Реферат: Плазма – четвертое состояние вещества. Плазма реферат


Реферат - Плазма - четвертое состояние вещества

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Тихоокеанский государственный экономический университет

Кафедра физики

Реферат

Тема: Плазма — четвертое состояние вещества

Выполнила:

421 Тд

Патук С.В.

Владивосток

2010

Содержание

Введение. 3

1.Что такое плазма?.. 4

1.1.Наиболее типичные формы плазмы… 5

2. Свойства и параметры плазмы… 6

2.1. Классификация. 6

2.2. Температура. 6

2.3. Степень ионизации. 7

2.4. Плотность. 8

2.5. Квазинейтральность. 8

3 Математическое описание. 9

3.1. Флюидная (жидкостная) модель. 9

3.2. Кинетическое описание. 9

3.3. Particle-In-Cell (частицавячейке)9

4. Использование плазмы… 10

Заключение. 11

Список литературы… 12

Введение

Агрега́тное состоя́ние — состояние вещества, характеризующееся определёнными качественными свойствами: способностью или неспособностью сохранять объём и форму, наличием или отсутствием дальнего и ближнего порядка и другими. Изменение агрегатного состояния может сопровождаться скачкообразным изменением свободной энергии, энтропии, плотности и других основных физических свойств.

Известно, что любое вещество может существовать только в одном из трех состояний: твердом, жидком или газообразном, классическим примером чему является вода, которая может быть в виде льда, жидкости и пара. Однако веществ, пре­бывающих в этих считающихся бесспорными и общераспространенными состояниях, если брать всю Вселенную в целом, очень мало. Они вряд ли пре­вышают то, что в химии считается ничтожно малыми следами. Все остальное вещество Вселенной пребывает в так называемом плазменном состоянии.

1. Что такое плазма?

Словом «плазма» (от греч. «плазма» — «оформленное») в середине XIX

в. стали именовать бесцветную часть крови (без красных и белых телец) и

жидкость, наполняющую живые клетки. В 1929 г. американские физики Ирвинг Лёнгмюр (1881—1957) и Леви Тонко (1897—1971) назвали плазмой ионизованный газ в газоразрядной трубке.

Английский физик Уильям Крукс (1832—1919), изучавший электрический

разряд в трубках с разрежённым воздухом, писал: «Явления в откачанных

трубках открывают для физической науки новый мир, в котором материя может существовать в четвёртом состоянии».

В зависимости от температуры любое вещество изменяет своё

состояние. Так, вода при отрицательных (по Цельсию) температурах находится в твёрдом состоянии, в интервале от 0 до 100 «С — в жидком, выше 100 °С—в газообразном. Если температура продолжает расти, атомы и молекулы начинают терять свои электроны — ионизуются и газ превращается в плазму. При температурах более 1000000 °С плазма абсолютно ионизована — она состоит только из электронов и положительных ионов. Плазма — наиболее распространённое состояние вещества в природе, на неё приходится около 99 % массы Вселенной. Солнце, большинство звёзд, туманности — это полностью ионизованная плазма. Внешняя часть земной атмосферы (ионосфера) тоже плазма.

Ещё выше располагаются радиационные пояса, содержащие плазму.

Полярные сияния, молнии, в том числе шаровые, — всё это различные виды плазмы, наблюдать которые можно в естественных условиях на Земле. И лишь ничтожную часть Вселенной составляет вещество в твёрдом состоянии — планеты, астероиды и пылевые туманности.

Под плазмой в физике понимают газ, состоящий из электрически

заряженных и нейтральных частиц, в котором суммарный электрический заряд равен нулю, т. с. выполнено условие квазинейтральности (поэтому, например, пучок электронов, летящих в вакууме, не плазма: он несет отрицательный заряд).

Наиболее типичные формы плазмы

Искусственно созданная плазма

Плазменная панель (телевизор, монитор)

Вещество внутри люминесцентных (в т. ч. компактных) и неоновых ламп

Плазменные ракетные двигатели

Газоразрядная корона озонового генератора

Исследования управляемого термоядерного синтеза

Электрическая дуга в дуговой лампе и в дуговой сварке

Плазменная лампа (см. рисунок)

Дуговой разряд от трансформатора Теслы

Воздействие на вещество лазерным излучением

Светящаяся сфера ядерного взрыва

Земная природная плазма

Молния

Огни святого Эльма

Ионосфера

Языки пламени (низкотемпературная плазма)

Космическая и астрофизическая плазма

Солнце и другие звезды (те, которые существуют за счет термоядерных реакций)

Солнечный ветер

Космическое пространство (пространство между планетами, звездами игалактиками)

Межзвездные туманности

2. Свойства и параметры плазмы

Плазма обладает следующими свойствами:

Достаточная плотность: заряженные частицы должны находиться достаточно близко друг к другу, чтобы каждая из них взаимодействовала с целой системой близкорасположенных заряженных частиц. Условие считается выполненным, если число заряженных частиц в сфере влияния (сфера радиусом Дебая) достаточно для возникновения коллективных эффектов (подобные проявления — типичное свойство плазмы). Математически это условие можно выразить так:

, где — концентрация заряженных частиц.

Приоритет внутренних взаимодействий: радиус дебаевского экранирования должен быть мал по сравнению с характерным размером плазмы. Этот критерий означает, что взаимодействия, происходящие внутри плазмы более значительны по сравнению с эффектами на ее поверхности, которыми можно пренебречь. Если это условие соблюдено, плазму можно считать квазинейтральной. Математически оно выглядит так:

Плазменная частота: среднее время между столкновениями частиц должно быть велико по сравнению с периодом плазменных колебаний. Эти колебания вызываются действием на заряд электрического поля, возникающего из-за нарушения квазинейтральности плазмы. Это поле стремится восстановить нарушенное равновесие. Возвращаясь в положение равновесия, заряд проходит по инерции это положение, что опять приводит к появлению сильного возвращающего поля, возникают типичные механические колебания.[8] Когда данное условие соблюдено, электродинамические свойства плазмы преобладают над молекулярно-кинетическими. На языке математики это условие имеет вид:

Плазма обычно разделяется на идеальную и неидеальную, низкотемпературную и высокотемпературную, равновесную и неравновесную, при этом довольно часто холодная плазма бывает неравновесной, а горячая равновесной.

При чтении научно-популярной литературы читатель зачастую видит значения температуры плазмы порядка десятков, сотен тысяч или даже миллионов °С или К. Для описания плазмы в физике удобно измерять температуру не в °С, а в единицах измерения характерной энергии движения частиц, например, в электрон-вольтах (эВ). Для перевода температуры в эВ можно воспользоваться следующим соотношением: 1 эВ = 11600 K (Кельвин). Таким образом становится понятно, что температура в «десятки тысяч °С» достаточно легко достижима.

