..................................................................

Литература............................................................................................................................

1. Общие положения

Ферменты (от лат. fermentum - брожение, закваска), специфические белки, присутствующие во всех живых клетках и играющие роль биологических катализаторов. Через их посредство реализуется генетическая информация и осуществляются все процессы обмена веществ и энергии в живых организмах. Ферменты бывают простыми или сложными белками, в состав которых наряду с белковым компонентом (апоферментом) входит небелковая часть - кофермент. Эффективность действия ферментов определяется значительным снижением энергии активации катализируемой реакции в результате образования промежуточных фермент-субстратных комплексов. Присоединение субстратов происходит в активных центрах, которые обладают сходством только с определенными субстратами, чем достигается высокая специфичность (избирательность) действия ферментов. Одна из особенностей ферментов - способность к направленному и регулируемому действию. За счёт этого контролируется согласованность всех звеньев обмена веществ. Эта способность определяется пространственность структурной молекулы ферментов. Она реализуется через изменение скорости действия ферментов и зависит от концентрации соответствующих субстратов и кофакторов, рH среды, температуры, а также от присутствия специфических активаторов и ингибиторов (например, адениловых нуклеотидов, карбонильных, сульфгидрильных соединений и др.). Некоторые ферменты помимо активных центров имеют дополнительные, т.н. аллостерические регуляторные центры. Биосинтез ферментов находится под контролем генов. Различают конститутивные ферменты, постоянно присутствующие в клетках, и индуцируемые ферменты, биосинтез которых активируется под влиянием соответствующих субстратов. Некоторые функционально взаимосвязанные ферменты образуют в клетке структурно организованные полиферментные комплексы. Многие ферменты и ферментные комплексы прочно связаны с мембранами клетки или её органоидов (митохондрий, лизосом, микросом и т.д.)  и участвуют в активном транспорте веществ через мембраны.

Известно более 20000 различных ферментов, из которых многие выделены из живых клеток и получены в индивидуальном состоянии. Первый кристаллический фермент (уреаза) выделен американским биохимиком Д.Самнером в 1926 г. Для ряда ферментов изучена последовательность аминокислот и выяснено расположение полипептидных цепей в трёхмерном пространстве. В лабораторных условиях осуществлен искусственный химический синтез фермента рибонуклеазы. Ферменты используют для количественного определения и получения различных веществ, для модификации молекул нуклеиновых кислот методами генной инженерии, диагностики и лечения ряда заболеваний, а также в ряде технологических процессов, применяемых в лёгкой, пищевой и фармацевтической промышленностях. 2. Свойства ферментов

Будучи белками, ферменты обладают всеми их свойствами. Вместе с тем биокатализаторы характеризуются рядом специфических качеств, тоже вытекающих из их белковой природы. Эти качества отличают ферменты от катализаторов обычного типа. Сюда относятся термолабильность ферментов, зависимость их действия от значения рН среды, специфичность и, наконец, подверженность влиянию активаторов и ингибиторов.

Термолабильность ферментов объясняется тем, что температура, с одной стороны, воздействует на белковую часть фермента, приводя при слишком высоких значениях к денатурации белка и снижению каталитической функции, а с другой стороны, оказывает влияние на скорость реакции образования фермент-субстратного комплекса и на все последующие этапы преобразования субстрата, что ведет к усилению катализа.

Зависимость каталитической активности фермента от температуры выражается типичной кривой. До некоторого значения температуры (в среднем до 5О°С) каталитическая активность растет, причем на каждые 10°С примерно в 2 раза повышается скорость преобразования субстрата. В то же время постепенно возрастает количество инактивированного фермента за счет денатурации его белковой части. При температуре выше 50°С денатурация ферментного белка резко усиливается и, хотя скорость реакций преобразования субстрата продолжает расти, активность фермента, выражающаяся количеством превращенного субстрата, падает.

Детальные исследования роста активности ферментов с повышением температуры, проведенные в последнее время, показали более сложный характер этой зависимости, чем указано выше: во многих случаях она не отвечает правилу удвоения активности на каждые 10°С в основном из-за постепенно нарастающих конформационных изменений в молекуле фермента.

Температура, при которой каталитическая активность фермента максимальна, называется его температурным оптимумом.

