2
РЕФЕРАТ
на тему:
«История развития, основные достижения и проблемы медицинской генетики»
Оглавление
1. История развития генетической науки
2. Этапы развития медицинской генетики
3. Генная и клеточная инженерия. Биотехнология
4. Достижения генетики в диагностике и профилактике заболеваний
1. История развития генетической науки
Впервые представления о передаче патологических наследственных признаков отражены в Талмуде (собрание догматических, религиозно-этических и правовых положений иудаизма, сложившихся в IV в. до н.э.), в котором указана опасность обрезания крайней плоти у новорожденных мальчиков, старшие братья которых или дяди по материнской линии страдают кровотечениями.
В ХVIII в. описано наследование доминантного (полидактилия многопалость) и рецессивного (альбинизм у негров) признаков. В начале XIX в. несколько авторов одновременно описали наследование гемофилии.
Особого внимания заслуживает книга лондонского врача Адамса, вышедшая в 1814 г. под названием «Трактат. О предполагаемых наследственных свойствах болезней, основанных на клиническом наблюдении». Через год она была переиздана под названием «Философский трактат о наследственных свойствах человеческой расы». Это был первый справочник для генетического консультирования. В ней сформулировано несколько принципов медицинской генетики:
- браки между родственниками повышают частоту семейных болезней;
- не все врожденные болезни являются наследственными, часть из них связана с внутриутробным поражением плода (например, за счет сифилиса).
А.Г. Мотульски (1959) справедливо назвал Адамса «забытым основателем медицинской генетики».
В середине XIX в. в России над проблемами наследственных болезней работал В.М. Флоринский. Он изложил свои взгляды по усовершенствованию человеческого рода. При этом ряд предположений был противоречив и неверен. В то же время В.М. Флоринский поднял и осветил некоторые вопросы медицинской генетики. В своих трудах он правильно оценил значение среды для формирования наследственных признаков, подчеркнул вред родственных браков. Показал наследственный характер многих патологических признаков (глухонемота, альбинизм). При этом книга не нашла отклика среди медиков и биологов того времени, так как ученые еще не были подготовлены к Восприятию этих идей.
В последней четверти XIX в. наибольший вклад в становление генетики человека внес английский биолог Ф. Гальтон (двоюродный брат Ч. Дарвина). Он первым поставил вопрос о наследственности человека как предмете для изучения, обосновал применение генеалогического, близнецового и статистического методов для ее изучения и заложил основы для будущего развития генетики человека. Принципиальная ошибка Ф. Гальтона заключается в том, что во всех евгенических мероприятиях он рекомендовал не столько избавиться от патологических генов человека, сколько повысить количество «хороших» генов в человеческих популяциях путем предоставления преимущественных условий для размножения более одаренных, гениальных людей.
Существенный вклад в изучение генетики человека внес выдающийся английский клиницист. А Гаррод, хорошо знавший биологию и химию. Он первым обнаружил взаимосвязь между генами и ферментами и, применив эти знания к изучению патологических признаков, открыл врожденные нарушения обмена веществ.
Работы Адамса и других исследователей того времени не привлекли внимания широкого круга специалистов потому, что наследственность тогда в основном изучалась на растениях. Наблюдения над человеком не учитывались. Между тем, если бы результаты исследований по генетике человека были известны Г. Менделю и другим ученым, изучавшим наследование на ботаническом материале, то открытие ее законов генетики и их признание могли бы произойти гораздо раньше.
В 1865 г. чешский ученый Г. Мендель глубоко и последовательно с математическим описанием в опытах на горохе сформулировал законы доминирования для первого поколения гибридов, расщепления и комбинирования наследственных признаков в потомстве гибридов. Этот важнейший вывод доказал существование наследственных факторов, детерминирующих развитие определенных признаков. Работа Г. Менделя оставалась непонятой 35 лет.
В 1900 г. три ботаника независимо друг от друга, не зная работы Г. Менделя, на разных объектах повторили его открытие: Де Фриз из Голландии - в опытах с энтерой, маком и дурманом, Корренс из Германии - с кукурузой, Чермак из Австрии - с горохом. Поэтому 1900 г. считается годом рождения генетики. С него начался период изучения наследственности, отличительной чертой которого стал предложенный ранее Г. Менделем гибридологический метод, анализ наследования отдельных признаков родителей в потомстве.
В 1905 г. В. Бэтсон предложил термин «генетика», а в 1909 г. В. Иогансен предложил термин «ген» (от греческого genes - рождающий, рожденный) для обозначения наследственных факторов. Совокупность всех генов у одной особи ученый назвал генотипом, совокупность признаков организма - фенотипом.
В 1908 г. Г. Харди и В. Вайнберг показали, что менделевские законы объясняют процессы распределения генов в популяциях (от лат. populus-население, народ). Ученые сформулировали закон, который описывает условия генетической стабильности популяции в России в 1919 г. Ю.А. Филипченко организовал первую кафедру генетики в Ленинградском университете. В это время работал молодой Н.И. Вавилов, сформулировавший один из генетических законов - закон гомологических рядов наследственной изменчивости.
Н.К. Кольцов, Ю.А. Филипченко и некоторые другие ученые в рамках евгенической программы проводили работы по генетике одаренности, изучая родословные выдающихся личностей. В этих исследованиях были допущены некоторые методические ошибки, При этом по сравнению с генетическими исследованиями в других, странах в период расцвета евгеники подходы наших ученых были во многом верными.
Так, Н.К. Кольцов и Ю.А. Филипченко правильно поставили вопрос о значении социальной среды в реализации индивидуальных способностей. Они полностью отвергли насильственный путь улучшения породы человека. В период проведения евгенических исследований в СССР были собраны интересные родословные выдающихся личностей (А.С. Пушкина, Л.Н. Толстого, А.М. Горького, Ф.И. Шаляпина и др.).
Конец 20-х - начало 30-х годов характеризуются довольно большими успехами в развитии генетики. К этому времени стала общепризнанной хромосомная теория наследственности. Т. Морган и его ученики экспериментально доказали, что гены расположены в хромосомах в линейном порядке и образуют группы сцепления.
Теоретическая и экспериментальная работы С.С. Четверикова (1926, 1929) положили начало современной генетике популяций. Большой вклад в изучение этого раздела внесли труды Р. Фишера (1931), С. Райта (1932), Н.П. Дубинина и Д.Д. Ромашова (1932), Дж.Е. Холдейна (1935) и др.
В ряде стран начала. развиваться медицинская генетика. В нашей стране особого упоминания заслуживает Медико-генетический институт, который функционировал с 1932 по 1937 т. При нем был Организован центр близнецовых исследований, в котором широко изучались количественные признаки у человека и болезни с наследственным предрасположением (сахарный диабет, гипертоническая Болезнь, язвенная болезнь и др.). Правильное применение разных методов исследования (клинико-генеалогического, близнецового, цитогенетического, популяционно-статистического) позволило коллективу занять передовые рубежи генетики.
В 20-30-х годах работал талантливый клиницист и генетик С.Н. Давиденков (1880-1961), который внес свой вклад в изучение наследственных болезней, а также первым в нашей стране начал проводить медико-генетическое консультирование и разрабатывать методику этого вида медицинской помощи.
К концу 30-х - началу 50-х годов интерес к генетике человека снизился. Возобновились исследования лишь в начале 60-х годов.
С 1959 по 1962 г. количество публикаций, конференций, симпозиумов по генетике человека быстро возросло. Стало ясно, что наследственные болезни по своей природе гетерогенны, различны не только с клинической, но и с генетической точки зрения. Один и тот же фенотип болезни может быть обусловлен мутационным изменением различных белков (генокопия).
После того как было установлено, что ДНК является носителем наследственной информации, ученые направили усилия на изучение молекулярной природы и генетической значимости ее отдельных компонентов.
Исследование ДНК проводилось многими учеными. Весь накопленный комплекс биологических и физико-химических знаний привел к тому, что в 1953 г. Д. Уотсон и Ф. Крик открыли двухцепочечную спиральную (пространственную) структуру молекулы ДНК Затем бурно начала развиваться молекулярная и биохимическая генетика человека, а также иммунопгенетика.
Развитие цитогенетики человека является ярким примером значения фундаментальных исследований для практического здравоохранения. Так, в 1956 г. А. Леван и Дж. Тио установили, что у человека хромосомный набор состоит из 46 хромосом, а через три года были открыты хромосомные болезни. Очередным переломным моментом в цитогенетике человека была разработка методов дифференциальной окраски хромосом.
Следующим шагом в развитии современной генетики явилось картирование (определение места положения) генов в хромосомах человека. Успехи цитогенетики, генетики соматических клеток обеспечили прогресс в изучении групп сцепления (групп генов, наследующихся совместно). В настоящее время у человека известно 24 группы сцепления. Работы по изучению сцепления генов дают новые практические возможности в диагностике наследственных болезней и медико-генетическом консультировании.
2. Этапы развития медицинской генетики
Таким образом, в истории медицинской генетики можно выделить несколько основных этапов:
1) открытие законов Г. Менделя и изучение наследственности на уровне целостного организма;
2) изучение генетики на хромосомном уровне и открытие сцепленного наследования Т. Морганом и его учениками;
3) начало развитию современной генетики популяции дали теоретические и экспериментальные работы С.С. Четверикова;
4) развитие молекулярной генетики началось с построения пространственной структуры молекул ДНК Д. Уотсоном и Ф. Криком.