В неравновесной плазме электронная температура существенно превышает температуру ионов. Это происходит из-за различия в массах иона и электрона, которое затрудняет процесс обмена энергией. Такая ситуация встречается в газовых разрядах, когда ионы имеют температуру около сотен, а электроны около десятков тысяч K.

В равновесной плазме обе температуры равны. Поскольку для осуществления процесса ионизации необходимы температуры, сравнимые с потенциалом ионизации, равновесная плазма обычно является горячей (с температурой больше нескольких тысяч K).

Понятие высокотемпературная плазма употребляется обычно для плазмы термоядерного синтеза, который требует температур в миллионы K.

Для того, чтобы газ перешел в состояние плазмы, его необходимо ионизировать. Степень ионизации пропорциональна числу атомов, отдавших или поглотивших электроны, и больше всего зависит оттемпературы. Даже слабо ионизированный газ, в котором менее 1 % частиц находятся в ионизированном состоянии, может проявлять некоторые типичные свойства плазмы (взаимодействие с внешнимэлектромагнитным полем и высокая электропроводность). Степень ионизации α определяетя как α = ni/(ni + na), где ni — концентрация ионов, а na — концентрация нейтральных атомов. Концентрация свободных электронов в незаряженной плазме ne определяется очевидным соотношением: ne=<Z> ni, где <Z> — среднее значение заряда ионов плазмы.

Для низкотемпературной плазмы характерна малая степень ионизации (до 1 %). Так как такие плазмы довольно часто употребляются в технологических процессах, их иногда называют технологичными плазмами. Чаще всего их создают при помощи электрических полей, ускоряющих электроны, которые в свою очередь ионизируют атомы. Электрические поля вводятся в газ посредством индуктивной или емкостной связи (см. индуктивно-связанная плазма). Типичные применения низкотемпературной плазмы включают плазменную модификацию свойств поверхности (алмазные пленки, нитридирование металлов, изменение смачиваемости), плазменное травление поверхностей (полупроводниковая промышленность), очистка газов и жидкостей (озонирование воды и сжигание частичек сажи в дизельных двигателях).

Горячая плазма почти всегда полностью ионизирована (степень ионизации ~100 %). Обычно именно она понимается под «четвертым агрегатным состоянием вещества». Примером может служитьСолнце.

Помимо температуры, которая имеет фундаментальную важность для самого существования плазмы, вторым наиболее важным свойством плазмы является плотность. Словосочетание плотность плазмы обычно обозначает плотность электронов, то есть число свободных электронов в единице объема (строго говоря, здесь, плотностью называют концентрацию — не массу единицы объема, а число частиц в единице объема). В квазинейтральной плазме плотность ионов связана с ней посредством среднего зарядового числа ионов : . Следующей важной величиной является плотность нейтральных атомов n0. В горячей плазме n0 мала, но может тем не менее быть важной для физики процессов в плазме. При рассмотрении процессов в плотной, неидеальной плазме характерным параметром плотности становится rs, который определяется как отношение среднего межчастичного расстояния к радиусу Бора.

Так как плазма является очень хорошим проводником, электрические свойства имеют важное значение. Потенциалом плазмы или потенциалом пространства называют среднее значение электрического потенциала в данной точке пространства. В случае если в плазму внесено какое-либо тело, его потенциал в общем случае будет меньше потенциала плазмы вследствие возникновения дебаевского слоя. Такой потенциал называют плавающим потенциалом. По причине хорошей электрической проводимости плазма стремится экранировать все электрические поля. Это приводит к явлению квазинейтральности — плотность отрицательных зарядов с хорошей точностью равна плотности положительных зарядов (). В силу хорошей электрической проводимости плазмы разделение положительных и отрицательных зарядов невозможно на расстояниях больших дебаевской длины и временах больших периода плазменных колебаний.

Примером неквазинейтральной плазмы является пучок электронов. Однако плотность не-нейтральных плазм должна быть очень мала, иначе они быстро распадутся за счёт кулоновского отталкивания.

3 Математическое описание

Плазму можно описывать на различных уровнях детализации. Обычно плазма описывается отдельно от электромагнитных полей.

Во флюидной модели электроны описываются в терминах плотности, температуры и средней скорости. В основе модели лежат: уравнение баланса для плотности, уравнение сохранения импульса, уравнение баланса энергии электронов. В двухжидкостной модели таким же образом рассматриваются ионы.

3.2. Кинетическое описание

Иногда жидкостная модель оказывается недостаточной для описания плазмы. Более подробное описание даёт кинетическая модель, в которой плазма описывается в терминах функции распределения электронов по координатам и импульсам. В основе модели лежит уравнение Больцмана. Уравнение Больцмана неприменимо для описания плазмы заряженных частиц с кулоновским взаимодействием вследствие дальнодействующего характера кулоновских сил. Поэтому для описания плазмы с кулоновским взаимодействием используется уравнение Власова с самосогласованным электромагнитным полем, созданным заряженными частицами плазмы. Кинетическое описание необходимо применять в случае отсутствия термодинамического равновесия либо в случае присутствия сильных неоднородностей плазмы.

3.3. Particle-In-Cell (частицавячейке)

Модели Particle-In-Cell являются более подробными чем кинетические. Они включают в себя кинетическую информацию путём слежения за траекториями большого числа отдельных частиц. Плотности эл. заряда и тока определяются путём суммирования частиц в ячейках, которые малы по сравнению с рассматриваемой задачей, но тем не менее содержат большое число частиц. Эл. и магн. поля находятся из плотностей зарядов и токов на границах ячеек.

4. Использование плазмы

Наиболее широко плазма применяется в светотехнике — в газоразрядныхлампах, освещающих улицы, и лампах дневного света, используемых впомещениях. А кроме того, в самых разных газоразрядных приборах: выпрямителях электрического тока, стабилизаторах напряжения, плазменных усилителях и генераторах сверхвысоких частот (СВЧ), счётчиках космических частиц. Все так называемые газовые лазеры (гелий-неоновый, криптоновый, надиоксиде углерода и т. п.) на самом деле плазменные: газовые смеси в нихионизованы электрическим разрядом. Свойствами, характерными для плазмы, обладают электроныпроводимости в металле (ионы, жестко закрепленные в кристаллическойрешётке, нейтрализуют их заряды), совокупность свободных электронов иподвижных «дырок» (вакансий) в полупроводниках. Поэтому такие системы называют плазмой твёрдых тел. Газовую плазму принято разделять на низкотемпературную — до 100тыс. градусов и высокотемпературную — до 100 млн градусов. Существуют генераторы низкотемпературной плазмы — плазмотроны, в которых используется электрическая дуга. С помощью плазмотрона можно нагреть почти любой газ до 7000—10000 градусов за сотые и тысячные доли секунды. С созданием плазмотрона возникла новая область науки — плазменная химия: многие химические реакции ускоряются или идут только в плазменной струе.Плазмотроны применяются и в горнорудной промышленности, и для резкиметаллов. Созданы также плазменные двигатели, магнитогидродинамическиеэлектростанции. Разрабатываются различные схемы плазменного ускорениязаряженных частиц. Центральной задачей физики плазмы является проблема управляемого термоядерного синтеза. Термоядерными называют реакции синтеза более тяжёлых ядер из ядерлёгких элементов (в первую очередь изотопов водорода — дейтерия D и тритияТ), протекающие при очень высоких температурах (» 108 К и выше). В естественных условиях термоядерные реакции происходят на Солнце: ядра водорода соединяются друг с другом, образуя ядра гелия, при этомвыделяется значительное количество энергии. Искусственная реакциятермоядерного синтеза была осуществлена в водородной бомбе.