Температурный оптимум для различных ферментов неодинаков. В общем для ферментов животного происхождения он лежит между 40 и 50°С, а растительного - между 50 и 60°С. Однако есть ферменты с более высоким температурным оптимумом, например, у папаина (фермент растительного происхождения, ускоряющий гидролиз белка) оптимум находится при 8О°С. В то же время у каталазы (фермент, ускоряющий распад Н2О2 до Н2О и О2) оптимальная температура действия находится между 0 и -10°С, а при более высоких температурах происходит энергичное окисление фермента и его инактивация.

Зависимость активности фермента от значения рН среды была установлена свыше 50 лет назад. Для каждого фермента существует оптимальное значение рН среды, при котором он проявляет максимальную активность. Большинство ферментов имеет максимальную активность в зоне рН поблизости от нейтральной точки. В резко кислой или резко щелочной среде хорошо работают лишь некоторые ферменты.

Переход к большей или меньшей (по сравнению с оптимальной) концентрации водородных ионов сопровождается более или менее равномерным падением активности фермента.

Влияние концентрации водородных ионов на каталитическую активность ферментов состоит в воздействии ее на активный центр. При разных значениях рН в реакционной среде активный центр может быть слабее или сильнее ионизирован, больше или меньше экранирован соседними с ним фрагментами полипептидной цепи белковой части фермента и т.п. Кроме того, рН среды влияет на степень ионизации субстрата, фермент-субстратного комплекса и продуктов реакции, оказывает большое влияние на состояние фермента, определяя соотношение в нем катионных и анионных центров, что сказывается на третичной структуре белковой молекулы. Последнее обстоятельство заслуживает особого внимания, так как определенная третичная структура белка-фермента необходима для образования фермент-субстратного комплекса.

Специфичность - одно из наиболее выдающихся качеств ферментов. Эго свойство их было открыто еще в прошлом столетии, когда было сделано наблюдение, что очень близкие по структуре вещества - пространственные изомеры (a- и b-метилглюкозиды) расщепляются по эфирной связи двумя совершенно разными ферментами.

Таким образом, ферменты могут различать химические соединения, отличающиеся друг от друга очень незначительными деталями строения, такими, например, как пространственное расположение метоксильного радикала и атома водорода при 1-м углеродном атоме молекулы метилглюкозида.

По образному выражению, нередко употребляемому в биохимической литературе, фермент подходит к субстрату, как ключ к замку. Это знаменитое правило было сформулировано Э. Фишером в 1894 г. исходя из того, что специфичность действия фермента предопределяется строгим соответствием геометрической структуры субстрата и активного центра фермента.

В 50-е годы нашего столетия это статическое представление было заменено гипотезой Д. Кошланда об индуцированном соответствии субстрата и фермента. Сущность ее сводится к тому, что пространственное соответствие структуры субстрата и активного центра фермента создается в момент их взаимодействия друг с другом, что может быть выряжено формулой “перчатка - рука”. При этом в субстрате уже деформируются некоторые валентные связи и он, таким образом, подготавливается к дальнейшему каталитическому видоизменению, а в молекуле фермента происходят конформационные перестройки. Гипотеза Кошланда, основанная на допущении гибкости активного центра фермента, удовлетворительно объясняла активирование и ингибирование действия ферментов и регуляцию их активности при воздействии различных факторов. В частности, конформационные перестройки в ферменте в процессе изменения его активности Кошланд сравнивал с колебаниями паутины, когда в нее попала добыча (субстрат), подчеркивая этим крайнюю лабильность структуры фермента в процессе каталитического акта.

В настоящее время гипотеза Кошланда постепенно вытесняется гипотезой топохимического соответствия. Сохраняя основные положения гипотезы взаимоиндуцированной настройки субстрата и фермента, она фиксирует внимание на том, что специфичность действия ферментов объясняется в первую очередь узнаванием той части субстрата, которая не изменяется при катализе. Между этой частью субстрата и субстратным центром фермента возникают многочисленные точечные гидрофобные взаимодействия и водородные связи.

3. Строение ферментов

По строению ферменты могут быть однокомпонентными, простыми белками, и двухкомпонентными, сложными белками. Во втором случае в составе фермента обнаруживается добавочная группа небелковой природы.

В разное время возникли различные наименования белковой части и добавочной группы в двухкомпонентных ферментах. Все они до сих пор употребляются в литературе, например:

Фермент в целом         Белковая часть            Добавочная группа

Симплекс            Ферон (носитель)                 Агон (активная группа)

Холофермент      Апофермент                 Кофермент

Добавочную группу, прочно связанную, не отделяемую от белковой части, называют простетической группой; в отличие от этого добавочную группу, легко отделяющуюся от апофермента и способную к самостоятельному существованию, обычно именуют коферментом.