В настоящее время наследственность изучается на всех уровнях: молекулярном, клеточном, организменном и популяционном.
3. Генная и клеточная инженерия. Биотехнология
Для лечения многих болезней необходимы различные биологически активные вещества. При выделении их из тканей человека возникает опасность загрязнения полученного материала различными вирусами (гепатита В, иммунодефицита человека и др.). Кроме того, эти вещества производятся в небольших количествах и являются дорогостоящими. Биологически активные вещества животного происхождения низкоэффективны из-за несовместимости с иммунной системой больного человека. Только развитие новой отрасли - генной инженерии помогло обеспечить получение чистых биологически активных веществ в больших количествах по более низкой цене.
Генная инженерия - это создание гибридных, рекомбинантных молекул ДНК, а стало быть, и организмов с новыми признаками. Для этого необходимо выделить ген из какого-либо организма или искусственно синтезировать его, клонировать (размножить) и перенести в другой организм.
Инструментами генной инженерии являются ферменты: рестриктазы
(разрезающие молекулу ДНК) и лигазы (сшивающие ее). В качестве векторов-переносчиков используются вирусы.
С помощью генной инженерии созданы штаммы кишечных палочек, в которые встроены гены человеческого инсулина (необходимого для лечения сахарного диабета), интерферона (противовирусного препарата), соматотропина (гормона роста).
С помощью генной инженерии созданы дрожжевые клетки, продуцирующие человеческий инсулин. Биосинтетический метод производства человеческого инсулина с помощью дрожжевых клеток широко используется в фармацевтическом Производстве (в Дании, Югославии, США, Германии и других странах).
В настоящее Время ученые разных стран работают над получением с помощью генной инженерии ряда других необходимых биологически активных веществ, вакцины против гепатита В, активатора профибринолизина (противосвертывающий препарат), нитерлейкина-2 (иммуномодулятор) и др. В клетки животных чужеродные гены вводят в виде отдельных молекул ДНК или в составе векторов-вирусов, способных вносить в геном клетки чужую ДНК
Обычно применяют два метода:
1) ДНК добавляют в среду инкубации клеток;
2) производят микроинъекции ДНК непосредственно в ядро (что более эффективно).
Первоочередными задачами генной инженерии у человека являются создание банков генов человека для их изучения и поиск путей генотерании, то есть замены мутантных генов нормальными аллелями.
Клеточная инженерия - это метод конструирования клеток нового типа на основе их культивирования, гибридизации или реконструкции. При гибридизации искусственно объединяются целые клетки (иногда далеких видов) с образованием гибридной клетки.
Клеточная реконструкция - это создание жизнеспособной клетки из отдельных фрагментов разных клеток (ядра, цитоплазмы, хромосом и др.). Изучение гибридных клеток позволяет решать многие проблемы биологии и медицины. Так, например, биотехнология использует гибридомы. Гибридома - это Клеточный гибрид, получаемый слиянием нормального лимфоцита и опухолевой клетки.
Биотехнология - это производство продуктов и материалов, необходимых для человека, с помощью биологических объектов.
Термин «биотехнология» получил распространение в середине 70-х годов ХХ в., хотя отдельные отрасли биотехнологии известны давно и основаны на применении различных микроорганизмов: хлебопечение, виноделие, пивоварение, сыроварение. Достижения генетики создали большие дополнительные возможности для развития биотехнологии.
В середине ХХ. в., используя индуцированный мутагенез, были получены антибиотики (пенициллин, стрептомицин, эритромицин и др.) - с помощью микробов; фермент амилаза - с помощью сенной палочки; аминокислоты - с помощью кишечной палочки; молочная кислота '- с помощью Молочнокислых бактерий; лимонная кислота - с помощью аспергилловой плесени; витамины группы В - с помощью дрожжей.
В последние десятилетия в результате успехов, достигнутых генной инженерией, происходит скачок в биотехнологии - развивается микробиологическая промышленность (микробиологическая индустрия), которая позволяет в промышленных условиях с помощью кишечной палочки или дрожжей получать человеческий инсулин, интерферон, соматотропин и другие вещества.
4. Достижения генетики в диагностике и профилактике заболеваний
В настоящее время проводится массовый скрининг новорожденных в роддомах для выявления фенилкетонурии и врожденного гипотиреоза. Данные исследования позволяют поставить диагноз в ранние сроки и своевременно назначить эффективное лечение.
Больших успехов в последнее десятилетие достигла пренатальная диагностика наследственных заболеваний и врожденных пороков развития. Широкое распространение в медицинской практике получили следующие методы: ультразвуковое исследование, амниоцентез, биопсия хориона, кордоцентез, определение альфа-фетопротеина и хориогонина, ДНК- диагностика.
Огромный вклад в диагностику хромосомных болезней внесли генетики, внедрив в практику медицины метод дифференциальной окраски хромосом. С помощью этого метода можно определить количественные и структурные перестройки хромосом, которые невозможно выявить при рутинной окраске, и точно поставить диагноз.
Большое теоретическое и практическое значение имеет изучение групп сцепления у человека и построение карт хромосом. В настоящее время у человека относительно изучены все 24 группы сцепления и продолжается установление новых локусов генов.
В последнее время в практическую медицину внедрены достижения клеточной инженерии. С помощью гибридом получают моноклональные антитела, которые широко используются в диагностике заболеваний.
Наиболее распространенным и эффективным методом профилактики наследственных болезней и врожденных пороков развития является медико-генетическое консультирование, направленное на предупреждение появления в семье больных детей. Врач-генетик рассчитывает риск рождения ребенка с тяжелой наследственной патологией и при высоком риске, при отсутствии методов пренатальной диагностики дальнейшее деторождение в этой семье не рекомендуется.
С целью предупреждения рождения детей с наследственно детерминированными болезнями необходимо объяснять вред близкородственных браков молодым людям, планирующим создание семьи.
Беременным женщинам в возрасте старше 35 лет необходимо обследование у врача-генетика для исключения у плода хромосомной патологии.
Таким образом, применение достижений генетики в практической медицине способствует предупреждению рождения детей с наследственными заболеваниями и врожденными пороками развития, ранней диагностике и лечению больных
Список используемой литературы
1. Медицинская генетика / Под ред. Бочкова Н.П. - М.: Мастерство, 2001
2. Ярыгин В.Н., Волков И.Н. и др. Биология. - М.: Владос, 2001
З. Биология / Под ред. Чебышева. Н.В. - М.: ГОУ ВУНМЦ,2005.
4. Орехова. В.А., Лажковская Т.А., Шейбак М.П. Медицинская генетика. - Минск: Высшая школа, 1999
5. Пособие по биологии для довузовского обучения иностранных учащихся / Под ред. Чернышова В.Н., Елизаровой Л.Ю., Шведовой Л.П. - М.: ГОУ ВУНМЦ МЗ РФ, 2004
6. Врожденные пороки развития // Серия учебной литературы «Образование медсестер», модуль 10. - М.: Гэотар-мед, 2002
referatwork.ru
1. История развития генетической науки
2. Этапы развития медицинской генетики
3. Генная и клеточная инженерия. Биотехнология
4. Достижения генетики в диагностике и профилактике заболеваний
1. История развития генетической науки
Впервые представления о передаче патологических наследственных признаков отражены в Талмуде (собрание догматических, религиозно-этических и правовых положений иудаизма, сложившихся в IV в. до н.э.), в котором указана опасность обрезания крайней плоти у новорожденных мальчиков, старшие братья которых или дяди по материнской линии страдают кровотечениями.
Возможно вы искали - Отчет по практике: История развития, функции, устройство и оборудование централизованного операционного отделения (ЦОО)
В ХVIII в. описано наследование доминантного (полидактилия многопалость) и рецессивного (альбинизм у негров) признаков. В начале XIX в. несколько авторов одновременно описали наследование гемофилии.
Особого внимания заслуживает книга лондонского врача Адамса, вышедшая в 1814 г. под названием «Трактат. О предполагаемых наследственных свойствах болезней, основанных на клиническом наблюдении». Через год она была переиздана под названием «Философский трактат о наследственных свойствах человеческой расы». Это был первый справочник для генетического консультирования. В ней сформулировано несколько принципов медицинской генетики:
- браки между родственниками повышают частоту семейных болезней;
- не все врожденные болезни являются наследственными, часть из них связана с внутриутробным поражением плода (например, за счет сифилиса).
А.Г. Мотульски (1959) справедливо назвал Адамса «забытым основателем медицинской генетики».
Похожий материал - Реферат: История родов
В середине XIX в. в России над проблемами наследственных болезней работал В.М. Флоринский. Он изложил свои взгляды по усовершенствованию человеческого рода. Однако ряд предположений был противоречив и неверен. В то же время В.М. Флоринский поднял и осветил некоторые вопросы медицинской генетики. В своих трудах он правильно оценил значение среды для формирования наследственных признаков, подчеркнул вред родственных браков. Показал наследственный характер многих патологических признаков (глухонемота, альбинизм). Однако книга не нашла отклика среди медиков и биологов того времени, так как ученые еще не были подготовлены к Восприятию этих идей.
В последней четверти XIX в. наибольший вклад в становление генетики человека внес английский биолог Ф. Гальтон (двоюродный брат Ч. Дарвина). Он первым поставил вопрос о наследственности человека как предмете для изучения, обосновал применение генеалогического, близнецового и статистического методов для ее изучения и заложил основы для будущего развития генетики человека. Принципиальная ошибка Ф. Гальтона заключается в том, что во всех евгенических мероприятиях он рекомендовал не столько избавиться от патологических генов человека, сколько повысить количество «хороших» генов в человеческих популяциях путем предоставления преимущественных условий для размножения более одаренных, гениальных людей.