Заключение

Плазма – ещё малоизученный объект не только в физике, но и в химии (плазмохимии), астрономии и многих других науках. Поэтому важнейшие технические положения физики плазмы до сих пор не вышли из стадии лабораторной разработки. В настоящее время плазма активно изучается т.к. имеет огромное значение для науки и техники. Эта тема интересна ещё и тем, что плазма – четвёртое состояние вещества, о существовании которого люди не подозревали до XX века.

Список литературы

1. Вурзель Ф.Б., Полак Л.С. Плазмохимия, М, Знание, 1985.

2. Ораевский Н.В. Плазма на Земле и в космосе, К, Наукова думка, 1980.

3. ru.wikipedia.org

www.ronl.ru

Реферат - Плазма – четвертое состояние вещества

ГИМНАЗИЯ №11

РЕФЕРАТ

на тему

«Плазма – четвертое состояние вещества»

Выполнил: ученик 10 Б класса

Грибанов Кирилл

г.Одинцово 2001 г.

ЧТО ТАКОЕ ПЛАЗМА

Словом «плазма» (от греч. «плазма» — «оформленное») в середине XIX в. стали именовать бесцветную часть крови (без красных и белых телец) и жидкость, наполняющую живые клетки. В 1929 г. американские физики Ирвинг Лёнгмюр (1881—1957) иЛеви Тонко (1897—1971) назвали плазмой ионизованный газ в газоразрядной трубке.

Английский физик Уильям Крукс (1832—1919), изучавший электрический разряд в трубках с разрежённым воздухом, писал: «Явления в откачанных трубках открывают для физической науки новый мир, в котором материя может существовать в четвёртом состоянии».

В зависимости от температуры любое вещество изменяет своё состояние. Так, вода при отрицательных (по Цельсию) температурах находится в твёрдом состоянии, в интервале от 0 до 100 " С — в жидком, выше 100 °С—в газообразном. Если температура продолжает расти, атомы и молекулы начинают терять свои электроны — ионизуются и газ превращается в плазму. При температурах более 1 000 000 °С плазма абсолютно ионизована — она состоит только из электронов и положительных ионов. Плазма — наиболее распространённое состояние вещества в природе, на неё приходится около 99 % массы Вселенной. Солнце, большинство звёзд, туманности — это полностью ионизованная плазма. Внешняя часть земной атмосферы (ионосфера) тоже плазма.

Ещё выше располагаются радиационные пояса, содержащие плазму. Полярные сияния, молнии, в том числе шаровые, — всё это различные виды плазмы, наблюдать которые можно в естественных условиях на Земле. И лишь ничтожную часть Вселенной составляет вещество в твёрдом состоянии — планеты, астероиды и пылевые туманности.

Под плазмой в физике понимают газ, состоящий из электрически заряженных и нейтральных част иц, в котором суммарный электрический заряд равен нулю, т. с. выполнено условие квазинейтральности (поэтому, например, пучок электронов, летящих в вакууме, не плазма: он несет отрицательный заряд).

КАК ИСПОЛ ЬЗУЮТ ПЛАЗМУ

Наиболее широко плазма применяется в светотехнике — в газоразрядных лампах, освещающих улицы, и лампах дневного света, используемых в помещениях. А кроме того, в самых разных газоразрядных приборах: выпрямителях электрического тока, стабилизаторах напряжения, плазменных усилителях и генераторах сверхвысоких частот (СВЧ), счётчиках космических частиц.

Все так называемые газовые лазеры (гелий-неоновый, криптоновый, на диоксиде углерода и т. п.) на самом деле плазменные: газовые смеси в них ионизованы электрическим разрядом.

Свойствами, характерными для плазмы, обладают электроны проводимости в металле (ионы, же стко закрепле нные в кристаллической решётке, нейтрализуют их заряды), совокупность свободных электронов и подвижных «дырок» (вакансий) в полупроводниках. Поэтому такие системы называют плазмой твёрдых тел

Газовую плазму принято разделять на низкотемпературную — до 100 тыс. градусов и высокотемпературную — до 100 млн градусов. Существуют генераторы низкотемпературной плазмы — плазмотроны, в которых используется электрическая дуга. С помощью плазмотрона можно нагреть почти любой газ до 7000—10000 градусов за сотые и тысячные доли секунды. С созданием плазмотрона возникл а новая область науки — плазменная химия: многие химические реакции ускоряются или идут только в плазменной струе. Плазмотроны применяются и в горно-рудной промышленности, и для резки металлов.

Созданы также плазменные двигатели, магнитогидродинамические электростанции. Разрабатываются различные схемы плазменного ускорения заряженных частиц. Централь ной задачей физики плазмы является проблема управляемого термоядерного синтеза.

Термоядерными называют реакции синтеза более тяжёлых ядер из ядер лё гких элементов (в первую очередь изотопов водорода — дейтерия D и трития Т), протекающие при очень в ысоких температурах (» 1 08 К и выше)

В естественных условиях термоядерные реакции происходят на Солнце: ядра водорода соединяются друг с другом, образуя ядра гелия, при этом выделяется значительное количество энергии. Искусственная реакция термоядерного син теза была осуществлена в водородной бом бе.

УПРАВЛЯЕМ ЫЕ Т ЕРМ ОЯД ЕРНЫЕ РЕАКЦ ИИ

Считается, что запасов химически топлива человечеству хватит на несколько десятков лет. Ограниченны и разведанные запасы ядерного горю чего. Спасти человечество от энергетич еского голода и стать практи чески неисчерпаемым источником энергии могут управл яемы е термо ядерные реакции в плазме.