Химическая природа важнейших коферментов была выяснена в 30-е годы нашего столетия благодаря трудам О. Варбурга, Р. Куна, П. Каррера и др. Оказалось, что роль коферментов в двухкомпонентных ферментах играют большинство витаминов (Е, К, Q, В1, В2, В6 В12, С, Н и др.) или соединений, построенных с участием витаминов (коэнзим А, НАД+ и т. п.). Кроме того, функцию коферментов выполняют такие соединения, как НS-глутатион, многочисленная группа нуклеотидов и их производных, фосфорные эфиры некоторых моносахаридов и ряд других веществ.

Характерной особенностью двухкомпонентных ферментов является то, что ни белковая часть, ни добавочная группа в отдельности не обладают заметной каталитической активностью. Только их комплекс проявляет ферментативные свойства. При этом белок резко повышает каталитическую активность добавочной группы, присущую ей в свободном состоянии в очень малой степени; добавочная же группа стабилизирует белковую часть и делает ее менее уязвимой к денатурирующим агентам. Таким образом, хотя непосредственным исполнителем каталитической функции является простетическая группа, образующая каталитический центр, ее действие немыслимо без участия полипептидных фрагментов белковой части фермента. Более того, в апоферменте есть участок, характеризующийся специфической структурой, избирательно связывающий кофермент. Это так называемый кофермент связывающий домен; его структура у различных апоферментов, соединяющихся с одним и тем же коферментом, очень сходна. Таковы, например, пространственные структуры нуклеотидсвязывающих доменов ряда дегидрогеназ.

Иначе обстоит дело у однокомпонентных ферментов, не имеющих добавочной группы, которая могла бы входить в непосредственный контакт с преобразуемым соединением. Эту функцию выполняет часть белковой молекулы, называемая каталитическим центром. Предполагают, что каталитический центр однокомпонентного фермента представляет собой уникальное сочетание нескольких аминокислотных остатков, располагающихся в определенной части белковой молекулы.

Чаще всего в каталитических центрах однокомпонентных ферментов встречаются остатки сер, гис, три, арг, цис, асп, глу и тир. Радикалы перечисленных аминокислот выполняют здесь ту же функцию, что и кофермент в составе двухкомпонентного фермента.

Аминокислотные остатки, образующие каталитический центр однокомпонентного фермента, расположены в различных точках единой полипептидной цепи. Поэтому каталитический центр возникает в тот момент, когда белковая молекула приобретает присущую ей третичную структуру. Следовательно, изменение третичной структуры фермента под влиянием тех или иных факторов может привести к деформации каталитического центра и изменению ферментативной активности.

Кроме каталитического центра, образованного сочетанием аминокислотных радикалов или присоединением кофермента, у ферментов различают еще два центра: субстратный и аллостерический.

Под субстратным центром понимают участок молекулы фермента, ответственный за присоединение вещества (субстрата), подвергающегося ферментативному превращению. Часто этот участок называют “якорной площадкой” фермента, где, как судно на якорь, становится субстрат. Во многих случаях прикрепление субстрата к ферменту идет за счет взаимодействия с e-аминогрулпой радикала лиз, расположенного в субстратном центре. Эту же роль может выполнять СООН-группа глу, а также НS-группа цис. Однако работы последних лет показали, что гораздо большее значение здесь имеют силы гидрофобных взаимодействий и водородные связи, возникающие между радикалами аминокислотных остатков субстратного центра фермента и соответствующими группировками в молекуле субстрата.

Понятие о каталитическом и субстратном центре не следует абсолютизировать. В реальных ферментах субстратный центр может совпадать (или перекрываться) с каталитическим центром. Более того, каталитический центр может окончательно формироваться в момент присоединения субстрата. Поэтому часто говорят об активном центре фермента, представляющем сочетание первого и второго. Активный центр у ферментов располагается на две щели при двухъядерной структуре, например у лизоцима и рибонуклеазы, или на дне глубокой впадины, как у химотрипсиногена.

Аллостерический центр представляет собой участок молекулы фермента, в результате присоединения к которому определенного низкомолекулярного (а иногда - и высокомолекулярного) вещества изменяется третичная структура белковой молекулы. Вследствие этого изменяется конфигурация активного центра, сопровождающаяся либо увеличением, либо снижением каталитической активности фермента. Это явление лежит в основе так называемой аллостерической регуляции каталитической активности ферментов.

