Реферат: Цифровая обработка сигналов 3. Реферат цифровая обработка сигналов


Реферат Цифровая обработка сигналов 3

РефератРабота добавлена на сайт bukvasha.ru: 2015-10-28

Устройства, которые позволяют вводить сигналы в ЭВМ, называются АЦП.

Любой сигнал содержит шумы, которые искажают последний сигнал, тем самым, мешая обработке сигнала.

Метод обработки сигналов.

Существует 3 способа обработки сигналов:

1 способ – полосовые фильтры.

2 способ – линейные предсказания.

3 способ – дискретное преобразование Фурье.Применение методов обработки сигналов.

1)      Выделение наиболее информативных признаков из имеющегося сигнала.

2)      Создание векадерной техники.

3)      Создание речевых систем для автоматической распознавания речи.

4)      Проблема синтеза речи или создание искусственного голоса.

5)     

Системы распознавания речи.

Классификация:

Это такие устройства, которые позволяют отредактировать устный сигнал в команды

Классы систем:

1)      автоматическое распознавание изолированных слов (когда пользователь пословно производит команды).

2)      Автоматическое распознавание слитной речи (устройства, которые в состоянии отделить слова).

3)      Система понимания речи (системы, которые не требуют отделять слова, а которые должны их понимать и дополнять).

4)      Системы синтеза речи или сигналы создания искусственного голоса.

А) форматный синтез или синтез по правилам (когда выходной сигнал получается при сложной математической обработки).

Б) компилятивный метод (этот метод: суть: предварительное изучение и выделение ярких моментов).

Параметры распознавания систем:

1.      По объему словаря.

2.      Оценить по точности распознавания речи, которая измеряется в процентах (должно превышать 95%).

3.      Система автоматического распознавания речи характеризуется по способу обработки входного сообщения.

4.      Система распознавания диктора.Основные информативные признаки речевого сигнала.

Любой речевой сигнал характеризуется следующими признаками, которые можно использовать для того, чтобы синтезировать исходный сигнал.

Признаки:

1)      Энергия сигнала

                           

                       10м         

                       Е1        Е2      Е3

N – количество отчетов

2) Основная частота.

      - определяет длину речевого тракта

3) Форманты

             Е

                                            

                        

              F0           F1           F2               F3         F4    - определяет концентрацию энергии речевого сигнала по частоте и характеризует гласные звуки. Они используются  для классификации гласных звуков.

 - характеризует свойства диктора.

4) Мгновенная частота.

     Это количество перехода сигнала через нуль.

            

Этот признак используется для классификации шумных звуков и гласных.

5) Мгновенная амплитуда сигнала.

             

Аналогичные признаки выделяются из речевого сигнала после его фильтрования по полосовым фильтрам. В результате получается компактные речевые признаки входного сигнала. Объем памяти получается необходимым намного меньше. Основной тон - это очень полезный признак и используется для динамической сегментации входного сигнала, который приводит к более точной обработке входного сигнала.

Первая и вторая форманта  - используются для классификации и распознавания гласных звуков.

Признак  - используется для определения взрывных звуков (т, с, ш и т.д.)Структура распознавания входных сообщений.

     Модель сигнала        Гипотеза фонем    Предсказатель букв  Предсказатель слов    

                                                                                                   Предсказатель предложений, фразМетоды распознавания, используемые в системах обработки речевых сигналов.

1)      Статистические методы.

2)      Лингвистические методы (структурирование).

3)      Нейронные сети.Тема: Типы сигналов и связи между сигналами различных типов.

1)      Классификация сигналов.

2)      Связи между аналоговыми и дискретными сигналами.

3)      Связь между дискретными и цифровыми сигналами.

4)      Дискретная Дельта – Функция.

     

         

m=3 – номер отсчета

 

                       

              

                        T        2T           3TИспользуя дискретную - функцию, любую последовательность X(nT) можно представить в следующей форме:

                                        

Тема: Z–преобразования и преобразования Фурье.1)      Прямое Z–преобразование.

2)      Основные свойства прямого Z–преобразования.

3)      Обратное Z–преобразование.

4)      Преобразование Фурье.1. Прямое Z–преобразование X(Z) последовательность X(nT) определяется следующей формулой:

Z–преобразование имеет смысл только в том случае, если функция X(nT) сходится.Пример:

                                  

В теории обработки цифровых сигналов могут быть использованы:

1

(-1)n

n

1/(1-Z-1)

1/(1+Z-1)

Z-1/(1-Z-1)2

Вот эти Z–преобразования имеют различные формы записи и могут использоваться для описания передаточных функций цифровых фильтров, которые используются для обработки цифровых сигналов.

                                  X(nT)                            X(Z)                      Z–преобразование используют для того, чтобы проектировать цифровые фильтры.2. Основные свойства прямого  Z–преобразование.

      1. Свойство линейности.

Предположим, имеем следующую последовательность дискретного преобразования:

X1(nT)                                        X2(nT)                                 X3(nT)

X1(Z)                                          X2(Z)                                   X3(Z)

Имеем: С1=const и C2=const, тогда преобразование является линейным если:  X3(Z) = C1X1 (Z) +C2X2 (Z)          - линейное

 X3(nT) = C1X1(nT) +C2X2(nT)         преобразование      2. Свойства сдвига.

Утверждает, что если

                       X2(nT) = X1((n-m)T), тогда

                       X2(Z) = X1(-mT)+ X1((-m+1)T)Z-1+…+X1(-T)Z-(m-1)+Z-mX1(Z)                       X2(Z) = Z-mX1(Z)

                       X3(Z) =         

Где с – замкнутый контур в комплексной v плоскости, которая обхватывает все особенности X1 u X2 .

  

3. Обратное  Z–преобразование.

Оно определяется следующей функцией:

Обратное Z–преобразование может быть определено путем вычисления интеграла, который можно записать следующим образом:

Обратное Z–преобразование может быть определено путем вычисления интеграла, если этот интеграл не расходится.

  Z–преобразование используется при проектировании фильтров и характеристик спектральных.Тема: MatLab – основные возможности и функции по дискретной обработке сигналов.

 MatLab – пакет прикладных программ по основным функциям обработки.

Задачи:

- Можно проектировать фильтры.

- Выполнять частотный и спектральный анализ сигналов.

- Выделение признаков из дискретного сигнала и моделирование параметров.

·        Фильтрация

Пакет позволяет выполнять фильтрацию сигнала а с помощью следующих типов фильтра:

        а) Низкочастотные.

        б) Полосовые.

         в) Высокочастотные.

·        Этот пакет позволяет выплнять спектральный анализ, ДПФ(дискретное преобразование Фурье), выполнять непрерывные преобразования Фурье, можно выполнять Z–преобразования сигнала. В интервальном режиме можно проектировать сигналы определенной формы. Можно моделировать сигнал.

·        Основные свойства прямого Z–преобразования.

1.      Свойство линейности.

        X1(nT)                                        X2(nT)                                 X3(nT)         с1,с2

        X1(Z)                                          X2(Z)                                   X3(Z)2.      Сдвиг.

·        Другой метод обработки сигналов это метод преобразования ряда Фурье.

X(nT) – показывает комплексную функцию Х(еj), которая выглядит:

      - прямое преобразование.Спектр сигнала можно получить с помощью Z–преобразования если подставить:Из свойства линейности Z–преобразования следует свойство линейности Фурье преобразования.

 , то

Из свойства сдвига, мы можем написать следующим образом:

·        Дискретное преобразование Фурье.

      K= 0, … N-1 – прямое

     n= 0, … N-1 – обратное

X(nT) = (n=0, … N-1) X(K)последовательность из N частотных отсчетов, где

Эти преобразования можно представить в матричной форме: X = WnXWn – окно расчета

                                    - окно Хэминга

                                   NДПФ и ОПФ – выполняются над конечной последовательностью из N – отсчетов и этот вид преобразования дает возможность определить спектральную плотность мощности сигнала, амплитуду и фазу отдельных частот.  S1                                                                         S1 = a1sin(wt)

                                                                                                                                                                                      

  S2                                                                                                              S2 = a2sin (w2t)  S3                                                                                                              S3 = a3sin (w3t)

                                                                                                               

Спектральная плотность сигнала

Е

 wF1 u F2 –несет смысл сообщения

F3 и т.д. – несет источник информации.

 

Свойства дискретного преобразования Фурье.

1) Линейность.

Имеются 2 сигнала  х(к)               у(к)

                                  aх(nT)           by(nT)    тогда получается

ax(k)+by(k)=ax(nT)+by(nT)2) Свойство сдвига.

Х(к)                          X(nT) – путем сдвига на n0 отсчетов, тогда дискретное

                                  Y(nT)    преобразование Фурье будет:

      путем сдвига на n0k.

  

                                          

           

                                                                                     nT

                                           X(nT)

                                          

           

                                                                                     nT

                    

Тема: Случайные последовательности и их характеристики.

Любой сигнал который подвергается обработке в какой-то степени является случайным сигналом, который изменяется по времени и по частоте. Последовательность X(nT) является случайной, если каждый ее элемент является случайной величиной.                                         - помеха

             X(nT) Y(nT)           

 

Характеристики:

1) Математическое ожидание.

                  

                    

                                                                                Х(nТ)  

                                                                                         N-1                  N2) Дисперсия.

Дисперсия сигнала для непрерывной случайной величины определяется так:

                 

                                                                       0       

                          95%

3) Авто корреляция.

Корреляция – связь между нынешним и предыдущим состоянием.

           

- среднее значение или математическое ожидание.

        

Авто корреляционная функция является мерой связей между случайными последовательностями. Если значение r(m)=0, то нет никакой связи межу случайными последовательностями.4) Спектральная плотность или мощность стационарной случайной последовательности.Спектральная плотность сигнала ----- есть средняя мощность последовательности ----- , приходящейся на достаточно узкую полосу частот.

Эта функция связана с преобразованием Фурье, и имеет следующий вид:

           Тема: Виды окон анализа.

Проблемы:

1) Для того, чтобы обрабатывать сигнал в начале он превращается в дискретном виде (необходимо решить проблему точности при вставлении сигнала, как по частям, так и по уровню).2) Выбор ширины окна анализа сигнала и типа окна анализа. Ширина окна берется исходя из периодичности сигнала. Если ширина окна близка или в точности совпадает с периодичностью сигнала, то это наиболее оптимальный способ выбора ширины окна.

Для речевых сигналов ширина окна должна быть равна периоду основного тона сигнала.

   

                   Т0

Тип окна - используются несколько типов:

а) прямоугольное окно.                 Частотная характеристика этого окна выглядит так:               

 

  б) Окно Хэмминга.

Окно Хэмминга отличается от прямоугольного окна и описывается следующей формулой:

 Достоинства:

1) Она сглаживает боковые вклады в результат обработки.

2) Ширина сдвига окна меньше ширины всего окна.

в) Окно Кайзера.

 , где

I0 – функция Бегеля

 - constТема: Расчеты цифровых фильтров.

Случайные сигналы можно исследовать:

2. В области частот.

Этот способ позволяет найти компоненты периодических сигналов, которые формируют или образуют случайные сигналы.

     а) Преобразованием Фурье.

         Сигналы можно разделить на 3 гармоники.

     б) С помощью полосовых фильтров.

2. Во временной области.

Исследование его характеристики во времени.    

                 

3. С помощью линейного предсказания.Это авто корреляционный способ. Он использует закономерность или информацию о том, как соседние отсчеты взаимосвязаны между собой.

Для того, чтобы исследовать сигналы в частотной области с помощью программ, которые моделируют цифровые фильтры, необходимо, заранее делать расчет цифровых фильтров.Порядок расчета цифровых фильтров следующий:

1) Решается задача аппроксимации с целью определения коэффициента фильтра, при котором фильтр удовлетворяет заданному требованию.

2) Выбирается конкретная схема построения фильтра и квантования, найденных значений его коэффициентов в соответствии с фиксированной длиной слова.

3) Делается квантование переменных величин фильтра, т.е. выбор длины слова входных выходных и промежуточных переменных.

4) Проверяется методом моделирования, удовлетворяет ли полученный фильтр заданным требованиям. Если на этом этапе фильтр не удовлетворяет заданным требованиям, то предыдущие 2 и 3 этапы повторяются.

Бывают 2 типа фильтров:

а) Нерекуррентные.

б) Рекуррентные.

Формулы определения фильтров.

   -    рекуррентный фильтрДругую характеристику цифрового фильтра можно записать следующим образом:

Схема фильтра будет следующая:

         X(n)                           W(n)                            a0                                Y(n)

 Схема фильтра состоит из набора элементов задержек, выходной сигнал которых

умножается на определенный коэффициент.Тема: Линейное предсказание сигналов.

Один из способов обработки сигналов является: использование модели линейного предсказания. Суть состоит в том, что следующий отчет сигнала является (вычисляется), используя предыдущие отчеты.

---- реальный дискретный сигнал.

---- моделирование дискретных сигналов.

С другой стороны:

                          - модель сигнала

                         

Ошибка Минимизируем функцию.

ak – коэффициент линейного предсказания.

                                  Решая эту систему, находим коэффициент а

                    

- Это Ковариационный метод.

- Авто корреляционный метод.

Модель такая: минимизируется ошибка следующим образом:

                           

а – коэффициент линейного предсказания.