В 1 л обычной воды содержится 0,15 мл воды тяжёлой (D 2 O). При слиянии ядер дейтерия из 0,15 мл D2 O выделяется столько же энергии, сколько её образ уется при сгорании 300 л бензина. Тритий в природе практически не существует, однако его можно получить, бомбардируя нейтронами n изотоп лития:

n+7 Li ® 4 He + T

Ядро атома водорода не что иное как протон p. В ядре дейтерия содержится, кроме того, ещё один нейтрон, а в ядре трития — два нейтрона. Дейтерий и тритий могут реагировать друг с другом десятью разными способами. Но вероятности такой реакций различаются порой в сотни триллионов раз, а количество выде ляющейся энергии — в 10—15 раз. Практический интерес представляют только три из них:

D + D ® T + p + 4МэВ ;

D + D ® 3 He + n + 3,3МэВ;

D + T ® 4 He + n + 17,6МэВ.

Если все ядра в каком-то объёме одновременно вступают в реакцию, энергия выделяется мгновенно. Происходит термоядерный взрыв. В реакторе же реакция синтеза должна протекать медленно.

Осуществить управляемый термоядерный синтез до сих пор не удалось, а преимущества он сулит немалые. Энергия, которая выделяется при термоядерных реакциях на единицу массы топлива, в миллионы раз превышает энергию химического топлива и, значит, в сотни раз дешевле. В термоядерной энергетике нет выброса продуктов сгорания в атмосферу и радиоактивных отходов. Наконец, на термоядерной электростанции исключен взрыв.

Во время синтеза основная часть энергии (более 75 %) выделяется в виде кинетической энергии нейтронов или протонов. Если замедлить нейтроны в подходящем веществе, оно нагревается; полученную теплоту легко превратить в электрическую энергию. Кинетическая энергия заряженных частиц — протонов — преобразуется в электричество непосредственно.

В реакции синтеза ядра Должны соединяться, но они заряжены положительно и, следовательно, по закону Кулона, отталкиваются. Чтобы преодолеть силы отталкивания, даже ядрам дейтерия и трития, имеющим наименьший заряд (Z. = 1), необходима энергия около 10 или 100 кэВ. Ей соответствует температура порядка 108 —109 К. При таких температурах любое вещество находится в состоянии высокотемпературной плазмы.

С позиций классической физики реакция синтеза невозможна, но здесь на помощь приходит чисто квантовый - туннельный эффект. Вычислено, что температура зажигания, начиная с которой выделение энергии превосходит её потери, для реакции дейтерий— тритий (D Т) равна приблизительно 4,5* 107 К, а для реакций дейтерий—дейтерий (DD ) — около 4* 108 К. Естественно, предпочтительнее реакция D Т. Нагревают плазму электрическим током, лазерным излучением, электромагнитными волнами и другими способами. Но важна не только высокая температура.

Чем выше концентрация, тем чаще сталкиваются друг с другом частицы, поэтому может показаться, что для осуществления термоядерных реакций лучше использовать плазму высокой плотности. Однако, если бы в 1 см3 плазмы содержалось 1019 частиц (концентрация молекул в газе при нормальных условиях), давление в ней при температурах термоядерных реакций достигало бы порядка 106 атм. Такого давления не выдерживает ни одна конструкция, а потому плазма должна быть разрежённой (с концентрацией около 1015 частиц в 1 см3 ). Соударения частиц в этом случае происходят реже, и для поддержания реакции необходимо увеличивать время пребывания их в реакторе, или время удержания. Значит, для осуществления термоядерной реакции необходимо рассматривать произведение концентрации частиц плазмы на время их удержания. Для реакций DD это произведение (так называемый критерий Лоусона) равно 1016 с/см3, а для реакции DТ — 1014 с/см3. Следовательно, реакцию DТ реализовать легче, чем DD.

Когда начинались исследования плазмы, казалось, что осуществить управляемый синтез удастся быстро. Но со временем выяснилось, что в высокотемпературной плазме происходят сложные процессы и решающую роль играют многочисленные неустойчивости. Сегодня разрабатывается несколько типов устройств, в которых предполагается провести термоядерный синтез. Наиболее перспективными считаются токамаки (сокращение от «ТОроидальная КАмера с Магнитными КАатушками»). Токамак представляет собой гигантский трансформатор, первичная катушка которого намотана на сердечник, а вторичная имеет единственный виток — вакуумную камеру в форме бублика, тора (от лат. TORUS — «выпуклость»), с плазменным шнуром внутри. Система магнитов удерживает шнур в центре камеры, а ток силой в тысячи ампер нагревает его до требуемой температуры. Нейтроны, образующиеся в ходе термоядерной реакции, поглощаются в бланкете — слое вещества, окружающем камеру. Выделяющееся при этом тепло можно использовать для получения электроэнергии.

Несмотря на кажущуюся простоту токамака, ни одно устройство подобного типа не дало положительного выхода энергии. Большие надежды возлагаются на проектируемый в настоящее время гигантский токамак ITER. На этой установке, если она будет сооружена к 2005 г., предполагаемая мощность выхода 1,5 • 109 Вт. Среди других проектов следует отметить два: стеллараторы и устройства инерциального удержания плазмы.

Магнитное поле сложной формы, удерживающее плазму в круговой камере токамака, противодействует собственному полю плазменногошнура, которое стремится изогнуть траекторию заряженных частиц плазмы. В стеллараторе (от лат. STELLA — З везда») плазме позволили принять форму, какую она «хочет», и оставили только поле, сжимающее шнур. Вакуумная камера приобрела весьма причудливый вид, а множество магнитных катушек — довольно сложную форму. Эксперименты на стеллараторах идут в разных странах, но добиться нужной температуры и времени удержания плазмы пока не удалось.

Принципиально иным является метод инерциального удержания п лазм ы, основанный на инерции реакционной смеси, которая при мгнов енном нагреве (например, лазерным ( импульсом) ра злетается не сразу. Ампу лу, где нах одится смесь дейтерия с тритием, облучают со всех сторон { лазерными импульсами длительно стью до 10-10 с и суммарной мощно стью порядка 1020 Вт/см. Оболочка ампулы испаряется, расширяющиеся газы и световое давление сжимают её содержимое почти в 50 тыс. раз. Давле ние в смеси возрастает до 1 млн. атм, а её плотность — до 50—100 г/см3 . При таких условиях начинается термоядерная реакция.