Значения молекулярных масс ферментов колеблются в широких пределах: от нескольких тысяч до нескольких миллионов. В природе насчитывается несколько десятков ферментов, обладающих сравнительно небольшими молекулами (до 50 тыс.). Однако большинство ферментов представлено белками более высокой молекулярной массы, построенными из субъединиц. Так, каталаза (М=25200) содержит в молекуле шесть протомеров с М=42000 каждый. Молекула фермента, ускоряющего реакцию синтеза рибонуклеиновых кислот (РНК-полимераза, М = 400000), состоит из 6 неравных субъединиц. Полная молекула глутаматдегидрогеназы, ускоряющей процесс окисления глутаминовой кислоты (М=336000), построена из 6 субъединиц с М=56000.

Способы компоновки протомеров в мультимеры разнообразны. Крайне важно, что достроенный из субъединиц фермент проявляет максимальную каталитическую активность именно в виде мультимера: диссоциация на протомеры резко снижает активность фермента. Не все ферменты-мультимеры построены исключительно из каталитически активных протомеров. Наряду с каталитическими в их составе отмечены регуляторные субъединицы, как, например, у аспартат-карбамилтрансферазы.

Среди ферментов-мультимеров безусловно преобладают димеры и тетрамеры (их несколько сотен), в меньшей мере распространены гексамеры и октамеры (несколько десятков) и необыкновенно редко встречаются тримеры и пентамеры.

Молекулы ферментов-мультимеров в ряде случаев составлены из субъединиц двух типов, обозначаемых условно как субъединицы типа А и В. Они сходны друг с другом, но отличаются по некоторым деталям первичной и третичной структур. В зависимости от соотношения протомеров типа А и В в мультимере последний может существовать в виде нескольких изомеров, которые называют изозимами. Так, при четырех субъединицах возможны 5 изозимов:

     I                 II               III               IV               V

         AAAA AAAB AABB          ABBB                   BBBB

В настоящее время интерес к изозимам резко повысился. Оказалось, что кроме генетически детерминированных изозимов существует большая группа ферментов, обладающая множественными формами, возникающими в результате их посттрансляционной модификации. Множественные формы ферментов и изозимы в частности используются сейчас для диагностики болезней в медицине, прогнозирования продуктивности животных подбора родительских пар при скрещивании для обеспечения максимального гетерозиса в потомстве и т. п.

Значение пространственной организации ферментов особенно ярко выявляется при изучении строения так называемых мультиэнзимов, т.е. ферментов, обладающих способностью ускорять одновременно несколько химических реакций и осуществлять сложные превращения субстрата. Примером может служить мультиэнзим, ускоряющий реакцию окислительного декарбоксилирования пировиноградной кислоты. Этот  многоферментный комплекс с М=4500000 состоит из трех видов ферментов. Первый из них (E1) ускоряет реакцию декарбоксилирования пировиноградной кислоты. В состав комплекса входит 12 димерных молекул этого фермента (К=19200). Второй и третий ферменты, катализирующие окислительно-восстановительные процессы при окислении пировиноградной кислоты, сосредоточены внутри мультиэнзимного комплекса. Один из них (Е3) представлен шестью димерными молекулами (М=112 000), другой (Е2) - 24 протомерами (М=70000).

В тех случаях, когда мультиэнзимный комплекс обслуживает единый, многоступенчатый процесс биохимических превращений, его называют метаболоном (от слова метаболизм - обмен веществ). Таковы метаболоны гликолиза, биосинтеза ряда аминокислот, цикла дикарбоновых и трикарбоновых кислот и др.

В результате слаженного во времени и пространстве действия всех трех видов входящих в его состав ферментов мультиэнзим с огромной скоростью осуществляет превращение пировиноградной кислоты. Именно в кооперативном характере каталитического процесса и кроется главное отличие биокатализаторов от катализаторов неорганической природы, именно поэтому интенсивность биокатализа в десятки, сотни и тысячи раз превосходит мощность действия неорганических катализаторов.

Сравнительно недавно выявлена еще одна своеобразная черта в строении ферментов: некоторые из них являются полифункциональными, т.е. обладают несколькими энзиматическими активностями, но всего лишь одной полипептидной цепью. Дело в том, что эта единая цепь при формировании третичной структуры образует несколько функционально и стерически обособленных глобулярных участков - доменов, каждый из которых характеризуется своей каталитической активностью.