Существенный вклад в изучение генетики человека внес выдающийся английский клиницист. А Гаррод, хорошо знавший биологию и химию. Он первым обнаружил взаимосвязь между генами и ферментами и, применив эти знания к изучению патологических признаков, открыл врожденные нарушения обмена веществ.
Работы Адамса и других исследователей того времени не привлекли внимания широкого круга специалистов потому, что наследственность тогда в основном изучалась на растениях. Наблюдения над человеком не учитывались. Между тем, если бы результаты исследований по генетике человека были известны Г. Менделю и другим ученым, изучавшим наследование на ботаническом материале, то открытие ее законов генетики и их признание могли бы произойти гораздо раньше.
В 1865 г. чешский ученый Г. Мендель глубоко и последовательно с математическим описанием в опытах на горохе сформулировал законы доминирования для первого поколения гибридов, расщепления и комбинирования наследственных признаков в потомстве гибридов. Этот важнейший вывод доказал существование наследственных факторов, детерминирующих развитие определенных признаков. Работа Г. Менделя оставалась непонятой 35 лет.
Очень интересно - Реферат: История СПИДа
В 1900 г. три ботаника независимо друг от друга, не зная работы Г. Менделя, на разных объектах повторили его открытие: Де Фриз из Голландии - в опытах с энтерой, маком и дурманом, Корренс из Германии - с кукурузой, Чермак из Австрии - с горохом. Поэтому 1900 г. считается годом рождения генетики. С него начался период изучения наследственности, отличительной чертой которого стал предложенный ранее Г. Менделем гибридологический метод, анализ наследования отдельных признаков родителей в потомстве.
В 1905 г. В. Бэтсон предложил термин «генетика», а в 1909 г. В. Иогансен предложил термин «ген» (от греческого genes - рождающий, рожденный) для обозначения наследственных факторов. Совокупность всех генов у одной особи ученый назвал генотипом, совокупность признаков организма - фенотипом.
В 1908 г. Г. Харди и В. Вайнберг показали, что менделевские законы объясняют процессы распределения генов в популяциях (от лат. populus-население, народ). Ученые сформулировали закон, который описывает условия генетической стабильности популяции в России в 1919 г. Ю.А. Филипченко организовал первую кафедру генетики в Ленинградском университете. В это время работал молодой Н.И. Вавилов, сформулировавший один из генетических законов - закон гомологических рядов наследственной изменчивости.
Н.К. Кольцов, Ю.А. Филипченко и некоторые другие ученые в рамках евгенической программы проводили работы по генетике одаренности, изучая родословные выдающихся личностей. В этих исследованиях были допущены некоторые методические ошибки, Однако по сравнению с генетическими исследованиями в других, странах в период расцвета евгеники подходы наших ученых были во многом верными.
Так, Н.К. Кольцов и Ю.А. Филипченко правильно поставили вопрос о значении социальной среды в реализации индивидуальных способностей. Они полностью отвергли насильственный путь улучшения породы человека. В период проведения евгенических исследований в СССР были собраны интересные родословные выдающихся личностей (А.С. Пушкина, Л.Н. Толстого, А.М. Горького, Ф.И. Шаляпина и др.).
Вам будет интересно - Реферат: История срочных родов
Конец 20-х - начало 30-х годов характеризуются довольно большими успехами в развитии генетики. К этому времени стала общепризнанной хромосомная теория наследственности. Т. Морган и его ученики экспериментально доказали, что гены расположены в хромосомах в линейном порядке и образуют группы сцепления.
Теоретическая и экспериментальная работы С.С. Четверикова (1926, 1929) положили начало современной генетике популяций. Большой вклад в изучение этого раздела внесли труды Р. Фишера (1931), С. Райта (1932), Н.П. Дубинина и Д.Д. Ромашова (1932), Дж.Е. Холдейна (1935) и др.
В ряде стран начала. развиваться медицинская генетика. В нашей стране особого упоминания заслуживает Медико-генетический институт, который функционировал с 1932 по 1937 т. При нем был Организован центр близнецовых исследований, в котором широко изучались количественные признаки у человека и болезни с наследственным предрасположением (сахарный диабет, гипертоническая Болезнь, язвенная болезнь и др.). Правильное применение разных методов исследования (клинико-генеалогического, близнецового, цитогенетического, популяционно-статистического) позволило коллективу занять передовые рубежи генетики.
В 20-30-х годах работал талантливый клиницист и генетик С.Н. Давиденков (1880-1961), который внес свой вклад в изучение наследственных болезней, а также первым в нашей стране начал проводить медико-генетическое консультирование и разрабатывать методику этого вида медицинской помощи.
К концу 30-х - началу 50-х годов интерес к генетике человека снизился. Возобновились исследования лишь в начале 60-х годов.
Похожий материал - Реферат: История судебной медицины
С 1959 по 1962 г. количество публикаций, конференций, симпозиумов по генетике человека быстро возросло. Стало ясно, что наследственные болезни по своей природе гетерогенны, различны не только с клинической, но и с генетической точки зрения. Один и тот же фенотип болезни может быть обусловлен мутационным изменением различных белков (генокопия).
После того как было установлено, что ДНК является носителем наследственной информации, ученые направили усилия на изучение молекулярной природы и генетической значимости ее отдельных компонентов.
Исследование ДНК проводилось многими учеными. Весь накопленный комплекс биологических и физико-химических знаний привел к тому, что в 1953 г. Д. Уотсон и Ф. Крик открыли двухцепочечную спиральную (пространственную) структуру молекулы ДНК Затем бурно начала развиваться молекулярная и биохимическая генетика человека, а также иммунопгенетика.
Развитие цитогенетики человека является ярким примером значения фундаментальных исследований для практического здравоохранения. Так, в 1956 г. А. Леван и Дж. Тио установили, что у человека хромосомный набор состоит из 46 хромосом, а через три года были открыты хромосомные болезни. Очередным переломным моментом в цитогенетике человека была разработка методов дифференциальной окраски хромосом.
cwetochki.ru
РЕФЕРАТ
на тему:
«История развития, основные достижения и проблемы медицинской генетики»
Оглавление
1. История развития генетической науки
2. Этапы развития медицинской генетики
3. Генная и клеточная инженерия. Биотехнология
4. Достижения генетики в диагностике и профилактике заболеваний
1. История развития генетической науки
Впервые представления о передаче патологических наследственных признаков отражены в Талмуде (собрание догматических, религиозно-этических и правовых положений иудаизма, сложившихся в IV в. до н.э.), в котором указана опасность обрезания крайней плоти у новорожденных мальчиков, старшие братья которых или дяди по материнской линии страдают кровотечениями.
В ХVIII в. описано наследование доминантного (полидактилия многопалость) и рецессивного (альбинизм у негров) признаков. В начале XIX в. несколько авторов одновременно описали наследование гемофилии.
Особого внимания заслуживает книга лондонского врача Адамса, вышедшая в 1814 г. под названием «Трактат. О предполагаемых наследственных свойствах болезней, основанных на клиническом наблюдении». Через год она была переиздана под названием «Философский трактат о наследственных свойствах человеческой расы». Это был первый справочник для генетического консультирования. В ней сформулировано несколько принципов медицинской генетики:
- браки между родственниками повышают частоту семейных болезней;
- не все врожденные болезни являются наследственными, часть из них связана с внутриутробным поражением плода (например, за счет сифилиса).
А.Г. Мотульски (1959) справедливо назвал Адамса «забытым основателем медицинской генетики».
В середине XIX в. в России над проблемами наследственных болезней работал В.М. Флоринский. Он изложил свои взгляды по усовершенствованию человеческого рода. Однако ряд предположений был противоречив и неверен. В то же время В.М. Флоринский поднял и осветил некоторые вопросы медицинской генетики. В своих трудах он правильно оценил значение среды для формирования наследственных признаков, подчеркнул вред родственных браков. Показал наследственный характер многих патологических признаков (глухонемота, альбинизм). Однако книга не нашла отклика среди медиков и биологов того времени, так как ученые еще не были подготовлены к Восприятию этих идей.
В последней четверти XIX в. наибольший вклад в становление генетики человека внес английский биолог Ф. Гальтон (двоюродный брат Ч. Дарвина). Он первым поставил вопрос о наследственности человека как предмете для изучения, обосновал применение генеалогического, близнецового и статистического методов для ее изучения и заложил основы для будущего развития генетики человека. Принципиальная ошибка Ф. Гальтона заключается в том, что во всех евгенических мероприятиях он рекомендовал не столько избавиться от патологических генов человека, сколько повысить количество «хороших» генов в человеческих популяциях путем предоставления преимущественных условий для размножения более одаренных, гениальных людей.
Существенный вклад в изучение генетики человека внес выдающийся английский клиницист. А Гаррод, хорошо знавший биологию и химию. Он первым обнаружил взаимосвязь между генами и ферментами и, применив эти знания к изучению патологических признаков, открыл врожденные нарушения обмена веществ.