Но и на этом пути имеется ряд технологических трудностей, пока не позволяющих превратить экспериментальные лазерные установки в промышленные реакторы.

www.ronl.ru

Реферат - Плазма – четвертое состояние вещества

ЧТО ТАКОЕ ПЛАЗМА

Словом «плазма» (от греч. «плазма» — «оформленное») в середине XIX в. стали именовать бесцветную часть крови (без красных и белых телец) и жидкость, наполняющую живые клетки. В 1929 г. американские физики Ирвинг Лёнгмюр (1881—1957) иЛеви Тонко (1897—1971) назвали плазмой ионизованный газ в газоразрядной трубке. Английский физик Уильям Крукс (1832—1919), изучавший электрический разряд в трубках с разрежённым воздухом, писал: «Явления в откачанных трубках открывают для физической науки новый мир, в котором материя может существовать в четвёртом состоянии». В зависимости от температуры любое вещество изменяет своё состояние. Так, вода при отрицательных (по Цельсию) температурах находится в твёрдом состоянии, в интервале от 0 до 100 "С - в жидком, выше 100 °С—в газообразном. Если температура продолжает расти, атомы и молекулы начинают терять свои электроны — ионизуются и газ превращается в плазму. При температурах более 1 000 000 °С плазма абсолютно ионизована — она состоит только из электронов и положительных ионов. Плазма — наиболее распространённое состояние вещества в природе, на неё приходится около 99 % массы Вселенной. Солнце, большинство звёзд, туманности — это полностью ионизованная плазма. Внешняя часть земной атмосферы (ионосфера) тоже плазма. Ещё выше располагаются радиационные пояса, содержащие плазму. Полярные сияния, молнии, в том числе шаровые, — всё это различные виды плазмы, наблюдать которые можно в естественных условиях на Земле. И лишь ничтожную часть Вселенной составляет вещество в твёрдом состоянии — планеты, астероиды и пылевые туманности. Под плазмой в физике понимают газ, состоящий из электрически заряженных и нейтральных частиц, в котором суммарный электрический заряд равен нулю, т. с. выполнено условие квазинейтральности (поэтому, например, пучок электронов, летящих в вакууме, не плазма: он несет отрицательный заряд).

КАК ИСПОЛЬЗУЮТ ПЛАЗМУ

Наиболее широко плазма применяется в светотехнике — в газоразрядных лампах, освещающих улицы, и лампах дневного света, используемых в помещениях. А кроме того, в самых разных газоразрядных приборах: выпрямителях электрического тока, стабилизаторах напряжения, плазменных усилителях и генераторах сверхвысоких частот (СВЧ), счётчиках космических частиц. Все так называемые газовые лазеры (гелий-неоновый, криптоновый, на диоксиде углерода и т. п.) на самом деле плазменные: газовые смеси в них ионизованы электрическим разрядом. Свойствами, характерными для плазмы, обладают электроны проводимости в металле (ионы, жестко закрепленные в кристаллической решётке, нейтрализуют их заряды), совокупность свободных электронов и подвижных «дырок» (вакансий) в полупроводниках. Поэтому такие системы называют плазмой твёрдых тел Газовую плазму принято разделять на низкотемпературную — до 100 тыс. градусов и высокотемпературную — до 100 млн градусов. Существуют генераторы низкотемпературной плазмы — плазмотроны, в которых используется электрическая дуга. С помощью плазмотрона можно нагреть почти любой газ до 7000—10000 градусов за сотые и тысячные доли секунды. С созданием плазмотрона возникла новая область науки — плазменная химия: многие химические реакции ускоряются или идут только в плазменной струе. Плазмотроны применяются и в горно-рудной промышленности, и для резки металлов. Созданы также плазменные двигатели, магнитогидродинамические электростанции. Разрабатываются различные схемы плазменного ускорения заряженных частиц. Центральной задачей физики плазмы является проблема управляемого термоядерного синтеза. Термоядерными называют реакции синтеза более тяжёлых ядер из ядер лёгких элементов (в первую очередь изотопов водорода - дейтерия D и трития Т), протекающие при очень высоких температурах (» 108 К и выше) В естественных условиях термоядерные реакции происходят на Солнце: ядра водорода соединяются друг с другом, образуя ядра гелия, при этом выделяется значительное количество энергии. Искусственная реакция термоядерного синтеза была осуществлена в водородной бомбе.

УПРАВЛЯЕМЫЕ ТЕРМОЯДЕРНЫЕ РЕАКЦИИ

Считается, что запасов химически топлива человечеству хватит на несколько десятков лет. Ограниченны и разведанные запасы ядерного горючего. Спасти человечество от энергетического голода и стать практически неисчерпаемым источником энергии могут управляемые термоядерные реакции в плазме. В 1 л обычной воды содержится 0,15 мл воды тяжёлой (D2O). При слиянии ядер дейтерия из 0,15 мл D2O выделяется столько же энергии, сколько её образуется при сгорании 300 л бензина. Тритий в природе практически не существует, однако его можно получить, бомбардируя нейтронами n изотоп лития:

n+7 Li ? 4He + T

Ядро атома водорода не что иное как протон p. В ядре дейтерия содержится, кроме того, ещё один нейтрон, а в ядре трития — два нейтрона. Дейтерий и тритий могут реагировать друг с другом десятью разными способами. Но вероятности такой реакций различаются порой в сотни триллионов раз, а количество выделяющейся энергии — в 10—15 раз. Практический интерес представляют только три из них:

D + D ? T + p + 4МэВ ; D + D ? 3He + n + 3,3МэВ; D + T ? 4He + n + 17,6МэВ.