R – авто корреляционная матрица.

r – коэффициенты матрицы.

 

                                     

Эта модель сводится к модели фильтрации сигналов и будет:

  

S(Z) - Z–преобразование сигнала

A(Z) – фильтр (анализатор) сигналаЛюбая модель линейного предсказания приводит к ошибкам предсказания. В случае, если мы используем авто корреляционный метод, тогда ошибка предсказания будет:

     

                                   Тема: Цифровая обработка сигналов.

1)      Достоинства методов цифровой обработки сигналов.

2)      Линейные и дискретные системы и их свойства.

3)      Цифровые фильтры и способы их описания.

4)      Фильтры с конечно импульсными характеристиками.

5)      Фильтры с бесконечно импульсными характеристиками.

6)      Передаточные характеристики фильтров.

7)      Нули и полюса фильтров.

8)      Фильтры первого порядка с одним нулем и с одним полюсом.

9)      Фильтры второго порядка с нулями и плюсами.

10)  Топология фильтров.I. Достоинства ЦОС.

  1. Экономное использование средств для обработки сигналов.
  2. Гибко использовать программные средства для обработки сигналов различными методами.
  3. Цифровые способы обработки сигналов не зависят от внешних условий.
  4.  Цифровые способы позволяют моделировать любые устройства с необходимыми характеристиками.

II. Цифровая обработка сигналов использует линейные дискретные системы, которые наиболее проще описывают те процессы, которые протекают при обработке сигналов.

Свойства:

1. Однородности:

                                                 X                          Y                    

2. Суперпозиции:                  X1                                                                                        

                                                 X2                       Y1+Y2                   

                                                                               

3. Инвариантности:                   Т – любая.

Если минимальные системы подчиняются свойствам выше, тогда их работу можно описать с помощью измерения импульсных откликов на входах и выходах этих систем.                                             =1    для n = 0

                                                              =0    для n0Исходя из этих свойств, входной сигнал Х(n) можно представить как сумму отчетов дискритизированного сигнала умноженную на…  - цифровая свертка.III. Цифровые фильтры.

Фильтры можно получить, используя линейные комбинации предыдущих и текущих отчетов сигналов.

С точки зрения характеристик фильтра на единичный конечный сигнал, имеются фильтры с конечно импульсными характеристиками (КИХ) и с бесконечно импульсными характеристиками (БИХ).

IV. Простейший пример КИХ.

               Схема этого фильтра выглядит следующим образом:

 

               X(n)                                                                        Y(n)                            

 

Фильтр и КИХ в общем виде описывается следующим образом:

                               X(1)

                                                      

Данный фильтр является неимпульсивным, и значение выходного сигнала зависит только от значений входного сигнала и от предыдущих значений.V. Фильтры с БИХ.

Фильтры с БИХ математически списываются следующим образом:

                   

для g=1

тогда импульсный отклик будет rn.

Этот тип отклика называется экспонициальный.

Если r 0, тогда даже при нулевом значении входного сигнала, выходной сигнал не будет нулевым.

Если r < 1, тогда выходное значение сигнала на выходе фильтра будет осцелировать.

Если r > 1, выходное значение может бесконечно расти, то тогда этот фильтр будет неустойчивый, и приходим к выводу, что эти фильтры называются «с бесконечно импульсными характеристиками».

Схема такого фильтра выглядит следующим образом:                 X(n)                                                   Y(n) 

Этот фильтр еще называется рекуррентный фильтр с БИХ первого порядка.

Схема фильтра n – го порядка выглядит следующим образом:

                       X(n)                                                     Y(n) 

Общая форма фильтров:

 

 Если использовать Z–преобразования, тогда фильтр можно описать следующей формулой:VI. Передаточные функции фильтров.

Передаточные функция фильтра называется отношением выходного сигнала на входной сигнал.

                                         - передаточная функция.

С учетом формул линейного фильтра получаем:  -  для 1-го фильтра (порядок)

Порядок фильтра определяется от N или М.VII. Нули и полюса фильтров.

Если исследовать передаточную характеристику фильтров, то можно обнаружить два экстремальных варианта:

1.      Числитель = 0.

2.      Знаменатель с 0.

1)      Если числитель = 0, тогда передаточная характеристика равна 0 и можно получить нулевые значения фильтра. Полоса затухания – нулевой фильтр.

2)       Если же знаменатель =0, тогда передаточная характеристика фильтра бесконечная и тогда получаем полюса фильтров или резонансные частоты фильтров.VIII. Фильтр 1-го порядка с одним нулем и с одним полюсом.

Самый простой фильтр, который имеет один полюс и один нуль можно описать следующим образом:

                           

Передаточная характеристика этого фильтра будет следующей:

                                - и этот фильтр имеет один нуль.

                                    когда Z = - а

Схема фильтра выглядит следующим образом:        X(n)         g                                                         Y(n)                   

  

Если рассматривать частотные характеристики этого фильтра, то они будут выглядеть так:

                                                                   

                                                      

Фильтр с одним полюсом:

                                             

Частотные характеристики этого фильтра выглядят следующим образом:      X(n)                                                                Y(n)

A                                                                   A

   r=0.99  r=0.5    r=0.25                 f                 r=-0.25 r=-0.5 r=-0.99             fIX. Фильтры 2-го порядка с нулями и полюсами.

Фильтр 2-го порядка описываются уравнением:

 

Тогда передаточная характеристика этого фильтра выглядит следующим образом:                      - два нуля и два полюса.

                           - нули.

                          - полюса.

Если пропускать нули через фильтр 2-го порядка, то получится следующая картина: 

                                                                                                                                        W                                                                                       Полюс            нульX. Топология цифровых фильтров.

Топология говорит о том, как можно расположить линии задержки с тем сигналом, который нам необходим.

Если система линейная, то порядок включения целей в фильтр не имеет значения.Пример:X(n)                                                                                                Y(n)

II семестр.Тема: Методы использования цифровой обработки сигналов для создания практических систем распознавания речи.

1. Для чего используются цифровые методы обработки сигналов при создании практических систем распознавания речи?1) Для того, чтобы уменьшить объем обрабатываемой информации.

2) Для того, чтобы найти наиболее оптимальные признаки, которые описывают речевой сигнал.

3) Для того, чтобы увеличить скорость работы реальных или практических систем.

4) Для того, чтобы снимать шумовые ненужные сигналы из полезного сигнала.

5)Для того, чтобы сегментировать или маркировать речевой сигнал на фонетические элементы, которые соответствуют письменному тексту.

6) Для того, чтобы упростить аппаратуру передач и приема речевой информации.

В этих целях используют цифровые методы обработки сигналов.2. Основные элементы акустической теории речеобразования.

Фант – шведский ученый разработал теорию, согласно которой они создали математическую модель речеобразования. Эта модель используется для того, чтобы создать искусственные  системы синтеза речи и для того, чтобы понимать сам процесс речеобразования.1. Классификация

                                             X(t)

                                                                                    

Ua 

                                                                             t                1) Аналоговые сигналы бывают двух типов:

·        Стационарные (характеристики не меняются по времени).

·        Не стационарные.

Для того, чтобы обрабатывать сигналы на ЭВМ аналоговые сигналы необходимо квантовать или дискретовать.

2) Дискретные сигналы.

Они описываются решетчатой функцией. Значение функции лежит в определенных пределах  

                                   

Дискретные сигналы измеряются через определенный интервал времени Т, который над интервалом дискретизации.

Сигнал можно описать следующим образом:                                                                   X(t)                                                                                                 

  Ua

            T                                                     10t             tT = const

Если:

X(0) = 1

X(-1) = -2

X(2) = 5,

То дискретный сигнал можно представить в виде транспонированной матрицы.

 X = [1, -2, 5]T

Дискретные сигналы могут быть:

     

                        веществен.   Комплексн.

К дискретным - относятся сигналы, которые имеют амплитудно-импульсную модуляцию.

3) Цифровой сигнал.

Он описывается квантово-решетчатой функцией. Он принимает только дискретные значения h2…hk, в то время как независимая переменная и принимает значения                                  

                                                                                 t     Каждый уровень кодируется кодом, состоящим из 2-х цифр, поэтому передача и обработка сигнала сводится к обработке двоичных чисел.

Если сигнал квантуется к-уровнями, тогда число разрядов, которых необходимо для кодирования каждого уровня сигналов равно:              -  число разрядов, которые выделяются для

                                           кодирования цифрового сигнала.

         

            где

Ок – квантованный сигнал.

К цифровым сигналам относятся сигналы с импульсно-кодовой модуляцией.

Если S=5, тогда сигналы могут принимать следующие значения:

                       0 – «+»        1 – «-»        

Причем 1-ый разряд слева – знаковый разряд.

   16

   14

              

   12

   10

    8

    

    6

    4

    2                    

                    Т           2Т2. Связи между аналоговыми и дискретными сигналами.

При обработке сигнала на ЭВМ необходимо в максимальной степени, чтобы дискретный или цифровой сигнал содержал все признаки аналогового сигнала.

При дискретизации возможна потеря информации, которая приведет к тому, что результаты обработки не будут соответствовать.

Операция дискретизации сигнала состоит в том, чтобы по заданному сигналу Xa(t) строить дискретный сигнал ХД(nt), а именно их соответствия.

Операция восстановления аналогового сигнала состоит в том, чтобы по дискретному сигналу получит аналоговый ХД(nt)Xa(t).

Это все реально осуществимо, когда выполняются условия Кательникова:

Когда

Xa(t) – имеет ограниченный спектр.

 угловая частота   находится в определенных пределах, причем, для того, чтобы удовлетворить условиям Кательникова необходимо, чтобы: , где - частота дискретизации.

В таком случае аналоговый сигнал можно восстанавливать по дискретному сигналу.

Связь между спектром аналогового сигнала и спектром дискретного сигнала определяется следующей формулой:

                 

            аналоговая                    дискретная   3. Связь между дискретными и цифровыми сигналами.

Операция квантования и кодирования дискретного сигнала состоит в том, чтобы по заданному дискретному сигналу Х(nТ) строить цифровой сигнал.                         ХД(nТ)Xц(nТ)Объем информации зависит от частоты квантования, как по времени, так и по амплитуде.

Операция квантования сигнала по уровню и по частоте не является точно взаимно-обратной, потому что в процессе дискретизации аналогового сигнала происходят погрешности, которые, в принципе, нельзя исправить.

Если представить каждый отчет цифрового сигнала достаточным числом разрядов S, тогда погрешность можно свести к нулю.4. Дискретная  функция.

В области цифровой обработки сигналов используется специальный математический аппарат, который позволяет наиболее удобно представить аналоговый сигнал в цифровую форму и в дальнейшем его обработать. С этой целью и используется дискретная функция:

Н(А/В) – потеря информации в канале связи (величина).

2Н(А/В) – коэффициент сложности распознавания слова.4. Методы классификации или распознавания слов, используемых в системах распознавания речи.

Существует несколько способов:

1)      Эвристический или древовидный алгоритм.

 

                   

Ромб: Е>100                                          Да                                  Нет         

                              

Плохой тем, что бывают слова, когда энергия одинакова и в начале, и в конце слова, тогда алгоритм сводится к нулю.

2) Лингвистический подход (структурный).

Этот метод анализа используется следующим образом: На определенных сегментах проверяется не только наличие соответствующего сегмента, но и порядок следования этих сегментов.

                

                                   T  V

3) Использование метода динамического программирования.

Это универсальный алгоритм, который используется практически везде.

Основан Беллманом.

Графически это выглядит следующим образом:

    А(t)

слово                                                                               B(t)

                             СловоФункция деформации основного времени.Рассмотрим пример:

20                   11 9
16 4 2 4
12 3 6 5
6 2 5 3
1 8 12 17
  
4 4 3 1
4 4 2 4
6 3 6 5
5 2 5 3
1 7 4 5
                                           Н                                           И

                                                             

                                           Д

                                          

                                           А                                                                                А                                                                                  А            Д              И                Н

bukvasha.ru

Реферат - Цифровая обработка сигналов 3

Устройства, которые позволяют вводить сигналы в ЭВМ, называются АЦП.

Любой сигнал содержит шумы, которые искажают последний сигнал, тем самым, мешая обработке сигнала.

Метод обработки сигналов.

Существует 3 способа обработки сигналов:

1 способ – полосовые фильтры.

2 способ – линейные предсказания.

3 способ – дискретное преобразование Фурье.

Применение методов обработки сигналов.

1) Выделение наиболее информативных признаков из имеющегося сигнала.

2) Создание векадерной техники.

3) Создание речевых систем для автоматической распознавания речи.

4) Проблема синтеза речи или создание искусственного голоса.

5)

Системы распознавания речи.

Классификация:

Это такие устройства, которые позволяют отредактировать устный сигнал в команды

Классы систем:

1) автоматическое распознавание изолированных слов (когда пользователь пословно производит команды).

2) Автоматическое распознавание слитной речи (устройства, которые в состоянии отделить слова).

3) Система понимания речи (системы, которые не требуют отделять слова, а которые должны их понимать и дополнять).

4) Системы синтеза речи или сигналы создания искусственного голоса.

А) форматный синтез или синтез по правилам (когда выходной сигнал получается при сложной математической обработки).

Б) компилятивный метод (этот метод: суть: предварительное изучение и выделение ярких моментов).