Работы Адамса и других исследователей того времени не привлекли внимания широкого круга специалистов потому, что наследственность тогда в основном изучалась на растениях. Наблюдения над человеком не учитывались. Между тем, если бы результаты исследований по генетике человека были известны Г. Менделю и другим ученым, изучавшим наследование на ботаническом материале, то открытие ее законов генетики и их признание могли бы произойти гораздо раньше.
В 1865 г. чешский ученый Г. Мендель глубоко и последовательно с математическим описанием в опытах на горохе сформулировал законы доминирования для первого поколения гибридов, расщепления и комбинирования наследственных признаков в потомстве гибридов. Этот важнейший вывод доказал существование наследственных факторов, детерминирующих развитие определенных признаков. Работа Г. Менделя оставалась непонятой 35 лет.
В 1900 г. три ботаника независимо друг от друга, не зная работы Г. Менделя, на разных объектах повторили его открытие: Де Фриз из Голландии - в опытах с энтерой, маком и дурманом, Корренс из Германии - с кукурузой, Чермак из Австрии - с горохом. Поэтому 1900 г. считается годом рождения генетики. С него начался период изучения наследственности, отличительной чертой которого стал предложенный ранее Г. Менделем гибридологический метод, анализ наследования отдельных признаков родителей в потомстве.
В 1905 г. В. Бэтсон предложил термин «генетика», а в 1909 г. В. Иогансен предложил термин «ген» (от греческого genes - рождающий, рожденный) для обозначения наследственных факторов. Совокупность всех генов у одной особи ученый назвал генотипом, совокупность признаков организма - фенотипом.
В 1908 г. Г. Харди и В. Вайнберг показали, что менделевские законы объясняют процессы распределения генов в популяциях (от лат. populus-население, народ). Ученые сформулировали закон, который описывает условия генетической стабильности популяции в России в 1919 г. Ю.А. Филипченко организовал первую кафедру генетики в Ленинградском университете. В это время работал молодой Н.И. Вавилов, сформулировавший один из генетических законов - закон гомологических рядов наследственной изменчивости.
Н.К. Кольцов, Ю.А. Филипченко и некоторые другие ученые в рамках евгенической программы проводили работы по генетике одаренности, изучая родословные выдающихся личностей. В этих исследованиях были допущены некоторые методические ошибки, Однако по сравнению с генетическими исследованиями в других, странах в период расцвета евгеники подходы наших ученых были во многом верными.
Так, Н.К. Кольцов и Ю.А. Филипченко правильно поставили вопрос о значении социальной среды в реализации индивидуальных способностей. Они полностью отвергли насильственный путь улучшения породы человека. В период проведения евгенических исследований в СССР были собраны интересные родословные выдающихся личностей (А.С. Пушкина, Л.Н. Толстого, А.М. Горького, Ф.И. Шаляпина и др.).
Конец 20-х - начало 30-х годов характеризуются довольно большими успехами в развитии генетики. К этому времени стала общепризнанной хромосомная теория наследственности. Т. Морган и его ученики экспериментально доказали, что гены расположены в хромосомах в линейном порядке и образуют группы сцепления.
Теоретическая и экспериментальная работы С.С. Четверикова (1926, 1929) положили начало современной генетике популяций. Большой вклад в изучение этого раздела внесли труды Р. Фишера (1931), С. Райта (1932), Н.П. Дубинина и Д.Д. Ромашова (1932), Дж.Е. Холдейна (1935) и др.
В ряде стран начала. развиваться медицинская генетика. В нашей стране особого упоминания заслуживает Медико-генетический институт, который функционировал с 1932 по 1937 т. При нем был Организован центр близнецовых исследований, в котором широко изучались количественные признаки у человека и болезни с наследственным предрасположением (сахарный диабет, гипертоническая Болезнь, язвенная болезнь и др.). Правильное применение разных методов исследования (клинико-генеалогического, близнецового, цитогенетического, популяционно-статистического) позволило коллективу занять передовые рубежи генетики.
В 20-30-х годах работал талантливый клиницист и генетик С.Н. Давиденков (1880-1961), который внес свой вклад в изучение наследственных болезней, а также первым в нашей стране начал проводить медико-генетическое консультирование и разрабатывать методику этого вида медицинской помощи.
К концу 30-х - началу 50-х годов интерес к генетике человека снизился. Возобновились исследования лишь в начале 60-х годов.
С 1959 по 1962 г. количество публикаций, конференций, симпозиумов по генетике человека быстро возросло. Стало ясно, что наследственные болезни по своей природе гетерогенны, различны не только с клинической, но и с генетической точки зрения. Один и тот же фенотип болезни может быть обусловлен мутационным изменением различных белков (генокопия).
После того как было установлено, что ДНК является носителем наследственной информации, ученые направили усилия на изучение молекулярной природы и генетической значимости ее отдельных компонентов.
Исследование ДНК проводилось многими учеными. Весь накопленный комплекс биологических и физико-химических знаний привел к тому, что в 1953 г. Д. Уотсон и Ф. Крик открыли двухцепочечную спиральную (пространственную) структуру молекулы ДНК Затем бурно начала развиваться молекулярная и биохимическая генетика человека, а также иммунопгенетика.
Развитие цитогенетики человека является ярким примером значения фундаментальных исследований для практического здравоохранения. Так, в 1956 г. А. Леван и Дж. Тио установили, что у человека хромосомный набор состоит из 46 хромосом, а через три года были открыты хромосомные болезни. Очередным переломным моментом в цитогенетике человека была разработка методов дифференциальной окраски хромосом.
Следующим шагом в развитии современной генетики явилось картирование (определение места положения) генов в хромосомах человека. Успехи цитогенетики, генетики соматических клеток обеспечили прогресс в изучении групп сцепления (групп генов, наследующихся совместно). В настоящее время у человека известно 24 группы сцепления. Работы по изучению сцепления генов дают новые практические возможности в диагностике наследственных болезней и медико-генетическом консультировании.
2. Этапы развития медицинской генетики
Таким образом, в истории медицинской генетики можно выделить несколько основных этапов:
1) открытие законов Г. Менделя и изучение наследственности на уровне целостного организма;
2) изучение генетики на хромосомном уровне и открытие сцепленного наследования Т. Морганом и его учениками;
3) начало развитию современной генетики популяции дали теоретические и экспериментальные работы С.С. Четверикова;
4) развитие молекулярной генетики началось с построения пространственной структуры молекул ДНК Д. Уотсоном и Ф. Криком.
В настоящее время наследственность изучается на всех уровнях: молекулярном, клеточном, организменном и популяционном.
3. Генная и клеточная инженерия. Биотехнология
Для лечения многих болезней необходимы различные биологически активные вещества. При выделении их из тканей человека возникает опасность загрязнения полученного материала различными вирусами (гепатита В, иммунодефицита человека и др.). Кроме того, эти вещества производятся в небольших количествах и являются дорогостоящими. Биологически активные вещества животного происхождения низкоэффективны из-за несовместимости с иммунной системой больного человека. Только развитие новой отрасли - генной инженерии помогло обеспечить получение чистых биологически активных веществ в больших количествах по более низкой цене.
Генная инженерия - это создание гибридных, рекомбинантных молекул ДНК, а стало быть, и организмов с новыми признаками. Для этого необходимо выделить ген из какого-либо организма или искусственно синтезировать его, клонировать (размножить) и перенести в другой организм.
Инструментами генной инженерии являются ферменты: рестриктазы
(разрезающие молекулу ДНК) и лигазы (сшивающие ее). В качестве векторов-переносчиков используются вирусы.
С помощью генной инженерии созданы штаммы кишечных палочек, в которые встроены гены человеческого инсулина (необходимого для лечения сахарного диабета), интерферона (противовирусного препарата), соматотропина (гормона роста).
С помощью генной инженерии созданы дрожжевые клетки, продуцирующие человеческий инсулин. Биосинтетический метод производства человеческого инсулина с помощью дрожжевых клеток широко используется в фармацевтическом Производстве (в Дании, Югославии, США, Германии и других странах).
В настоящее Время ученые разных стран работают над получением с помощью генной инженерии ряда других необходимых биологически активных веществ, вакцины против гепатита В, активатора профибринолизина (противосвертывающий препарат), нитерлейкина-2 (иммуномодулятор) и др. В клетки животных чужеродные гены вводят в виде отдельных молекул ДНК или в составе векторов-вирусов, способных вносить в геном клетки чужую ДНК
Обычно применяют два метода:
1) ДНК добавляют в среду инкубации клеток;
2) производят микроинъекции ДНК непосредственно в ядро (что более эффективно).
Первоочередными задачами генной инженерии у человека являются создание банков генов человека для их изучения и поиск путей генотерании, то есть замены мутантных генов нормальными аллелями.
Клеточная инженерия - это метод конструирования клеток нового типа на основе их культивирования, гибридизации или реконструкции. При гибридизации искусственно объединяются целые клетки (иногда далеких видов) с образованием гибридной клетки.
Клеточная реконструкция - это создание жизнеспособной клетки из отдельных фрагментов разных клеток (ядра, цитоплазмы, хромосом и др.). Изучение гибридных клеток позволяет решать многие проблемы биологии и медицины. Так, например, биотехнология использует гибридомы. Гибридома - это Клеточный гибрид, получаемый слиянием нормального лимфоцита и опухолевой клетки.
Биотехнология - это производство продуктов и материалов, необходимых для человека, с помощью биологических объектов.
Термин «биотехнология» получил распространение в середине 70-х годов ХХ в., хотя отдельные отрасли биотехнологии известны давно и основаны на применении различных микроорганизмов: хлебопечение, виноделие, пивоварение, сыроварение. Достижения генетики создали большие дополнительные возможности для развития биотехнологии.