При изучении мультиэнзимных комплексов и полифункциональных ферментов удалось понять наиболее важную особенность ферментативного катализа, а именно - эстафетную передачу промежуточных продуктов реакции от одного компонента каталитической системы к другому без их высвобождения.

4. Номенклатура ферментов

Ферментология очень долго не располагала строго научной номенклатурой ферментов. Наименования ферментам давали по случайным признакам (тривиальная номенклатура), по названию субстрата (рациональная), по химическому составу фермента, наконец, по типу катализируемой реакции и характеру субстрата.

Примерами тривиальной номенклатуры могут служить названия таких ферментов, как пепсин (от греч. пепсис - пищеварение), трипсин (от греч. трипсис - разжижаю) и папаин (от названия дынного дерева Carica papaja, из сока которого он выделен). По действию все эти ферменты являются протеолитическими, т. е. ускоряют гидролиз протеинов (белков). Характерное название была дано группе окрашенных внутриклеточных ферментов, ускоряющих окислительно-восстановительные реакции в клетке, - цитохромы (от лат. citos - клетка и chroma - цвет).

Наибольшее распространение получила рациональная номенклатура, согласно которой название фермента составляется из названия субстрата характерного окончания -аза. Она была предложена более столетия тому назад, в 1883 г. Э. Дюкло - учеником Л. Пастера. Так, фермент, ускоряющий реакцию гидролиза крахмала, получил название амилаза (от греч. амилон - крахмал), гидролиза жиров - липаза (от греч. липос - жир), белков (протеинов) - протеаза, мочевины - уреаза (от греч. уреа - мочевина) и т. п.

Когда методами аналитической химии были достигнуты известные успехи в расшифровке химической природы простетических групп, возникла новая номенклатура ферментов. Их стали именовать по названию простетической группы, например, геминфермент (простетическая группа - гем), пиридоксаль-фермент (простетическая группа - пиридоксаль) и т.п.

Затем в названии фермента стали указывать как на характер субстрата, так и на тип катализируемой реакции. К примеру, фермент, отнимающий водород от молекулы янтарной кислоты, называют сукцинатдегидрогеназой, подчеркивая этим одновременно и химическую природу субстрата, и отнятие атомов водорода в процессе ферментативного действия:

                                               - 2Н

НООС ¾ Сh3¾ СН2¾ CООН ¾¾¾¾¾® НООС ¾ СН = СН ¾ СООН

Янтарная кислота                  Дегидрирование

В 1961 г. Международная комиссия по номенклатуре ферментов представила V Международному биологическому конгрессу проект номенклатуры, построенный на строго научных принципах. Проект был утвержден конгрессом, и новая номенклатура прочно вошла в ферментологию. Согласно этой (Московской) номенклатуре название ферментов составляют из химического названия субстрата и названия той реакции, которая осуществляется ферментом. Если химическая реакция, ускоряемая ферментом, сопровождается переносом группировки атомов от субстрата к акцептору, название фермента включает также химическое наименование акцептора.

Например, пиридоксальфермент, катализируюший реакцию переаминирования между L-аланином и a-кетоглутаровой кислотой, называется L-аланин: 2-оксоглутарат аминотрансфераза. В этом названии отмечены сразу три особенности: 1) субстратом является L-аланин; 2) акцептором служит 2-окcоглутаровая кислота; З) от субстрата к акцептору передается аминогруппа.

Названия ферментов по научной номенклатуре неизмеримо выигрывают в точности, но становятся в ряде случаев гораздо сложнее старых, тривиальных. Так, уреаза (тривиальное название), ускоряющая реакцию гидролиза - мочевины на оксид углерода (IV) и аммиак, по научной номенклатуре именуется карбамид - амидогидролазой:

Н2N ¾ СО ¾ NН2 + Н2О ¾¾¾¾¾® 2NН3 + СО2

В этом названии дано точное химическое наименование субстрата и указано, что фермент катализирует реакцию гидролиза амидогруппы. Трегалаза, ускоряющая реакцию гидролиза трегалозы, называется трегалоза-1-глюко-гидролазой.