Параметры распознавания систем:

1. По объему словаря.

2. Оценить по точности распознавания речи, которая измеряется в процентах (должно превышать 95%).

3. Система автоматического распознавания речи характеризуется по способу обработки входного сообщения.

4. Система распознавания диктора.

Основные информативные признаки речевого сигнала.

Любой речевой сигнал характеризуется следующими признаками, которые можно использовать для того, чтобы синтезировать исходный сигнал.

Признаки:

1) Энергия сигнала

10м

Е1 Е2 Е3

N – количество отчетов

2) Основная частота.

— определяет длину речевого тракта

3) Форманты

Е

F0F1 F2 F3 F4

— определяет концентрацию энергии речевого сигнала по частоте и характеризует гласные звуки. Они используются для классификации гласных звуков.

— характеризует свойства диктора.

4) Мгновенная частота.

Это количество перехода сигнала через нуль.

Этот признак используется для классификации шумных звуков и гласных.

5) Мгновенная амплитуда сигнала.

Аналогичные признаки выделяются из речевого сигнала после его фильтрования по полосовым фильтрам. В результате получается компактные речевые признаки входного сигнала. Объем памяти получается необходимым намного меньше. Основной тон — это очень полезный признак и используется для динамической сегментации входного сигнала, который приводит к более точной обработке входного сигнала.

Первая и вторая форманта — используются для классификации и распознавания гласных звуков.

Признак — используется для определения взрывных звуков (т, с, ш и т.д.)

Структура распознавания входных сообщений.

Модель сигнала Гипотеза фонем Предсказатель букв Предсказатель слов

Предсказатель предложений, фраз

Методы распознавания, используемые в системах обработки речевых сигналов.

1) Статистические методы.

2) Лингвистические методы (структурирование).

3) Нейронные сети.

Тема: Типы сигналов и связи между сигналами различных типов.

1) Классификация сигналов.

2) Связи между аналоговыми и дискретными сигналами.

3) Связь между дискретными и цифровыми сигналами.

4) Дискретная Дельта – Функция.

m=3 – номер отсчета

T 2T 3T

Используя дискретную — функцию, любую последовательность X(nT) можно представить в следующей форме:

Тема: Z –преобразования и преобразования Фурье.

1) Прямое Z–преобразование.

2) Основные свойства прямого Z–преобразования.

3) Обратное Z–преобразование.

4) Преобразование Фурье.

1. Прямое Z–преобразование X(Z) последовательность X(nT) определяется следующей формулой:

Z–преобразование имеет смысл только в том случае, если функция X(nT) сходится.

Пример:

В теории обработки цифровых сигналов могут быть использованы:

1

(-1)n

n

1/(1-Z-1 )

1/(1+Z-1 )

Z-1 /(1-Z-1 )2

Вот эти Z–преобразования имеют различные формы записи и могут использоваться для описания передаточных функций цифровых фильтров, которые используются для обработки цифровых сигналов.

X(nT) X(Z)

Z–преобразование используют для того, чтобы проектировать цифровые фильтры.

2. Основные свойства прямого Z–преобразование.

1. Свойство линейности.

Предположим, имеем следующую последовательность дискретного преобразования:

X1 (nT) X2 (nT) X3 (nT)

X1 (Z) X2 (Z) X3 (Z)

Имеем: С1 =constи C2 =const, тогда преобразование является линейным если:

X3 (Z) = C1 X1 (Z) +C2 X2 (Z) — линейное

X3 (nT) = C1 X1 (nT) +C2 X2 (nT) преобразование

2. Свойства сдвига.

Утверждает, что если

X2 (nT) = X1 ((n-m)T), тогда

X2 (Z) = X1 (-mT)+ X1 ((-m+1)T)Z-1 +…+X1 (-T)Z-(m-1) +Z-m X1 (Z)

X2 (Z) = Z-m X1 (Z)

X3 (Z) =

Где с – замкнутый контур в комплексной v плоскости, которая обхватывает все особенности X1 uX2 .

3. Обратное Z–преобразование.

Оно определяется следующей функцией:

Обратное Z–преобразование может быть определено путем вычисления интеграла, который можно записать следующим образом:

Обратное Z–преобразование может быть определено путем вычисления интеграла, если этот интеграл не расходится.

Z–преобразование используется при проектировании фильтров и характеристик спектральных.

Тема: MatLab – основные возможности и функции по дискретной обработке сигналов.

MatLab – пакет прикладных программ по основным функциям обработки.

Задачи:

— Можно проектировать фильтры.

— Выполнять частотный и спектральный анализ сигналов.

— Выделение признаков из дискретного сигнала и моделирование параметров.

· Фильтрация

Пакет позволяет выполнять фильтрацию сигнала а с помощью следующих типов фильтра:

а) Низкочастотные.

б) Полосовые.

в) Высокочастотные.

· Этот пакет позволяет выплнять спектральный анализ, ДПФ(дискретное преобразование Фурье), выполнять непрерывные преобразования Фурье, можно выполнять Z–преобразования сигнала. В интервальном режиме можно проектировать сигналы определенной формы. Можно моделировать сигнал.

· Основные свойства прямого Z–преобразования.

1. Свойство линейности.

X1 (nT) X2 (nT) X3 (nT) с1, с2

X1 (Z) X2 (Z) X3 (Z)

2. Сдвиг.

· Другой метод обработки сигналов это метод преобразования ряда Фурье.

X(nT) – показывает комплексную функцию Х(еj ), которая выглядит:

— прямое преобразование.

Спектр сигнала можно получить с помощью Z–преобразования если подставить:

Из свойства линейности Z–преобразования следует свойство линейности Фурье преобразования.

, то

Из свойства сдвига, мы можем написать следующим образом:

· Дискретное преобразование Фурье.

K= 0, … N-1 – прямое

n= 0, … N-1 – обратное

X(nT) = (n=0, … N-1)

X(K)последовательность из N частотных отсчетов, где

Эти преобразования можно представить в матричной форме:

X = Wn X

Wn – окно расчета

— окно Хэминга

N

ДПФ и ОПФ – выполняются над конечной последовательностью из N – отсчетов и этот вид преобразования дает возможность определить спектральную плотность мощности сигнала, амплитуду и фазу отдельных частот.

S1 S1 = a1 sin(wt)

S2 S2 = a2 sin (w2 t)

S3 S3 = a3 sin (w3 t)

Спектральная плотность сигнала

Е

w

F1 uF2 –несет смысл сообщения

F3 и т.д. – несет источник информации.

Свойства дискретного преобразования Фурье.

1) Линейность.

Имеются 2 сигнала х(к) у(к)

aх(nT) by(nT) тогда получается

ax(k)+by(k)=ax(nT)+by(nT)

2) Свойство сдвига.

Х(к) X(nT) – путем сдвига на n0отсчетов, тогда дискретное

Y(nT) преобразование Фурье будет:

путем сдвига на n0k.

nT

X(nT)

nT

Тема: Случайные последовательности и их характеристики.

Любой сигнал который подвергается обработке в какой-то степени является случайным сигналом, который изменяется по времени и по частоте. Последовательность X(nT) является случайной, если каждый ее элемент является случайной величиной.

— помеха

X(nT)Y(nT)

Характеристики:

1) Математическое ожидание.

Х(nТ)

N-1 N

2) Дисперсия.

Дисперсия сигнала для непрерывной случайной величины определяется так:

0

95%

3) Авто корреляция.

Корреляция – связь между нынешним и предыдущим состоянием.

— среднее значение или математическое ожидание.

Авто корреляционная функция является мерой связей между случайными последовательностями. Если значение r(m)=0, то нет никакой связи межу случайными последовательностями.

4) Спектральная плотность или мощность стационарной случайной последовательности.

Спектральная плотность сигнала — есть средняя мощность последовательности — , приходящейся на достаточно узкую полосу частот.

Эта функция связана с преобразованием Фурье, и имеет следующий вид:

Тема: Виды окон анализа.

Проблемы:

1) Для того, чтобы обрабатывать сигнал в начале он превращается в дискретном виде (необходимо решить проблему точности при вставлении сигнала, как по частям, так и по уровню).

2) Выбор ширины окна анализа сигнала и типа окна анализа. Ширина окна берется исходя из периодичности сигнала. Если ширина окна близка или в точности совпадает с периодичностью сигнала, то это наиболее оптимальный способ выбора ширины окна.

Для речевых сигналов ширина окна должна быть равна периоду основного тона сигнала.

Т0

Тип окна — используются несколько типов:

а) прямоугольное окно.

Частотная характеристика этого окна выглядит так:

б) Окно Хэмминга.

Окно Хэмминга отличается от прямоугольного окна и описывается следующей формулой:

Достоинства:

1) Она сглаживает боковые вклады в результат обработки.

2) Ширина сдвига окна меньше ширины всего окна.

в) Окно Кайзера.

, где

I0 – функция Бегеля

— const

Тема: Расчеты цифровых фильтров.

Случайные сигналы можно исследовать:

2. В области частот.

Этот способ позволяет найти компоненты периодических сигналов, которые формируют или образуют случайные сигналы.

а) Преобразованием Фурье.

Сигналы можно разделить на 3 гармоники.

б) С помощью полосовых фильтров.

2. Во временной области.

Исследование его характеристики во времени.

3. С помощью линейного предсказания.

Это авто корреляционный способ. Он использует закономерность или информацию о том, как соседние отсчеты взаимосвязаны между собой.

Для того, чтобы исследовать сигналы в частотной области с помощью программ, которые моделируют цифровые фильтры, необходимо, заранее делать расчет цифровых фильтров.

Порядок расчета цифровых фильтров следующий:

1) Решается задача аппроксимации с целью определения коэффициента фильтра, при котором фильтр удовлетворяет заданному требованию.

2) Выбирается конкретная схема построения фильтра и квантования, найденных значений его коэффициентов в соответствии с фиксированной длиной слова.

3) Делается квантование переменных величин фильтра, т.е. выбор длины слова входных выходных и промежуточных переменных.

4) Проверяется методом моделирования, удовлетворяет ли полученный фильтр заданным требованиям. Если на этом этапе фильтр не удовлетворяет заданным требованиям, то предыдущие 2 и 3 этапы повторяются.

Бывают 2 типа фильтров:

а) Нерекуррентные.

б) Рекуррентные.

Формулы определения фильтров.

— рекуррентный фильтр

Другую характеристику цифрового фильтра можно записать следующим образом:

Схема фильтра будет следующая:

X(n) W(n) a0Y(n)

Схема фильтра состоит из набора элементов задержек, выходной сигнал которых

умножается на определенный коэффициент.

Тема: Линейное предсказание сигналов.

Один из способов обработки сигналов является: использование модели линейного предсказания. Суть состоит в том, что следующий отчет сигнала является (вычисляется), используя предыдущие отчеты.

— реальный дискретный сигнал.

— моделирование дискретных сигналов.

С другой стороны:

— модель сигнала

Ошибка

Минимизируем функцию.

ak – коэффициент линейного предсказания.

Решая эту систему, находим коэффициент а

— Это Ковариационный метод.

— Авто корреляционный метод.

Модель такая: минимизируется ошибка следующим образом:

а – коэффициент линейного предсказания.

R – авто корреляционная матрица.

r – коэффициенты матрицы.

Эта модель сводится к модели фильтрации сигналов и будет:

S(Z) — Z–преобразование сигнала

A(Z) – фильтр (анализатор) сигнала

Любая модель линейного предсказания приводит к ошибкам предсказания. В случае, если мы используем авто корреляционный метод, тогда ошибка предсказания будет:

Тема: Цифровая обработка сигналов.

1) Достоинства методов цифровой обработки сигналов.

2) Линейные и дискретные системы и их свойства.

3) Цифровые фильтры и способы их описания.

4) Фильтры с конечно импульсными характеристиками.

5) Фильтры с бесконечно импульсными характеристиками.

6) Передаточные характеристики фильтров.

7) Нули и полюса фильтров.

8) Фильтры первого порядка с одним нулем и с одним полюсом.

9) Фильтры второго порядка с нулями и плюсами.

10) Топология фильтров.

I . Достоинства ЦОС.

  1. Экономное использование средств для обработки сигналов.
  2. Гибко использовать программные средства для обработки сигналов различными методами.
  3. Цифровые способы обработки сигналов не зависят от внешних условий.
  4. Цифровые способы позволяют моделировать любые устройства с необходимыми характеристиками.

II. Цифровая обработка сигналов использует линейные дискретные системы, которые наиболее проще описывают те процессы, которые протекают при обработке сигналов.

Свойства:

1. Однородности:

X Y 2. Суперпозиции: X1

X2 Y1 +Y2

3. Инвариантности: Т – любая.

Если минимальные системы подчиняются свойствам выше, тогда их работу можно описать с помощью измерения импульсных откликов на входах и выходах этих систем.

=1 для n = 0

=0 для n0

Исходя из этих свойств, входной сигнал Х(n) можно представить как сумму отчетов дискритизированного сигнала умноженную на…

— цифровая свертка.

III. Цифровые фильтры.

Фильтры можно получить, используя линейные комбинации предыдущих и текущих отчетов сигналов.

С точки зрения характеристик фильтра на единичный конечный сигнал, имеются фильтры с конечно импульсными характеристиками (КИХ) и с бесконечно импульсными характеристиками (БИХ).