В середине ХХ. в., используя индуцированный мутагенез, были получены антибиотики (пенициллин, стрептомицин, эритромицин и др.) - с помощью микробов; фермент амилаза - с помощью сенной палочки; аминокислоты - с помощью кишечной палочки; молочная кислота '- с помощью Молочнокислых бактерий; лимонная кислота - с помощью аспергилловой плесени; витамины группы В - с помощью дрожжей.
В последние десятилетия в результате успехов, достигнутых генной инженерией, происходит скачок в биотехнологии - развивается микробиологическая промышленность (микробиологическая индустрия), которая позволяет в промышленных условиях с помощью кишечной палочки или дрожжей получать человеческий инсулин, интерферон, соматотропин и другие вещества.
4. Достижения генетики в диагностике и профилактике заболеваний
В настоящее время проводится массовый скрининг новорожденных в роддомах для выявления фенилкетонурии и врожденного гипотиреоза. Данные исследования позволяют поставить диагноз в ранние сроки и своевременно назначить эффективное лечение.
Больших успехов в последнее десятилетие достигла пренатальная диагностика наследственных заболеваний и врожденных пороков развития. Широкое распространение в медицинской практике получили следующие методы: ультразвуковое исследование, амниоцентез, биопсия хориона, кордоцентез, определение альфа-фетопротеина и хориогонина, ДНК- диагностика.
Огромный вклад в диагностику хромосомных болезней внесли генетики, внедрив в практику медицины метод дифференциальной окраски хромосом. С помощью этого метода можно определить количественные и структурные перестройки хромосом, которые невозможно выявить при рутинной окраске, и точно поставить диагноз.
Большое теоретическое и практическое значение имеет изучение групп сцепления у человека и построение карт хромосом. В настоящее время у человека относительно изучены все 24 группы сцепления и продолжается установление новых локусов генов.
В последнее время в практическую медицину внедрены достижения клеточной инженерии. С помощью гибридом получают моноклональные антитела, которые широко используются в диагностике заболеваний.
Наиболее распространенным и эффективным методом профилактики наследственных болезней и врожденных пороков развития является медико-генетическое консультирование, направленное на предупреждение появления в семье больных детей. Врач-генетик рассчитывает риск рождения ребенка с тяжелой наследственной патологией и при высоком риске, при отсутствии методов пренатальной диагностики дальнейшее деторождение в данной семье не рекомендуется.
С целью предупреждения рождения детей с наследственно детерминированными болезнями необходимо объяснять вред близкородственных браков молодым людям, планирующим создание семьи.
Беременным женщинам в возрасте старше 35 лет необходимо обследование у врача-генетика для исключения у плода хромосомной патологии.
Таким образом, применение достижений генетики в практической медицине способствует предупреждению рождения детей с наследственными заболеваниями и врожденными пороками развития, ранней диагностике и лечению больных
Список используемой литературы
1. Медицинская генетика / Под ред. Бочкова Н.П. - М.: Мастерство, 2001
2. Ярыгин В.Н., Волков И.Н. и др. Биология. - М.: Владос, 2001
З. Биология / Под ред. Чебышева. Н.В. - М.: ГОУ ВУНМЦ,2005.
4. Орехова. В.А., Лажковская Т.А., Шейбак М.П. Медицинская генетика. - Минск: Высшая школа, 1999
5. Пособие по биологии для довузовского обучения иностранных учащихся / Под ред. Чернышова В.Н., Елизаровой Л.Ю., Шведовой Л.П. - М.: ГОУ ВУНМЦ МЗ РФ, 2004
6. Врожденные пороки развития // Серия учебной литературы «Образование медсестер», модуль 10. - М.: Гэотар-мед, 2002
superbotanik.net
Главная » Рефераты » Текст работы «История развития, основные достижения и проблемы медицинской генетики - Медицина»
2
РЕФЕРАТ
на тему:
«История развития, основные достижения и проблемы медицинской генетики»
Оглавление
1. История развития генетической науки
2. Этапы развития медицинской генетики
3. Генная и клеточная инженерия. Биотехнология
4. Достижения генетики в диагностике и профилактике заболеваний
1. История развития генетической науки
Вᴨȇрвые представления о ᴨȇредаче патологических наследственных признаков отражены в Талмуде (собрание догматических, религиозно-этических и правовых положений иудаизма, сложившихся в IV в. до н.э.), в котором указана опасность обрезания крайней плоти у новорожденных мальчиков, старшие братья котоҏыҳ или дяди по материнской линии страдают кровотечениями.
В ХVIII в. описано наследование доминантного (полидактилия многопалость) и рецессивного (альбинизм у негров) признаков. В начале XIX в. несколько авторов одновременно описали наследование гемофилии.
Особого внимания заслуживает книга лондонского врача Адамса, вышедшая в 1814 г. под названием «Трактат. О предполагаемых наследственных свойствах болезней, основанных на клиническом наблюдении». Через год она была ᴨȇреиздана под названием «Философский трактат о наследственных свойствах человеческой расы». Это был ᴨȇрвый справочник для генетического консультирования. В ней сформулировано несколько принципов медицинской генетики:
- браки между родственниками повышают частоту семейных болезней;
- не все врожденные болезни являются наследственными, часть из них связана с внутриутробным поражением плода (например, за счет сифилиса).
А.Г. Мотульски (1959) справедливо назвал Адамса «забытым основателем медицинской генетики».
В середине XIX в. в России над проблемами наследственных болезней работал В.М. Флоринский. Он изложил свои взгляды по усовершенствованию человеческого рода. Однако ряд предположений был противоречив и неверен. В то же время В.М. Флоринский поднял и осветил некоторые вопросы медицинской генетики. В своих трудах он правильно оценил значение среды для формирования наследственных признаков, подчеркнул вред родственных браков. Показал наследственный характер многих патологических признаков (глухонемота, альбинизм). Однако книга не нашла отклика среди медиков и биологов того времени, так как ученые еще не были подготовлены к Восприятию этих идей.
В последней четверти XIX в. самый значительный вклад в становление генетики человека внес английский биолог Ф. Гальтон (двоюродный брат Ч. Дарвина). Он ᴨȇрвым поставил вопрос о наследственности человека как предмете для изучения, обосновал применение генеалогического, близнецового и статистического методов для ее изучения и заложил основы для будущего развития генетики человека. Принципиальная ошибка Ф. Гальтона заключается в том, что во всех евгенических мероприятиях он рекомендовал не столько избавиться от патологических генов человека, сколько повысить количество «хороших» генов в человеческих популяциях путем предоставления преимущественных условий для размножения более одаренных, гениальных людей.
Существенный вклад в изучение генетики человека внес выдающийся английский клиницист. А Гаррод, хорошо знавший биологию и химию. Он ᴨȇрвым обнаружил взаимосвязь между генами и ферментами и, применив эти знания к изучению патологических признаков, открыл врожденные нарушения обмена веществ.
Работы Адамса и других исследователей того времени не привлекли внимания широкого круга сᴨȇциалистов потому, что наследственность тогда в основном изучалась на растениях. Наблюдения над человеком не учитывались. Между тем, если бы результаты исследований по генетике человека были известны Г. Менделю и другим ученым, изучавшим наследование на ботаническом материале, то открытие ее законов генетики и их признание могли бы произойти гораздо раньше.
В 1865 г. чешский ученый Г. Мендель глубоко и последовательно с математическим описанием в опытах на горохе сформулировал законы доминирования для ᴨȇрвого поколения гибридов, расщепления и комбинирования наследственных признаков в потомстве гибридов. Этот важнейший вывод доказал существование наследственных факторов, детерминирующих развитие определенных признаков. Работа Г. Менделя оставалась непонятой 35 лет.
В 1900 г. три ботаника независимо друг от друга, не зная работы Г. Менделя, на разных объектах повторили его открытие: Де Фриз из Голландии - в опытах с энтерой, маком и дурманом, Корренс из Германии - с кукурузой, Чермак из Австрии - с горохом. В связи с этим 1900 г. считается годом рождения генетики. С него начался ᴨȇриод изучения наследственности, отличительной чертой которого стал предложенный ранее Г. Менделем гибридологический метод, анализ наследования отдельных признаков родителей в потомстве.
В 1905 г. В. Бэтсон предложил термин «генетика», а в 1909 г. В. Иогансен предложил термин «ген» (от греческого genes - рождающий, рожденный) для обозначения наследственных факторов. Совокупность всех генов у одной особи ученый назвал генотипом, совокупность признаков организма - фенотипом.
В 1908 г. Г. Харди и В. Вайнберг показали, что менделевские законы объясняют процессы распределения генов в популяциях (от лат. populus-население, народ). Ученые сформулировали закон, который описывает условия генетической стабильности популяции в России в 1919 г. Ю.А. Филипченко организовал ᴨȇрвую кафедру генетики в Ленинградском университете. В это время работал молодой Н.И. Вавилов, сформулировавший один из генетических законов - закон гомологических рядов наследственной изменчивости.
Н.К. Кольцов, Ю.А. Филипченко и некоторые другие ученые в рамках евгенической программы проводили работы по генетике одаренности, изучая родословные выдающихся личностей. В этих исследованиях были допущены некоторые методические ошибки, Однако по сравнению с генетическими исследованиями в других, странах в ᴨȇриод расцвета евгеники подходы наших ученых были во многом верными.
