Постоянный ток. Постоянный ток реферат


Введение:

Термин постоянный ток не совсем корректен: в действительности для постоянного тока неизменным является прежде всего значение напряжения (измеряется в Вольтах), а не значение тока (измеряется в Амперах), хотя значение тока также может быть неизменным. Путаница возникла в результате того, что термин ток употребляется для описания электрических процессов вообще. Поэтому термин постоянный ток следует понимать как постоянное напряжение. Далее будем использовать термин именно в этом смысле.

Термин постоянный ток имеет несколько значений:

Применение: Постоянный ток широко используется в технике: подавляющее большинство электронных схем в качестве питания используют постоянный ток. Переменный ток используется преимущественно для более удобной передачи от генератора до потребителя. Иногда в некоторых устройствах постоянный ток преобразуют в переменный ток преобразователями (инверторами).

1.УСЛОВИЯ  СУЩЕСТВОВАНИЯ   ЭЛЕКТРИЧЕСКОГО ТОКА

Для возникновения и поддержания тока в какой-либо среде необходимо выполнение двух условий:

наличие в среде свободных электрических зарядов

создание в среде электрического поля.

В разных средах носителями электрического тока являются разные заряженные частицы.

Электрическое поле в среде необходимо для создания направленного движения свободных зарядов. Как известно, на заряд q в электрическом поле напряженностью E действует сила F = q* E, которая и заставляет свободные заряды двигаться в направлении электрического поля. Признаком существования в проводнике электрического поля является наличие не равной нулю разности потенциалов между любыми двумя точками проводника,

Однако, электрические силы не могут длительное время поддерживать электрический ток. Направленное движение электрических зарядов через некоторое время приводит к выравниванию потенциалов на концах проводника и, следовательно, к исчезновению в нем электрического поля.

Для поддержания тока в электрической цепи на заряды кроме кулоновских сил должны действовать силы неэлектрической природы (сторонние силы).

Устройство, создающее сторонние силы, поддерживающее разность потенциалов в цепи и преобразующее различные виды энергии в электрическую энергию, называется источником тока.

Для существования электрического тока в замкнутой цепи необходимо включение в нее источника тока.

Основные характеристики:

1. Сила тока - I, единица измерения - 1 А (Ампер).

Силой тока называется величина, равная заряду, протекающему через поперечное сечение проводника за единицу времени.

I = q/t .   (1)

Формула (1) справедлива для постоянного тока, при котором сила тока и его направление не изменяются со временем. Если сила тока и его направление изменяются со временем, то такой ток называется переменным.

Для переменного тока:

I = lim q/t , (*) t - 0

т.е. I = q', где q' - производная от заряда по времени.

2. Плотность тока - j, единица измерения - 1 А/м2.

Плотностью тока называется величина, равная силе тока, протека-ющего через единичное поперечное сечение проводника:

j = I/S .   (2)

3. Электродвижущая сила источника тока - э.д.с. (  ), единица измерения - 1 В (Вольт). Э.д.с.- физическая величина, равная работе, совершаемой сторонними силами при перемещении по электрической цепи единичного положительного заряда:

 = Аст./q . (3)

4. Сопротивление проводника - R, единица измерения - 1 Ом.

Под действием электрического поля в вакууме свободные заряды двигались бы ускоренно. В веществе они движутся в среднем равномерно, т.к. часть энергии отдают частицам вещества при столкновениях.

Теория утверждает, что энергия упорядоченного движения зарядов рассеивается на искажениях кристаллической решетки. Исходя из природы электрического сопротивления, следует, что

R = *l/S ,  (4)

где

l - длина проводника, S - площадь поперечного сечения,  - коэффициент пропорциональности, названный удельным сопротивлением материала.

Эта формула хорошо подтверждается на опыте.

Взаимодействие частиц проводника с движущимися в токе зарядами зависит от хаотического движения частиц, т.е. от температуры проводника. Известно, что

 = 0(1 + t) ,   (5)

R = R0(1 +t) .  (6).

Коэффициент  называется температурным коэффициентом сопротив-ления:

 = (R - R0)/R0*t .

Для химически чистых металлов  > 0 и равно 1/273 К-1. Для сплавов температурные коэффициенты имеют меньшее значение. Зависимость (t) для металлов линейная:

В 1911 году открыто явление сверхпроводимости, заключающееся в том, что при температуре, близкой к абсолютному нулю, сопротивление некоторых металлов падает скачком до нуля.

У некоторых веществ (например, у электролитов и полупроводников) удельное сопротивление с ростом температуры уменьшается, что объясняется ростом концентрации свободных зарядов.

Величина, обратная удельному сопротивлению, называется удельной электрической проводимостью 

  = 1/ . (7)

5. Напряжение - U , единица измерения - 1 В.

Напряжение - физическая величина, равная работе, совершаемой сторонними  и электрическими силами при перемещении единичного положительного заряда.

U = (Aст.+ Аэл.)/q .   (8)

Так как  Аст./q = , а  Аэл./q = , то

U =  + (

2. ЗАКОНЫ ПОСТОЯННОГО ТОКА:

Электрический ток. Сила тока. Закон Ома для участка цепи. Сопротивление проводников. Последовательное и параллельное соединение проводников. Электродвижущая сила. Закон Ома для полной цепи. Работа и мощность тока.

Всякое движение электрических зарядов называют электрическим током. В металлах могут свободно перемещаться электроны, в проводящих растворах - ионы, в газах могут существовать в подвижном состоянии и электроны, и ионы.

Условно за направление тока считают направление движения положительных частиц, поэтому в металлах это направление противоположно направлению движения электронов.

Плотность тока - величина заряда, проходящего в единицу времени через единицу поверхности, перпендикулярной к линиям тока. Эта величина обозначается j и рассчитывается следующим образом:

j=nev.

