Био макро микроэлементы и их роль в жизни растения. Растения и микроэлементы и их роль в жизни растения реферат


Био-,макро-,микро- элементы и их роль в жизни растений — реферат

 

Государственное бюджетное образовательное учреждение  среднего профессионального образования Колледж Сферы Услуг №3     Реферат на тему: ”Био-,макро-,микро- элементы и их роль в жизни растений”     

 

 

 

                                                                                                     

 

 

 

 

 

 

 

                                                                                Подготовил Голубев Кирилл                                                                                       Первый курс,102 группа

 

Содержание

Введение.         Стр. 2

Основной текст.        Стр. 3

Биоэлементы.       Стр. 3

Макроэлементы.       Стр. 4

Микроэлементы.       Стр. 6

Роль элементов в жизни растения.    Стр. 10

Заключение.        Стр. 11

Информационный ресурс.      Стр. 12

 

 

Введение

Цель работы.

Цель работы заключается в изучении био-, макро-, микроэлементов в растениях, их роль в жизнедеятельности. Описать некоторые элементы.

Задачи работы:

1) изучение литературы на тему «Био-, макро-, микроэлементы и их роль в жизни растения».

2) обработка полученных данных, отсеивание ненужной информации, сокращение.

3) Формирование логического текста.

 

 

Основной текст

Биоэлементы

Биоэлементы (от греч. bios - жизнь) – элементы, абсолютно, необходимые для жизни; биоэлементы постоянно находятся в составе организма и играют определяющую роль в процессах жизнедеятельности. Все биоэлементы можно условно разделить на три группы: макроэлементы, эссенциальные (незаменимые) и условно эссенциальные микроэлементы. В живых клетках обычно обнаруживаются следы почти всех элементов, присутствующих в окружающей среде, однако для жизни их необходимо около 40.

В зависимости от количественного содержания они делятся на макроэлементы, содержащиеся в десятых и сотых долях процента, и микроэлементы, содержащиеся в тысячных и миллионных долях процента.

Важнейшими биогенными элементами являются кислород (составляет около 70% массы организмов), углерод (18%), водород (10%), азот, а также кальций, калий, кремний, магний, фосфор, сера, натрий, хлор, железо. Их среднее содержание - более 0,01% биомассы. Все вышеперечисленные биогенные элементы составляют группу макроэлементов.

Биоэлементы

Биоэлементы – органогены

O, C, H, N

Макроэлементы

Ca, Mg, P, S, K, Na, Cl

Эссенциальные микроэлементы

Fe, Zn, Cu, Mn, Mo, Co, Cr, Se, I

Токсичные микроэлементы

Al, Pb, Ba, Bi, Cd, Hg, Ti, Be, Sb

 

 

Макроэлементы

Макроэлементы — химические элементы, усвояемые растениями в больших количествах, от n. 10 до n. 10-2 вес. %. Главными макроэлементами являются N, Р, К, Са, Mg, Si, Fe, S.

Азот хорошо усваивается растением из солей азотной кислоты и аммония. Он является одним из главнейших элементов корневого ‘питания, так как входит в состав белков всех живых клеток. Сложная молекула белка, из которого построена протоплазма, содержит от 16 до 18% азота. Протоплазма представляет собой живое вещество, в ней совершается главнейший физиологический процесс — дыхательный обмен.

Фосфор. Содержание фосфора в растениях составляет около 0,2% на сухую массу. Фосфор поступает в корневую систему и функционирует в растении в виде окисленных соединений, главным образом остатков ортофосфорной кисло­ты (Н2РO4-, HPO42-, РO43-). Физиологическое значение фосфора определяется тем, что он входит в состав ряда органических соединений, таких, как нуклеиновые кислоты (ДНК и РНК), нуклеотиды (АТФ, НАД, НАДФ), нуклеопротеиды, витамины и многих других, играющих центральную роль в обмене веществ.

Сера содержится в растениях в количестве 0,17%. Однако в растениях семейства крестоцветных ее содержание гораздо выше. Поступает сера в растения в виде сульфатиона SO42-. Сера входит в состав органических соединений, играющих важную роль в обмене веществ организма. Так, сера входит в состав трех аминокислот — цистина, цистеина и метионина. Почти все белки включают аминокислоты, содержащие серу, поэтому становится понятна роль серы в белковом обмене организма. Сера, поступая в растение в виде иона SO42-, быстро переходит в органическую форму при участии АТФ и магния:

Кальций входит в состав растений в количестве 0,2%. В старых листьях его содержание доходит до 1 %. Поступает в виде иона Са22+. Роль кальция разнообразна. Кальций, соединяясь с пектиновыми веществами, дает пектаты кальция, которые являются важнейшей составной частью клеточных оболочек растений. Срединные пластинки, склеивающие клеточные оболочки соседних клеток, состоят по преимуществу из пектатов кальция. При недостатке кальция клеточные оболочки ослизняются, что особенно ярко проявляется в клетках корня. Кальций плохо передвигается по растению, поэтому для предупреждения ослизнения необходимо, чтобы ионы Са22+ непосредственно соприкасались с клетками корня.

Магний. Содержание магния в растениях составляет в среднем 0,17%. Магний поступает в растение в виде иона Mg2+. Магний входит в состав основного пигмента зеленых листьев — хлорофилла. Магний поддерживает структуру рибосом, связывая РНК и белок.

Калий. Содержание калия в растении в среднем составляет 0,9%. Он поступает в растение в виде иона К+. Физиологическую роль калия нельзя считать полностью выясненной. Калий не входит ни в одно органическое соединение. Большая часть его (70%) в клетке находится в свободной ионной форме и легко извлекается холодной водой, остальные 30% в адсорбированном состоянии. В противоположность кальцию калий снижает вязкость протоплазмы, повышает ее оводненность, увеличивая гидратацию белков

Железо входит в состав растения в количестве 0,08%. Необходимость железа была показана в тот же период, что и остальных макроэлементов. Поэтому, несмотря на ничтожное содержание, его роль рассматривается вместе с макроэлементами. Железо поступает в растение в виде Fe3+, а транспортируется в листья по ксилеме в виде цитрата железа (III). Роль железа в большинстве случаев связана с его способностью переходить из окисленной формы (Fe3+) в восстановленную (Fe2+) и обратно. Железо входит в состав каталитических центров многих окислительно-восстановительных ферментов.

 

 

Микроэлементы

Микроэлементы - химические элементы, присутствующие в организмах в низких концентрациях (обычно тысячные доли процента и ниже). Цинк, медь, мышьяк, марганец, бор, фтор, ванадий, бром, молибден, селен, радий и некоторые др. относятся к микроэлементам.