В связи со значительным усложнением научных названий в новой номенклатуре допускается сохранение наряду с новыми старых тривиальных, рабочих названий ферментов. Международной комиссией был составлен детальный список всех известных в то время ферментов, существенно дополненный в 1972 г. при пересмотре как классификации, так и номенклатуры некоторых ферментов, где рядом с новым научным названием каждого фермента приведено старое, а также указан химизм катализируемой ферментом реакции и в некоторых случаях природа фермента. Таким образом, исключается возможность путаницы в наименовании ферментов. В 1964 г. список включал 874 фермента; в последующее время он был существенно дополнен и возрос до 1770 ферментов в 1972 г. и до 2003 ферментов в 1979 г.

Каждому ферменту в указанном списке присвоен индивидуальный номер (шифр). Например, шифр уреазы выражается цифрами 3.5.1.5. Это означает, что уреаза относится к 3-му классу (первая цифра) ферментов, все представители которого катализируют реакции гидролиза. Вторая цифра (5) говорит о том, что уреаза принадлежит к 5-му подклассу этого класса, куда зачислены все ферменты, ускоряющие гидролиз С - N-связей, не являющихся пептидными. Третья цифра шифра (1) указывает на принадлежность уреазы к подподклассу 5-го подкласса, члены которого ускоряют гидролиз линейных амидов, а последняя цифра (5) - порядковый номер уреазы в этом подподклассе.

Упоминавшаяся ранее лактатдегидрогенеза имеет шифр 1.1.1.27, т. е. относится к 1-му классу ферментов (оксидоредуктазы), к 1-му подклассу (оксидоредуктазы, действующие на СН - ОН-группировки в качестве доноров атомов водорода), к 1-му подподклассу (акцептором атомов водорода служит никотинамидадениндинуклеотид) и занимает 27-е место в перечне ферментов упомянутого подподкласса. Таким образом, шифр абсолютно точно указывает место фермента в общем списке. В настоящее время принято в научных публикациях при первом упоминании фермента указывать в скобках его шифр.

5. Классификация ферментови характеристика некоторых групп

По первой в истории изучения ферментов классификации их делили на две группы: гидролазы, ускоряющие гидролитические реакции, и десмолазы, ускоряющие реакции негидролитического распада. Затем была сделана попытка разбить ферменты на классы по числу субстратов, участвующих в реакции. В соответствии с этим ферменты классифицировали на три группы. 1. Катализирующие превращения двух субстратов одновременно в обоих направлениях: А+В)С+D. 2. Ускоряющие превращения двух субстратов в прямой реакции и одного в обратной: А+В)С. 3. Обеспечивающие каталитическое видоизменение одного субстрата как в прямой, так и в обратной реакции: А)В.

Одновременно развивалось направление, где в основу классификации ферментов был положен тип реакции, подвергающейся каталитическому воздействию. Наряду с ферментами, ускоряющими реакции гидролиза (гидролазы), были изучены ферменты, участвующие в реакциях переноса атомов и атомных групп (феразы), в изомеризации (изомеразы), расщеплении (лиазы), различных синтезах (синтетазы) и т. д. Это направление в классификации ферментов оказалось наиболее плодотворным, так как объединяло ферменты в группы не по надуманным, формальным признакам, а по типу важнейших биохимических процессов, лежащих в основе жизнедеятельности любого организма. По этому принципу все ферменты делят на 6 классов.

1. Оксидоредуктазы - ускоряют реакции окисления - восстановления. 2. Трансферазы - ускоряют реакции переноса функциональных групп и молекулярных остатков. 3. Гидролазы - ускоряют реакции гидролитического распада. 4. Лиазы - ускоряют негидролитическое отщепление от субстратов определенных групп атомов с образованием двойной связи (или присоединяют группы атомов по двойной связи). 5. Изомеразы - ускоряют пространственные или структурные перестройки в пределах одной молекулы. 6. Лигазы - ускоряют реакции синтеза, сопряженные с распадом богатых энергией связей. Эти классы и положены в основу новой научной классификации ферментов.

К классу оксидоредуктаз относят ферменты, катализирующие реакции окисления - восстановления. Окисление протекает как процесс отнятия атомов Н (электронов) от субстрата, а восстановление - как присоединение атомов Н (электронов) к акцептору.

В класс трансфераз входят ферменты, ускоряющие реакции переноса функциональных групп и молекулярных остатков от одного соединения к другому. Это один из наиболее обширных классов: он насчитывает около 500 индивидуальных ферментов. В зависимости от характера переносимых группировок различают фосфотрансферазы, аминотрансферазы, гликозилтрансферазы, ацилтрансферазы, трансферазы, переносящие одноуглеродные остатки (метилтрансферазы, формилтрансферазы), и др. Например, амидазы ускоряют гидролиз амидов кислот. Из них важную роль в биохимических процессах в организме играют уреаза, аспарагиназа и глутаминаза.