Здесь n - концентация заряженных частиц, e - заряд каждой из частиц, v - их скорость.

Сила тока i - величина заряда, проходящего в единицу времени через полное сечение проводника. Если за время dt через полное сечение проводника прошел заряд dq, то

i=(dq)/(dt).

По другому, сила тока находится интегрированием плотности тока по всей поверхности любого сечения проводника. Единица измерения силы тока - Ампер. Если состояние проводника (его температура и др.) стабильно, то между приложенным к его концам напряжением и возникающим при этом током существует однозначная связь. Она называется Закон Ома и записывается так:

I=U/R.

R - электрическое сопротивление проводника, зависящее от рода вещества и от его геометрических размеров. Единичным сопротивлением обладает проводник, в котором возникает ток 1 А при напряжении 1 В. Эта единица сопротивления называется Ом.

Закон Ома в дифференциальной форме:

j=E,

где j - плотность тока, Е - напряженность поля,  - проводимость. В этой записи закон Ома содержит величины, характеризующие состояние поля в одной и той же точке.

Различают последовательное и параллельное соединения проводников. При последовательном соединении ток, протекающий по всем участкам цепи, одинаков, а напряжение на концах цепи складывается как алгебраическая сумма напряжений на всех участках.

R=(Ri).

При параллельном соединении проводников постоянным остается напряжение, а ток складывается из суммы токов, протекающих по всем ветвям. В этом случае складываются величины, обратные сопротивлению:

1/R=(1/Ri).

Для получения постоянного тока на заряды в электрической цепи должны действовать силы, отличные от сил электростатического поля; их называют сторонними силами.

Если рассматривать полную электрическую цепь, необходимо включить в нее действие этих сторонних сил и внутренне сопротивление источника тока r. В этом случае закон Ома для полной цепи примет вид:

I=E/(R+r).

Е - электродвижущая сила (ЭДС) источника. Она измеряется в тех же единицах, что и напряжение. Величину (R+r) называют иногда полным сопротивлением цепи.

Сформулируем правила Киркгофа: Первое правило: алгебраическая сумма сил токов в участках цепи, сходящихся в одной точке разветвления, равна нулю.

Второе правило: для любого замкнутого контура сумма всех падений напряжения равна сумме всех ЭДС в этом контуре.

Мощность тока рассчитывается по формуле

P=UI=I2R=U2/R.

Закон Джоуля-Ленца. Работа электрического тока (тепловое действие тока) A=Q=UIt=I2Rt=U2t/R.

Электронная проводимость металлов. Сверхпроводимость. Электрический ток в растворах и расплавах электролитов. Закон электролиза. Электрический ток в газах. Самостоятельный и несамостоятельный разряды. Понятие о плазме. Ток в вакууме. Электронная эмиссия. Диод. Электронно-лучевая трубка.

Электрический ток в металлах есть движение электронов, ионы металла участия в переносе электрического заряда не принимают. Другими словами, в металлах есть электроны, способные перемещаться по металлу. Они получили название электронов проводимости. Положительные заряды в металле представляют собой ионы, образующие кристаллическую решетку. В отсутствии внешнего поля электроны в металле движутся хаотично, претерпевая соударения с ионами решетки. Под воздействием внешнего электрического поля электроны начинают упорядоченное движение, накладывающееся на их прежние хаотические флуктуации. В процессе упорядоченного движения электроны по-прежнему сталкиваются с ионами кристаллической решетки. Именно этим и обусловлено электрическое сопротивление.

В классической электронной теории металлов предполагается, что движение электронов подчиняется законам классической механики. Взаимодействием электронов между собой пренебрегают, взаимодействие электронов с ионами сводят только к соударениям. Можно сказать, что электроны проводимости рассматривают как электронный газ, подобный идеальному атомарному газу в молекулярной физике. Поскольку средняя кинетическая энергия на одну степень свободы для такого газа равна kT/2, а свободный электрон обладает тремя степенями свободы, то

mv2t/2=3kT/2,

где v2t - среднее значение квадрата скорости теплового движения. На каждый электрон действует сила, равная еЕ, в результате чего он приобретает ускорение еЕ/m. Скорость к концу свободного пробега равна

v=eEt/m,

где t - среднее время между соударениями.

Поскольку электрон движется равноускоренно, его средняя скорость равна половине максимальной:

vc=eEt/(2m).

Среднее время между соударениями есть отношение длины свободного пробега к средней скорости:

t=L/vt.

Поскольку обычно скорость упорядоченного движения много меньше тепловой скорости, то скоростью упорядоченного движения пренебрегли. Окончательно, имеем

vc=eEL/(2mvt).

Коэффициент пропорциональности между vc и Е называется подвижность электронов.

С помощью классической электронной теории газов могут быть объяснены многие закономерности - закон Ома, закон Джоуля-Ленца и другие явления, однако эта теория не может объяснить, например, явления сверхпроводимости: При определенной температуре удельное сопротивление для некоторых веществ скачком уменьшается практически до нуля. Это сопротивление настолько мало, что однажды возбужденный в сверхпроводнике электрический ток существует длительное время без источника тока. Несмотря на скачкообразное изменение сопротивления, другие характеристики сверхпроводника (теплопроводность, теплоемкость и др.) не меняются либо меняются мало.

Более точным методом, объясняющим такие явления в металлах, является подход с использованием квантовой статистики.

studfiles.net

Постоянный ток — реферат

Более точным методом, объясняющим  такие явления в металлах, является подход с использованием квантовой статистики.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Электрический ток в растворах и расплавах  электролитов.

Электрический ток может  выделять в некоторых проводниках  их химические составные части. Это  явление получило название электролиза. Согласно первому закону Фарадея для электролиза, масса вещества выделившаяся на каком-либо из электродов, пропорциональна величине заряда, прошедшего через электролит.

m=Kq,

где K - электрохимический  эквивалент.