Практическая значимость исследований по микроэлементам связана с тем, что есть почвенные провинции, где остро недостает того или иного из них. Кроме того, часто в почве микроэлементы находятся в неусвояемом для растительного организма состоянии, поэтому внесение микроудобрений (удобрений, содержащих микроэлементы) в почву очень полезно. Однако надо учитывать, что высокие дозы микроэлементов могут оказать ядовитое влияние. Выяснилось, что микроэлементы в подавляющем большинстве активируют определенные ферментативные системы. Это осуществляется различными путями — непосредственным участием в составе молекул ферментов или их активацией. Важным моментом в действии всех микроэлементов является их способность давать комплексные соединения с различными органическими соединениями, в том числе и с белками. Разные микроэлементы могут давать комплексные соединения с одними и теми же органическими веществами, благодаря чему они могут выступать как антагонисты. Отсюда понятно, что для нормального роста растений необходимо определенное соотношение микроэлементов (железа к марганцу, меди к бору и т. д.). В решение вопросов, связанных с питанием растений микроэлементами большой вклад внесли Я.В. Пейве, М.Я. Школьник, М.В. Каталымов, Б.А. Ягодин и др.

Марганец поступает в растение в виде ионов Мn2+. Среднее содержание марганца в растениях 0,001 %. В растении марганец находится в разной степени окисления (Мn2+, Мn3+, Мn4+). Марганец характеризуется высоким показателем окислительно-восстано­вительного потенциала. С этим связано значение этого элемента в реакциях биологического окисления. Он необходим для нормального протекания фотосинтеза, поскольку входит в состав активного центра кислородовыделяющего комплекса фотосистемы II и осуществляет разложение воды и выделение кислорода: 2Мn4+ 2Н2O = 2Мn2+ 4Н+ O2.

Медь входит непосредственно в состав ряда ферментных систем, относящихся к группе оксидаз, таких, как полифенолоксидаза, аскорбатоксидаза, цитохромоксидаза. В этих ферментах медь соединена с белком, по-видимому, через SH- группы. Полифенолоксидаза и аскорбатоксидаза осуществляют окисление фенолов и аскорбиновой кислоты, а цитохромоксидаза входит в состав дыхательной цепи митохондрий. Большая часть меди (75% от всего содержания меди в листьях) концентриру­ется в хлоропластах. В хлоропластах сосредоточен и медьсодержащий белок си­него цвета — пластоцианин. Содержание меди в пластоцианине составляет 0,57%. Медь, подобно железу и марганцу, обладает способностью к обратимому окислению и восстановлению: Сu2+ +   Сu+.

Цинк поступает в растение в виде ионов Zn2+. Среднее содержание цинка в растениях 0,002%. В растениях цинк не участвует в окислительно-восстановительных реакциях, поскольку не меняет степень окисления. Он входит в состав более 30 ферментов, в т. ч. фосфатазы, карбоангидразы, алкогольдегидрогеназа, РНК-полимераза и др. Карбоангидраза катализирует разложение гидрата окиси углерода на воду и углекислый газ. Эта реакция важна для процесса фотосинтеза. Углекислый газ, поступая в клетку, растворяется в воде, образуя Н2СO3: СO2 + Н2O  Н2СO3 + Н2.

Молибден поступает в растения в виде аниона МoO42-. Содержание молибдена в растениях составляет 0,0005—0,002%. Молибден входит в состав более 20 ферментов, выполняя при этом не только каталитическую, но и структурную функцию. Молибден вместе с железом входит в состав активного центра ферментного комплекса нитрогеназы в виде Mo-Fe-белок и участвует в фиксации азота атмосферы различными микроорганизмами. При восcтановлении нитратов молибден действует как переносчик электронов от ФАД (флавинадениндинуклеотид) к нитрату, при этом NO3- переходит в NO2-, а Мo5+ — в Мo6+. Образование нитратредуктазы является одним из немногих примеров адаптивного синтеза фер­ментов в растительном организме. Этот фермент образуется, когда в среде имеются нитраты и молибден.

Бор поступает в растение в виде аниона борной кислоты — ВO33-. Среднее содержание бора в растениях 0,0001%. Роль бора выяснена далеко не достаточно. Это связано с тем, что бор, в отличие от большинства других микроэлементов, не входит в состав ни одного фермента и не является активатором ферментов. Большое значение для осуществления функции бора имеет его способность давать комплексные соединения. Комплексы с борной кислотой образуют простые сахара, полисахариды, спирты, фенольные соединения и др. В этой связи можно предположить, что бор влияет на скорость ферментативных реакций через субстраты, на которые действуют ферменты.

Кобальт находится в тканях растений в ионной (Со2+, Со3+) и комплексной форме. Содержание кобальта в среднем составляет 0,00002%. Особенно кобальт необходим бобовым растениям, поскольку участвует в фиксации атмосферного азота. Кобальт входит в состав кобаламина (витамин В12 и его производные), который синтезируется бактериями в клубеньках бобовых растений, а также в состав ферментов у азотфиксирующих организмов, участвующих в синтезе метионина, ДНК и делении клеток бактерий.

Хлор поступает в растение в виде Сl-. Хлор необходим для работы ФС II на этапе фотосинтетического разложения воды и выделения кислорода. Показано влияние хлоридов на работу Н+-АТФаз тонопласта, участие в делении клетки. Имеются сведения о влиянии хлора на азотный обмен. Так, хлориды стимулируют активность аспарагинсинтетазы, которая участвует в переносе аминогруппы на аспарагин. Концентрируясь в растении в вакуолях, хлориды могут выполнять осморегулирующую функцию. Недостаток хлора проявляется редко и наблюдается только на очень щелочных почвах.

Никель поступает в растения в виде иона Ni2+, но может также находиться в виде Ni+ и Ni3+, Роль никеля для высших растений как микроэлемента была доказана недавно. До этого считали никель необходимым микроэлементом многих бактерий. У высших растений никель входит в состав фермента уреазы, который осуществляет реакцию разложения мочевины. Показано, что в растениях, обеспеченных никелем, активность уреазы выше и соответственно ниже содержание мочевины по сравнению с необеспеченными. Никель активирует ряд ферментов, в т. ч. нитратредуктазу и другие, оказывает стабилизирующее влияние на структуру рибосом

Для роста диатомовых водорослей необходим кремний. Он улучшает рост некоторых злаков, таких, как рис и кукуруза. Кремний повышает устойчивость растений против полегания, так как входит в состав клеточных стенок. Хвощи нуждаются в кремнии для прохождения жизненного цикла. Однако и другие виды аккумулируют достаточно кремния и отвечают при внесении кремния повышением темпов роста и продуктивности. В гидрированной форме SiO2 кремний накапливается в эндоплазматическом ретикулуме, клеточных стенках, в межклеточных пространствах. Он может также образовывать комплексы с полифенолами и в этой форме вместо лигнина служит для укрепления клеточных стенок.