Так, Н.К. Кольцов и Ю.А. Филипченко правильно поставили вопрос о значении социальной среды в реализации индивидуальных способностей. Они полностью отвергли насильственный путь улучшения породы человека. В ᴨȇриод проведения евгенических исследований в СССР были собраны интересные родословные выдающихся личностей (А.С. Пушкина, Л.Н. Толстого, А.М. Горького, Ф.И. Шаляпина и др.).
Конец 20-х - начало 30-х годов характеризуются довольно большими усᴨȇхами в развитии генетики. К этому времени стала общепризнанной хромосомная теория наследственности. Т. Морган и его ученики эксᴨȇриментально доказали, что гены расположены в хромосомах в линейном порядке и образуют группы сцепления.
Теоретическая и эксᴨȇриментальная работы С.С. Четверикова (1926, 1929) положили начало современной генетике популяций. Большой вклад в изучение этого раздела внесли труды Р. Фишера (1931), С. Райта (1932), Н.П. Дубинина и Д.Д. Ромашова (1932), Дж.Е. Холдейна (1935) и др.
В ряде стран начала. развиваться медицинская генетика. В нашей стране особого упоминания заслуживает Медико-генетический институт, который функционировал с 1932 по 1937 т. При нем был Организован центр близнецовых исследований, в котором широко изучались количественные признаки у человека и болезни с наследственным предрасположением (сахарный диабет, гиᴨȇртоническая Болезнь, язвенная болезнь и др.). Правильное применение разных методов исследования (клинико-генеалогического, близнецового, цитогенетического, популяционно-статистического) позволило коллективу занять ᴨȇредовые рубежи генетики.
В 20-30-х годах работал талантливый клиницист и генетик С.Н. Давиденков (1880-1961), который внес свой вклад в изучение наследственных болезней, а также ᴨȇрвым в нашей стране начал проводить медико-генетическое консультирование и разрабатывать методику этого вида медицинской помощи.
К концу 30-х - началу 50-х годов интерес к генетике человека снизился. Возобновились исследования лишь в начале 60-х годов.
С 1959 по 1962 г. количество публикаций, конференций, симпозиумов по генетике человека быстро возросло. Стало ясно, что наследственные болезни по своей природе гетерогенны, различны не только с клинической, но и с генетической точки зрения. Один и тот же фенотип болезни может быть обусловлен мутационным изменением различных белков (генокопия).
После того как было установлено, что ДНК является носителем наследственной информации, ученые направили усилия на изучение молекулярной природы и генетической значимости ее отдельных компонентов.
Исследование ДНК проводилось многими учеными. Весь накопленный комплекс биологических и физико-химических знаний привел к тому, что в 1953 г. Д. Уотсон и Ф. Крик открыли двухцепочечную спиральную (пространственную) структуру молекулы ДНК Затем бурно начала развиваться молекулярная и биохимическая генетика человека, а также иммунопгенетика.
Развитие цитогенетики человека является ярким примером значения фундаментальных исследований для практического здравоохранения. Так, в 1956 г. А. Леван и Дж. Тио установили, что у человека хромосомный набор состоит из 46 хромосом, а через три года были открыты хромосомные болезни. Очередным ᴨȇреломным моментом в цитогенетике человека была разработка методов дифференциальной окраски хромосом.
Следующим шагом в развитии современной генетики явилось картирование (определение места положения) генов в хромосомах человека. Усᴨȇхи цитогенетики, генетики соматических клеток обесᴨȇчили прогресс в изучении групп сцепления (групп генов, наследующихся совместно). В настоящее время у человека известно 24 группы сцепления. Работы по изучению сцепления генов дают новые практические возможности в диагностике наследственных болезней и медико-генетическом консультировании.
2. Этапы развития медицинской генетики
Итак, в истории медицинской генетики можно выделить несколько основных этапов:
1) открытие законов Г. Менделя и изучение наследственности на уровне целостного организма;
2) изучение генетики на хромосомном уровне и открытие сцепленного наследования Т. Морганом и его учениками;
3) начало развитию современной генетики популяции дали теоретические и эксᴨȇриментальные работы С.С. Четверикова;
4) развитие молекулярной генетики началось с построения пространственной структуры молекул ДНК Д. Уотсоном и Ф. Криком.
В настоящее время наследственность изучается на всех уровнях: молекулярном, клеточном, организменном и популяционном.
3. Генная и клеточная инженерия. Биотехнология
Для лечения многих болезней необходимы различные биологически активные вещества. При выделении их из тканей человека возникает опасность загрязнения полученного материала различными вирусами (гепатита В, иммунодефицита человека и др.). Кроме того, эти вещества производятся в небольших количествах и являются дорогостоящими. Биологически активные вещества животного происхождения низкоэффективны из-за несовместимости с иммунной системой больного человека. Только развитие новой отрасли - генной инженерии помогло обесᴨȇчить получение чистых биологически активных веществ в больших количествах по более низкой цене.
Генная инженерия - это создание гибридных, рекомбинантных молекул ДНК, а стало быть, и организмов с новыми признаками. Для этого необходимо выделить ген из какого-либо организма или искусственно синтезировать его, клонировать (размножить) и ᴨȇренести в другой организм.
Инструментами генной инженерии являются ферменты: рестриктазы
(разрезающие молекулу ДНК) и лигазы (сшивающие ее). В качестве векторов-ᴨȇреносчиков используются вирусы.
С помощью генной инженерии созданы штаммы кишечных палочек, в которые встроены гены человеческого инсулина (необходимого для лечения сахарного диабета), интерферона (противовирусного препарата), соматотропина (гормона роста).
С помощью генной инженерии созданы дрожжевые клетки, продуцирующие человеческий инсулин. Биосинтетический метод производства человеческого инсулина с помощью дрожжевых клеток широко используется в фармацевтическом Производстве (в Дании, Югославии, США, Германии и других странах).
В настоящее Время ученые разных стран работают над получением с помощью генной инженерии ряда других необходимых биологически активных веществ, вакцины против гепатита В, активатора профибринолизина (противосвертывающий препарат), нитерлейкина-2 (иммуномодулятор) и др. В клетки животных чужеродные гены вводят в виде отдельных молекул ДНК или в составе векторов-вирусов, способных вносить в геном клетки чужую ДНК
Обычно применяют два метода:
1) ДНК добавляют в среду инкубации клеток;
2) производят микроинъекции ДНК непосредственно в ядро (что более эффективно).
Первоочередными задачами генной инженерии у человека являются создание банков генов человека для их изучения и поиск путей генотерании, то есть замены мутантных генов нормальными аллелями.
Клеточная инженерия - это метод конструирования клеток нового типа на основе их культивирования, гибридизации или реконструкции. При гибридизации искусственно объединяются целые клетки (иногда далеких видов) с образованием гибридной клетки.
Клеточная реконструкция - это создание жизнеспособной клетки из отдельных фрагментов разных клеток (ядра, цитоплазмы, хромосом и др.). Изучение гибридных клеток позволяет решать многие проблемы биологии и медицины. Так, например, биотехнология использует гибридомы. Гибридома - это Клеточный гибрид, получаемый слиянием нормального лимфоцита и опухолевой клетки.
Биотехнология - это производство продуктов и материалов, необходимых для человека, с помощью биологических объектов.
Термин «биотехнология» получил распространение в середине 70-х годов ХХ в., хотя отдельные отрасли биотехнологии известны давно и основаны на применении различных микроорганизмов: хлебоᴨȇчение, виноделие, пивоварение, сыроварение. Достижения генетики создали большие дополнительные возможности для развития биотехнологии.
В середине ХХ. в., используя индуцированный мутагенез, были получены антибиотики (ᴨȇнициллин, стрептомицин, эритромицин и др.) - с помощью микробов; фермент амилаза - с помощью сенной палочки; аминокислоты - с помощью кишечной палочки; молочная кислота '- с помощью Молочнокислых бактерий; лимонная кислота - с помощью асᴨȇргилловой плесени; витамины группы В - с помощью дрожжей.
В последние десятилетия в результате усᴨȇхов, достигнутых генной инженерией, происходит скачок в биотехнологии - развивается микробиологическая промышленность (микробиологическая индустрия), которая позволяет в промышленных условиях с помощью кишечной палочки или дрожжей получать человеческий инсулин, интерферон, соматотропин и другие вещества.
4. Достижения генетики в диагностике и профилактике заболеваний
В настоящее время проводится массовый скрининг новорожденных в роддомах для выявления фенилкетонурии и врожденного гипотиреоза. Данные исследования позволяют поставить диагноз в ранние сроки и своевременно назначить эффективное лечение.
Больших усᴨȇхов в последнее десятилетие достигла пренатальная диагностика наследственных заболеваний и врожденных пороков развития. Широкое распространение в медицинской практике получили следующие методы: ультразвуковое исследование, амниоцентез, биопсия хориона, кордоцентез, определение альфа-фетопротеина и хориогонина, ДНК- диагностика.
Огромный вклад в диагностику хромосомных болезней внесли генетики, внедрив в практику медицины метод дифференциальной окраски хромосом. С помощью этого метода можно определить количественные и структурные ᴨȇрестройки хромосом, которые невозможно выявить при рутинной окраске, и точно поставить диагноз.
Большое теоретическое и практическое значение имеет изучение групп сцепления у человека и построение карт хромосом. В настоящее время у человека относительно изучены все 24 группы сцепления и продолжается установление новых локусов генов.