IV. Простейший пример КИХ.

Схема этого фильтра выглядит следующим образом:

X(n) Y(n)

Фильтр и КИХ в общем виде описывается следующим образом:

X(1)

Данный фильтр является неимпульсивным, и значение выходного сигнала зависит только от значений входного сигнала и от предыдущих значений.

V. Фильтры с БИХ.

Фильтры с БИХ математически списываются следующим образом:

для g=1

тогда импульсный отклик будет rn .

Этот тип отклика называется экспонициальный.

Если r0, тогда даже при нулевом значении входного сигнала, выходной сигнал не будет нулевым.

Если r< 1, тогда выходное значение сигнала на выходе фильтра будет осцелировать.

Если r> 1, выходное значение может бесконечно расти, то тогда этот фильтр будет неустойчивый, и приходим к выводу, что эти фильтры называются «с бесконечно импульсными характеристиками».

Схема такого фильтра выглядит следующим образом:

X(n) Y(n)

Этот фильтр еще называется рекуррентный фильтр с БИХ первого порядка.

Схема фильтра n – го порядка выглядит следующим образом:

X(n) Y(n)

Общая форма фильтров:

Если использовать Z–преобразования, тогда фильтр можно описать следующей формулой:

VI. Передаточные функции фильтров.

Передаточные функция фильтра называется отношением выходного сигнала на входной сигнал.

— передаточная функция.

С учетом формул линейного фильтра получаем:

— для 1-го фильтра (порядок)

Порядок фильтра определяется от N или М.

VII. Нули и полюса фильтров.

Если исследовать передаточную характеристику фильтров, то можно обнаружить два экстремальных варианта:

1. Числитель = 0.

2. Знаменатель с 0.

1) Если числитель = 0, тогда передаточная характеристика равна 0 и можно получить нулевые значения фильтра. Полоса затухания – нулевой фильтр.

2) Если же знаменатель =0, тогда передаточная характеристика фильтра бесконечная и тогда получаем полюса фильтров или резонансные частоты фильтров.

VIII. Фильтр 1-го порядка с одним нулем и с одним полюсом.

Самый простой фильтр, который имеет один полюс и один нуль можно описать следующим образом:

Передаточная характеристика этого фильтра будет следующей:

— и этот фильтр имеет один нуль.

когда Z = — а

Схема фильтра выглядит следующим образом:

X(n) g Y(n)

Если рассматривать частотные характеристики этого фильтра, то они будут выглядеть так:

Фильтр с одним полюсом:

Частотные характеристики этого фильтра выглядят следующим образом:

X(n) Y(n)

A A

r=0.99 r=0.5 r=0.25 f r=-0.25 r=-0.5 r=-0.99 f

IX. Фильтры 2-го порядка с нулями и полюсами.

Фильтр 2-го порядка описываются уравнением:

Тогда передаточная характеристика этого фильтра выглядит следующим образом:

— два нуля и два полюса.

— нули.

— полюса.

Если пропускать нули через фильтр 2-го порядка, то получится следующая картина:

W

Полюс нуль

X. Топология цифровых фильтров.

Топология говорит о том, как можно расположить линии задержки с тем сигналом, который нам необходим.

Если система линейная, то порядок включения целей в фильтр не имеет значения.

Пример:

X(n) Y(n)

II семестр.

Тема: Методы использования цифровой обработки сигналов для создания практических систем распознавания речи.

1. Для чего используются цифровые методы обработки сигналов при создании практических систем распознавания речи?

1) Для того, чтобы уменьшить объем обрабатываемой информации.

2) Для того, чтобы найти наиболее оптимальные признаки, которые описывают речевой сигнал.

3) Для того, чтобы увеличить скорость работы реальных или практических систем.

4) Для того, чтобы снимать шумовые ненужные сигналы из полезного сигнала.

5)Для того, чтобы сегментировать или маркировать речевой сигнал на фонетические элементы, которые соответствуют письменному тексту.

6) Для того, чтобы упростить аппаратуру передач и приема речевой информации.

В этих целях используют цифровые методы обработки сигналов.

2. Основные элементы акустической теории речеобразования.

Фант – шведский ученый разработал теорию, согласно которой они создали математическую модель речеобразования. Эта модель используется для того, чтобы создать искусственные системы синтеза речи и для того, чтобы понимать сам процесс речеобразования.

1. Классификация

X(t)

Ua

t

1) Аналоговые сигналы бывают двух типов:

· Стационарные (характеристики не меняются по времени).

· Не стационарные.

Для того, чтобы обрабатывать сигналы на ЭВМ аналоговые сигналы необходимо квантовать или дискретовать.

2) Дискретные сигналы.

Они описываются решетчатой функцией. Значение функции лежит в определенных пределах

Дискретные сигналы измеряются через определенный интервал времени Т, который над интервалом дискретизации.

Сигнал можно описать следующим образом:

X(t)

Ua

T 10t t

T = const

Если:

X(0) = 1

X(-1) = -2

X(2) = 5,

То дискретный сигнал можно представить в виде транспонированной матрицы.

X = [1, -2, 5]T

Дискретные сигналы могут быть:

веществен. Комплексн.

К дискретным — относятся сигналы, которые имеют амплитудно-импульсную модуляцию.

3) Цифровой сигнал.

Он описывается квантово-решетчатой функцией. Он принимает только дискретные значения h2 …hk, в то время как независимая переменная и принимает значения

t

Каждый уровень кодируется кодом, состоящим из 2-х цифр, поэтому передача и обработка сигнала сводится к обработке двоичных чисел.

Если сигнал квантуется к-уровнями, тогда число разрядов, которых необходимо для кодирования каждого уровня сигналов равно:

— число разрядов, которые выделяются для

кодирования цифрового сигнала.

где

Ок – квантованный сигнал.

К цифровым сигналам относятся сигналы с импульсно-кодовой модуляцией.

Если S=5, тогда сигналы могут принимать следующие значения:

0 – «+» 1 – «-»

Причем 1-ый разряд слева – знаковый разряд.

16

14

12

10

8

6

4

2

Т 2Т

2. Связи между аналоговыми и дискретными сигналами.

При обработке сигнала на ЭВМ необходимо в максимальной степени, чтобы дискретный или цифровой сигнал содержал все признаки аналогового сигнала.

При дискретизации возможна потеря информации, которая приведет к тому, что результаты обработки не будут соответствовать.

Операция дискретизации сигнала состоит в том, чтобы по заданному сигналу Xa (t) строить дискретный сигнал ХД (nt), а именно их соответствия.

Операция восстановления аналогового сигнала состоит в том, чтобы по дискретному сигналу получит аналоговый ХД (nt)Xa (t).

Это все реально осуществимо, когда выполняются условия Кательникова:

Когда

Xa (t) – имеет ограниченный спектр.

угловая частота находится в определенных пределах, причем, для того, чтобы удовлетворить условиям Кательникова необходимо, чтобы: , где — частота дискретизации.

В таком случае аналоговый сигнал можно восстанавливать по дискретному сигналу.

Связь между спектром аналогового сигнала и спектром дискретного сигнала определяется следующей формулой:

аналоговая дискретная

3. Связь между дискретными и цифровыми сигналами.

Операция квантования и кодирования дискретного сигнала состоит в том, чтобы по заданному дискретному сигналу Х(nТ) строить цифровой сигнал.

ХД (nТ)Xц (nТ)

Объем информации зависит от частоты квантования, как по времени, так и по амплитуде.

Операция квантования сигнала по уровню и по частоте не является точно взаимно-обратной, потому что в процессе дискретизации аналогового сигнала происходят погрешности, которые, в принципе, нельзя исправить.

Если представить каждый отчет цифрового сигнала достаточным числом разрядов S, тогда погрешность можно свести к нулю.

4. Дискретная функция.

В области цифровой обработки сигналов используется специальный математический аппарат, который позволяет наиболее удобно представить аналоговый сигнал в цифровую форму и в дальнейшем его обработать. С этой целью и используется дискретная функция:

Н(А/В) – потеря информации в канале связи (величина).

2Н(А/В) – коэффициент сложности распознавания слова.

4. Методы классификации или распознавания слов, используемых в системах распознавания речи.

Существует несколько способов:

1) Эвристический или древовидный алгоритм.

Да Нет

Плохой тем, что бывают слова, когда энергия одинакова и в начале, и в конце слова, тогда алгоритм сводится к нулю.

2) Лингвистический подход (структурный).

Этот метод анализа используется следующим образом: На определенных сегментах проверяется не только наличие соответствующего сегмента, но и порядок следования этих сегментов.

TV

3) Использование метода динамического программирования.

Это универсальный алгоритм, который используется практически везде.

Основан Беллманом.

Графически это выглядит следующим образом:

А(t)

слово

B(t)

Слово

Функция деформации основного времени.

Рассмотрим пример:

20 11 9
16 4 2 4
12 3 6 5
6 2 5 3
1 8 12 17
4 4 3 1
4 4 2 4
6 3 6 5
5 2 5 3
1 7 4 5

Н

И

Д

А

А А Д И Н

www.ronl.ru

Реферат: Цифровая обработка сигналов

ВВЕДЕНИЕ

В ЦИФРОВУЮ ОБРАБОТКУ

СИГНАЛОВ

Содержание.

1. Дискретные сигналы

1.1. Дискретизация непрерывных сигналов

1.2. Связь спектров дискретных и непрерывных сигналов

1.3. Преобразование Фурье и Лапласа для дискретных сигналов

1.4. Z - преобразование

1.5. Основные теоремы Z - преобразования

1.6. Дискретное преобразование Фурье

2. Дискретные цепи

2.1. Разностное уравнение и дискретная цепь

2.2. Передаточная функция дискретной цепи

2.3. Общие свойства передаточной функции

2.4. Частотные характеристики

2.5. Импульсная характеристика. Свертка.

2.6. Круговая свертка

2.7. Энергия дискретного сигнала. Корреляция и энергетический спектр

2.8. Расчет энергии сигнала в дискретной цепи

2.9. Секционирование

3. Цифровые фильтры

3.1. Цифровая система обработки сигналов

3.2. Расчет не рекурсивных ЦФ общего вида

3.3. Схема и характеристики фильтров с линейной фазой

3.4. Общие свойства фильтров с линейной фазой

3.5. Расчет ЦФ с линейной фазой. Метод взвешивания.

3.6. Метод частотной выборки

3.7. Расчет рекурсивных фильтров. Метод билинейного преобразования

4. Эффекты конечной разрядности и их учет.

4.1. Шум квантования и шумовая модель

4.2. Расчет шумов квантования

4.3. Влияние структуры ЦФ на шум квантования

4.4. Квантование коэффициентов. Расчет разрядности.

4.5. Чувствительность

4.6. Масштабирование сигнала в цепи

4.7. Динамический диапазон ЦФ

4.8. Предельные циклы

5. Восстановление непрерывного сигнала

5.1. Характеристики ЦАП

5.2. Погрешности восстановления

Литература

Обсуждены основные положения теории дискретных сигналов и способы их обработки. Рассмотрены особенности цифровой реализации дискретных систем. Изложены методы расчета цифровых фильтров, получившие наибольшее распространение.

Эффекты конечной разрядности ЦФ и их учет рассмотрены применительно к системам с фиксированной запятой. Погрешности дискретизации и восстановления обсуждены на уровне необходимом для понимания вопроса.

Для технических факультетов.

1. Дискретные сигналы.

1.1 Дискретизация непрерывных сигналов.

Обработка сигналов на цифровых ЭВМ начинается с замены непрерывного сигнала X(t) на дискретную последовательность, для которой применяются такие обозначения

x(nT) , x(n) , xn , {x0 ; x1 ; x2 ; … } .

Дискретизация осуществляется электронным ключом (ЭК) через равные интервалы времени T (Рис. 1.1).

Дискретная последовательность аппроксимирует исходный сигнал X(t) в виде решетчатой функции X(nT). Частота переключения электронного ключа fд и шаг дискретизации T связаны формулой

f­­д = 1 / T . (1.1)

Дискретная последовательность или дискретный сигнал выражается через исходный непрерывный (аналоговый) сигнал следующим образом

x(nT) = x(t)d(t - nT) , (1.2)

где d(t) - дискретная d - функция (Рис. 1.2, а),

d(t - nT) - последовательность d - функций (Рис. 1.2, б).

Погрешность, возникающую при замене аналогового сигнала дискретным сигналом, удобно оценить сравнивая спектры этих сигналов.

1.2. Связь спектров дискретного и непрерывного сигналов.

Исходное выражение для спектра дискретного сигнала с учетом (1.2) запишется следующим образом

X(jw) =x(nT) e-jwt dt =x(t)d(t - nT) e-jwt dt .

Периодическую последовательность d - функций здесь можно разложить в ряд Фурье

d(t - nT) =,

где с учетом формулы связи спектров периодического и непериодического сигналов

, поскольку Fd (jw) = 1

После замены в исходном выражении периодической последовательности d - функций ее разложением в ряд Фурье получим

X(jw) =x(t)() e-jwt dt =x(t)e-jwt dt .