 

 

Значение макро и микроэлементов в жизни растения

Катионы. Калий, кальций и магний усваиваются из любых растворимых солей, анионы которых не обладают токсическим действием. Доступными они являются и находясь в «поглощенном состоянии» т. е. связанные с каким-нибудь нерастворимым веществом, обладающим ясно отраженными кислотными свойствами. Попав в растения, калий и кальций в своей массе не претерпевают никаких химических превращений, но они необходимы для питания. Их нельзя заменить другими элементами, как нельзя ничем заменить азот, фосфор и серу.

referat911.ru

Микроэлементы и их роль в жизни растений — реферат

                                                    Содержание

 

              

       Введение.        Стр. 1

      Основной текст.       Стр. 2

      Биоэлементы.                 Стр.2

      Макроэлементы.       Стр. 3,4

      Микроэлементы.       Стр. 5,6,7,8

      Роль элементов в жизни растения.    Стр. 9

      Заключение.                  Стр. 10

      Информационный ресурс.     Стр. 11

 

Введение

Цель работы.

Цель работы заключается  в изучении био-, макро-, микроэлементов в растениях, их роль в жизнедеятельности. Описать некоторые элементы.

Задачи работы:

1) Изучение литературы на тему «Био-, макро-, микроэлементы и их роль в жизни растения».

2) Обработка полученных данных, отсеивание ненужной информации, сокращение.

3) Формирование логического  текста.

 

Основной текст

Биоэлементы

          Биоэлементы (от греч. bios - жизнь) – элементы, абсолютно, необходимые для жизни, биоэлементы постоянно находятся в составеорганизма и играют определяющую роль в процессах жизнедеятельности. Все биоэлементы можно условно разделить на три группы: макроэлементы, эссенциальные (незаменимые) и условно эссенциальные микроэлементы. В живых клетках обычно обнаруживаются следы почти всех элементов, присутствующих в окружающей среде, однако для жизни их необходимо около 40.

         В зависимости от количественного содержания они делятся на макроэлементы, содержащиеся в десятых и сотых долях процента, и микроэлементы, содержащиеся в тысячных и миллионных долях процента.

Важнейшими биогенными элементами являются кислород (составляет около 70% массы организмов), углерод (18%), водород (10%), азот, а также кальций, калий, кремний, магний, фосфор, сера, натрий, хлор, железо. Их среднее содержание - более 0,01% биомассы. Все вышеперечисленные  биогенные элементы составляют группу макроэлементов.

Биоэлементы

Биоэлементы – органогены

O, C, H, N

Макроэлементы

Ca, Mg, P, S, K, Na, Cl

Эссенциальные микроэлементы

Fe, Zn, Cu, Mn, Mo, Co, Cr, Se, I

Токсичные микроэлементы

Al, Pb, Ba, Bi, Cd, Hg, Ti, Be, Sb

 

Макроэлементы

         Макроэлементы — химические элементы, усвояемые растениями в больших количествах, от n. 10 до n. 10-2 вес. %. Главными макроэлементами являются N, Р, К, Са, Mg, Si, Fe, S.

Азот хорошо усваивается растением из солей азотной кислоты и аммония. Он является одним из главнейших элементов корневого питания, так как входит в состав белков всех живых клеток. Сложная молекула белка, из которого построена протоплазма, содержит от 16 до 18% азота. Протоплазма представляет собой живое вещество, в ней совершается главнейший физиологический процесс — дыхательный обмен.

         Фосфор. Содержание фосфора в растениях составляет около 0,2% на сухую массу. Фосфор поступает в корневую систему и функционирует в растении в виде окисленных соединений, главным образом остатков ортофосфорной кислоты (Н2РO4-, HPO42-, РO43-). Физиологическое значение фосфора определяется тем, что он входит в состав ряда органических соединений, таких, как нуклеиновые кислоты (ДНК и РНК), нуклеотиды (АТФ, НАД, НАДФ), нуклеопротеиды, витамины и многих других, играющих центральную роль в обмене веществ.

         Сера содержится в растениях в количестве 0,17%. Однако в растениях семейства крестоцветных ее содержание гораздо выше. Поступает сера в растения в виде сульфатиона SO42-. Сера входит в состав органических соединений, играющих важную роль в обмене веществ организма. Так, сера входит в состав трех аминокислот — цистина, цистеина и метионина. Почти все белки включают аминокислоты, содержащие серу, поэтому становится понятна роль серы в белковом обмене организма. Сера, поступая в растение в виде иона SO42-, быстро переходит в органическую форму при участии АТФ и магния:

Кальций входит в состав растений в количестве 0,2%. В старых листьях его содержание доходит  до 1 %. Поступает в виде иона Са22+. Роль кальция разнообразна. Кальций, соединяясь с пектиновыми веществами, дает пектаты кальция, которые являются важнейшей составной частью клеточных оболочек растений. Срединные пластинки, склеивающие клеточные оболочки соседних клеток, состоят по преимуществу из пектатов кальция. При недостатке кальция клеточные оболочки ослизняются, что особенно ярко проявляется в клетках корня. Кальций плохо передвигается по растению, поэтому для предупреждения ослизнения необходимо, чтобы ионы Са22+ непосредственно соприкасались с клетками корня.

         Магний. Содержание магния в растениях составляет в среднем 0,17%. Магний поступает в растение в виде иона Mg2+. Магний входит в состав основного пигмента зеленых листьев — хлорофилла. Магний поддерживает структуру рибосом, связывая РНК и белок.

         Калий. Содержание калия в растении в среднем составляет 0,9%. Он поступает в растение в виде иона К+. Физиологическую роль калия нельзя считать полностью выясненной. Калий не входит ни в одно органическое соединение. Большая часть его (70%) в клетке находится в свободной ионной форме и легко извлекается холодной водой, остальные 30% в адсорбированном состоянии. В противоположность кальцию калий снижает вязкость протоплазмы, повышает ее оводненность, увеличивая гидратацию белков.

Железо входит в состав растения в количестве 0,08%. Необходимость  железа была показана в тот же период, что и остальных макроэлементов. Поэтому, несмотря на ничтожное содержание, его роль рассматривается вместе с макроэлементами. Железо поступает в растение в виде Fe3+, а транспортируется в листья по ксилеме в виде цитрата железа (III). Роль железа в большинстве случаев связана с его способностью переходить из окисленной формы (Fe3+) в восстановленную (Fe2+) и обратно. Железо входит в состав каталитических центров многих окислительно-восстановительных ферментов.

 

Микроэлементы

          Микроэлементы - химические элементы, присутствующие в организмах в низких концентрациях (обычно тысячные доли процента и ниже). Цинк, медь, мышьяк, марганец, бор, фтор, ванадий, бром, молибден, селен, радий и некоторые др. относятся к микроэлементам.