Фарадей обратил внимание на то, что электрохимический эквивалент любого вещества всегда пропорционален атомному весу А и обратно пропорционален валентности Z этого вещества. Это второй закон Фарадея. Отношение A/Z называется химическим эквивалентом вещества. Оба закона можно выразить одной формулой:

m=Aq/(ZF),

где F=96500 кулонов - число  Фарадея.

При наличии электрического поля ион обретает такую скорость установившегося движения, при которой  сила трения и сила еЕ со стороны поля уравновешены. Отсюда получаем, что

v=bE.

Через b обозначена подвижность иона. Вообще говоря, подвижность анионов и катионов различна, поэтому вводят обозначения b+ b-. Число переноса катионов

pk= b+/(b++b-).

Соответственно, число  переноса анионов

pа= b-/(b++b-).

 

Электрический ток в газах.

В обычном состоянии  газы не проводят электричества. Однако под влиянием различных внешних  факторов (высокая температура, различные  излучения) газы становятся электропроводящими. Это происходит вследствие того, что от нейтральных атомов отделяются электроны и образуются проводящие частицы - положительные ионы и свободные электроны. Часть свободных электронов может быть захвачена нейтральными атомами и образуются отрицательные ионы. Этот процесс называется ионизацией. Ионизация атома (отрыв электрона) требует определенной энергии, величина которой зависит от строения атома и называется энергией ионизации.

Если ионизацию не поддерживать, например, бомбардируя  атомы электронами, ускоренными  во внешнем электрическом поле, то со временем происходит рекомбинация ионов - положительный и отрицательный ион в результате теплового движения сталкиваются и избыточный электрон переходит к положительному иону. В результате образуется два нейтральных атома. Рассмотрим принципиальную схему, изображенную на рисунке:

 

Пусть на отрицательный  электрод падают ультрафиолетовые лучи, обеспечивающие ионизацию газа. Если увеличивать напряжение между электродами (например, плавно уменьшая сопротивление r) то сила тока будет увеличиваться, пока не достигнет максимума (тока насыщения), при котором все свободные электроны достигают противоположного электрода.

Сила тока насыщения  зависит только от интенсивности  процесса ионизации (в нашем случае, от интенсивности ультрафиолетовых лучей). Если снять внешнюю ионизацию, разряд между электродами исчезнет. Такие разряды называются несамостоятельными. Если же продолжать уменьшать сопротивление (увеличивая тем самым напряжение) произойдет резкое (в сотни раз) увеличение силы тока, в газе появятся световые и тепловые эффекты. Если прекратить действие ионизатора, то разряд будет продолжаться. Это значит, что новые ионы для поддержания разряда образуются благодаря процессам в самом разряде. Такие разряды называют самостоятельными.

Дело в том, что с увеличением напряжения возрастает скорость и кинетическая энергия электрона, и он при столкновении с атомом сам способен произвести его ионизацию - высвободить еще один электрон. На следующем этапе два электрона образуют уже четыре и т.д. Происходит лавинообразное увеличение количества носителей. Это явление получило название электронной (или ионной) лавины, а напряжение, при котором это происходит - напряжением пробоя газового промежутка (напряжением зажигания газового разряда).

В зависимости от свойств и внешнего вида разрядов различают коронный, искровой, дуговой, тлеющий и другие разряды.

В различных формах газового разряда иногда образуется сильно ионизированный газ, в котором концентрация электронов приблизительно равна концентрации положительных ионов. Такая система получила название ионной плазмы.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ток в вакууме.

Как известно, в металлах имеются электроны проводимости, образующие "электронный газ" и участвующие в тепловом движении. Для того, чтобы свободный электрон мог выйти из металла, должна быть совершена определенная работа, различная для разных металлов и названная работой выхода.

Существование работы выхода показывает, что в поверхностном  слое металла существует электрическое  поле, значит, электрический потенциал при переходе через этот слой изменяется на некоторую величину, также специфичную для разных металлов. Эта поверхностная разность потенциалов связана с работой выхода соотношением:

A=ef.

Поскольку выйти из металла  могут только "самые быстрые" электроны, то можно записать условие выхода так:

mv2/2>ef.

В обычных условиях работа выхода в сотни раз больше энергии  теплового движения электронов, поэтому  подавляющее большинство их остается в металле. Но если сообщить электронам дополнительную энергию, можно наблюдать явление испускания электронов или электронной эмиссии. В зависимости от того, каким образом сообщена дополнительная энергия, различают термоэлектронную эмиссию, фотоэмиссию, вторичную электронную эмиссию и др.

Для наблюдения термоэлектронной эмиссии  используется принципиальная схема, содержащая вакуумный диод (см. рис.).

В такой цепи возникнет ток, только если катод раскалить до высокой температуры. Вольт-амперная характеристика диода показывает, что при нулевой разности потенциалов ток очень мал. В дальнейшем, при увеличении потенциала на аноде, увеличивается и ток, пока не достигнет некоторого постоянного значения - тока насыщения Is. Его значение увеличивается с увеличением температуры катода. Также с увеличением температуры растет и напряжение Us, при котором достигается ток насыщения.

По графику наглядно видно, что зависимость между  током и напряжением для диода  носит нелинейный характер, то есть диод не подчиняется закону Ома. Богуславский и Лэнгмюр независимо друг от друга показали, что зависимость тока диода от потенциала анода имеет вид:

I=CU3/2,

Где С зависит от формы  и размеров электродов.

Зависимость плотности  тока насыщения от температуры известна под названием формулы Ричардсона:

Js=CT1/2exp(-ef/kT),

где С - константа, различная  для разных металлов. Эта формула  выведена на основании классической электронной теории. Квантовая теория металлов дает следующее соотношение:

Js=АT2exp(-ef/kT).

Заметим, что это различие не существенно, так как зависимость  плотности тока от температуры определяется главным образом экспоненциальным множителем exp(-ef/kT).