В последнее время в практическую медицину внедрены достижения клеточной инженерии. С помощью гибридом получают моноклональные антитела, которые широко используются в диагностике заболеваний.
Наиболее распространенным и эффективным методом профилактики наследственных болезней и врожденных пороков развития является медико-генетическое консультирование, направленное на предупреждение появления в семье больных детей. Врач-генетик рассчитывает риск рождения ребенка с тяжелой наследственной патологией и при высоком риске, при отсутствии методов пренатальной диагностики дальнейшее деторождение в данной семье не рекомендуется.
С целью предупреждения рождения детей с наследственно детерминированными болезнями необходимо объяснять вред близкородственных браков молодым людям, планирующим создание семьи.
Беременным женщинам в возрасте старше 35 лет необходимо обследование у врача-генетика для исключения у плода хромосомной патологии.
Итак, применение достижений генетики в практической медицине способствует предупреждению рождения детей с наследственными заболеваниями и врожденными пороками развития, ранней диагностике и лечению больных
Список используемой литературы
1. Медицинская генетика / Под ред. Бочкова Н.П. - М.: Мастерство, 2001
2. Ярыгин В.Н., Волков И.Н. и др. Биология. - М.: Владос, 2001
З. Биология / Под ред. Чебышева. Н.В. - М.: ГОУ ВУНМЦ,2005.
4. Орехова. В.А., Лажковская Т.А., Шейбак М.П. Медицинская генетика. - Минск: Высшая школа, 1999
5. Пособие по биологии для довузовского обучения иностранных учащихся / Под ред. Чернышова В.Н., Елизаровой Л.Ю., Шведовой Л.П. - М.: ГОУ ВУНМЦ МЗ РФ, 2004
6. Врожденные пороки развития // Серия учебной литературы «Образование медсестер», модуль 10. - М.: Гэотар-мед, 2002
Перейти в список рефератов, курсовых, контрольных и дипломов по дисциплине Медицина
referatwork.ru
Генетика как наука о наследственности
Генетика (от греч. genesis- происхождение), наука о наследственности и изменчивости живых организмов и методах управления ими. Генетика по праву может считаться одной из самых важных областей биологии. На протяжении тысячелетий человек пользовался генетическими методами для улучшения домашних животных и возделываемых растений, не имея представления о механизмах, лежащих в основе этих методов. Судя по разнообразным археологическим данным, уже 6000 лет назад люди понимали, что некоторые физические признаки могут передаваться от одного поколения другому. Отбирая определенные организмы из природных популяций и скрещивая их между собой, человек создавал улучшенные сорта растений и породы животных, обладавшие нужными ему свойствами.
Однако лишь в начале XX в. ученые стали осознавать в полной мере важность законов наследственности и ее механизмов. Хотя успехи микроскопии позволили установить, что наследственные признаки передаются из поколения в поколение через сперматозоиды и яйцеклетки, оставалось неясным, каким образом мельчайшие частицы протоплазмы могут нести в себе «задатки» того огромного множества признаков, из которых слагается каждый отдельный организм.
Первый действительно научный шаг вперед в изучении наследственности был сделан австрийским монахом Грегором Менделем, который в 1866 г. опубликовал статью, заложившую основы современной генетики. Мендель показал, что наследственные задатки не смешиваются, а передаются от родителей потомкам в виде дискретных (обособленных) единиц. Эти единицы, представленные у особей парами, остаются дискретными и передаются последующим поколениям в мужских и женских гаметах, каждая из которых содержит по одной единице из каждой пары. В 1909 г. датский ботаник Иогансен назвал эти единицы «гедам», а в 1912 г. американский генетик Морган показал, что они находятся в хромосомах.
Термин «Генетика» предложил в 1906 году У. Бэтсон.
С тех пор генетика достигла больших успехов в объяснении природы наследственности и на уровне организма, и на уровне гена. Роль генов в развитии организма огромна. Гены характеризуют все признаки будущего организма, такие, как цвет глаз и кожи, размеры, вес и многое другое. Гены являются носителями наследственной информации, на основе которой развивается организм.
В зависимости от объекта исследования выделяют генетику растений, генетику животных, генетику микроорганизмов, генетику человека и т. п., а в зависимости от используемых методов других дисциплин – биохимическую генетику, молекулярную генетику, экологическую генетику, и др.
Генетика вносит огромный вклад в развитие теории эволюций (эволюционная генетика, генетика популяций). Идеи методы генетики находят применение во всех областях человеческой деятельности, связанной с живыми организмами. Они имеют важное значение для решения проблем медицины, сельского хозяйства, микробиологической промышленности. Новейшие достижения генетики связанны с развитием генетической инженерии.
В современном обществе генетические вопросы широко обсуждаются в разных аудиториях и с разных точек зрения, в том числе этической, очевидно, по двум причинам.
Во-первых, генетика затрагивает самые первичные свойства живой природы, как бы ключевые позиции в жизненных проявлениях. Поэтому прогресс медицины и биологии, а также все ожидания от него часто фокусируются на генетику. Во многом это фокусирование оправдано.
Во-вторых, в последние десятилетия генетика так бурно развивается, что порождает и научные, и околонаучные многообещающие прогнозы. Это особенно касается генетики человека, прогресс которой ставит этические проблемы острее, чем в других областях медико-биологической науки.
Необходимость осмысления этических аспектов использования новых технологий возникала всегда.
Отличие современного периода в том, что скорость реализации идеи или научной разработки в результат резко повысилась.
В генетике человека четко прослеживается непосредственная связь научных исследований с этическими вопросами, а также зависимость научных поисков от этического смысла их конечных результатов. Генетика шагнула настолько вперед, что человек находится на пороге такой власти, которая позволяет ему определять свою биологическую судьбу. Именно поэтому использование всех потенциальных возможностей медицинской генетики реально только при строгом соблюдении этических норм.
Генетика человека, быстро развиваясь в последние десятилетия, дала ответы на многие из давно интересовавших людей вопросы: от чего зависит пол ребенка? Почему дети похожи на родителей? Какие признаки и заболевания наследуются, а какие – нет, почему люди так не похожи друг на друга, почему вредны близкородственные браки?
Интерес к генетике человека обусловлен несколькими причинами. Во-первых, это естественное стремление человека познать самого себя. Во-вторых, после того как были побеждены многие инфекционные болезни – чума, холера, оспа и др., – увеличилась относительная доля наследственных болезней. В-третьих, после того как были поняты природа мутаций и их значение в наследственности, стало ясно, что мутации могут быть вызваны факторами внешней среды, на которые ранее не обращали должного внимания. Началось интенсивное изучение воздействия на наследственность излучений и химических веществ. С каждым годом в быту, сельском хозяйстве, пищевой, косметической, фармакологической промышленности и других областях деятельности применяется все больше химических соединений, среди которых используется немало мутагенов.
В связи с этим можно выделить следующие основные проблемы генетики.
Наследственные болезни и их причины.
Наследственные болезни могут быть вызваны нарушениями в отдельных генах, хромосомах или хромосомных наборах. Впервые связь между аномальным набором хромосом и резкими отклонениями от нормального развития была обнаружена в случае синдрома Дауна.
Помимо хромосомных нарушений, наследственные болезни могут быть обусловлены изменениями генетической информации непосредственно в генах.
Эффективных средств лечения наследственных болезней пока не существует. Однако существуют методы лечения, облегчающие состояние больных и улучшающие их самочувствие. Они основаны главным образом на компенсации дефектов метаболизма, обусловленных нарушениями в геноме.
Медико-генетические лаборатории. Знание генетики человека позволяет определять вероятность рождения детей, страдающих наследственными болезнями, в случаях, когда один или оба супруга больны или оба родителя здоровы, но наследственные заболевания встречались у их предков. В ряде случаев возможно прогнозирование рождения здорового второго ребенка, если первый был болен. Такое прогнозирование осуществляется в медико-генетических лабораториях. Широкое использование медико-генетических консультаций избавит многие семьи от несчастья иметь больных детей.
Наследуются ли способности? Ученые считают, что в каждом человеке есть зерно таланта. Талант развивается трудом. Генетически человек по своим возможностям богаче, но не реализует их полностью в своей жизни. До сих пор еще нет методов выявления истинных способностей человека в процессе его детского и юношеского воспитания, а потому часто и не предоставляются соответствующие условия для их развития.
Действует ли естественный отбор в человеческом обществе? История человечества – это изменение генетической структуры популяций вида Homo sapiens под воздействием биологических и социальных факторов. Войны, эпидемии изменяли генофонд человечества. Естественный отбор за последние 2 тыс. лет не ослабел, а только изменился: на него наслоился отбор социальный.
Генная инженерия использует важнейшие открытия молекулярной генетики для разработки новых методов исследования, получения новых генетических данных, а также в практической деятельности, в частности в медицине.
Ранее вакцины изготовляли только из убитых или ослабленных бактерий или вирусов, способных вызывать у человека выработку иммунитета за счет образования специфических белков-антител. Такие вакцины приводят к выработке стойкого иммунитета, но у них есть и недостатки.
Безопаснее вакцинировать чистыми белками оболочки вирусов – они не могут размножаться, т.к. у них нет нуклеиновых кислот, но вызывают выработку антител. Получить их можно методами генной инженерии. Уже создана такая вакцина против инфекционного гепатита (болезни Боткина) – болезни опасной и трудноизлечимой. Ведутся работы по созданию чистых вакцин против гриппа, сибирской язвы и других болезней.