         Практическая значимость исследований по микроэлементам связана с тем, что есть почвенные провинции, где остро недостает того или иного из них. Кроме того, часто в почве микроэлементы находятся в неусвояемом для растительного организма состоянии, поэтому внесение микроудобрений (удобрений, содержащих микроэлементы) в почву очень полезно. Однако надо учитывать, что высокие дозы микроэлементов могут оказать ядовитое влияние. Выяснилось, что микроэлементы в подавляющем большинстве активируют определенные ферментативные системы. Это осуществляется различными путями — непосредственным участием в составе молекул ферментов или их активацией. Важным моментом в действии всех микроэлементов является их способность давать комплексные соединения с различными органическими соединениями, в том числе и с белками. Разные микроэлементы могут давать комплексные соединения с одними и теми же органическими веществами, благодаря чему они могут выступать как антагонисты. Отсюда понятно, что для нормального роста растений необходимо определенное соотношение микроэлементов (железа к марганцу, меди к бору и т. д.). В решение вопросов, связанных с питанием растений микроэлементами большой вклад внесли Я.В. Пейве, М.Я. Школьник, М.В. Каталымов, Б.А. Ягодин и др.

         Марганец поступает в растение в виде ионов Мn2+. Среднее содержание марганца в растениях 0,001 %. В растении марганец находится в разной степени окисления (Мn2+, Мn3+, Мn4+). Марганец характеризуется высоким показателем окислительно-восстано­вительного потенциала. С этим связано значение этого элемента в реакциях биологического окисления. Он необходим для нормального протекания фотосинтеза, поскольку входит в состав активного центра кислородовыделяющего комплекса фотосистемы II и осуществляет разложение воды и выделение кислорода: 2Мn4+ 2Н2O= 2Мn2+ 4Н+O2.

Медь входит непосредственно  в состав ряда ферментных систем, относящихся  к группе оксидаз, таких, как полифенолоксидаза, аскорбатоксидаза, цитохромоксидаза. В этих ферментах медь соединена  с белком, по-видимому, через SH-группы. Полифенолоксидаза и аскорбатоксидаза осуществляют окисление фенолов и аскорбиновой кислоты, а цитохромоксидаза входит в состав дыхательной цепи митохондрий. Большая часть меди (75% от всего содержания меди в листьях) концентриру­ется в хлоропластах. В хлоропластах сосредоточен и медьсодержащий белок си­него цвета — пластоцианин. Содержание меди в пластоцианине составляет 0,57%. Медь, подобно железу и марганцу, обладает способностью к обратимому окислению и восстановлению: Сu2+ + Сu+.

          Цинк поступает в растение в виде ионов Zn2+. Среднее содержание цинка в растениях 0,002%. В растениях цинк не участвует в окислительно-восстановительных реакциях, поскольку не меняет степень окисления. Он входит в состав более 30 ферментов, в т. ч. фосфатазы, карбоангидразы, алкогольдегидрогеназа, РНК-полимераза и др. Карбоангидраза катализирует разложение гидрата окиси углерода на воду и углекислый газ. Эта реакция важна для процесса фотосинтеза. Углекислый газ, поступая в клетку, растворяется в воде, образуя Н2СO3: СO2 + Н2O Н2СO3 + Н2.

         Молибден поступает в растения в виде аниона МoO42-. Содержание молибдена в растениях составляет 0,0005—0,002%.Молибден входит в состав более 20 ферментов, выполняя при этом не только каталитическую, но и структурную функцию. Молибден вместе с железом входит в состав активного центра ферментного комплекса нитрогеназы в виде Mo-Fe-белок и участвует в фиксации азота атмосферы различными микроорганизмами. При восcтановлении нитратов молибден действует как переносчик электронов от ФАД (флавинадениндинуклеотид) к нитрату, при этом NO3- переходит в NO2-, а Мo5+ — в Мo6+. Образование нитрат редуктазы является одним из немногих примеров адаптивного синтеза ферментов в растительном организме. Этот фермент образуется, когда в среде имеются нитраты и молибден.

         Бор поступает в растение в виде аниона борной кислоты — ВO33-. Среднее содержание бора в растениях 0,0001%. Роль бора выяснена далеко не достаточно. Это связано с тем, что бор, в отличие от большинства других микроэлементов, не входит в состав ни одного фермента и не является активатором ферментов. Большое значение для осуществления функции бора имеет его способность давать комплексные соединения. Комплексы с борной кислотой образуют простые сахара, полисахариды, спирты, фенольные соединения и др. В этой связи можно предположить, что бор влияет на скорость ферментативных реакций через субстраты, на которые действуют ферменты.

Кобальт находится в тканях растений в ионной (Со2+, Со3+) и комплексной форме. Содержание кобальта в среднем составляет 0,00002%. Особенно кобальт необходим бобовым растениям, поскольку участвует в фиксации атмосферного азота. Кобальт входит в состав кобаламина (витамин В12 и его производные), который синтезируется бактериями в клубеньках бобовых растений, а также в состав ферментов у азотфиксирующих организмов, участвующих в синтезе метионина, ДНК и делении клеток бактерий.

          Хлор поступает в растение в виде Сl-. Хлор необходим для работы ФС II на этапе фотосинтетического разложения воды и выделения кислорода. Показано влияние хлоридов на работу Н+-АТФ азтонопласта, участие в делении клетки. Имеются сведения о влиянии хлора на азотный обмен. Так, хлориды стимулируют активность аспарагинсинтетазы, которая участвует в переносе аминогруппы на аспарагин. Концентрируясь в растении в вакуолях, хлориды могут выполнять осморегулирующую функцию. Недостаток хлора проявляется редко и наблюдается только на очень щелочных почвах.

          Никель поступает в растения в виде иона Ni2+, но может также находиться в виде Ni+ и Ni3+, Роль никеля для высших растений как микроэлемента была доказана недавно. До этого считали никель необходимым микроэлементом многих бактерий. У высших растений никель входит в состав фермента уреазы, который осуществляет реакцию разложения мочевины. Показано, что в растениях, обеспеченных никелем, активность уреазы выше и соответственно ниже содержание мочевины по сравнению с необеспеченными. Никель активирует ряд ферментов, в т. ч. нитратредуктазу и другие, оказывает стабилизирующее влияние на структуру рибосом

          Для роста диатомовых водорослей необходим кремний. Он улучшает рост некоторых злаков, таких, как рис и кукуруза. Кремний повышает устойчивость растений против полегания, так как входит в состав клеточных стенок. Хвощи нуждаются в кремнии для прохождения жизненного цикла. Однако и другие виды аккумулируют достаточно кремния и отвечают при внесении кремния повышением темпов роста и продуктивности. В гидрированной форме SiO2 кремний накапливается в эндоплазматическом ретикулуме, клеточных стенках, в межклеточных пространствах. Он может также образовывать комплексы с полифенолами и в этой форме вместо лигнина служит для укрепления клеточных стенок.