Уреаза была одним из первых белков-ферментов, полученным в кристаллическом состоянии. Это однокомпонентный фермент (М=480000), молекула его глобулярна и состоит из 8 равных субъединиц. Уреаза ускоряет гидролиз мочевины до NН3 и СО2.

Характерные черты действия ферментов класса лигаз (синтетаз) выявлены совсем недавно в связи со значительными успехами в изучении механизма синтеза жиров, белков и углеводов: Оказалось, что старые представления об образовании этих соединений, согласно которым они возникают при обращении реакций гидролиза, не соответствуют действительности. Пути их синтеза принципиально иные.

Главная их особенность - сопряженность синтеза с распадом веществ, способных поставлять энергию для осуществления биосинтетического процесса. Одним из таких природных соединений является АТФ. При отрыве от ее молекулы в присутствии лигаз одного или двух концевых остатков фосфорной кислоты выделяется большое количество энергии, используемой для активирования реагирующих веществ. Лигазы же каталитически ускоряют синтез органических соединений из  активированных за счет распада  АТФ  исходных продуктов. Таким образом, к лигазам относятся ферменты, катализирующие соединение друг с другом двух молекул, сопряженное с гидролизом пирофосфатной связи в молекуле АТФ или иного нуклеозидтрифосфата.

Механизм действия лигаз изучен еще недостаточно, но, несомненно, он весьма сложен. В ряде случаев доказано, что одно из участвующих в основной реакции веществ сначала дает промежуточное соединение с фрагментом распадающейся молекулы АТФ, а вслед за этим указанный промежуточный продукт взаимодействует со вторым партнером основной химической реакции с образованием конечного продукта.

6. Локализация ферментов в клетке

Одним из принципиальных отличий ферментов от катализаторов небиологического происхождения является кооперативный характер их действия. На уровне одиночной молекулы фермента кооперативный принцип реализуется в тонком взаимодействии субстратного, активного и аллостерического центров. Однако гораздо большее значение имеет кооперативное осуществление реакций на уровне ансамблей ферментов. Именно благодаря наличию систем ферментов - в виде мультиэнзимных комплексов или еще более сложных образований - метаболонов, обеспечивающих каталитические превращения всех участников единого метаболического цикла - в клетках с большой скоростью осуществляются многостадийные процессы как распада, так и синтеза органических молекул. Ферментативный катализ в многостадийных реакциях идет без выделения промежуточных продуктов: только возникнув, они тут же подвергаются дальнейшим преобразованиям.

Это возможно лишь потому, что в клеточном содержимом ферменты распределены не хаотически, а строго упорядоченно. С современной точки зрения клетка представляется высокоорганизованной системой, в отдельных частях которой осуществляются строго определенные биохимические процессы. В соответствии с приуроченностью их к определенным субклеточным частицам или отсекам (компартментам) клетки в них локализованы те или иные индивидуальные ферменты, мультиэнзимные комплексы, полифункциональные ферменты или сложнейшие метаболоны.

Разнообразные гидролазы и лиазы сосредоточены преимущественно в лизосомах. Внутри этих сравнительно небольших (несколько нанометров в диаметре) пузырьков, ограниченных мембраной от гиалоплазмы клетки, протекают процессы деструкции различных органических соединений до тех простейших структурных единиц, из которых они построены. Сложные ансамбли окислительно-восстановительных ферментов, такие, например, как цитохромная система, находятся в митохондриях. В этих же субклеточных частицах локализован набор ферментов цикла дикарбоновых и трикарбоновых кислот. Ферменты активирования аминокислот распределены в гиалоплазме, но они же есть и в ядре. В гиалоплазме присутствуют многочисленные метаболоны гликолиза, структурно объединенные с таковыми пентозофосфатного цикла, что обеспечивает взаимопереключение дихотомического и апотомического путей распада углеводов. В то же время ферменты, ускоряющие перенос аминокислотных остатков на растущий конец полипептидной цепи и катализирующие некоторые другие реакции в процессе биосинтеза белка, сосредоточены в рибосомальном аппарате клетки. Нуклеотидилтрансферазы, ускоряющие реакцию переноса нуклеотидных остатков при новообразовании нуклеиновых кислот, локализованы в основном в ядерном аппарате клетки. Таким образом, системы ферментов, сосредоточенные в тех или иных структурах, участвуют в осуществлении отдельных циклов реакций. Будучи тонко координированы друг с другом, эти отдельные циклы реакций обеспечивают жизнедеятельность клеток, органов, тканей и организма в целом.

