Реферат: Оборудование для обработки проэкспонированных фотоматериалов. Оборудование переработки пленок и его эксплуатация реферат


Оборудование для обработки проэкспонированных фотоматериалов

ОБОРУДОВАНИЕ ДЛЯ ОБРАБОТКИ ПРОЭКСПОНИРОВАННЫХ ФОТОМАТЕРИАЛОВ

1. Полиграфические фотоматериалы

В полиграфической промышленности для машинной обработки используются фотопленки разных типов: контрастные типа «Лайн» —ФТ-41М, ФТ-51М; ФТФ-2 и ФТФ-3 — для фототелеграфных копий газетных полос; ФТ-ФН — для фотонабора; сверхконтрастные типа «Лит» — ФТ-101М и ФТ-111, а также цветная и черно-белая фотобумага.

Основными требованиями к фотопленкам и фотобумаге для машинной обработки являются: наличие высоких физико-механических свойств; сокращение продолжительности обработки. Состав светочувствительных слоёв обеспечивает сохранение проявителя при обработке фотоматериалов разных типов на одной установке.

Необходимыми физико-механическими свойствами фотоматериалов являются малая деформация подложки, высокая стойкость эмульсионного слоя к повышенной температуре рабочих растворов и сушки, малое набухание и высокая механическая прочность эмульсионного и контрслоёв. С целью сокращения продолжительности технологического процесса в фотопленках, созданных для машинной обработки, толщина эмульсионного и контрслоёв уменьшена до 4...6 мкм.

Возможно вы искали - Реферат: Обработка воды флотацией

В состав фотопленок вводят специальные примеси, которые уменьшают возможность накопления зарядов статического электричества.

Лучше всего требованиям машинной обработки удовлетворяют фотопленки с подложкой из полиэтилентерефталата (лавсана) толщиной 50 ... 200 мкм. По сравнению с нитроцеллюлозными и триацетатными фотопленками они обеспечивают постоянную плоскостность во время обработки в рабочих растворах и сушки, и тем самым надежное транспортирование в современных проявочных установках. Лавсановая подложка почти не набухает в растворах, имеет высокую механическую прочность и стойкость к тепловому действию.

Особенностью технологического процесса машинной обработки фотоматериалов (сравнительно с обработкой в кюветах) является стабильность всех стадий обработки, без которой невозможно воспроизведение полученных результатов. Поэтому в проявочных установках необходимо поддерживать постоянство состава и свойств растворов и постоянство установленного режима обработки — температуры растворов, продолжительности отдельных операций, условий перемешивания и фильтрации растворов, промывки и сушки фотоматериалов.

С целью интенсификации процессов машинная обработка фотопленок проводится при повышенной температуре рабочих растворов до 40°С, которая автоматически поддерживается с точностью до 0,1...0,5°С, и температуре сушки до 70°С.

2. Фототехнические пленки четвертого поколения Fuji

Похожий материал - Реферат: Осветление воды осаждением

Обычные пленки благодаря их характеристикам обеспечивают воспроизведение растровых точек с некоторой неравномерностью, характеризуемой терминами твердость и мягкость. Неравномерность точки изменяется в зависимости от типа лазера и оптической плотности получаемых пленок (уровня экспозиции в ФНА). Эта же неравномерность частично обуславливает необходимость линеаризации ФНА для конкретного уровня экспозиции. Например, если Ваш ФНА настроен и линеаризован под плотность 3.5D, a пришедший клиент просит вывести пленки с плотностью 4.0D, то необходимо, строго говоря, нетолько увеличить уровень экспозиции, но и провести линеаризацию заново.

Неравномерность точки требует при контактном копировании тщательного подбора экспозиции для точной передачи полутонов. Обычно выполняемый подбор экспозиции с помощью многопольной шкалы, не учитывая неравномерность точки, дает лишь некоторое условное значение, поэтому для точного подбора экспозиции необходим денситометрический контроль полученных с тестовой формы отпечатков. Еще больше проблем возникает при использовании стохастического (частотно-модулированного) растрирования. Хорошие растровые процессоры (RIP) имеютспециальную процедуру для двухэтапной линеаризации ФНА.

В настоящее время фирмаFuji представляет пленки четвертого поколенияHQSeries. Главное отличие этих пленок — очень «твердая» точка практически вне зависимости от типа лазера.