Учитывая здесь теорему смещения спектров, т.е. :

если f(t) ® F(jw), то f(t)® F[j(w±w0 )] ,

последнее равенство можно представить в виде формулы, выражающей связь спектров дискретного X(jw) и аналогового Xa (jw) сигналов

X(jw) =Xa [j(w -)] . (1.3)

На основании формулы (1.3) с учетом поясняющих рисунков 1.3, а, б можно сделать следующие выводы :

1. Спектр дискретного сигнала состоит из суммы спектров исходного непрерывного сигнала, сдвинутых друг относительно друга по оси частот на величину равную частоте дискретизации wд

2. Спектры аналогового и дискретного сигналов совпадают в диапазоне частот [-0,5wд ; 0,5wд ], если удовлетворяется неравенство

wв Ј 0,5wд , (1.4)

где wв - верхняя частота спектра аналогового сигнала.

Равенство в (1.4) соответствует утверждению теоремы Котельникова о минимальной частоте wд .

1. Смежные спектры Xa (jw) в (1.3) частично перекрываются, если условие (1.4) не выполняется (Рис 1.3, б). В этом случае спектр дискретного сигнала искажается по отношению к спектру аналогового сигнала. Эти искажения являются неустранимыми и называются ошибками наложения.

2. Аналоговый сигнал можно восстановить полностью по дискретному сигналу с помощью ФНЧ, частота среза которого wс = 0,5wд . Это утверждение основано но совпадении спектров дискретного сигнала на выходе ФНЧ и непрерывного сигнала. Сигнал восстанавливается без искажений, если выполняется условие (1.4). в противном случае сигнал восстанавливается с искажениями, обусловленными ошибками наложения.

Выбор частоты дискретизации осуществляется в соответствии с (1.4). если частота wв не известна, то выбор из wд определяется расчетом по формуле (1.1), в которой интервал T выбирается приближенно с таким расчетом, чтобы аналоговый сигнал восстанавливался без заметных искажений плавным соединением отсчетов дискретного сигнала.

1.3 Преобразование Фурье и Лапласа для дискретных сигналов.

Для дискретных сигналов формулы Фурье и Лапласа представляется возможным упростить. Действительно, поскольку

то после перехода к дискретной переменной пара преобразований Фурье принимает вид

Здесь применяются формулы одностороннего преобразования Фурье, так как начало отсчета совмещается с началом действия дискретного сигнала.

Формулы Фурье для дискретных сигналов применяются в нормированном виде, поэтому после замены X(nT) ® X(nT) / T преобразование Фурье принимает окончательный вид

(1.5)

Формулы Лапласа для дискретных сигналов получаются на основании (1.5) после обобщения частоты на всю плоскость комплексного переменного, то есть jw® P = d + jw

(1.6)

1.4. Z - преобразование.

Эффективность частотного анализа дискретных сигналов существенно возрастает, если заменить преобразование Лапласа Z - преобразованием. В этом случае изображение сигнала X(p), которое представляет собой трансцендентную функцию переменной P = d + jw, заменяется Z - изображением сигнала X(Z), которое является рациональной функцией переменной Z = x + jy.

Формулы Z - преобразования получаются из формулы Лапласа (1.6) заменой переменных

epT = Z . (1.7)

Подстановка (1.7) и ее производной

dZ / dp = TepT

в (1.6) приводит к формулам прямого и обратного Z - преобразования

(1.8)

Точки на мнимой оси комплексного переменного p = d +jw, то есть точки p = jw, определяют реально частотные характеристики сигнала. Мнимой оси соответствует на плоскости Z единичная окружность, так как в этом случае согласно (1.7)

Z = ejwT = (1.9)

Поэтому непрерывному росту переменной на мнимой оси плоскости p = d + jw, соответствует многократный обход единичной окружности на плоскости z = x + jy (Рис. 1.4). Этим фактом объясняется, в частности, то обстоятельство, что интегрирование в формуле обратного z - преобразования (1.8) осуществляется вдоль единичной окружности плоскости z взамен интегрирования вдоль прямой параллельной мнимой плоскости p.

Учитывая вышеизложенное и формулы (1.7), (1.9) можно утверждать, что левая полуплоскость переменного p = d + jw отображается на плоскость единичного круга переменного z = x + jy, правая полуплоскость - на плоскость z за пределами единичного круга.

Подстановка (1.9) в z - изображение сигнала приводит к спектру этого сигнала, подстановка (1.7) дает изображение по Лапласу.

Пример. Определить спектр и построить графики модуля и аргумента спектральной плотности сигнала x(nT) = {a ; b} (Рис. 1.5, а).

Решение.

Z - изображение сигнала согласно (1.8)

X(Z) =x(nT) Z-n = x(0T) Z-0 + x(1T) Z-1 = a + bZ-1

Отсюда подстановкой (1.9) определяем спектр сигнала

X(jw) = a + be-jwT .

Графики модуля и аргумента спектральной плотности приведены на рисунке 1.6, а, б на интервале частот [0 ; wд ].

Вне интервала частот [0 ; wд ] частотные зависимости повторяются с периодом wд .

1.5 Основные теоремы Z - преобразования.

Перечислим без доказательства теоремы z - преобразования, которые потребуются в последующих разделах.

1. Теорема линейности.

Если x(nT) = ax1 (nT) + bx2 (nT) ,

то X(Z) = a X1 (Z) + bX2 (Z).

2. Теорема запаздывания.

Если x(nT) = x1 (nT - QT) ,

то X(Z) = X1 (Z) Z-Q .

3. Теорема о свертке сигналов.

Если X(nT) = x1 (kT) x2 (nT - kT) ,

то X(Z) = X1 (Z) X2 (Z).

4. Теорема об умножении сигналов.

Если x(nT) = x1 (nT) x2 (nT) ,

то X(Z) = X1 (V) X2 () V-1 dV,

где V, Z - переменные на плоскости Z.

5. Теорема энергий (равенство Парсеваля).

x2 (nT) =X(Z) X(Z-1 ) Z-1 dZ.

Z - преобразование дискретных сигналов имеет значение равное значению преобразования Лапласа непрерывных сигналов.

1.6. Дискретное преобразование Фурье.

Если сигнал ограничен во времени значением tu , а его спектр - частотой wв , то он полностью характеризуется конечным числом отсчетов N как во временной, так и в частотной областях (Рис. 1.7, а, б) :

N = tu /T - во временной области, где T = 1/fд ,

N = fд /f1 - в частотной области, где f1 = 1/tu .

Дискретному сигналу соответствует периодический спектр, дискретному спектру будет соответствовать периодический сигнал. В этом случае отсчеты X(nT) = {X0 ; X1 ; … XN-1 } являются коэффициентами ряда Фурье периодической последовательности X(jkw1 ), период, который равен wд . Соответственно, отчеты X(jkw1 ) = {X0 ; X1 ; … XN-1 } являются коэффициентами ряда Фурье периодической последовательности X(nT), период, который равен tu .

Связь отсчетов сигнала и спектра устанавливается формулами дискретного преобразования Фурье (ДПФ). Формулы ДПФ следуют из формул Фурье для дискретных сигналов (1.5), если непрерывную переменную w заменить дискретной переменной kw1 , то есть

w® kw1 , dw®w1 .

После замены переменной в (1.5) получим

X(jkw1 ) = x(nT),

x(nT) =X(jkw1 ).

Отсюда после подстановки w1 = wд /N, T = 2p/wд формулы ДПФ принимают окончательный вид

X(jkw1 ) =x(nT)- прямое ДПФ ,

x(nT) =X(jkw1 )- обратное ДПФ (1.10)

Сигнал с ограниченным спектром имеет, строго говоря, бесконечную протяженность во времени и, соответственно бесконечное число отсчетов и непрерывный спектр. Спектр останется непрерывным, если число отсчетов сигнала ограничить конечным числом N. Формулы (1.10) в этом случае будут выражать связь между N отсчетами дискретного сигнала и N отсчетами его непрерывного спектра, который можно полностью восстановить по его отсчетам.

Пример. Определить отсчеты спектра сигнала на Рис. 1.5, а.

Здесь N = 2 поэтому X(jkw1 ) =x(nT) e-jpkn следовательно

X(j0w1 ) =x(nT)e-j0 = x(0T) + x(1T) = a + b

X(j1w1 ) =x(nT)e-jpn = x(0T) e-j0 + x(1T) e-jp = a - b

график отсчетов спектра приведен на Рис. 1.5, б, где w1 = wд /N = 0,5wд .

Сигнал с конечным числом отсчетов N имеет спектр, который повторяет с конечной погрешностью спектр сигнала с бесконечным числом отсчетов : спектры совпадают на отсчетных частотах kw1 и отличаются на других частотах. Отличие спектров тем меньше, чем больше N. В самом деле, реальные сигналы обладают конечной энергией и, следовательно, начиная с некоторого номера отсчета остальными номерами можно пренебречь ввиду их малости, что не окажет заметного влияния на спектр сигнала.

Пример. Осуществить дискретизацию экспоненциального импульса X(t) = Ae-at = 1 e-10t и сравнить спектры исходного и дискретного сигналов.

Решение.

График сигнала X(t) представлен на Рис. 1.8

Пусть T = 0,02с. В этом случае плавным соединением отсчетов сигнала (штриховая линия на Рис. 1.8) сигнал восстанавливается удовлетворительно хотя заметны искажения в окрестности точки t = 0, поэтому ошибки наложения будут некоторым образом влиять на спектральные характеристики.

Пусть tu = 0,4с. В этом случае

N = tu /T = 20.

Расчет спектра по формуле прямого ДПФ в точке w = 0 (k = 0) запишется так

X(j0w1 ) = 1,0 + 0,8187 + 0,6703 + 05488 + 0,4493 + 0,368 + 0,3012 + 0,2466 + 0,2019 + 0,1653 + 0,1353 + 0,1108 + 0,09072 + 0,07427 + 0,06081 + 0,04979 + 0,04076 + 0,03337 + 0,02732 + 0,02237 = 5,41

Истинное значение спектра в точке w = 0 можно определить зная спектр аналогового экспоненциального импульса

Xa (jw) =, следовательно Xa (j0) == 0,1.

чтобы сравнить спектры дискретного и непрерывного сигналов, дискретный спектр необходимо денормировать умножением на T, так как формулы Фурье для дискретных сигналов применяются в нормированном виде. Поэтому

X(jow1 ) = 5,41 T = 5,42Ч0,02 = 0,1082.

Таким образом совпадение спектров Xa (jw) и X(jw) в точке w = 0 вполне удовлетворительное. Некоторая неточность объясняется влиянием ошибок наложения.

Уместно заметить, что выбор шага дискретизации достаточно контролировать в точках максимальной крутизны исходной функции X(t). В рассмотренном примере такой точкой является момент времени t = 0.

В заключение отметим, что формулы ДПФ упрощают расчетные процедуры по взаимному преобразованию сигналов и их спектров, что особенно важно для технических систем, функционирующих В реальном масштабе времени. В этих случаях применяется алгоритм быстрого преобразования Фурье (БПФ), основанный на формулах ДПФ. Ускоренная процедура расчетов по алгоритму БПФ достигается за счет исключения повторных арифметических операций, характерных для расчетов по формулам ДПФ.

2. Дискретные цепи.

2.1 Разностное уравнение и дискретная цепь.

Непрерывный сигнал на входе линейной системы x(t) и соответствующий сигнал y(t) на выходе связаны дифференциальным уравнением. Замена непрерывной переменной t на дискретную переменную nT приводит к замене дифференциального уравнения разностным уравнением. Каноническая форма разностного уравнения общего вида, учитывающая в явном виде наличие в системе как прямых, так и обратных связей, запишется так

y(nT) =am x(nT - mT) +y(nT -), (2.1)

где (M + 1) - число прямых связей,

Z - число обратных связей,

m, , n - целые положительные числа.

Аналитические методы решения разностных уравнений во многом повторяют методы решения дифференциальных уравнений и позволяют получить решение в общем виде, пригодном для анализа работы дискретной системы. Численные методы решения приводят к результату в виде числовой последовательности, поэтому разностное уравнение в этом случае воспринимается как алгоритм функционирования дискретной системы, пригодной для программирования на ЭВМ работы такой системы.

Система работа которой описывается разностными уравнениями, является дискретной так как она способна воздействовать только на отсчеты сигнала. Дискретная система и дискретная цепь осуществляет, согласно (2.1) следующие операции над дискретными сигналами.

1. Сдвиг (запаздывание) на целое число интервалов T

2. Умножение на некоторый коэффициент am или b

3. Сложение сигналов.

Перечисленные операции образуют полный базис, в котором можно реализовать заданное воздействие на сигнал.

Набору операций базиса соответствует набор типов элементов дискретной цепи : элементы памяти (задержки), умножители и сумматоры.

Каноническая схема дискретной цепи общего вида, соответствующая разностному уравнению (2.1), приведена на Рис. 2.1.

Разностное уравнение с постоянными коэффициентами am , b описывает линейную дискретную цепь. Разностное уравнение с коэффициентами, зависящими от уровня отсчетов дискретного сигнала, описывает нелинейную дискретную цепь.

Разностное уравнение составляется непосредственно по схеме цепи, учитывая возможные пути прохождения сигнала, или по системным характеристикам цепи.

Пример. Составить разностное уравнение цепи, схема которой приведена на Рис. 2.2, а.

Решение.

Здесь имеется три пути прохождения сигнала от входа до выхода цепи, по которым сигналы проходят и затем складываются в сумматоре. Поэтому разностное уравнение имеет вид

y(nT) = 0,5 x(nT) - 0,7 x(nT - T) + 0,35 x(nT - 2T).