Если все ядра в каком-то объёме одновременно вступают в реакцию, энергия выделяется мгновенно. Происходит термоядерный взрыв. В реакторе же реакция синтеза должна протекать медленно. Осуществить управляемый термоядерный синтез до сих пор не удалось, а преимущества он сулит немалые. Энергия, которая выделяется при термоядерных реакциях на единицу массы топлива, в миллионы раз превышает энергию химического топлива и, значит, в сотни раз дешевле. В термоядерной энергетике нет выброса продуктов сгорания в атмосферу и радиоактивных отходов. Наконец, на термоядерной электростанции исключен взрыв. Во время синтеза основная часть энергии (более 75 %) выделяется в виде кинетической энергии нейтронов или протонов. Если замедлить нейтроны в подходящем веществе, оно нагревается; полученную теплоту легко превратить в электрическую энергию. Кинетическая энергия заряженных частиц — протонов — преобразуется в электричество непосредственно. В реакции синтеза ядра Должны соединяться, но они заряжены положительно и, следовательно, по закону Кулона, отталкиваются. Чтобы преодолеть силы отталкивания, даже ядрам дейтерия и трития, имеющим наименьший заряд (Z. = 1), необходима энергия около 10 или 100 кэВ. Ей соответствует температура порядка 108—109 К. При таких температурах любое вещество находится в состоянии высокотемпературной плазмы. С позиций классической физики реакция синтеза невозможна, но здесь на помощь приходит чисто квантовый - туннельный эффект. Вычислено, что температура зажигания, начиная с которой выделение энергии превосходит её потери, для реакции дейтерий— тритий (DТ) равна приблизительно 4,5*107 К, а для реакций дейтерий—дейтерий (DD) — около 4*108 К. Естественно, предпочтительнее реакция DТ. Нагревают плазму электрическим током, лазерным излучением, электромагнитными волнами и другими способами. Но важна не только высокая температура. Чем выше концентрация, тем чаще сталкиваются друг с другом частицы, поэтому может показаться, что для осуществления термоядерных реакций лучше использовать плазму высокой плотности. Однако, если бы в 1 см3 плазмы содержалось 1019 частиц (концентрация молекул в газе при нормальных условиях), давление в ней при температурах термоядерных реакций достигало бы порядка 106 атм. Такого давления не выдерживает ни одна конструкция, а потому плазма должна быть разрежённой (с концентрацией около 1015 частиц в 1 см3). Соударения частиц в этом случае происходят реже, и для поддержания реакции необходимо увеличивать время пребывания их в реакторе, или время удержания. Значит, для осуществления термоядерной реакции необходимо рассматривать произведение концентрации частиц плазмы на время их удержания. Для реакций DD это произведение (так называемый критерий Лоусона) равно 1016 с/см3, а для реакции DТ — 1014с/см3. Следовательно, реакцию DТ реализовать легче, чем DD. Когда начинались исследования плазмы, казалось, что осуществить управляемый синтез удастся быстро. Но со временем выяснилось, что в высокотемпературной плазме происходят сложные процессы и решающую роль играют многочисленные неустойчивости. Сегодня разрабатывается несколько типов устройств, в которых предполагается провести термоядерный синтез. Наиболее перспективными считаются токамаки (сокращение от «ТОроидальная КАмера с Магнитными КАатушками»). Токамак представляет собой гигантский трансформатор, первичная катушка которого намотана на сердечник, а вторичная имеет единственный виток — вакуумную камеру в форме бублика, тора (от лат. TORUS — «выпуклость»), с плазменным шнуром внутри. Система магнитов удерживает шнур в центре камеры, а ток силой в тысячи ампер нагревает его до требуемой температуры. Нейтроны, образующиеся в ходе термоядерной реакции, поглощаются в бланкете — слое вещества, окружающем камеру. Выделяющееся при этом тепло можно использовать для получения электроэнергии. Несмотря на кажущуюся простоту токамака, ни одно устройство подобного типа не дало положительного выхода энергии. Большие надежды возлагаются на проектируемый в настоящее время гигантский токамак ITER. На этой установке, если она будет сооружена к 2005 г., предполагаемая мощность выхода 1,5 • 109 Вт. Среди других проектов следует отметить два: стеллараторы и устройства инерциального удержания плазмы. Магнитное поле сложной формы, удерживающее плазму в круговой камере токамака, противодействует собственному полю плазменного шнура, которое стремится изогнуть траекторию заряженных частиц плазмы. В стеллараторе (от лат. STELLA — Звезда») плазме позволили принять форму, какую она «хочет», и оставили только поле, сжимающее шнур. Вакуумная камера приобрела весьма причудливый вид, а множество магнитных катушек — довольно сложную форму. Эксперименты на стеллараторах идут в разных странах, но добиться нужной температуры и времени удержания плазмы пока не удалось. Принципиально иным является метод инерциального удержания плазмы, основанный на инерции реакционной смеси, которая при мгновенном нагреве (например, лазерным (импульсом) разлетается не сразу. Ампулу, где находится смесь дейтерия с тритием, облучают со всех сторон {лазерными импульсами длительностью до 10-10 с и суммарной мощностью порядка 1020 Вт/см. Оболочка ампулы испаряется, расширяющиеся газы и световое давление сжимают её содержимое почти в 50 тыс. раз. Давление в смеси возрастает до 1 млн. атм, а её плотность — до 50—100 г/см3. При таких условиях начинается термоядерная реакция. Но и на этом пути имеется ряд технологических трудностей, пока не позволяющих превратить экспериментальные лазерные установки в промышленные реакторы.

www.ronl.ru

Реферат Плазма - четвертое состояние вещества

Министерство  образования  и науки Российской Федерации

Федеральное  агентство по образованию

Тихоокеанский государственный экономический университетКафедра физикиРеферат

Тема: Плазма - четвертое состояние веществаВыполнила:

421 Тд

 Патук С.В. Владивосток

2010СодержаниеВведение. 3

1.     Что такое плазма?. 4

1.1.    Наиболее типичные формы плазмы.. 5

2. Свойства и параметры плазмы.. 6

2.1. Классификация. 6

2.2. Температура. 6

2.3. Степень ионизации. 7

2.4. Плотность. 8

2.5. Квазинейтральность. 8

3 Математическое описание. 9

3.1. Флюидная (жидкостная) модель. 9

3.2. Кинетическое описание. 9

3.3. Particle-In-Cell (частица в ячейке) 9

4. Использование плазмы.. 10

Заключение. 11

Список литературы.. 12

Введение

   Агрега́тное состоя́ние — состояние вещества, характеризующееся определёнными качественными свойствами: способностью или неспособностью сохранять объём и форму, наличием или отсутствием дальнего и ближнего порядка и другими. Изменение агрегатного состояния может сопровождаться скачкообразным изменением свободной энергии, энтропии, плотности и других основных физических свойств.

   Известно, что любое вещество может существовать только в одном из трех состояний: твердом, жидком или газообразном, классическим примером чему является вода, которая может быть в виде льда, жидкости и пара. Однако веществ, пре­бывающих в этих считающихся бесспорными и общераспространенными состояниях, если брать всю Вселенную в целом, очень мало. Они вряд ли пре­вышают то, что в химии считается ничтожно малыми следами. Все остальное вещество Вселенной пребывает в так называемом плазменном состоянии. 

1.   Что такое плазма?

   Словом «плазма» (от греч. «плазма» — «оформленное») в середине  XIX

в. стали именовать бесцветную часть крови (без  красных  и  белых  телец)  и

жидкость, наполняющую живые клетки. В 1929  г.  американские  физики  Ирвинг Лёнгмюр (1881—1957) и Леви Тонко  (1897—1971)  назвали  плазмой  ионизованный газ в газоразрядной трубке.

   Английский физик Уильям Крукс (1832—1919), изучавший  электрический

разряд в трубках  с  разрежённым  воздухом,  писал:  «Явления  в  откачанных

трубках открывают для физической науки новый мир, в  котором  материя  может существовать в четвёртом состоянии».