 

 

 

 

 

 

3.ИСТОЧНИКИ ПОСТОЯННОГО ТОКА

Простейшим источником постоянного тока является химический источник (гальванический элемент или аккумулятор), поскольку полярность такого источника не может самопроизвольно измениться.

Для получения постоянного  тока используют также электрические машины - генераторы постоянного тока.

В электронной аппаратуре, питающейся от сети переменного тока, для получения пульсирующего тока используют выпрямитель. Далее для уменьшения пульсаций может быть использован сглаживающий фильтр и, при необходимости, стабилизатор напряжения.

Усилитель постоянного  тока (УПТ) — электронный усилитель, рабочий диапазон частот которого включает нулевую частоту (постоянный ток).

На верхнюю границу  частотного диапазона усилителя  никаких ограничений не накладывается, то есть она может находиться в  области очень высоких частот. Таким образом, термин УПТ можно применять к любому усилителю, способному работать на постоянном токе.

В подавляющем большинстве  случаев УПТ является усилителем не тока, как следует из названия, а напряжения. Путаница обусловлена тем, что термин ток употребляется для описания электрических процессов вообще.

Машины постоянного тока

Конструктивно машина постоянного тока состоит из неподвижного статора (индуктора) с полюсами и вращающегося ротора (якоря) с коллектором. Статор является источником магнитного поля и механическим остовом машины, якорь- часть машины, в обмотке которой индуцируется э. д. с.

 

На одном валу с  якорем жестко закрепляется коллектор, электрически соединенный с его  обмоткой. Коллектор - характерная деталь машины постоянного тока. Его медных пластин касаются неподвижные угольно-графитовые щетки, размещенные в щеткодержателях на траверсе и электрически соединенные с внешней цепью. Во избежание искрения щетки тщательно притираются к коллектору, а их умеренный нажим должен быть отрегулирован.

Принцип действия машин  постоянного тока основан на законе электромагнитной индукции и законе Ампера. Магнитное поле машины создается постоянным током (током возбуждения) в обмотке полюсов или постоянными магнитами в машинах малой мощности. Его силовые линии замыкаются через стальные станину, сердечники полюсов и сердечник якоря, дважды преодолевая на своем пути воздушный зазор между ними. Магнитная цепь четырехполюсной машины постоянного тока разветвленная, симметричная. Плоскость, проходящую через ось машины под углом а, при котором она перпендикулярна к силовым линиям, называют геометрической нейтралью (при а. = 0 и 772).

Существует два режима работы эл. двигателей

а: режим генератора  б: режим двигателя

В режиме генератора машина преобразует механическую энергию в электрическую: к обмотке возбуждения статора подводится постоянный ток возбуждения, а якорь вращается каким-либо первичным двигателем. При этом провода обмотки якоря пересекают магнитные силовые линии полюсов и в них индуцируются э. д. с. С помощью коллектора и щеток, которые являются механическим выпрямителем, эти переменные пульсирующие э. д. с. суммируются в постоянную по значению и направлению э. д. с. машины Е. Если к щеткам подключить приемник, то в нем установится постоянный ток I.

В режиме двигателя машина преобразует электрическую энергию в механическую: к якорю и к обмотке возбуждения машины одновременно подводится постоянный ток от источника. Взаимодействие магнитного поля полюсов статора с током обмотки якоря создает вращающий электромагнитный момент, который и приводит в движение якорь (ротор).

 

 

 

 

 

 

 

4.ГЕНЕРАТОРНЫЕ УСТАНОВКИ ПОСТОЯННОГО ТОКА

До 60-х годов основным источником электрической энергии на автомобилях являлись генераторы постоянного тока.

Схема электроснабжения автомобиля показана на рис. 4.1.

Генератор постоянного тока состоит из статора — неподвижного корпуса, вращающегося якоря с обмотками и коллектора со щеточным узлом. Вращающийся якорь, снабженный обмотками, пересекающими магнитное поле статора, индуцирует в обмотках ЭДС. В каждой секции обмотки якоря ЭДС меняется и по величине и по направлению в зависимости от ее положения относительно магнитного поля.

Рассмотрим принцип действия генератора постоянного тока, где подводимая механическая энергия преобразуется в электрическую энергию постоянного тока. Для этого воспользуемся упрощенной схемой генератора постоянного тока (рис. 4.2). В магнитном поле постоянного магнита вращается стальной сердечник, в продольных пазах которого расположен диаметральный виток abcd Начало d конец а этого витка присоединены к двум взаимно изолированным медным полукольцам. Образующим коллектор, который вращается вместе со стальным цилиндром. По коллектору скользят неподвижные контактные щетки А и В, от которых отходят провода к потребителю энергии R. Стальной сердечник с витком (обмоткой) и коллектором образует вращающуюся часть машины постоянного тока — якорь.

Рис. 4.1. Структурная схема системы электроснабжения автомобиля

 

 

 

 

 

 

 

 

Если с помощью какой-либо внешней силы вращать якорь, то стороны витка будут пересекать магнитное поле и в обмотке якоря будет возникать ЭДС:

e = 2Blu

где В — индукция; l — длина стороны витка; u — скорость перемещения пазовых сторон витка.

Рис. 4.2. Упрощенная схема генератора постоянного тока.