Коррекция пола. Операции по коррекции пола в нашей стране начали делать около 30 лет назад строго по медицинским показаниям.
Пересадка органов. Пересадка органов от доноров – очень сложная операция, за которой следует не менее сложный период приживления трансплантата. Очень часто трансплантат отторгается и пациент погибает. Ученые надеются, что эти проблемы можно будет решить с помощью клонирования.
Клонирование – метод генной инженерии, при котором потомки получаются из соматической клетки предка и поэтому имеют абсолютно такой же геном.
Клонирование животных позволяет решить многие проблемы медицины и молекулярной биологии, но вместе с тем порождает множество социальных проблем.
Ученые видят перспективу воспроизведения отдельных тканей или органов тяжело больных людей для последующей трансплантации – в этом случае не будет проблем с отторжением трансплантата. Клонирование можно использовать и для получения новых лекарств, особенно получаемых из тканей и органов животных или человека.
Однако, несмотря на заманчивые перспективы, вызывает беспокойство этическая сторона клонирования.
Уродства. Развитие нового живого существа происходит в соответствии с генетическим кодом, записанным в ДНК, которая содержится в ядре каждой клетки организма. Иногда под воздействием факторов среды – радиоактивных, ультрафиолетовых лучей, химических веществ – происходит нарушение генетического кода, возникают мутации, отступления от нормы.
Генетика и криминалистика. В судебной практике известны случаи установления родства, когда дети были перепутаны в роддоме. Иногда это касалось детей, которые росли в чужих семьях не один год. Для установления родства используют методы биологической экспертизы, которую проводят, когда ребенку исполнится 1 год и стабилизируется система крови. Разработан новый метод – генная дактилоскопия, который позволяет проводить анализ на хромосомном уровне. В этом случае возраст ребенка значения не имеет, а родство устанавливается со 100%-й гарантией.
Методы изучения генетики человека
Генеалогический метод состоит в изучении родословных на основе менделевских законов наследования и пoмoгaeт установить характер наследования признака (доминантный или рецессивный).
Близнецовый метод состоит в изучении различий между однояйцевыми близнецами. Этот мeтoд предоставлен самой природой. Он помогает выявить влияние условий среды на фенотип при одинаковых генотипах.
Популяционный метод. Популяционная генетика изучает генетические различия между отдельными группами людей (популяциями), исследует закономерности географического распространения генов.
Цитогенетический метод основан на изучении изменчивости и наследственности на уровне клетки и субклеточных структур. Установлена связь ряда тяжелых заболеваний с нарушениями в хромосомах.
Биохимический метод позволяет выявить многие наследственные болезни человека, связанные с нарушением обмена веществ. Известны аномалии углеводного, аминокислотного, липидного и других типов обмена веществ.
Роль воспроизводства в развитии живого.
Все этапы в жизни любого живого существа важны, в том числе и для человека. Все они сводятся к циклическому воспроизводству исходного живого организма. И начался это процесс циклического воспроизводства около 4 млрд. лет назад.
Рассмотрим его особенности. Из биохимии известно, что множество реакций органических молекул обратимы. Например, из аминокислот синтезируются молекулы белков, которые могут быть расщеплены на аминокислоты. То есть под влиянием каких-либо воздействий происходят как реакции синтеза, так и реакции расщепления. В живой природе любой организм проходит циклические стадии расщепления исходного организма и воспроизводства из отделившейся части новой копии исходного организма, которая затем снова дает зародыш для воспроизводства. Именно по этой причине взаимодействия в живой природе длятся непрерывно миллиарды лет. Свойство воспроизведения из расщепленных частей исходного организма его копии определяется тем, что новому организму передается комплекс молекул, который полностью контролирует процесс воссоздания копии.
Начался процесс с самовоспроизводства комплексов молекул. И путь этот достаточно хорошо зафиксирован в каждой живой клетке. Ученые уже давно обратили внимание на то, что в процессе эмбриогенеза повторяются этапы эволюции жизни. Но тогда следует обратить внимание и на то, что в самой глубине клетки, в ее ядре, находятся молекулы ДНК. Это самое лучшее доказательство того, что жизнь на Земле началась с воспроизводства комплексов молекул, которые обладали свойством сначала расщепить двойную спираль ДНК, а затем обеспечивали процесс воссоздания двойной спирали. Это и есть процесс циклического воссоздания живого объекта с помощью молекул, которые передавались в момент расщепления и которые полностью контролировали синтез копии исходного объекта. Поэтому определение жизни будет выглядеть так. Жизнь — это вид взаимодействия материи, основным отличием которого от известных видов взаимодейсвий является хранение, накопление и копирование объектов, которые вносят определенность в эти взаимодействия и переводят их из случайных в закономерные, при этом происходит циклическое воспроизводство живого объекта.
Любой живой организм имеет генетический набор молекул, который полностью определяет процесс воссоздания копии исходного объекта, то есть при наличии необходимых питательных веществ с вероятностью единица в результате взаимодействия комплекса молекул произойдет воссоздание копии живого организма. Но получение питательных веществ не гарантируется, происходят также вредные внешние воздействия и нарушения взаимодействий внутри клетки. Поэтому всегда суммарная вероятность воссоздания копии чуть меньше единицы.
Так вот, из двух организмов или живых объектов эффективнее будет копироваться тот организм, у которого больше суммарная вероятность осуществления всех необходимых взаимодействий. Это и есть закон эволюции живой природы. Другими словами, его можно сформулировать и так: чем больше необходимых для копирования объекта взаимодействий контролируются самим объектом, тем больше вероятность его циклического воспроизводства.
Очевидно при этом, что если суммарная вероятность осуществления всех взаимодействий увеличивается, то данный объект эволюционирует, если уменьшается, то инволюционирует, если не изменяется, то объект находится в стабильном состоянии.
Важнейшей функцией жизнедеятельности является функция самопроизводства. Иначе говоря, жизнедеятельность есть процесс удовлетворения потребности по воспроизводству человеком своего живого существа в рамках той системы, в которую он включен в качестве элемента, т.е. в условиях окружающей среды. Принимая в качестве исходного тезиса посылку, что жизнедеятельность имеет важнейшую потребность в воспроизводстве своего субъекта, как обладателя человеческого организма, следует отметить, что воспроизводство осуществляется двояким образом: во-первых, в процессе потребления вещества и энергии из окружающей среды, и во-вторых, в процессе биологического размножения, то есть рождения потомства. Первый вид реализации потребности в звене “внешняя среда-организм” можно выразить как воспроизводство “живого из неживого”. Человек существует на земле благодаря постоянному потреблению из среды необходимых веществ и энергии.
В.И. Вернадский в своем известном труде “Биосфера” представил процесс жизни на Земле как постоянный круговорот вещества и энергии, в который необходимо включен, наряду с другими существами и человек. Атомы и молекулы физических веществ, входящих в состав биосферы Земли, за время существования жизни миллионы раз включались в ее круговорот и выходили из него. Человеческий организм не является тождественным потребленному из внешней среды веществу и энергии, он суть преобразованный определенным образом предмет его жизнедеятельности. В результате реализации потребностей в веществах, энергии, информации из одного объекта природы возникает другой, обладающий свойствами и функциями вовсе не присущими исходному объекту. В этом проявляется особый, необходимо присущий человеку вид деятельности. Такую деятельность можно определить как потребность, направленную на вещественно-энергетическое воспроизводство. Содержанием реализации этой потребности является добывание средств жизни из окружающей среды. Добывание в широком смысле как собственно добывание, так и производство.
Данный вид воспроизводства не является единственно необходимым для существования жизни. В.И.Вернадский писал, что живой организм, “умирая, живя и разрушаясь отдает ей свои атомы и непрерывно берет их у нее, — но охваченное жизнью живое вещество всегда имеет начало в живом же”. Второй вид воспроизводства также необходимо присущ всему живому на Земле. Наукой с достаточной определенностью доказано, что непосредственное зарождение живого из неживой материи на данном этапе развития Земли невозможно.
После возникновения и распространения жизни на Земле ее возникновение в настоящее время на основе одной только неорганической материи оказывается уже невозможным. Все существующие на Земле живые системы возникают сейчас либо на основе живого, либо при посредстве живого. Таким образом, прежде, чем живой организм будет воспроизводить себя вещественно-энергетически, он должен быть воспроизведен биологически, то есть быть рожденным другим живым организмом. Воспроизводство живого живым есть, прежде всего, передача одним поколением другому генного материала, который детерминирует в потомстве явление определенной морфофизиологической структуры. Понятно, что генный материал не передается от поколения к поколению сам по себе, его передача также есть функция жизнедеятельности человека.
Литература
1. Артёмов А. Что такое ген. — Таганрог.: Изд-во “Красная страница”, 1989.
2. Биологический энциклопедический словарь. — М.: Сов. энциклопедия, 1989.
3. Вернадский В.И. Химическое строение биосферы Земли и ее окружения.- М.: Наука, 1965.
4. Гайсинович А. К. Зарождение и развитие генетики. — М., 1988.
5. Гершензон С. М. Основы современной генетики. — Киев, 1993.
6. Кибернштерн Ф. Гены и генетика. — М.: Изд-во Параграф, 1995.
7. Тулинов В.Ф. Концепции современного естествознания. -М.: ЮНИТИ, 2004.
www.ronl.ru