Пример. Определить y(nT) (Рис. 2.2, б), если x(nT) = {1,0 ; 0,5}.

Решение.

Разностное уравнение цепи y(nT) = 0,5 x(nT - T) + 0,1 x(nT) численное решение разностного уравнения :

n=0; y (0T) = 0,5 x(-T) + 0,1 x(0T) = 0,1;

n=1; y (1T) = 0,5 x(0T) + 0,1 x(1T) = 0,55;

n=2; y (2T) = 0,5 x(1T) + 0,1 x(2T) = 0,25;

n=3; y (3T) = 0,5 x(2T) + 0,1 x(3T) = 0.

Следовательно y(nT) = {0,1; 0,55; 0,25}.

Графики сигналов x(nT) и y(nT) приведены на рис (2.3,а,б).

Пример. Определить сигнал на выходе цепи (рис 2.2,в), если y(nT)={0,1; 0,1}.

Решение.

Цепь содержит обратную связь (ОС), поэтому сигнал на выходе цепи формируется как сигнал со стороны входа, так и со стороны выхода.

y(nT) = 0,4 x(nT-T) - 0,08 y(nT-T)

n=0 y(0T) = 0,4 x(-T) - 0,08 y(-T) = 0

n=1 y(1T) = 0,4 x(0T) - 0,08 y(0T) = 0,4

n=2 y(0T) = 0,4 x(1T) - 0,08 y(1T) = 0,368 ит.д. ...

Следовательно y(nT) = {0; 0,4; 0,368; ...}.

В данном случае за счет циркуляции сигнала по цепи ОС выходной сигнал состоит из бесконечного числа отсчетов.

Дискретная цепь, содержащая ОС, называется рекурсивной. Дискретная цепь без ОС называется нерекурсивной.

2.2 Передаточная функция дискретной цепи.

Замена сигналов в разностном уравнении (2.1) на Z - изображения этих сигналов

,

приводит к алгебраизации разностного уравнения

.

Алгебраизация осуществляется применением теорем линейности и запаздывания.

Переход в область Z - изображений позволяет ввести понятие передаточной функции дискретной цепи H(Z), которая определяется как отношение Z - изображения сигнала на выходе цепи к Z - изображению сигнала на входе цепи. Поэтому, учитывая алгебраическую форму разностного уравнения общего вида, можно записать общий вид передаточной функции дискретной цепи

. (2.3)

Отсюда, в частности, для нерекурсивной цепи

. (2.4)

Если нерекурсивная цепь состоит всего из одного элемента запаздывания, то ,

что находит своё отражение в обозначении элементов памяти на схемах дискретных цепей.

Передаточная функция конкретной цепи формируется по передаточным функциям её элементов согласно общих правил линейных цепей. В частности, для цепи содержащей ОС применяется известная формула

, (2.5)

где - передаточная функция цепи

прямого прохождения сигнала,

- предаточная функция цепи ОС.

Пример. Оперделить передаточную функцию цепи на рис. (2.4,а).

Решение.

, где , .

Пример. Определить передаточную функцию на рис.(2.4,б).

Решение.

,

где - передаточная функция рекурсивной части схемы,

- передаточная функция нерекурсивной части цепи.

По известной передаточной функции можно легко определить разностное уравнение цепи.

Пример. Составить разностное уравнение цепи на рис.(2.2,в).

Решение.

Здесь .

Поэтому .

Отсюда .

Следовательно переходя к оригиналам: y(nT)= 0,4 x(nT-T) - 0,08 y(nT-T).

2.3 Общие свойства передаточной функции.

Критерий устойчивости дискретной цепи совпадает с критерием устойчивости аналоговой цепи: полюсы передаточной функции должны располагаться в левой полуплоскости комплексного переменного , что оответствует положению полюсов в пределах единичного круга плоскости

z = x + jy.

Передаточная функция цепи общего вида записывается, согласно (2.3), следующим образом:

, (2.6)

где знаки слагаемых учитываются в коэффицентах ai , bj , при этом b0 =1.

Свойства передаточной функции цепи общего вида удобно сформулировать в виде требований физической реализуемости рациональной функции от Z: любая рациональная функция от Z может быть реализована в виде передаточной функции устойчивой дискретной цепи с точностью до множителя H0 ЧHQ ­, если эта функция удовлетворяет требованиям:

1. коэффициенты ai , bj - вещественные числа,

2. корни уравнения V(Z)=0, т.е. полюсы H(Z), расположены в пределах единичного круга плоскости Z.

Множитель H0 ЧZQ учитывает постоянное усиление сигнала H0 и постоянный сдвиг сигнала по оси времени на величину QT.

2.4 Частотные характеристики.

Комплекс передаточной функции дискретной цепи

определяет частотные характиристики цепи

- АЧХ, - ФЧХ.

На основании (2.6) комплекс передаточной функции общего вида запишется так

.

Отсюда формулы АЧХ и ФЧХ

, (2.7)

, (2.8)

Частотные характеристики дискретной цепи являются периодическими функциями. Период повторения равен частоте дискретезации wд .

Частотные характеристики принято нормировать по оси частот к частоте дискретезации

, (2.9)

где W - нормированная частота.

В расчетах с приенением ЭВМ нормирование по частоте становится необходимостью.

Пример. Определить частотные характеристики цепи, передаточная функция которой

H(Z) = a0 + a1 ЧZ-1 .

Решение.

Комплекс передаточной функции: H(jw) = a0 + a1 e-jwT .

с учетом нормирования по частоте: wT = 2pЧW.

Поэтому

H(jw) = a0 + a1 e-j2pW = a0 + a1 cos 2pW - ja1 sin 2pW .

Формулы АЧХ и ФЧХ

H(W) =, j(W) = - arctg.

графики АЧХ и ФЧХ для положительных значений a0 и a1 при условии a0 > a1 приведены на рис.(2.5,а,б.)

Логарифмический масштаб АЧХ - ослабление А:

; . (2.10)

Нули передаточной функции могут распологаться в любой точке плоскости Z. Если нули расположены в пределах единичного круга, то характеристики АЧХ и ФЧХ такой цепи связаны преобразованием Гильберта и однозначно могут быть определены одна через другую. Такая цепь называется цепью минимально-фазового типа. Если хотябы один нуль появляется за пределами единичного круга, то цепь относится к цепи нелинейно-фазового типа, для которого преобразование Гильберта неприменимо.

2.5 Импульсная характеристика. Свертка.

Передаточная функция характеризует цепь в частотной области. Во временной области цепь характеризуется импульсной характеристикой h(nT). Импульсная характеристика дискретной цепи представляет собой реакцию цепи на дискретную d - функцию. Импульсная харакетеристика и передаточная функция являются системными характеристиками и связаны между собой формулами Z - преобразования. Поэтому импульсную реакцию можно рассматривать как некоторый сигнал, а передаточную функцию H(Z) - Z - изображение этого сигнала.

Передаточная функция является основной характеристикой при проектировании, если нормы заданы относитеольно частотных характеритик системы. Соответственно, основной характеристикой является импульсная характеристика, если нормы заданы во временной обрасти.

Импульсную характеристику можно определить непосредственно по схеме как реакцию цепи на d - функцию, или решением разностного уравнения цепи, полагая, x(nT) = d (t).

Пример. Определить импульсную реакцию цепи, схема которой приведена на рис.2.6,б.

Решение.

Разностное уравнение цепи y(nT)=0,4 x(nT-T) - 0,08 y(nT-T).

Решение разностного уравнения в численном виде при условии, что x(nT)=d(t)

n=0; y(0T) = 0,4 x(-T) - 0,08 y(-T) = 0;

n=1; y(1T) = 0,4 x(0T) - 0,08 y(0T) = 0,4;

n=2; y(2T) = 0,4 x(1T) - 0,08 y(1T) = -0,032;

n=3; y(3T) = 0,4 x(2T) - 0,08 y(2T) = 0,00256; ит.д. ...

Отсюда h(nT) = {0 ; 0,4 ; -0,032 ; 0.00256 ; ...}

Для устойчивой цепи отсчеты импульсной реакции с течением времени стремятся к нулю.

Импульсную характеристику можно определить по известной передаточной функции, применяя

а. обратное Z-преобразование,

б. теорему разложения,

в. теорему запаздывания к результатам деления полинома числителя на полином знаменателя.

Последний из перечисленных способов относится к численным методам решения поставленной задачи.

Пример. Определить импульсную характеристику цепи на рис.(2.6,б) по передаточной функции.

Решение.

Здесь H(Z) =.

Разделим числитель на знаменатель

Применяя к результату деления теорему запаздывания, получаем

h(nT) = {0 ; 0,4 ; -0,032 ; 0.00256 ; ...}

Сравнивая результат с расчетами по разностному уравнению в предидущем примере, можно убедиться в достоверности расчетных процедур.

Предлагается определить самостоятельно импульсную реакцию цепи на рис.(2.6,а), применяя последовательно оба рассмотренных метода.

В соответствии с определением передаточной функции, Z - изображение сигнала на выходе цепи можно определите как произведение Z - изображения сигнала на входе цепи и передаточной функции цепи:

Y(Z) = X(Z)ЧH(Z). (2.11)

Отсюда, по теореме о свертке, свертка входного сигнала с импульсной характеристикой дает сигнал на выходе цепи

y(nT) =x(kT)Чh(nT - kT) =h(kT)Чx(nT - kT). (2.12)

Определение выходного сигнала по формуле свертки находит применение не только в расчетных процедурах, но и в качестве алгоритма функционирования технических систем.

Пример.

Определить сигнал на выходе цепи, схема которой приведена на рис.(2.6,б), если x(nT) = {1,0; 0,5}.

Решение.

Здесь h(nT) = {0 ; 0,4 ; -0,032 ; 0,00256 ; ...}

Расчёт по (2.12)

n=0 : y(0T) = h(0T)x(0T) = 0;

n=1 : y(1T) = h(0T)x(1T) + h(1T) x(0T) = 0,4;

n=2 : y(2T)= h(0T)x(2T) + h(1T) x(1T) + h(2T) x(0T) = 0,168;

Таким образом y(nT) = { 0; 0,4; 0,168; ... }.

В технических системах вместо линейной свертки (2.12) чаще применяется круговая или циклическая свертка .

2.6 Круговая свёртка .

Реальным сигналам соответствуют числовые последовательности конечной длины. Конечную числовую последовательность можно продолжить по оси времени путём периодического повторения и получить периодическую числовую последовательность. Периодической числовой последовательности соответствует спектр в виде периодической числовой последовательности. Обе последовательности имеют одинаковый период N и связаны формулами ДПФ.

Замена реальных последовательностей периодическими позволяет повысить эффективность использования вычислительной техники применительно к дискретным сигналам (скоростная свёртка, БПФ и др. )

Свёртка периодических последовательностей называется круговой и определяется на интервале равном одному периоду.

y(nT) =x(kT)Чh(nT - kT), (2.13)

Линейная и круговая свёртки дают одинаковый результат, если соответствующим образом выбрать в круговой свёртке размер исходных последовательностей. Дело в том, что свёртка конечных последовательностей приводит к последовательности, размер которой N превышает длину каждой из исходных последовательностей и, по определению, равен

N = N1 + N2 - 1, (2.14)

где N1 - длина последовательности x(nT),

N2 - длина последовательности h(nT).

Поэтому замена исходной последовательности на периодическую выполняется с таким расчётом, чтобы длина периода получилась равной N, добавляя с этой целью нули в качестве недостающих элементов.

Пример.

Вычислить круговую свёртку по данным примера в параграфе 2.4.

Решение.

Здесь, пренебрегая малыми значениями отсчётов представим импульсную реакцию в виде конечной числовой последовательности h(nT) ={0; 0,4 ; -0,032}.

Отсюда, поскольку x(nT) = {1,0; 0,5}, с учётом (2.14)

N1 = 2,N2 = 3,N = 4.

Следовательно исходные числовые последовательности запишутся так

x(nT) = {1,0; 0,5; 0; 0}, h(nT) ={0; 0,4; -0,032; 0}.

Отсюда, применяя (2.13), получаем

n=0: y(0T) = x(0T)h(0T) + x(1T)h(-1T) + x(2T)h(-2T) + x(3T)h(-3T) = 0;

n=1: y(1T) = x(0T)h(1T) + x(1T)h(0T) + x(2T)h(-1T) + x(3T)h(-2T) = 0,4;

n=2: y(0T) = x(0T)h(2T) + x(1T)h(1T) + x(2T)h(0T) + x(3T)h(-1T) = 0,168;

n=3: y(0T) = x(0T)h(3T) + x(1T)h(2T) + x(2T)h(1T) + x(3T)h(0T) = -0,016;

Следовательно y(nT)= {0; 0,4; 0,168; -0,016}, что совпадает с расчётами по линейной свёртке в примере параграфа 2.4.

Графики периодических числовых последовательностей x(nT), h(nT), y(nT) приведены на рис.(2.7).

К периодическим числовым последовательностям, полученным изложенным выше способом, можно применить ДПФ, перемножить результаты и после выполнения обратного ДПФ получить последовательность y(nT), совпадающую с результатами расчётов по круговой свёртке.

2.7. Энергия дискретного сигнала.

Корреляция и энергетический спектр.