   В  зависимости  от  температуры  любое   вещество   изменяет   своё

состояние. Так, вода при отрицательных (по Цельсию)  температурах  находится в твёрдом состоянии, в интервале от 0 до 100 "С  - в жидком, выше  100  °С—в газообразном. Если температура продолжает расти, атомы и  молекулы  начинают терять свои  электроны  —  ионизуются  и  газ  превращается  в  плазму.  При температурах более 1000000 °С плазма абсолютно ионизована  —  она  состоит только  из   электронов   и   положительных   ионов.   Плазма   —   наиболее распространённое состояние вещества в природе, на неё приходится около 99  % массы Вселенной. Солнце,  большинство  звёзд,  туманности  —  это  полностью ионизованная  плазма.        Внешняя  часть  земной  атмосферы  (ионосфера)   тоже плазма.

   Ещё  выше  располагаются  радиационные  пояса,  содержащие  плазму.

   Полярные сияния, молнии, в том числе  шаровые,  —  всё  это  различные  виды плазмы, наблюдать которые можно в естественных условиях  на  Земле.  И  лишь ничтожную  часть  Вселенной  составляет  вещество  в  твёрдом  состоянии   — планеты, астероиды и пылевые туманности.

   Под плазмой  в  физике  понимают  газ,  состоящий  из  электрически

заряженных и нейтральных частиц, в  котором  суммарный  электрический  заряд равен нулю, т. с. выполнено условие квазинейтральности  (поэтому,  например, пучок электронов, летящих в  вакууме,  не  плазма:  он  несет  отрицательный заряд).

1.1.         Наиболее типичные формы плазмы

Наиболее типичные формы плазмы
Искусственно созданная плазма

Плазменная панель (телевизор, монитор)

Вещество внутри люминесцентных (в т. ч. компактных) и неоновых ламп

Плазменные ракетные двигатели

Газоразрядная корона озонового генератора

Исследования управляемого термоядерного синтеза

Электрическая дуга в дуговой лампе и в дуговой сварке

Плазменная лампа (см. рисунок)

Дуговой разряд от трансформатора Теслы

Воздействие на вещество лазерным излучением

Светящаяся сфера ядерного взрыва

Земная природная плазма

Молния

Огни святого Эльма

Ионосфера

Языки пламени (низкотемпературная плазма)

Космическая и астрофизическая плазма

Солнце и другие звезды (те, которые существуют за счет термоядерных реакций)

Солнечный ветер

Космическое пространство (пространство между планетами, звездами игалактиками)

Межзвездные туманности

2. Свойства и параметры плазмы

   Плазма обладает следующими свойствами:

   Достаточная плотность: заряженные частицы должны находиться достаточно близко друг к другу, чтобы каждая из них взаимодействовала с целой системой близкорасположенных заряженных частиц. Условие считается выполненным, если число заряженных частиц в сфере влияния (сфера радиусом Дебая) достаточно для возникновения коллективных эффектов (подобные проявления — типичное свойство плазмы). Математически это условие можно выразить так:

, где  — концентрация заряженных частиц.

   Приоритет внутренних взаимодействий: радиус дебаевского экранирования должен быть мал по сравнению с характерным размером плазмы. Этот критерий означает, что взаимодействия, происходящие внутри плазмы более значительны по сравнению с эффектами на ее поверхности, которыми можно пренебречь. Если это условие соблюдено, плазму можно считать квазинейтральной. Математически оно выглядит так:

   Плазменная частота: среднее время между столкновениями частиц должно быть велико по сравнению с периодом плазменных колебаний. Эти колебания вызываются действием на заряд электрического поля, возникающего из-за нарушения квазинейтральности плазмы. Это поле стремится восстановить нарушенное равновесие. Возвращаясь в положение равновесия, заряд проходит по инерции это положение, что опять приводит к появлению сильного возвращающего поля, возникают типичные механические колебания.[8] Когда данное условие соблюдено, электродинамические свойства плазмы преобладают над молекулярно-кинетическими. На языке математики это условие имеет вид:

2.1. Классификация

   Плазма обычно разделяется на идеальную и неидеальную, низкотемпературную и высокотемпературную, равновесную и неравновесную, при этом довольно часто холодная плазма бывает неравновесной, а горячая равновесной.

2.2. Температура

   При чтении научно-популярной литературы читатель зачастую видит значения температуры плазмы порядка десятков, сотен тысяч или даже миллионов °С или К. Для описания плазмы в физике удобно измерять температуру не в °С, а в единицах измерения характерной энергии движения частиц, например, в электрон-вольтах (эВ). Для перевода температуры в эВ можно воспользоваться следующим соотношением: 1 эВ = 11600 K (Кельвин). Таким образом становится понятно, что температура в «десятки тысяч °С» достаточно легко достижима.

   В неравновесной плазме электронная температура существенно превышает температуру ионов. Это происходит из-за различия в массах иона и электрона, которое затрудняет процесс обмена энергией. Такая ситуация встречается в газовых разрядах, когда ионы имеют температуру около сотен, а электроны около десятков тысяч K.

   В равновесной плазме обе температуры равны. Поскольку для осуществления процесса ионизации необходимы температуры, сравнимые с потенциалом ионизации, равновесная плазма обычно является горячей (с температурой больше нескольких тысяч K).

   Понятие высокотемпературная плазма употребляется обычно для плазмы термоядерного синтеза, который требует температур в миллионы K.

2.3. Степень ионизации

   Для того, чтобы газ перешел в состояние плазмы, его необходимо ионизировать. Степень ионизации пропорциональна числу атомов, отдавших или поглотивших электроны, и больше всего зависит оттемпературы. Даже слабо ионизированный газ, в котором менее 1 % частиц находятся в ионизированном состоянии, может проявлять некоторые типичные свойства плазмы (взаимодействие с внешнимэлектромагнитным полем и высокая электропроводность). Степень ионизации α определяетя как α = ni/(ni + na), где ni — концентрация ионов, а na — концентрация нейтральных атомов. Концентрация свободных электронов в незаряженной плазме ne определяется очевидным соотношением: ne=<Z> ni, где <Z> — среднее значение заряда ионов плазмы.

   Для низкотемпературной плазмы характерна малая степень ионизации (до 1 %). Так как такие плазмы довольно часто употребляются в технологических процессах, их иногда называют технологичными плазмами. Чаще всего их создают при помощи электрических полей, ускоряющих электроны, которые в свою очередь ионизируют атомы. Электрические поля вводятся в газ посредством индуктивной или емкостной связи (см. индуктивно-связанная плазма). Типичные применения низкотемпературной плазмы включают плазменную модификацию свойств поверхности (алмазные пленки, нитридирование металлов, изменение смачиваемости), плазменное травление поверхностей (полупроводниковая промышленность), очистка газов и жидкостей (озонирование воды и сжигание частичек сажи в дизельных двигателях).

   Горячая плазма почти всегда полностью ионизирована (степень ионизации ~100 %). Обычно именно она понимается под «четвертым агрегатным состоянием вещества». Примером может служитьСолнце.