 

Значение макро и микроэлементов в жизни растения

          Катионы. Калий, кальций и магний усваиваются из любых растворимых солей, анионы которых не обладают токсическим действием. Доступными они являются и находясь в «поглощенном состоянии» т. е. связанные с каким-нибудь нерастворимым веществом, обладающим ясно отраженными кислотными свойствами. Попав в растения, калий и кальций в своей массе не претерпевают никаких химических превращений, но они необходимы для питания. Их нельзя заменить другими элементами, как нельзя ничем заменить азот, фосфор и серу.

yaneuch.ru

Био макро микроэлементы и их роль в жизни растения — доклад

Департамент образования  г. Москвы

ГБОУ СПО

колледж сферы услуг №32

 

 

Самостоятельная работа по Биологии №1

 

Тема: «Био макро микроэлементы и их роль в жизни растения»

 

 

 

 

 

 

 

:

 

 

 

Работу выполнил

студент группы ТОБ 1-1

Ким Дмитрий Александрович

 

 

 

 

 

 

Москва 2013

 

Биоэлементы

Биоэлементы (от греч. bios - жизнь) – элементы, абсолютно, необходимые для жизни; биоэлементы постоянно находятся в составе организма и играют определяющую роль в процессах жизнедеятельности. Все биоэлементы можно условно разделить на три группы: макроэлементы, эссенциальные (незаменимые) и условно эссенциальные микроэлементы. В живых клетках обычно обнаруживаются следы почти всех элементов, присутствующих в окружающей среде, однако для жизни их необходимо около 40.

В зависимости от количественного  содержания они делятся на макроэлементы, содержащиеся в десятых и сотых  долях процента, и микроэлементы, содержащиеся в тысячных и миллионных долях процента.

Важнейшими биогенными элементами являются кислород (составляет около 70% массы организмов), углерод (18%), водород (10%), азот, а также кальций, калий, кремний, магний, фосфор, сера, натрий, хлор, железо. Их среднее содержание - более 0,01% биомассы. Все вышеперечисленные биогенные элементы составляют группу макроэлементов.

Биоэлементы

Биоэлементы – органогены

O, C, H, N

Макроэлементы

Ca, Mg, P, S, K, Na, Cl

Эссенциальные микроэлементы

Fe, Zn, Cu, Mn, Mo, Co, Cr, Se, I

Токсичные микроэлементы

Al, Pb, Ba, Bi, Cd, Hg, Ti, Be, Sb

 

Макроэлементы

Макроэлементы — химические элементы, усвояемые растениями в  больших количествах, от n. 10 до n. 10-2 вес. %. Главными макроэлементами являются N, Р, К, Са, Mg, Si, Fe, S.

Азот хорошо усваивается  растением из солей азотной кислоты  и аммония. Он является одним из главнейших элементов корневого ‘питания, так  как входит в состав белков всех живых клеток. Сложная молекула белка, из которого построена протоплазма, содержит от 16 до 18% азота. Протоплазма представляет собой живое вещество, в ней совершается главнейший физиологический процесс — дыхательный обмен.

Фосфор. Содержание фосфора в растениях составляет около 0,2% на сухую массу. Фосфор поступает в корневую систему и функционирует в растении в виде окисленных соединений, главным образом остатков ортофосфорной кисло­ты (Н2РO4-, HPO42-, РO43-). Физиологическое значение фосфора определяется тем, что он входит в состав ряда органических соединений, таких, как нуклеиновые кислоты (ДНК и РНК), нуклеотиды (АТФ, НАД, НАДФ), нуклеопротеиды, витамины и многих других, играющих центральную роль в обмене веществ.

Сера содержится в растениях  в количестве 0,17%. Однако в растениях семейства крестоцветных ее содержание гораздо выше. Поступает сера в растения в виде сульфатиона SO42-. Сера входит в состав органических соединений, играющих важную роль в обмене веществ организма. Так, сера входит в состав трех аминокислот — цистина, цистеина и метионина. Почти все белки включают аминокислоты, содержащие серу, поэтому становится понятна роль серы в белковом обмене организма. Сера, поступая в растение в виде иона SO42-, быстро переходит в органическую форму при участии АТФ и магния:

Кальций входит в состав растений в количестве 0,2%. В старых листьях его содержание доходит  до 1 %. Поступает в виде иона Са22+. Роль кальция разнообразна. Кальций, соединяясь с пектиновыми веществами, дает пектаты кальция, которые являются важнейшей составной частью клеточных оболочек растений. Срединные пластинки, склеивающие клеточные оболочки соседних клеток, состоят по преимуществу из пектатов кальция. При недостатке кальция клеточные оболочки ослизняются, что особенно ярко проявляется в клетках корня. Кальций плохо передвигается по растению, поэтому для предупреждения ослизнения необходимо, чтобы ионы Са22+ непосредственно соприкасались с клетками корня.

Магний. Содержание магния в  растениях составляет в среднем 0,17%. Магний поступает в растение в виде иона Mg2+. Магний входит в состав основного пигмента зеленых листьев — хлорофилла. Магний поддерживает структуру рибосом, связывая РНК и белок.

Калий. Содержание калия  в растении в среднем составляет 0,9%. Он поступает в растение в  виде иона К+. Физиологическую роль калия нельзя считать полностью выясненной. Калий не входит ни в одно органическое соединение. Большая часть его (70%) в клетке находится в свободной ионной форме и легко извлекается холодной водой, остальные 30% в адсорбированном состоянии. В противоположность кальцию калий снижает вязкость протоплазмы, повышает ее оводненность, увеличивая гидратацию белков

Железо входит в состав растения в количестве 0,08%. Необходимость  железа была показана в тот же период, что и остальных макроэлементов. Поэтому, несмотря на ничтожное содержание, его роль рассматривается вместе с макроэлементами. Железо поступает в растение в виде Fe3+, а транспортируется в листья по ксилеме в виде цитрата железа (III). Роль железа в большинстве случаев связана с его способностью переходить из окисленной формы (Fe3+) в восстановленную (Fe2+) и обратно. Железо входит в состав каталитических центров многих окислительно-восстановительных ферментов.

 

Микроэлементы

Микроэлементы - химические элементы, присутствующие в организмах в низких концентрациях (обычно тысячные доли процента и ниже). Цинк, медь, мышьяк, марганец, бор, фтор, ванадий, бром, молибден, селен, радий и некоторые др. относятся к микроэлементам.

Практическая значимость исследований по микроэлементам связана  с тем, что есть почвенные провинции, где остро недостает того или  иного из них. Кроме того, часто  в почве микроэлементы находятся  в неусвояемом для растительного  организма состоянии, поэтому внесение микроудобрений (удобрений, содержащих микроэлементы) в почву очень полезно. Однако надо учитывать, что высокие дозы микроэлементов могут оказать ядовитое влияние. Выяснилось, что микроэлементы в подавляющем большинстве активируют определенные ферментативные системы. Это осуществляется различными путями — непосредственным участием в составе молекул ферментов или их активацией. Важным моментом в действии всех микроэлементов является их способность давать комплексные соединения с различными органическими соединениями, в том числе и с белками. Разные микроэлементы могут давать комплексные соединения с одними и теми же органическими веществами, благодаря чему они могут выступать как антагонисты. Отсюда понятно, что для нормального роста растений необходимо определенное соотношение микроэлементов (железа к марганцу, меди к бору и т. д.). В решение вопросов, связанных с питанием растений микроэлементами большой вклад внесли Я.В. Пейве, М.Я. Школьник, М.В. Каталымов, Б.А. Ягодин и др.