 

 

Так как длина и скорость перемещения пазовых сторон обмотки якоря неизменны, то е обмотки якоря прямо пропорциональна В, а форма графика ЭДС определяется законом распределения магнитной индукции S, размещенной в воздушном зазоре между поверхностью якоря и полюсом самого магнита. Так, например, магнитная индукция в точках зазора, лежащих на оси полюсов, имеет максимальные значения (рис. 4.3, а): под северным магнитным полюсом (N) — положительное значение и под южным магнитным полюсом (S) — отрицательное. В точках n и n’ лежащих на линии, проходящей через середину межполисного пространства, магнитная индукция равна нулю.

yaneuch.ru

Постоянный ток — реферат

Введение:

Термин постоянный ток не совсем корректен: в действительности для постоянного тока неизменным является прежде всего значение напряжения (измеряется в Вольтах), а не значение тока (измеряется в Амперах), хотя значение тока также может быть неизменным. Путаница возникла в результате того, что термин ток употребляется для описания электрических процессов вообще. Поэтому термин постоянный ток следует понимать как постоянное напряжение. Далее будем использовать термин именно в этом смысле.

Термин постоянный ток имеет несколько значений:

Применение: Постоянный ток широко используется в технике: подавляющее большинство электронных схем в качестве питания используют постоянный ток. Переменный ток используется преимущественно для более удобной передачи от генератора до потребителя. Иногда в некоторых устройствах постоянный ток преобразуют в переменный ток преобразователями (инверторами).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.УСЛОВИЯ  СУЩЕСТВОВАНИЯ   ЭЛЕКТРИЧЕСКОГО ТОКА

Для возникновения и  поддержания тока в какой-либо среде  необходимо выполнение двух условий:

наличие в среде свободных  электрических зарядов

создание в среде  электрического поля.

В разных средах носителями электрического тока являются разные заряженные частицы.

Электрическое поле в среде необходимо для создания направленного движения свободных зарядов. Как известно, на заряд q в электрическом поле напряженностью E действует сила F = q* E, которая и заставляет свободные заряды двигаться в направлении электрического поля. Признаком существования в проводнике электрического поля является наличие не равной нулю разности потенциалов между любыми двумя точками проводника,

Однако, электрические  силы не могут длительное время поддерживать электрический ток. Направленное движение электрических зарядов через  некоторое время приводит к выравниванию потенциалов на концах проводника и, следовательно, к исчезновению в нем электрического поля.

Для поддержания тока в электрической цепи на заряды кроме кулоновских сил должны действовать силы неэлектрической природы (сторонние силы).

Устройство, создающее  сторонние силы, поддерживающее разность потенциалов в цепи и преобразующее различные виды энергии в электрическую энергию, называется источником тока.

Для существования электрического тока в замкнутой цепи необходимо включение в нее источника тока.

Основные характеристики:

1. Сила тока - I, единица измерения - 1 А (Ампер).

Силой тока называется величина, равная заряду, протекающему через  поперечное сечение проводника за единицу  времени.

I = Dq/Dt .   (1)

Формула (1) справедлива  для постоянного тока, при котором сила тока и его направление не изменяются со временем. Если сила тока и его направление изменяются со временем, то такой ток называется переменным.

Для переменного тока:

I = lim Dq/Dt , (*) Dt - 0

т.е. I = q', где q' - производная  от заряда по времени.

2. Плотность тока - j, единица измерения - 1 А/м2.

Плотностью тока называется величина, равная силе тока, протека-ющего через единичное поперечное сечение проводника:

j = I/S .   (2)

3. Электродвижущая сила источника тока - э.д.с. ( e ), единица измерения - 1 В (Вольт). Э.д.с.- физическая величина, равная работе, совершаемой сторонними силами при перемещении по электрической цепи единичного положительного заряда:

e = Аст./q . (3)

4. Сопротивление проводника - R, единица измерения - 1 Ом.

Под действием электрического поля в вакууме свободные заряды двигались бы ускоренно. В веществе они движутся в среднем равномерно, т.к. часть энергии отдают частицам вещества при столкновениях.

Теория утверждает, что  энергия упорядоченного движения зарядов  рассеивается на искажениях кристаллической  решетки. Исходя из природы электрического сопротивления, следует, что

R = r*l/S ,  (4)

где

l - длина проводника, S - площадь поперечного сечения, r - коэффициент пропорциональности, названный удельным сопротивлением материала.

Эта формула хорошо подтверждается на опыте.

Взаимодействие частиц проводника с движущимися в токе зарядами зависит от хаотического движения частиц, т.е. от температуры проводника. Известно, что 

r = r0(1 + a t) ,   (5)

R = R0(1 + a t) .  (6).

Коэффициент a называется температурным коэффициентом сопротив-ления:

a = (R - R0)/R0*t .

Для химически чистых металлов a > 0 и равно 1/273 К-1. Для сплавов температурные коэффициенты имеют меньшее значение. Зависимость r(t) для металлов линейная:

В 1911 году открыто явление сверхпроводимости, заключающееся в том, что при температуре, близкой к абсолютному нулю, сопротивление некоторых металлов падает скачком до нуля.

У некоторых веществ (например, у электролитов и полупроводников) удельное сопротивление с ростом температуры уменьшается, что объясняется ростом концентрации свободных зарядов.

Величина, обратная удельному  сопротивлению, называется удельной электрической  проводимостью s 

s = 1/r . (7)

5. Напряжение - U , единица измерения - 1 В.

Напряжение - физическая величина, равная работе, совершаемой  сторонними  и электрическими силами при перемещении единичного положительного заряда.

U = (Aст.+ Аэл.)/q .   (8)

Так как  Аст./q = e, а  Аэл./q = f1-f2, то

U = e + (f1 - f2) . (9)

 

 

 

 

 

 

 

 

 

 

 

 

 

2. ЗАКОНЫ ПОСТОЯННОГО  ТОКА:

Электрический ток. Сила тока. Закон Ома для участка цепи. Сопротивление проводников. Последовательное и параллельное соединение проводников. Электродвижущая сила. Закон Ома для полной цепи. Работа и мощность тока.

Всякое движение электрических  зарядов называют электрическим током. В металлах могут свободно перемещаться электроны, в проводящих растворах - ионы, в газах могут существовать в подвижном состоянии и электроны, и ионы.

Условно за направление  тока считают направление движения положительных частиц, поэтому в  металлах это направление противоположно направлению движения электронов.