7. Методы выделения и очистки ферментов

Долгое время вполне обоснованно считали, что все ферменты - тела белковой природы. Однако в начале 80-х годов была неожиданно открыта способность низкомолекулярных рибонуклеиновых кислот ускорять реакцию превращения предшественников РНК в функционально значимый продукт, т. е. возникло представление о полирибонуклеотидной природе некоторых ферментов, названных рибозимами.

Хотя уже осуществлен лабораторный синтез ряда ферментов - рибонуклеазы, лизоцима, ферредоксина и цитохрома с, трудно ожидать, что синтетическое получение ферментов получит широкое распространение в ближайшие десятилетия ввиду его сложности и дороговизны, поэтому единственный реальный в настоящее время способ получения ферментов - это выделение их из биологических объектов.

Выделяют ферменты так же, как и другие белки, хотя есть приемы, применяемые преимущественно для ферментов. Из них можно отметить экстракцию глицерином, в котором сохраняются нативные свойства ферментов, а также метод ацетоновых порошков, состоящий в осаждении и быстром обезвоживании при температуре не выше -10°С тканей или вытяжек из них, содержащих ферменты. К их числу относится также получение ферментов путем адсорбции с последующей элюцией (снятием) с адсорбента. Этот метод был введен в химию ферментов А. Я. Данилевским и дал мощный толчок развитию ферментологии. Сейчас адсорбционный метод выделения и очистки ферментов разработан детально. Наряду с ним широко применяют метод ионообменной хроматографии, метод молекулярных сит, электрофорез и особенно изоэлектрофокусирование. Одна из модификаций адсорбционного метода - афинная хроматография, где адсорбентом служит вещество, с которым фермент взаимодействует избирательно. В результате лишь один этот фермент задерживается на колонке, а все сопутствующие ему выходят с током проявителя. Изменяя характер проявителя, исследуемый фермент элюирует с колонки. Этим методом достигают очистки фермента в несколько тысяч раз, применяя всего лишь одноэтажную (аффинная сорбция - элюция) схему выделения.

Для успешного выделения ферментов из клеточного содержимого необходимо очень тонкое измельчение исходного материала, вплоть до разрушения субклеточных структур: лизосом, митохондрий, ядер и др., которые несут в своем составе многие индивидуальные ферменты. Особое внимание при выделении ферментов уделяют проведению всех операций в условиях, исключающих денатурацию белка, так как она всегда связана с потерей ферментативной активности. Этому способствует проведение операций в присутствии защитных добавок, в частности HS-содержащих соединений (цистеина, глутатиона, меркаптоэтанола, цистеамина, дитиотреитола и др.):

HS ¾ Ch3¾ СН2¾ NН       HS¾Ch3¾CH(ОН) ¾ СН (ОН) ¾ Сh3¾ SH

         Цистеамин                             Дитиотреитол

Очень важно поддерживать на всех этапах выделения ферментов низкую температуру, так как некоторые из них даже при -80°С теряют активность.

Для оценки гомогенности ферментного препарата прибегают к обычным методам белковой химии. Переломным моментом в усовершенствовании методов получения высокоочищенных, гомогенных препаратов ферментов было открытие способности их кристаллизоваться, осуществленное впервые в 1906 г. А. Д. Розенфельдом (им была получена в виде кристаллов оксидаза из корней редьки) и приобретшее с 1926 г. широкую известность после работы Д. Самнера по получению кристаллической уреазы из бобов канавалии. Нередко о степени чистоты ферментного препарата судят по его биологической активности; если активность при дальнейшей очистке не возрастает, препарат можно считать гомогенным. Из 2003 включенных в список ферментов более 1500 выделено и в той или иной мере очищено, третья часть их закристаллизована, у нескольких сотен выяснена первичная, а у нескольких десятков - третичная структура. Литература

1. Власова З.А. Биология. Справочник школьника. М., Всероссийское слово, 1995 г.

2. Хомченко Г.Л. Химия для поступающих в ВУЗы. Учебное пособие. М., Высшая школа, 1993 г.

3. Биологический энциклопедический словарь. Под ред. Гилярова М.С. М., Советская энциклопедия, 1987 г.

bukvasha.ru


Смотрите также