Марганец поступает в  растение в виде ионов Мn2+. Среднее содержание марганца в растениях 0,001 %. В растении марганец находится в разной степени окисления (Мn2+, Мn3+, Мn4+). Марганец характеризуется высоким показателем окислительно-восстано­вительного потенциала. С этим связано значение этого элемента в реакциях биологического окисления. Он необходим для нормального протекания фотосинтеза, поскольку входит в состав активного центра кислородовыделяющего комплекса фотосистемы II и осуществляет разложение воды и выделение кислорода: 2Мn4+ 2Н2O = 2Мn2+ 4Н+ O2.

Медь входит непосредственно  в состав ряда ферментных систем, относящихся  к группе оксидаз, таких, как полифенолоксидаза, аскорбатоксидаза, цитохромоксидаза. В этих ферментах медь соединена с белком, по-видимому, через SH- группы. Полифенолоксидаза и аскорбатоксидаза осуществляют окисление фенолов и аскорбиновой кислоты, а цитохромоксидаза входит в состав дыхательной цепи митохондрий. Большая часть меди (75% от всего содержания меди в листьях) концентриру­ется в хлоропластах. В хлоропластах сосредоточен и медьсодержащий белок си­него цвета — пластоцианин. Содержание меди в пластоцианине составляет 0,57%. Медь, подобно железу и марганцу, обладает способностью к обратимому окислению и восстановлению: Сu2+ + Сu+.

Цинк поступает в растение в виде ионов Zn2+. Среднее содержание цинка в растениях 0,002%. В растениях цинк не участвует в окислительно-восстановительных реакциях, поскольку не меняет степень окисления. Он входит в состав более 30 ферментов, в т. ч. фосфатазы, карбоангидразы, алкогольдегидрогеназа, РНК-полимераза и др. Карбоангидраза катализирует разложение гидрата окиси углерода на воду и углекислый газ. Эта реакция важна для процесса фотосинтеза. Углекислый газ, поступая в клетку, растворяется в воде, образуя Н2СO3: СO2 + Н2O Н2СO3 + Н2.

Молибден поступает в  растения в виде аниона МoO42-. Содержание молибдена в растениях составляет 0,0005—0,002%. Молибден входит в состав более 20 ферментов, выполняя при этом не только каталитическую, но и структурную функцию. Молибден вместе с железом входит в состав активного центра ферментного комплекса нитрогеназы в виде Mo-Fe-белок и участвует в фиксации азота атмосферы различными микроорганизмами. При восcтановлении нитратов молибден действует как переносчик электронов от ФАД (флавинадениндинуклеотид) к нитрату, при этом NO3- переходит в NO2-, а Мo5+ — в Мo6+. Образование нитратредуктазы является одним из немногих примеров адаптивного синтеза фер­ментов в растительном организме. Этот фермент образуется, когда в среде имеются нитраты и молибден.

Бор поступает в растение в виде аниона борной кислоты —  ВO33-. Среднее содержание бора в растениях 0,0001%. Роль бора выяснена далеко не достаточно. Это связано с тем, что бор, в отличие от большинства других микроэлементов, не входит в состав ни одного фермента и не является активатором ферментов. Большое значение для осуществления функции бора имеет его способность давать комплексные соединения. Комплексы с борной кислотой образуют простые сахара, полисахариды, спирты, фенольные соединения и др. В этой связи можно предположить, что бор влияет на скорость ферментативных реакций через субстраты, на которые действуют ферменты.

Кобальт находится в тканях растений в ионной (Со2+, Со3+) и комплексной форме. Содержание кобальта в среднем составляет 0,00002%. Особенно кобальт необходим бобовым растениям, поскольку участвует в фиксации атмосферного азота. Кобальт входит в состав кобаламина (витамин В12 и его производные), который синтезируется бактериями в клубеньках бобовых растений, а также в состав ферментов у азотфиксирующих организмов, участвующих в синтезе метионина, ДНК и делении клеток бактерий.

Хлор поступает в растение в виде Сl-. Хлор необходим для работы ФС II на этапе фотосинтетического разложения воды и выделения кислорода. Показано влияние хлоридов на работу Н+-АТФаз тонопласта, участие в делении клетки. Имеются сведения о влиянии хлора на азотный обмен. Так, хлориды стимулируют активность аспарагинсинтетазы, которая участвует в переносе аминогруппы на аспарагин. Концентрируясь в растении в вакуолях, хлориды могут выполнять осморегулирующую функцию. Недостаток хлора проявляется редко и наблюдается только на очень щелочных почвах.

Никель поступает в  растения в виде иона Ni2+, но может также находиться в виде Ni+ и Ni3+, Роль никеля для высших растений как микроэлемента была доказана недавно. До этого считали никель необходимым микроэлементом многих бактерий. У высших растений никель входит в состав фермента уреазы, который осуществляет реакцию разложения мочевины. Показано, что в растениях, обеспеченных никелем, активность уреазы выше и соответственно ниже содержание мочевины по сравнению с необеспеченными. Никель активирует ряд ферментов, в т. ч. нитратредуктазу и другие, оказывает стабилизирующее влияние на структуру рибосом

Для роста диатомовых водорослей необходим кремний. Он улучшает рост некоторых злаков, таких, как рис и кукуруза. Кремний повышает устойчивость растений против полегания, так как входит в состав клеточных стенок. Хвощи нуждаются в кремнии для прохождения жизненного цикла. Однако и другие виды аккумулируют достаточно кремния и отвечают при внесении кремния повышением темпов роста и продуктивности. В гидрированной форме SiO2 кремний накапливается в эндоплазматическом ретикулуме, клеточных стенках, в межклеточных пространствах. Он может также образовывать комплексы с полифенолами и в этой форме вместо лигнина служит для укрепления клеточных стенок.

 

Значение  макро и микроэлементов в жизни  растения

Катионы. Калий, кальций и магний усваиваются из любых растворимых солей, анионы которых не обладают токсическим действием. Доступными они являются и находясь в «поглощенном состоянии» т. е. связанные с каким-нибудь нерастворимым веществом, обладающим ясно отраженными кислотными свойствами. Попав в растения, калий и кальций в своей массе не претерпевают никаких химических превращений, но они необходимы для питания. Их нельзя заменить другими элементами, как нельзя ничем заменить азот, фосфор и серу.