Плотность тока - величина заряда, проходящего в единицу времени через единицу поверхности, перпендикулярной к линиям тока. Эта величина обозначается j и рассчитывается следующим образом:

j=nev.

Здесь n - концентация заряженных частиц, e - заряд каждой из частиц, v - их скорость.

 

Сила тока i - величина заряда, проходящего в единицу времени через полное сечение проводника. Если за время dt через полное сечение проводника прошел заряд dq, то

i=(dq)/(dt).

По другому, сила тока находится интегрированием плотности  тока по всей поверхности любого сечения  проводника. Единица измерения силы тока - Ампер. Если состояние проводника (его температура и др.) стабильно, то между приложенным к его  концам напряжением и возникающим при этом током существует однозначная связь. Она называется Закон Ома и записывается так:

I=U/R.

R - электрическое сопротивление проводника, зависящее от рода вещества и от его геометрических размеров. Единичным сопротивлением обладает проводник, в котором возникает ток 1 А при напряжении 1 В. Эта единица сопротивления называется Ом.

Закон Ома в дифференциальной форме:

j=sE,

где j - плотность тока, Е - напряженность поля, s - проводимость. В этой записи закон Ома содержит величины, характеризующие состояние поля в одной и той же точке.

Различают последовательное и параллельное соединения проводников. При последовательном соединении ток, протекающий по всем участкам цепи, одинаков, а напряжение на концах цепи складывается как алгебраическая сумма напряжений на всех участках.

R=S(Ri).

При параллельном соединении проводников постоянным остается напряжение, а ток складывается из суммы токов, протекающих по всем ветвям. В этом случае складываются величины, обратные сопротивлению:

1/R=S(1/Ri).

Для получения постоянного тока на заряды в электрической цепи должны действовать силы, отличные от сил электростатического поля; их называют сторонними силами.

Если рассматривать полную электрическую цепь, необходимо включить в нее действие этих сторонних сил и внутренне сопротивление источника тока r. В этом случае закон Ома для полной цепи примет вид:

I=E/(R+r).

Е - электродвижущая сила (ЭДС) источника. Она измеряется в  тех же единицах, что и напряжение. Величину (R+r) называют иногда полным сопротивлением цепи.

Сформулируем правила Киркгофа: Первое правило: алгебраическая сумма сил токов в участках цепи, сходящихся в одной точке разветвления, равна нулю.

Второе правило: для любого замкнутого контура сумма всех падений напряжения равна сумме всех ЭДС в этом контуре.

Мощность тока рассчитывается по формуле

P=UI=I2R=U2/R.

Закон Джоуля-Ленца. Работа электрического тока (тепловое действие тока)       A=Q=UIt=I2Rt=U2t/R.

Электронная проводимость металлов. Сверхпроводимость. Электрический ток в растворах и расплавах электролитов. Закон электролиза. Электрический ток в газах. Самостоятельный и несамостоятельный разряды. Понятие о плазме. Ток в вакууме.  Электронная эмиссия. Диод. Электронно-лучевая трубка.

Электрический ток в  металлах есть движение электронов, ионы металла участия в переносе электрического заряда не принимают. Другими словами, в металлах есть электроны, способные перемещаться по металлу. Они получили название электронов проводимости. Положительные заряды в металле представляют собой ионы, образующие кристаллическую решетку. В отсутствии внешнего поля электроны в металле движутся хаотично, претерпевая соударения с ионами решетки. Под воздействием внешнего электрического поля электроны начинают упорядоченное движение, накладывающееся на их прежние хаотические флуктуации. В процессе упорядоченного движения электроны по-прежнему сталкиваются с ионами кристаллической решетки. Именно этим и обусловлено электрическое сопротивление.

В классической электронной  теории металлов предполагается, что  движение электронов подчиняется законам классической механики. Взаимодействием электронов между собой пренебрегают, взаимодействие электронов с ионами сводят только к соударениям. Можно сказать, что электроны проводимости рассматривают как электронный газ, подобный идеальному атомарному газу в молекулярной физике. Поскольку средняя кинетическая энергия на одну степень свободы для такого газа равна kT/2, а свободный электрон обладает тремя степенями свободы, то

mv2t/2=3kT/2,

где v2t - среднее значение квадрата скорости теплового движения. На каждый электрон действует сила, равная еЕ, в результате чего он приобретает ускорение еЕ/m. Скорость к концу свободного пробега равна

v=eEt/m,

где t - среднее время  между соударениями.

Поскольку электрон движется равноускоренно, его средняя скорость равна половине максимальной:

vc=eEt/(2m).

Среднее время между  соударениями есть отношение длины  свободного пробега к средней  скорости:

t=L/vt.

Поскольку обычно скорость упорядоченного движения много меньше тепловой скорости, то скоростью упорядоченного движения пренебрегли.  Окончательно, имеем

vc=eEL/(2mvt).

Коэффициент пропорциональности между vc и Е называется подвижность электронов.

С помощью классической электронной теории газов могут  быть объяснены многие закономерности - закон Ома, закон Джоуля-Ленца  и другие явления, однако эта теория не может объяснить, например, явления сверхпроводимости: При определенной температуре удельное сопротивление для некоторых веществ скачком уменьшается практически до нуля. Это сопротивление настолько мало, что однажды возбужденный в сверхпроводнике электрический ток существует длительное время без источника тока. Несмотря на скачкообразное изменение сопротивления, другие характеристики сверхпроводника (теплопроводность, теплоемкость и др.) не меняются либо меняются мало.

yaneuch.ru

Постоянный и переменный ток — реферат

 

 

 

 

 

 

 

 

Электропитание систем автоматизации

 

 

 

Реферат

на тему:

 

"Постоянный и переменный  ток"

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Одесса 2013

Содержание

 

  1. Введение…………………………………………………………………..….…3
  2. Основные определения…………………………………………………….....4
  3. Постоянный ток………………………………………………….……….……4
  4. Переменный ток…………………………………………………………….....5
  5. Получение переменного тока…………………………………………….…...5
  6. Действующее значение силы тока и напряжения……………………….….6
  7. Достоинства и недостатки……………………………………………….……6
  8. Список литературы…………………………………………………….……...8

 

 

Введение

постоянный переменный ток

Что же такое электрический ток  и что необходимо для его возникновения  и существования в течение  нужного нам времени?