2.4. Плотность

   Помимо температуры, которая имеет фундаментальную важность для самого существования плазмы, вторым наиболее важным свойством плазмы является плотность. Словосочетание плотность плазмы обычно обозначает плотность электронов, то есть число свободных электронов в единице объема (строго говоря, здесь, плотностью называют концентрацию — не массу единицы объема, а число частиц в единице объема). В квазинейтральной плазме плотность ионов связана с ней посредством среднего зарядового числа ионов : . Следующей важной величиной является плотность нейтральных атомов n0. В горячей плазме n0 мала, но может тем не менее быть важной для физики процессов в плазме. При рассмотрении процессов в плотной, неидеальной плазме характерным параметром плотности становится rs, который определяется как отношение среднего межчастичного расстояния к радиусу Бора.

2.5. Квазинейтральность

   Так как плазма является очень хорошим проводником, электрические свойства имеют важное значение. Потенциалом плазмы или потенциалом пространства называют среднее значение электрического потенциала в данной точке пространства. В случае если в плазму внесено какое-либо тело, его потенциал в общем случае будет меньше потенциала плазмы вследствие возникновения дебаевского слоя. Такой потенциал называют плавающим потенциалом. По причине хорошей электрической проводимости плазма стремится экранировать все электрические поля. Это приводит к явлению квазинейтральности — плотность отрицательных зарядов с хорошей точностью равна плотности положительных зарядов (). В силу хорошей электрической проводимости плазмы разделение положительных и отрицательных зарядов невозможно на расстояниях больших дебаевской длины и временах больших периода плазменных колебаний.

Примером неквазинейтральной плазмы является пучок электронов. Однако плотность не-нейтральных плазм должна быть очень мала, иначе они быстро распадутся за счёт кулоновского отталкивания.

3 Математическое описание

   Плазму можно описывать на различных уровнях детализации. Обычно плазма описывается отдельно от электромагнитных полей.

3.1. Флюидная (жидкостная) модель

   Во флюидной модели электроны описываются в терминах плотности, температуры и средней скорости. В основе модели лежат: уравнение баланса для плотности, уравнение сохранения импульса, уравнение баланса энергии электронов. В двухжидкостной модели таким же образом рассматриваются ионы.

3.2. Кинетическое описание

   Иногда жидкостная модель оказывается недостаточной для описания плазмы. Более подробное описание даёт кинетическая модель, в которой плазма описывается в терминах функции распределения электронов по координатам и импульсам. В основе модели лежит уравнение Больцмана. Уравнение Больцмана неприменимо для описания плазмы заряженных частиц с кулоновским взаимодействием вследствие дальнодействующего характера кулоновских сил. Поэтому для описания плазмы с кулоновским взаимодействием используется уравнение Власова с самосогласованным электромагнитным полем, созданным заряженными частицами плазмы. Кинетическое описание необходимо применять в случае отсутствия термодинамического равновесия либо в случае присутствия сильных неоднородностей плазмы.

3.3. Particle-In-Cell (частица в ячейке)

   Модели Particle-In-Cell являются более подробными чем кинетические. Они включают в себя кинетическую информацию путём слежения за траекториями большого числа отдельных частиц. Плотности эл. заряда и тока определяются путём суммирования частиц в ячейках, которые малы по сравнению с рассматриваемой задачей, но тем не менее содержат большое число частиц. Эл. и магн. поля находятся из плотностей зарядов и токов на границах ячеек.

4. Использование плазмы

        Наиболее широко плазма применяется в светотехнике — в газоразрядных

лампах,  освещающих  улицы,  и  лампах  дневного   света,   используемых   в

помещениях.  А  кроме  того,  в   самых   разных   газоразрядных   приборах:

выпрямителях  электрического  тока,  стабилизаторах  напряжения,  плазменных усилителях и генераторах сверхвысоких частот  (СВЧ),  счётчиках  космических частиц.

        Все так называемые газовые лазеры (гелий-неоновый, криптоновый,  на

диоксиде углерода и т. п.) на самом деле плазменные:  газовые  смеси  в  них

ионизованы электрическим разрядом.

        Свойствами,   характерными   для   плазмы,    обладают    электроны

проводимости  в  металле  (ионы,  жестко  закрепленные   в   кристаллической

решётке,  нейтрализуют  их  заряды),  совокупность  свободных  электронов  и

подвижных  «дырок»  (вакансий)  в  полупроводниках.  Поэтому  такие  системы называют плазмой твёрдых тел.

        Газовую плазму принято разделять на  низкотемпературную  —  до  100

тыс. градусов и  высокотемпературную  —  до  100  млн  градусов.  Существуют генераторы низкотемпературной плазмы — плазмотроны, в  которых  используется электрическая дуга. С помощью плазмотрона можно нагреть почти любой  газ  до 7000—10000  градусов  за  сотые  и  тысячные  доли  секунды.   С   созданием плазмотрона  возникла  новая  область  науки  —  плазменная  химия:   многие химические  реакции  ускоряются  или  идут  только   в   плазменной   струе.

Плазмотроны  применяются  и  в  горнорудной  промышленности,  и  для  резки

металлов.

        Созданы  также   плазменные   двигатели,   магнитогидродинамические

электростанции.  Разрабатываются  различные  схемы   плазменного   ускорения

заряженных частиц.  Центральной  задачей  физики  плазмы  является  проблема управляемого термоядерного синтеза.

        Термоядерными называют реакции синтеза более тяжёлых ядер  из  ядер

лёгких элементов (в первую очередь изотопов водорода - дейтерия D  и  трития

Т), протекающие при очень высоких температурах (» 108 К и выше).

        В естественных условиях термоядерные реакции происходят на  Солнце:

ядра водорода соединяются друг  с  другом,  образуя  ядра  гелия,  при  этом

выделяется   значительное   количество   энергии.   Искусственная    реакция

термоядерного синтеза была осуществлена в  водородной бомбе.

Заключение

   Плазма – ещё малоизученный объект не только в физике, но и в химии (плазмохимии), астрономии и многих других науках. Поэтому важнейшие технические положения физики плазмы до сих пор не вышли из стадии лабораторной разработки. В настоящее время плазма активно изучается т.к. имеет огромное значение для науки и техники. Эта тема интересна ещё и тем, что плазма – четвёртое состояние вещества, о существовании которого люди не подозревали до XX века.

Список литературы

1.      Вурзель Ф.Б., Полак Л.С. Плазмохимия, М, Знание, 1985.

2.     Ораевский Н.В. Плазма на Земле и в космосе, К, Наукова думка, 1980.

3.     ru.wikipedia.org 

bukvasha.ru


Смотрите также