В качестве энергии дискретного сигнала принята мера

Wx =x2 (nT), (2.15)

соответственно в частотной области, согласно равенству Парсеваля,

Wx =X2 (w)dw =X(jw)X* (jw)d(jw), (2.16)

где X(jw) = X(w)ejj(w) - спектр сигнала x(nT),

X* (jw) = X(w)e-jj(w) - спектр x(-nT) в соответствии с теоремой о спектре инверсного сигнала,

X2 (w) = X(jw)ЧX* (jw) = Sx (jw) - энергетический спектр сигнала x(nT).

На рис.(2.8) показан в качестве примера сигнал x(nT) и его инверсная копия x(-nT) для некоторого частного случая

Энергетический спектр выражает среднюю мощность сигнала x(nT), приходящуюся на узкую полосу частот в окрестности переменной w.

Во временной области энергетическому спектру соответствует свертка инверных сигналов, что определяет корреляционную функцию Sx (nT) сигнала x(nT).

. (2.17)

Согласно (2.17) и (2.15) корреляционная функция в точке n = 0 равна энергии сигнала, т. е.

(2.18)

Для периодических дискретных сигналов корреляционная функция и энергетический спектр связаны формулами ДПФ

. (2.19)

Отсюда получаются расчётные формулы энергии периодических дискретных последовательностей

, (2.20)

что соответствует равенству Парсеваля для дискретных периодических сигналов. Корреляционная функция таких сигналов определяется по формуле кру

gramotey.com

Реферат Цифровая обработка сигнала Digital Signal processing

РефератРабота добавлена на сайт bukvasha.ru: 2015-10-28

Устройства, которые позволяют вводить сигналы в ЭВМ, называются АЦП.

Любой сигнал содержит шумы, которые искажают последний сигнал, тем самым, мешая обработке сигнала.

Метод обработки сигналов.

Существует 3 способа обработки сигналов:

1 способ – полосовые фильтры.

2 способ – линейные предсказания.

3 способ – дискретное преобразование Фурье.Применение методов обработки сигналов.

1)      Выделение наиболее информативных признаков из имеющегося сигнала.

2)      Создание векадерной техники.

3)      Создание речевых систем для автоматической распознавания речи.

4)      Проблема синтеза речи или создание искусственного голоса.

5)     

Системы распознавания речи.

Классификация:

Это такие устройства, которые позволяют отредактировать устный сигнал в команды

Классы систем:

1)      автоматическое распознавание изолированных слов (когда пользователь пословно производит команды).

2)      Автоматическое распознавание слитной речи (устройства, которые в состоянии отделить слова).

3)      Система понимания речи (системы, которые не требуют отделять слова, а которые должны их понимать и дополнять).

4)      Системы синтеза речи или сигналы создания искусственного голоса.

А) форматный синтез или синтез по правилам (когда выходной сигнал получается при сложной математической обработки).

Б) компилятивный метод (этот метод: суть: предварительное изучение и выделение ярких моментов).

Параметры распознавания систем:

1.      По объему словаря.

2.      Оценить по точности распознавания речи, которая измеряется в процентах (должно превышать 95%).

3.      Система автоматического распознавания речи характеризуется по способу обработки входного сообщения.

4.      Система распознавания диктора.Основные информативные признаки речевого сигнала.

Любой речевой сигнал характеризуется следующими признаками, которые можно использовать для того, чтобы синтезировать исходный сигнал.

Признаки:

1)      Энергия сигнала

                           

                       10м         

                       Е1        Е2      Е3

N – количество отчетов

2) Основная частота.

      - определяет длину речевого тракта

3) Форманты

             Е

                                            

                        

              F0           F1           F2               F3         F4    - определяет концентрацию энергии речевого сигнала по частоте и характеризует гласные звуки. Они используются  для классификации гласных звуков.

 - характеризует свойства диктора.

4) Мгновенная частота.

     Это количество перехода сигнала через нуль.

            

Этот признак используется для классификации шумных звуков и гласных.

5) Мгновенная амплитуда сигнала.

             

Аналогичные признаки выделяются из речевого сигнала после его фильтрования по полосовым фильтрам. В результате получается компактные речевые признаки входного сигнала. Объем памяти получается необходимым намного меньше. Основной тон - это очень полезный признак и используется для динамической сегментации входного сигнала, который приводит к более точной обработке входного сигнала.

Первая и вторая форманта  - используются для классификации и распознавания гласных звуков.

Признак  - используется для определения взрывных звуков (т, с, ш и т.д.)Структура распознавания входных сообщений.

     Модель сигнала        Гипотеза фонем    Предсказатель букв  Предсказатель слов    

                                                                                                   Предсказатель предложений, фразМетоды распознавания, используемые в системах обработки речевых сигналов.

1)      Статистические методы.

2)      Лингвистические методы (структурирование).

3)      Нейронные сети.Тема: Типы сигналов и связи между сигналами различных типов.

1)      Классификация сигналов.

2)      Связи между аналоговыми и дискретными сигналами.

3)      Связь между дискретными и цифровыми сигналами.

4)      Дискретная Дельта – Функция.

      

         

m=3 – номер отсчета

 

                       

              

                        T        2T           3TИспользуя дискретную - функцию, любую последовательность X(nT) можно представить в следующей форме:

                                        

Тема: Z–преобразования и преобразования Фурье.1)      Прямое Z–преобразование.

2)      Основные свойства прямого Z–преобразования.

3)      Обратное Z–преобразование.

4)      Преобразование Фурье.1. Прямое Z–преобразование X(Z) последовательность X(nT) определяется следующей формулой:

Z–преобразование имеет смысл только в том случае, если функция X(nT) сходится.Пример:

                                  

В теории обработки цифровых сигналов могут быть использованы:

1

(-1)n

n

1/(1-Z-1)

1/(1+Z-1)

Z-1/(1-Z-1)2

Вот эти Z–преобразования имеют различные формы записи и могут использоваться для описания передаточных функций цифровых фильтров, которые используются для обработки цифровых сигналов.

                                  X(nT)                            X(Z)                      Z–преобразование используют для того, чтобы проектировать цифровые фильтры.2. Основные свойства прямого  Z–преобразование.

      1. Свойство линейности.

Предположим, имеем следующую последовательность дискретного преобразования:

X1(nT)                                        X2(nT)                                 X3(nT)

X1(Z)                                          X2(Z)                                   X3(Z)

Имеем: С1=const и C2=const, тогда преобразование является линейным если:  X3(Z) = C1X1 (Z) +C2X2 (Z)          - линейное

 X3(nT) = C1X1(nT) +C2X2(nT)         преобразование      2. Свойства сдвига.

Утверждает, что если

                       X2(nT) = X1((n-m)T), тогда

                       X2(Z) = X1(-mT)+ X1((-m+1)T)Z-1+…+X1(-T)Z-(m-1)+Z-mX1(Z)                       X2(Z) = Z-mX1(Z)

                       X3(Z) =         

Где с – замкнутый контур в комплексной v плоскости, которая обхватывает все особенности X1 u X2 .

  

3. Обратное  Z–преобразование.

Оно определяется следующей функцией:

Обратное Z–преобразование может быть определено путем вычисления интеграла, который можно записать следующим образом:

Обратное Z–преобразование может быть определено путем вычисления интеграла, если этот интеграл не расходится.

  Z–преобразование используется при проектировании фильтров и характеристик спектральных.Тема: MatLab – основные возможности и функции по дискретной обработке сигналов.

 MatLab – пакет прикладных программ по основным функциям обработки.

Задачи:

- Можно проектировать фильтры.

- Выполнять частотный и спектральный анализ сигналов.

- Выделение признаков из дискретного сигнала и моделирование параметров.

·         Фильтрация

Пакет позволяет выполнять фильтрацию сигнала а с помощью следующих типов фильтра:

        а) Низкочастотные.

        б) Полосовые.

         в) Высокочастотные.

·         Этот пакет позволяет выплнять спектральный анализ, ДПФ(дискретное преобразование Фурье), выполнять непрерывные преобразования Фурье, можно выполнять Z–преобразования сигнала. В интервальном режиме можно проектировать сигналы определенной формы. Можно моделировать сигнал.

·         Основные свойства прямого Z–преобразования.

1.      Свойство линейности.

        X1(nT)                                        X2(nT)                                 X3(nT)         с1,с2

        X1(Z)                                          X2(Z)                                   X3(Z)2.      Сдвиг.

·         Другой метод обработки сигналов это метод преобразования ряда Фурье.

X(nT) – показывает комплексную функцию Х(еj), которая выглядит:

      - прямое преобразование.Спектр сигнала можно получить с помощью Z–преобразования если подставить:Из свойства линейности Z–преобразования следует свойство линейности Фурье преобразования.

 , то

Из свойства сдвига, мы можем написать следующим образом:

·         Дискретное преобразование Фурье.

      K= 0, … N-1 – прямое

     n= 0, … N-1 – обратное

X(nT) = (n=0, … N-1) X(K)последовательность из N частотных отсчетов, где

Эти преобразования можно представить в матричной форме: X = WnXWn – окно расчета

                                    - окно Хэминга

                                   NДПФ и ОПФ – выполняются над конечной последовательностью из N – отсчетов и этот вид преобразования дает возможность определить спектральную плотность мощности сигнала, амплитуду и фазу отдельных частот.  S1                                                                         S1 = a1sin(wt)

                                                                                                                                                                                      

  S2                                                                                                              S2 = a2sin (w2t)  S3                                                                                                              S3 = a3sin (w3t)

                                                                                                               

Спектральная плотность сигнала

Е

 wF1 u F2 –несет смысл сообщения

F3 и т.д. – несет источник информации.

 

Свойства дискретного преобразования Фурье.

1) Линейность.

Имеются 2 сигнала  х(к)               у(к)

                                  aх(nT)           by(nT)    тогда получается

ax(k)+by(k)=ax(nT)+by(nT)2) Свойство сдвига.

Х(к)                          X(nT) – путем сдвига на n0 отсчетов, тогда дискретное

                                  Y(nT)    преобразование Фурье будет:

      путем сдвига на n0k.

  

                                          

           

                                                                                     nT

                                           X(nT)

                                          

           

                                                                                     nT

                    

Тема: Случайные последовательности и их характеристики.

Любой сигнал который подвергается обработке в какой-то степени является случайным сигналом, который изменяется по времени и по частоте. Последовательность X(nT) является случайной, если каждый ее элемент является случайной величиной.                                         - помеха

             X(nT) Y(nT)           

 

Характеристики:

1) Математическое ожидание.

                  

                    

                                                                                Х(nТ)  

                                                                                         N-1                  N2) Дисперсия.

Дисперсия сигнала для непрерывной случайной величины определяется так:

                 

                                                                       0       

                          95%

3) Авто корреляция.

Корреляция – связь между нынешним и предыдущим состоянием.

           

- среднее значение или математическое ожидание.

        

Авто корреляционная функция является мерой связей между случайными последовательностями. Если значение r(m)=0, то нет никакой связи межу случайными последовательностями.4) Спектральная плотность или мощность стационарной случайной последовательности.Спектральная плотность сигнала ----- есть средняя мощность последовательности ----- , приходящейся на достаточно узкую полосу частот.

Эта функция связана с преобразованием Фурье, и имеет следующий вид:

           Тема: Виды окон анализа.

Проблемы:

1) Для того, чтобы обрабатывать сигнал в начале он превращается в дискретном виде (необходимо решить проблему точности при вставлении сигнала, как по частям, так и по уровню).2) Выбор ширины окна анализа сигнала и типа окна анализа. Ширина окна берется исходя из периодичности сигнала. Если ширина окна близка или в точности совпадает с периодичностью сигнала, то это наиболее оптимальный способ выбора ширины окна.

Для речевых сигналов ширина окна должна быть равна периоду основного тона сигнала.

   

                   Т0

Тип окна - используются несколько типов:

а) прямоугольное окно.                 Частотная характеристика этого окна выглядит так:               

 

  б) Окно Хэмминга.

Окно Хэмминга отличается от прямоугольного окна и описывается следующей формулой:

 Достоинства:

1) Она сглаживает боковые вклады в результат обработки.

2) Ширина сдвига окна меньше ширины всего окна.

в) Окно Кайзера.

 , где

I0 – функция Бегеля

 - constТема: Расчеты цифровых фильтров.

Случайные сигналы можно исследовать:

2. В области частот.

Этот способ позволяет найти компоненты периодических сигналов, которые формируют или образуют случайные сигналы.

     а) Преобразованием Фурье.

         Сигналы можно разделить на 3 гармоники.

     б) С помощью полосовых фильтров.

2. Во временной области.

Исследование его характеристики во времени.    

                 

3. С помощью линейного предсказания.Это авто корреляционный способ. Он использует закономерность или информацию о том, как соседние отсчеты взаимосвязаны между собой.

Для того, чтобы исследовать сигналы в частотной области с помощью программ, которые моделируют цифровые фильтры, необходимо, заранее делать расчет цифровых фильтров.Порядок расчета цифровых фильтров следующий:

1) Решается задача аппроксимации с целью определения коэффициента фильтра, при котором фильтр удовлетворяет заданному требованию.

2) Выбирается конкретная схема построения фильтра и квантования, найденных значений его коэффициентов в соответствии с фиксированной длиной слова.