Слово «ток» означает движение или  течение чего-то. Электрическим током  называется упорядоченное (направленное) движение заряженных частиц. Чтобы  получить электрический ток в  проводнике, надо создать в нем  электрическое поле. Чтобы электрический  ток в проводнике существовал  длительное время, необходимо все это  время поддерживать в нем электрическое  поле. Электрическое поле в проводниках  создается и может длительное время поддерживаться источниками  электрического тока. В настоящее  время человечество использует четыре основные источника тока: статический, химический, механический и полупроводниковый (солнечные батареи), но во всяком из них совершается работа по разделению положительно и отрицательно заряженных частиц. Раздельные частицы накапливаются  на полюсах источника тока, - так  называют места, к которым с помощью  клемм или зажимов подсоединяют проводники. Один полюс источника  тока заряжается положительно, другой - отрицательно. Если полюсы соединить  проводником, то под действием поля свободные заряженные частицы в  проводнике будут двигаться, возникнет  электрический ток.

 

Основные определения

 

Электрический ток широко используется в энергетике для передачи энергии  на расстоянии.

Электрический ток — упорядоченное  нескомпенсированное движение свободных  электрически заряженных частиц, например, под воздействием электрического поля. Такими частицами могут являться: в проводниках — электроны, в  электролитах — ионы (катионы и  анионы), в газах - ионы и электроны, в вакууме при определенных условиях - электроны, в полупроводниках —  электроны и дырки (электронно-дырочная проводимость). Различают переменный и постоянный токи.

Постоянный ток — ток, направление  и величина которого слабо меняется во времени.

Переменный ток — это ток, направление и величина которого меняется во времени. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному  закону. В этом случае потенциал  каждого конца проводника изменяется по отношению к потенциалу другого  конца проводника попеременно с  положительного на отрицательный и  наоборот, проходя при этом через  все промежуточные потенциалы. В  результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным  значением, затем спадает, на какой-то момент становится равным нулю, потом  вновь возрастает, но уже в другом направлении и также достигает  максимального значения, спадает, чтобы  затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.

Время, за которое происходит один такой цикл (время, включающее изменение  тока в обе стороны), называется периодом переменного тока. Количество периодов, совершаемое током за единицу  времени, носит название частота. Частота  измеряется в герцах, один герц соответствует  одному периоду в секунду.

 

 

Постоянный ток

 

Постоянный ток, электрический  ток, не изменяющийся с течением времени  ни по силе, ни по направлению. Постоянный ток возникает под действием  постоянного напряжения и может  существовать лишь в замкнутой цепи; во всех сечениях неразветвлённой цепи сила постоянный тока одинакова.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Основные законы постоянный ток: закон  Ома, устанавливающий зависимость  силы тока от напряжения, закон Джоуля — Ленца, определяющий количество тепла, выделяемого током в проводнике. Расчёт разветвленных цепей производится с помощью правил Кирхгофа.

Источниками постоянного тока большой  мощности являются электромашинные  генераторы. Так же его получают выпрямлением переменного. Источниками  тока небольшой мощности служат гальванические элементы, термоэлементы, фотоэлементы, которые могут быть сгруппированы  в батареи (в т. ч. солнечные батареи), и электромашины малой мощности. Новыми источниками с высоким  кпд являются магнитогидродинамические генераторы. Вторичными, предварительно заряжаемыми источниками постоянного  тока служат  аккумуляторы.

Постоянный ток низкого напряжения используется в различных отраслях промышленности, например в электрометаллургии для расплава и электролиза руд, в первую очередь алюминиевых, и  т.п. Он применяется в тяговых  электродвигателях на транспорте, а  также в электроприводах, когда  необходимы двигатели, обладающие большой  перегрузочной способностью, скорость которых можно плавно и экономично менять в широких пределах. Питание  устройств связи, автоматики, сигнализации и телемеханики производится постоянным током. Разрабатывается проблема передачи энергии такого тока практически  без потерь по сверхпроводящим линиям.

 

 

Переменный ток

 

Как мы уже знаем, электрический  ток бывает постоянным и переменным. Но широко применяется только переменный ток. Это обусловлено тем, что  напряжение и силу переменного тока можно преобразовывать практически  без потерь энергии.

Переменный ток, в отличие от тока постоянного, непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются  через равные промежутки времени. характеризуется  двумя параметрами — периодом и амплитудой, зная которые мы можем  судить, какой это переменный ток, и построить график тока.

 

 

 

Получение переменного тока

 

Переменный ток получают при  помощи генераторов переменного  тока с использованием явлений электромагнитной индукции. На рисунке изображена примитивная  установка для выработки переменного  тока.

Принцип действия установки прост. Проволочная рамка вращается  в однородном магнитном поле с  постоянной скоростью. Своими концами  рамка закреплена на кольцах, вращающихся  вместе с ней. К кольцам плотно прилегают пружины, выполняющие  роль контактов. Через поверхность рамки непрерывно будет протекать изменяющийся магнитный поток, но поток, создаваемый электромагнитом, останется постоянным. В связи с этим в рамке возникнет ЭДС индукции. Для того чтобы определить, изменяется ли магнитный поток, проходящий по поверхности рамки, нужно всего лишь сравнить положение рамки в определенные периоды времени. Для этого нужно внимательно посмотреть на рисунке.