Основная физиологическая  роль калия, кальция и магния, вернее их ионов, состоит в том, что, адсорбируясь на поверхности коллоидных частиц протоплазмы, они создают вокруг них определенные электростатические силы. Эти силы играют немало­важную роль в создании структуры живого вещества, без которой не могут происходить ни согласованная деятельность ферментов, ни синтез клеточных веществ. Ионы удерживают вокруг себя различное количество молекул воды, в результате чего объем иона является неодинаковым. Неодинаковы и силы, удерживающие ион на поверхности коллоидной частицы. Ион кальция имеет наименьший объем — он с большей силой удерживается на поверхности коллоидов. Ион калия имеет наибольший объем, в силу чего образует менее стойкие адсорбционные связи и может быть вытеснен ионом кальция. Ион магния занимает промежуточное положение.

referat911.ru

Микроэлементы и их роль в жизни растений — реферат

                                                    Содержание

 

              

       Введение.        Стр. 1

      Основной текст.       Стр. 2

      Биоэлементы.                 Стр.2

      Макроэлементы.       Стр. 3,4

      Микроэлементы.       Стр. 5,6,7,8

      Роль элементов в жизни растения.    Стр. 9

      Заключение.                  Стр. 10

      Информационный ресурс.     Стр. 11

 

Введение

Цель работы.

Цель работы заключается  в изучении био-, макро-, микроэлементов в растениях, их роль в жизнедеятельности. Описать некоторые элементы.

Задачи работы:

1) Изучение литературы на тему «Био-, макро-, микроэлементы и их роль в жизни растения».

2) Обработка полученных данных, отсеивание ненужной информации, сокращение.

3) Формирование логического  текста.

 

Основной текст

Биоэлементы

          Биоэлементы (от греч. bios - жизнь) – элементы, абсолютно, необходимые для жизни, биоэлементы постоянно находятся в составеорганизма и играют определяющую роль в процессах жизнедеятельности. Все биоэлементы можно условно разделить на три группы: макроэлементы, эссенциальные (незаменимые) и условно эссенциальные микроэлементы. В живых клетках обычно обнаруживаются следы почти всех элементов, присутствующих в окружающей среде, однако для жизни их необходимо около 40.

         В зависимости от количественного содержания они делятся на макроэлементы, содержащиеся в десятых и сотых долях процента, и микроэлементы, содержащиеся в тысячных и миллионных долях процента.

Важнейшими биогенными элементами являются кислород (составляет около 70% массы организмов), углерод (18%), водород (10%), азот, а также кальций, калий, кремний, магний, фосфор, сера, натрий, хлор, железо. Их среднее содержание - более 0,01% биомассы. Все вышеперечисленные  биогенные элементы составляют группу макроэлементов.

Биоэлементы

Биоэлементы – органогены

O, C, H, N

Макроэлементы

Ca, Mg, P, S, K, Na, Cl

Эссенциальные микроэлементы

Fe, Zn, Cu, Mn, Mo, Co, Cr, Se, I

Токсичные микроэлементы

Al, Pb, Ba, Bi, Cd, Hg, Ti, Be, Sb

 

Макроэлементы

         Макроэлементы — химические элементы, усвояемые растениями в больших количествах, от n. 10 до n. 10-2 вес. %. Главными макроэлементами являются N, Р, К, Са, Mg, Si, Fe, S.

Азот хорошо усваивается растением из солей азотной кислоты и аммония. Он является одним из главнейших элементов корневого питания, так как входит в состав белков всех живых клеток. Сложная молекула белка, из которого построена протоплазма, содержит от 16 до 18% азота. Протоплазма представляет собой живое вещество, в ней совершается главнейший физиологический процесс — дыхательный обмен.

         Фосфор. Содержание фосфора в растениях составляет около 0,2% на сухую массу. Фосфор поступает в корневую систему и функционирует в растении в виде окисленных соединений, главным образом остатков ортофосфорной кислоты (Н2РO4-, HPO42-, РO43-). Физиологическое значение фосфора определяется тем, что он входит в состав ряда органических соединений, таких, как нуклеиновые кислоты (ДНК и РНК), нуклеотиды (АТФ, НАД, НАДФ), нуклеопротеиды, витамины и многих других, играющих центральную роль в обмене веществ.

         Сера содержится в растениях в количестве 0,17%. Однако в растениях семейства крестоцветных ее содержание гораздо выше. Поступает сера в растения в виде сульфатиона SO42-. Сера входит в состав органических соединений, играющих важную роль в обмене веществ организма. Так, сера входит в состав трех аминокислот — цистина, цистеина и метионина. Почти все белки включают аминокислоты, содержащие серу, поэтому становится понятна роль серы в белковом обмене организма. Сера, поступая в растение в виде иона SO42-, быстро переходит в органическую форму при участии АТФ и магния:

Кальций входит в состав растений в количестве 0,2%. В старых листьях его содержание доходит  до 1 %. Поступает в виде иона Са22+. Роль кальция разнообразна. Кальций, соединяясь с пектиновыми веществами, дает пектаты кальция, которые являются важнейшей составной частью клеточных оболочек растений. Срединные пластинки, склеивающие клеточные оболочки соседних клеток, состоят по преимуществу из пектатов кальция. При недостатке кальция клеточные оболочки ослизняются, что особенно ярко проявляется в клетках корня. Кальций плохо передвигается по растению, поэтому для предупреждения ослизнения необходимо, чтобы ионы Са22+ непосредственно соприкасались с клетками корня.

         Магний. Содержание магния в растениях составляет в среднем 0,17%. Магний поступает в растение в виде иона Mg2+. Магний входит в состав основного пигмента зеленых листьев — хлорофилла. Магний поддерживает структуру рибосом, связывая РНК и белок.

         Калий. Содержание калия в растении в среднем составляет 0,9%. Он поступает в растение в виде иона К+. Физиологическую роль калия нельзя считать полностью выясненной. Калий не входит ни в одно органическое соединение. Большая часть его (70%) в клетке находится в свободной ионной форме и легко извлекается холодной водой, остальные 30% в адсорбированном состоянии. В противоположность кальцию калий снижает вязкость протоплазмы, повышает ее оводненность, увеличивая гидратацию белков.

Железо входит в состав растения в количестве 0,08%. Необходимость  железа была показана в тот же период, что и остальных макроэлементов. Поэтому, несмотря на ничтожное содержание, его роль рассматривается вместе с макроэлементами. Железо поступает в растение в виде Fe3+, а транспортируется в листья по ксилеме в виде цитрата железа (III). Роль железа в большинстве случаев связана с его способностью переходить из окисленной формы (Fe3+) в восстановленную (Fe2+) и обратно. Железо входит в состав каталитических центров многих окислительно-восстановительных ферментов.

 

Микроэлементы

          Микроэлементы - химические элементы, присутствующие в организмах в низких концентрациях (обычно тысячные доли процента и ниже). Цинк, медь, мышьяк, марганец, бор, фтор, ванадий, бром, молибден, селен, радий и некоторые др. относятся к микроэлементам.