3) Делается квантование переменных величин фильтра, т.е. выбор длины слова входных выходных и промежуточных переменных.

4) Проверяется методом моделирования, удовлетворяет ли полученный фильтр заданным требованиям. Если на этом этапе фильтр не удовлетворяет заданным требованиям, то предыдущие 2 и 3 этапы повторяются.

Бывают 2 типа фильтров:

а) Нерекуррентные.

б) Рекуррентные.

Формулы определения фильтров.

   -    рекуррентный фильтрДругую характеристику цифрового фильтра можно записать следующим образом:

Схема фильтра будет следующая:

         X(n)                           W(n)                            a0                                Y(n)

 Схема фильтра состоит из набора элементов задержек, выходной сигнал которых

умножается на определенный коэффициент.Тема: Линейное предсказание сигналов.

Один из способов обработки сигналов является: использование модели линейного предсказания. Суть состоит в том, что следующий отчет сигнала является (вычисляется), используя предыдущие отчеты.

---- реальный дискретный сигнал.

---- моделирование дискретных сигналов.

С другой стороны:

                          - модель сигнала

                         

Ошибка Минимизируем функцию.

ak – коэффициент линейного предсказания.

                                  Решая эту систему, находим коэффициент а

                    

- Это Ковариационный метод.

- Авто корреляционный метод.

Модель такая: минимизируется ошибка следующим образом:

                           

а – коэффициент линейного предсказания.

R – авто корреляционная матрица.

r – коэффициенты матрицы.

 

                                     

Эта модель сводится к модели фильтрации сигналов и будет:

  

S(Z) - Z–преобразование сигнала

A(Z) – фильтр (анализатор) сигналаЛюбая модель линейного предсказания приводит к ошибкам предсказания. В случае, если мы используем авто корреляционный метод, тогда ошибка предсказания будет:

     

                                   Тема: Цифровая обработка сигналов.

1)      Достоинства методов цифровой обработки сигналов.

2)      Линейные и дискретные системы и их свойства.

3)      Цифровые фильтры и способы их описания.

4)      Фильтры с конечно импульсными характеристиками.

5)      Фильтры с бесконечно импульсными характеристиками.

6)      Передаточные характеристики фильтров.

7)      Нули и полюса фильтров.

8)      Фильтры первого порядка с одним нулем и с одним полюсом.

9)      Фильтры второго порядка с нулями и плюсами.

10)  Топология фильтров.I. Достоинства ЦОС.

  1. Экономное использование средств для обработки сигналов.
  2. Гибко использовать программные средства для обработки сигналов различными методами.
  3. Цифровые способы обработки сигналов не зависят от внешних условий.
  4.  Цифровые способы позволяют моделировать любые устройства с необходимыми характеристиками.

II. Цифровая обработка сигналов использует линейные дискретные системы, которые наиболее проще описывают те процессы, которые протекают при обработке сигналов.

Свойства:

1. Однородности:

                                                 X                          Y                    

2. Суперпозиции:                  X1                                                                                        

                                                 X2                      Y1+Y2                   

                                                                               

3. Инвариантности:                   Т – любая.

Если минимальные системы подчиняются свойствам выше, тогда их работу можно описать с помощью измерения импульсных откликов на входах и выходах этих систем.                                             =1    для n = 0

                                                              =0    для n0Исходя из этих свойств, входной сигнал Х(n) можно представить как сумму отчетов дискритизированного сигнала умноженную на…  - цифровая свертка.III. Цифровые фильтры.

Фильтры можно получить, используя линейные комбинации предыдущих и текущих отчетов сигналов.

С точки зрения характеристик фильтра на единичный конечный сигнал, имеются фильтры с конечно импульсными характеристиками (КИХ) и с бесконечно импульсными характеристиками (БИХ).

IV. Простейший пример КИХ.

               Схема этого фильтра выглядит следующим образом:

 

               X(n)                                                                        Y(n)                            

 

Фильтр и КИХ в общем виде описывается следующим образом:

                               X(1)

                                                      

Данный фильтр является неимпульсивным, и значение выходного сигнала зависит только от значений входного сигнала и от предыдущих значений.V. Фильтры с БИХ.

Фильтры с БИХ математически списываются следующим образом:

                   

для g=1

тогда импульсный отклик будет rn.

Этот тип отклика называется экспонициальный.

Если r 0, тогда даже при нулевом значении входного сигнала, выходной сигнал не будет нулевым.

Если r < 1, тогда выходное значение сигнала на выходе фильтра будет осцелировать.

Если r > 1, выходное значение может бесконечно расти, то тогда этот фильтр будет неустойчивый, и приходим к выводу, что эти фильтры называются «с бесконечно импульсными характеристиками».

Схема такого фильтра выглядит следующим образом:                 X(n)                                                   Y(n) 

Этот фильтр еще называется рекуррентный фильтр с БИХ первого порядка.

Схема фильтра n – го порядка выглядит следующим образом:

                       X(n)                                                     Y(n) 

Общая форма фильтров:

 

 Если использовать Z–преобразования, тогда фильтр можно описать следующей формулой:VI. Передаточные функции фильтров.

Передаточные функция фильтра называется отношением выходного сигнала на входной сигнал.

                                         - передаточная функция.

С учетом формул линейного фильтра получаем:  -  для 1-го фильтра (порядок)

Порядок фильтра определяется от N или М.VII. Нули и полюса фильтров.

Если исследовать передаточную характеристику фильтров, то можно обнаружить два экстремальных варианта:

1.      Числитель = 0.

2.      Знаменатель с 0.

1)      Если числитель = 0, тогда передаточная характеристика равна 0 и можно получить нулевые значения фильтра. Полоса затухания – нулевой фильтр.

2)       Если же знаменатель =0, тогда передаточная характеристика фильтра бесконечная и тогда получаем полюса фильтров или резонансные частоты фильтров.VIII. Фильтр 1-го порядка с одним нулем и с одним полюсом.

Самый простой фильтр, который имеет один полюс и один нуль можно описать следующим образом:

                           

Передаточная характеристика этого фильтра будет следующей:

                                - и этот фильтр имеет один нуль.

                                    когда Z = - а

Схема фильтра выглядит следующим образом:        X(n)         g                                                         Y(n)                   

  

Если рассматривать частотные характеристики этого фильтра, то они будут выглядеть так:

                                                                   

                                                      

Фильтр с одним полюсом:

                                             

Частотные характеристики этого фильтра выглядят следующим образом:      X(n)                                                                Y(n)

A                                                                   A

   r=0.99  r=0.5    r=0.25                 f                 r=-0.25 r=-0.5 r=-0.99             fIX. Фильтры 2-го порядка с нулями и полюсами.

Фильтр 2-го порядка описываются уравнением:

 

Тогда передаточная характеристика этого фильтра выглядит следующим образом:                      - два нуля и два полюса.

                           - нули.

                          - полюса.

Если пропускать нули через фильтр 2-го порядка, то получится следующая картина: 

                                                                                                                                        W                                                                                       Полюс            нульX. Топология цифровых фильтров.

Топология говорит о том, как можно расположить линии задержки с тем сигналом, который нам необходим.

Если система линейная, то порядок включения целей в фильтр не имеет значения.Пример:X(n)                                                                                                Y(n)

II семестр.Тема: Методы использования цифровой обработки сигналов для создания практических систем распознавания речи.

1. Для чего используются цифровые методы обработки сигналов при создании практических систем распознавания речи?1) Для того, чтобы уменьшить объем обрабатываемой информации.

2) Для того, чтобы найти наиболее оптимальные признаки, которые описывают речевой сигнал.

3) Для того, чтобы увеличить скорость работы реальных или практических систем.

4) Для того, чтобы снимать шумовые ненужные сигналы из полезного сигнала.

5)Для того, чтобы сегментировать или маркировать речевой сигнал на фонетические элементы, которые соответствуют письменному тексту.

6) Для того, чтобы упростить аппаратуру передач и приема речевой информации.

В этих целях используют цифровые методы обработки сигналов.2. Основные элементы акустической теории речеобразования.

Фант – шведский ученый разработал теорию, согласно которой они создали математическую модель речеобразования. Эта модель используется для того, чтобы создать искусственные  системы синтеза речи и для того, чтобы понимать сам процесс речеобразования.1. Классификация

                                             X(t)

                                                                                    

Ua 

                                                                             t                1) Аналоговые сигналы бывают двух типов:

·         Стационарные (характеристики не меняются по времени).

·         Не стационарные.

Для того, чтобы обрабатывать сигналы на ЭВМ аналоговые сигналы необходимо квантовать или дискретовать.

2) Дискретные сигналы.

Они описываются решетчатой функцией. Значение функции лежит в определенных пределах  

                                   

Дискретные сигналы измеряются через определенный интервал времени Т, который над интервалом дискретизации.

Сигнал можно описать следующим образом:                                                                   X(t)                                                                                                 

  Ua

            T                                                     10t             tT = const

Если:

X(0) = 1

X(-1) = -2

X(2) = 5,

То дискретный сигнал можно представить в виде транспонированной матрицы.

 X = [1, -2, 5]T

Дискретные сигналы могут быть:

     

                        веществен.   Комплексн.

К дискретным - относятся сигналы, которые имеют амплитудно-импульсную модуляцию.

3) Цифровой сигнал.

Он описывается квантово-решетчатой функцией. Он принимает только дискретные значения h2…hk, в то время как независимая переменная и принимает значения                                  

                                                                                 t     Каждый уровень кодируется кодом, состоящим из 2-х цифр, поэтому передача и обработка сигнала сводится к обработке двоичных чисел.

Если сигнал квантуется к-уровнями, тогда число разрядов, которых необходимо для кодирования каждого уровня сигналов равно:              -  число разрядов, которые выделяются для

                                           кодирования цифрового сигнала.

         

            где

Ок – квантованный сигнал.

К цифровым сигналам относятся сигналы с импульсно-кодовой модуляцией.

Если S=5, тогда сигналы могут принимать следующие значения:

                       0 – «+»        1 – «-»        

Причем 1-ый разряд слева – знаковый разряд.

   16

   14

              

   12

   10

    8

    

    6

    4

    2                    

                    Т           2Т2. Связи между аналоговыми и дискретными сигналами.

При обработке сигнала на ЭВМ необходимо в максимальной степени, чтобы дискретный или цифровой сигнал содержал все признаки аналогового сигнала.

При дискретизации возможна потеря информации, которая приведет к тому, что результаты обработки не будут соответствовать.

Операция дискретизации сигнала состоит в том, чтобы по заданному сигналу Xa(t) строить дискретный сигнал ХД(nt), а именно их соответствия.

Операция восстановления аналогового сигнала состоит в том, чтобы по дискретному сигналу получит аналоговый ХД(nt) Xa(t).

Это все реально осуществимо, когда выполняются условия Кательникова:

Когда

Xa(t) – имеет ограниченный спектр.

 угловая частота   находится в определенных пределах, причем, для того, чтобы удовлетворить условиям Кательникова необходимо, чтобы: , где - частота дискретизации.

В таком случае аналоговый сигнал можно восстанавливать по дискретному сигналу.

Связь между спектром аналогового сигнала и спектром дискретного сигнала определяется следующей формулой:

                 

            аналоговая                    дискретная   3. Связь между дискретными и цифровыми сигналами.

Операция квантования и кодирования дискретного сигнала состоит в том, чтобы по заданному дискретному сигналу Х(nТ) строить цифровой сигнал.                         ХД(nТ) Xц(nТ)Объем информации зависит от частоты квантования, как по времени, так и по амплитуде.

Операция квантования сигнала по уровню и по частоте не является точно взаимно-обратной, потому что в процессе дискретизации аналогового сигнала происходят погрешности, которые, в принципе, нельзя исправить.

Если представить каждый отчет цифрового сигнала достаточным числом разрядов S, тогда погрешность можно свести к нулю.4. Дискретная  функция.

В области цифровой обработки сигналов используется специальный математический аппарат, который позволяет наиболее удобно представить аналоговый сигнал в цифровую форму и в дальнейшем его обработать. С этой целью и используется дискретная функция:

Н(А/В) – потеря информации в канале связи (величина).

2Н(А/В) – коэффициент сложности распознавания слова.4. Методы классификации или распознавания слов, используемых в системах распознавания речи.

Существует несколько способов:

1)      Эвристический или древовидный алгоритм.

 

                   

Ромб: Е>100                                          Да                                  Нет         

                              

Плохой тем, что бывают слова, когда энергия одинакова и в начале, и в конце слова, тогда алгоритм сводится к нулю.

2) Лингвистический подход (структурный).

Этот метод анализа используется следующим образом: На определенных сегментах проверяется не только наличие соответствующего сегмента, но и порядок следования этих сегментов.

                

                                   T  V

3) Использование метода динамического программирования.

Это универсальный алгоритм, который используется практически везде.

Основан Беллманом.

Графически это выглядит следующим образом:

    А(t)

слово                                                                               B(t)

                             СловоФункция деформации основного времени.Рассмотрим пример:

20                   11 9
16 4 2 4
12 3 6 5
6 2 5 3
1 8 12 17
  
4 4 3 1
4 4 2 4
6 3 6 5
5 2 5 3
1 7 4 5
                                           Н                                           И

                                                             

                                           Д

                                          

                                           А                                                                                А                                                                                  А            Д              И                Н

bukvasha.ru


Смотрите также