 

 

Действующие значения силы тока и  напряжения

 

Как известно, переменная ЭДС индукции вызывает в цепи переменный ток. При  наибольшем значении ЭДС сила тока будет иметь максимальное значение и наоборот. Это явление называется совпадением по фазе. Несмотря на то что значения силы тока могут колебаться от нуля и до определенного максимального  значения, имеются приборы, с помощью  которых можно замерить силу переменного  тока.

Характеристикой переменного тока могут быть действия, которые не зависят от направления тока и  могут быть такими же, как и при  постоянном токе. К таким действиям  можно отнести тепловое. К примеру, переменный ток протекает через  проводник с заданным сопротивлением. Через определенный промежуток времени  в этом проводнике выделится какое-то количество тепла. Можно подобрать  такое значение силы постоянного  тока, чтобы на этом же проводнике за то же время выделялось этим током  такое же количество тепла, что и  при переменном токе. Такое значение постоянного тока называется действующим  значением силы переменного тока.

Амперметры и вольтметры магнитоэлектрической системы не позволяют производить  замеры в цепях переменного тока. Это происходит потому, что при  каждом изменении тока в катушке  меняется направление вращающего момента, которое воздействует на стрелку  прибора. Из-за того что катушка и  стрелка обладают большой инерцией, прибор не реагирует на переменный ток. Для этих целей применяются  приборы, не зависящие от направления  тока. Например, это могут быть приборы, основанные на тепловом действии тока. В таких приборах стрелка поворачивается за счет удлинения нити, нагреваемой  током.

Можно также применять приборы  с электромагнитной системой действия. Подвижной частью в данных приспособлениях  является железный диск небольшого диаметра.

Он перемагничивается и втягивается  внутрь катушки, через которую пропущен переменный ток. Такие приборы измеряют действующие значения силы тока и  напряжения.

 

 

Достоинства и недостатки

 

Электрические станции вырабатывают электрическую энергию трехфазного  переменного тока, который передается на большие расстояния по трем проводам. Частота переменного тока, питающего  промышленные установки, в разных странах  различна. Она колеблется от 25 до 60 периодов в секунду (герц). В России, как  и в большинстве стран, промышленная частота принята равной 50 Гц.

Одно из отрицательных свойств  переменного тока в том, что провода, по которым протекает ток, необходимо рассчитывать на максимальное значение силы тока, а практически используется немногим более 2/3 этого значения. Есть и другие отрицательные следствия. Явление электромагнитной индукции приводит, например, к тому, что переменный ток в проводах распределяется не равномерно по всему сечению, а главным образом вблизи поверхности. Благодаря тому, что используется не все сечения проводов, их сопротивление реально возрастает. Далее, переменный ток, как и ток постоянный, окружен магнитным полем, но полем переменным. А такое поле, согласно закону электромагнитной индукции, вызывает в соседних проводах и в других проводящих материалах электрические токи, что приводит к бесполезной потере энергии.

Все эти недостатки полностью отсутствуют  у постоянного тока. Почему же все-таки переменный ток практически безраздельно господствует в технике и в  быту?

Прежде всего, сам принцип действия электрических генераторов таков, что в них возникает именно переменная ЭДС. Но не в этом главное. С помощью нехитрого устройства можно тот же генератор сделать  источником и постоянного тока. Главная  причина «популярности» переменного  тока связана с тем, что электрическую  энергию приходится передавать из мест, где она производится (электростанции), к местам ее потребления и часто  на большие расстояния. При этом часть передаваемой энергии неизбежно  теряется в виде тепла в проводах, по которым она передается в линиях электропередачи (ЛЭП). Чтобы эти  потери были не слишком высокими, нужно, оказывается, использовать для передачи высокое напряжение.

Необходимость высокого напряжения видна  из следующего простого расчета. Допустим, что электрическая мощность Р = 66 кВт передается от электростанции в  город под напряжением 220 В (именно такое напряжение обычно используется потребителями). Пусть сопротивление  ЛЭП равно 0,4 Ом. Тогда сила тока в  ЛЭП составит I = 66 000 Вт / 220 В = 300 А, а  выделившееся в линии количество теплоты — Q = I2R =(300 A)2·0,4 Ом = 36 000 Вт. Больше половины передаваемой мощности (54,5 %) будет потеряно в виде тепла в  ЛЭП! А теперь представим себе, что  та же мощность по той же ЛЭП передается при напряжении 22 000 В. Теперь ток  в цепи будет равен I = 66 000 Вт / 22 000 В = 3 А, а выделившееся количество теплоты  — Q = (3 A)2·0,4 Ом = 3,6 Вт. Потеряно будет  всего около 0,005 %! Вот почему электрическая  энергия по ЛЭП всегда передается при очень высоком напряжении — 110, 220, 330, 400, 500 и даже 750 киловольт.

Однако те недостатки переменного  тока, которые были изложены выше, заставляют думать о том, нельзя ли все-таки для  передачи электрической энергии  использовать постоянный ток, конечно, тоже высокого напряжения? Это сделать  непросто. Действительно, сначала нужно  переменное напряжение, после его  повышения, преобразовать в постоянное (для этого служат выпрямители), а  затем на другом конце ЛЭП —  превратить переданное постоянное напряжение в переменное (это можно сделать  с помощью устройств, называемых инверторами), чтобы напряжение можно  было понизить до значения, нужного  потребителю.

Для техники в равной мере нужны  и полезны оба тока. В некоторых  случаях незаменим постоянный ток, например там, где используется электролиз. Но без переменных токов не было бы радиосвязи, телевидения и т. д.

 

Список литературы

 

  1. http://www.mukhin.ru
  2. http://dic.academic.ru
  3. http://bse.sci-lib.com/article091915.html
  4. Слободянюк А.И. Физика 10

 

yaneuch.ru


Смотрите также