         Практическая значимость исследований по микроэлементам связана с тем, что есть почвенные провинции, где остро недостает того или иного из них. Кроме того, часто в почве микроэлементы находятся в неусвояемом для растительного организма состоянии, поэтому внесение микроудобрений (удобрений, содержащих микроэлементы) в почву очень полезно. Однако надо учитывать, что высокие дозы микроэлементов могут оказать ядовитое влияние. Выяснилось, что микроэлементы в подавляющем большинстве активируют определенные ферментативные системы. Это осуществляется различными путями — непосредственным участием в составе молекул ферментов или их активацией. Важным моментом в действии всех микроэлементов является их способность давать комплексные соединения с различными органическими соединениями, в том числе и с белками. Разные микроэлементы могут давать комплексные соединения с одними и теми же органическими веществами, благодаря чему они могут выступать как антагонисты. Отсюда понятно, что для нормального роста растений необходимо определенное соотношение микроэлементов (железа к марганцу, меди к бору и т. д.). В решение вопросов, связанных с питанием растений микроэлементами большой вклад внесли Я.В. Пейве, М.Я. Школьник, М.В. Каталымов, Б.А. Ягодин и др.

         Марганец поступает в растение в виде ионов Мn2+. Среднее содержание марганца в растениях 0,001 %. В растении марганец находится в разной степени окисления (Мn2+, Мn3+, Мn4+). Марганец характеризуется высоким показателем окислительно-восстано­вительного потенциала. С этим связано значение этого элемента в реакциях биологического окисления. Он необходим для нормального протекания фотосинтеза, поскольку входит в состав активного центра кислородовыделяющего комплекса фотосистемы II и осуществляет разложение воды и выделение кислорода: 2Мn4+ 2Н2O= 2Мn2+ 4Н+O2.

Медь входит непосредственно  в состав ряда ферментных систем, относящихся  к группе оксидаз, таких, как полифенолоксидаза, аскорбатоксидаза, цитохромоксидаза. В этих ферментах медь соединена  с белком, по-видимому, через SH-группы. Полифенолоксидаза и аскорбатоксидаза осуществляют окисление фенолов и аскорбиновой кислоты, а цитохромоксидаза входит в состав дыхательной цепи митохондрий. Большая часть меди (75% от всего содержания меди в листьях) концентриру­ется в хлоропластах. В хлоропластах сосредоточен и медьсодержащий белок си­него цвета — пластоцианин. Содержание меди в пластоцианине составляет 0,57%. Медь, подобно железу и марганцу, обладает способностью к обратимому окислению и восстановлению: Сu2+ + Сu+.

          Цинк поступает в растение в виде ионов Zn2+. Среднее содержание цинка в растениях 0,002%. В растениях цинк не участвует в окислительно-восстановительных реакциях, поскольку не меняет степень окисления. Он входит в состав более 30 ферментов, в т. ч. фосфатазы, карбоангидразы, алкогольдегидрогеназа, РНК-полимераза и др. Карбоангидраза катализирует разложение гидрата окиси углерода на воду и углекислый газ. Эта реакция важна для процесса фотосинтеза. Углекислый газ, поступая в клетку, растворяется в воде, образуя Н2СO3: СO2 + Н2O Н2СO3 + Н2.

         Молибден поступает в растения в виде аниона МoO42-. Содержание молибдена в растениях составляет 0,0005—0,002%.Молибден входит в состав более 20 ферментов, выполняя при этом не только каталитическую, но и структурную функцию. Молибден вместе с железом входит в состав активного центра ферментного комплекса нитрогеназы в виде Mo-Fe-белок и участвует в фиксации азота атмосферы различными микроорганизмами. При восcтановлении нитратов молибден действует как переносчик электронов от ФАД (флавинадениндинуклеотид) к нитрату, при этом NO3- переходит в NO2-, а Мo5+ — в Мo6+. Образование нитрат редуктазы является одним из немногих примеров адаптивного синтеза ферментов в растительном организме. Этот фермент образуется, когда в среде имеются нитраты и молибден.

         Бор поступает в растение в виде аниона борной кислоты — ВO33-. Среднее содержание бора в растениях 0,0001%. Роль бора выяснена далеко не достаточно. Это связано с тем, что бор, в отличие от большинства других микроэлементов, не входит в состав ни одного фермента и не является активатором ферментов. Большое значение для осуществления функции бора имеет его способность давать комплексные соединения. Комплексы с борной кислотой образуют простые сахара, полисахариды, спирты, фенольные соединения и др. В этой связи можно предположить, что бор влияет на скорость ферментативных реакций через субстраты, на которые действуют ферменты.

Кобальт находится в тканях растений в ионной (Со2+, Со3+) и комплексной форме. Содержание кобальта в среднем составляет 0,00002%. Особенно кобальт необходим бобовым растениям, поскольку участвует в фиксации атмосферного азота. Кобальт входит в состав кобаламина (витамин В12 и его производные), который синтезируется бактериями в клубеньках бобовых растений, а также в состав ферментов у азотфиксирующих организмов, участвующих в синтезе метионина, ДНК и делении клеток бактерий.

          Хлор поступает в растение в виде Сl-. Хлор необходим для работы ФС II на этапе фотосинтетического разложения воды и выделения кислорода. Показано влияние хлоридов на работу Н+-АТФ азтонопласта, участие в делении клетки. Имеются сведения о влиянии хлора на азотный обмен. Так, хлориды стимулируют активность аспарагинсинтетазы, которая участвует в переносе аминогруппы на аспарагин. Концентрируясь в растении в вакуолях, хлориды могут выполнять осморегулирующую функцию. Недостаток хлора проявляется редко и наблюдается только на очень щелочных почвах.

          Никель поступает в растения в виде иона Ni2+, но может также находиться в виде Ni+ и Ni3+, Роль никеля для высших растений как микроэлемента была доказана недавно. До этого считали никель необходимым микроэлементом многих бактерий. У высших растений никель входит в состав фермента уреазы, который осуществляет реакцию разложения мочевины. Показано, что в растениях, обеспеченных никелем, активность уреазы выше и соответственно ниже содержание мочевины по сравнению с необеспеченными. Никель активирует ряд ферментов, в т. ч. нитратредуктазу и другие, оказывает стабилизирующее влияние на структуру рибосом

          Для роста диатомовых водорослей необходим кремний. Он улучшает рост некоторых злаков, таких, как рис и кукуруза. Кремний повышает устойчивость растений против полегания, так как входит в состав клеточных стенок. Хвощи нуждаются в кремнии для прохождения жизненного цикла. Однако и другие виды аккумулируют достаточно кремния и отвечают при внесении кремния повышением темпов роста и продуктивности. В гидрированной форме SiO2 кремний накапливается в эндоплазматическом ретикулуме, клеточных стенках, в межклеточных пространствах. Он может также образовывать комплексы с полифенолами и в этой форме вместо лигнина служит для укрепления клеточных стенок.

 

Значение макро и микроэлементов в жизни растения

          Катионы. Калий, кальций и магний усваиваются из любых растворимых солей, анионы которых не обладают токсическим действием. Доступными они являются и находясь в «поглощенном состоянии» т. е. связанные с каким-нибудь нерастворимым веществом, обладающим ясно отраженными кислотными свойствами. Попав в растения, калий и кальций в своей массе не претерпевают никаких химических превращений, но они необходимы для питания. Их нельзя заменить другими элементами, как нельзя ничем заменить азот, фосфор и серу.

yaneuch.ru


Смотрите также