Пленки обеспечивают высокую четкость воспроизведения, большие значения максимальной оптической плотности и облегчают процесс линеаризации ФНА.

Рекомендуемая фирмойFUJI оптическая плотность для пленокHQSeries при использовании химикатовFUJI составляет 5,2D. Такая высокая плотность обеспечивает стабильность формного процесса и простоту выбора экспозиции для контактного копирования как для регулярного, так и для стохастического растрирования.

Очень интересно - Курсовая работа: Очистка подземных и поверхностных вод по озоно-сорбционной технологии для хозяйственного назначения

Структура всех пленок включает антистатический, противоореольный и защитный слои, а также специальный водонепроницаемый слой, предотвращающий изменение линейных размеров изображения. Защитный слой имеет пористую поверхность, что позволяет уменьшить время при переконтакте на пленку или пластину в два раза.

3. Обработка фотоформ

Наиболее распространенной является такая схема технологического процесса: проявка — фиксирование — промывка — сушка (рис. 1). После выполнения этих операций получают готовое фотографическое изображение (негатив или диапозитив).

Рис. 1. Схема проявочного аппарата типа РПП-50А:

1 — загрузка фотоматериала; 2 — мокрая обработка; 3 — сушка; 4 — выгрузка сухой плёнки

Рассмотрим назначение и физическую суть отдельных технологических операций.

Во время проявления фотографического изображения происходит преобразование скрытого изображения в видимое. Это — основной процесс химико-фотографической обработки светочувствительных слоёв. При одинаковых условиях (качество фотоматериала, правильность экспозиции и др.) от процесса проявления в первую очередь зависит качество фотографического изображения.

Вам будет интересно - Реферат: Проектирование водоочистных комплексов хозяйственно-питьевого водоснабжения

Фиксирование — это растворение и вывод (удаление) из эмульсионного слоя невозобновленного галогенида серебра, той его части, которая не была переведена в серебро при проявлении.

Промывка служит для удаления остатков рабочих растворов и загрязнений из поверхности фотоматериала, которые могло бы испортить изображения при сохранении фотоматериала.

При сушке фотоматериала происходит удаление влаги из эмульсионного слоя до такого состояния, которое отвечает условиям эксплуатации и сохранения материала.

Процесс удаления влаги из фотоматериала сопровождается физико-химическими преобразованиями вещества и изменением его структурно-механических свойств. Это значит, что процесс сушки является важным этапом в технологическом процессе обработки фотоматериала.

Для достижения оптимальных результатов машинной обработки при изготовлении проявочных растворов используются химикаты высокой чистоты. Рабочие растворы должны быть высокостабильными по своим свойствам. В процессе работы может осуществляться их непрерывная фильтрация.

4. Основные узлы проявочных машин

Похожий материал - Дипломная работа: Промышленные швейные машины

В состав проявочной машины входят системы транспортирования фотоматериалов, циркуляции и термостатирования рабочих растворов, корректирования рабочих свойств растворов, а также сушильное и электрическое оборудование.

Система транспортирования фотоматериала. Она осуществляет его перемещение во время обработки пленки. Основные требования к системе — обеспечение надежного перемещения пленки на всех стадиях ее обработки. Устройства транспортирования не должны заминать пленку или деформировать ее светочувствительный слой, они должны быть стойкими к действию рабочих растворов.

Различают устройства транспортирования с периодическим перемещением пленки и непрерывным. В первых, пленка непосредственно не затрагивает механизм транспортирования, в них можно обрабатывать фотоматериалы на тонких подложках и с малой прочностью эмульсионного слоя. Тем не менее, эти устройства довольно сложные и ненадежные в работе. Второй тип построения транспортирования обеспечивает более высокую производительность и качество обработки пленки, он более надежный, простой и удобный при обслуживании, имеет меньшую металлоемкость.

Непрерывное перемещение пленки обеспечивается спаренными или строенными валиками или пластмассовыми лентами, между которыми двигается пленка (рис. 2.35). Во время перемещения может быть исключено проскальзывание пленки, поэтому все валики связаны друг с другом с помощью шестерен. Скорость транспортирования пленки может быть стабильной.

cwetochki.ru

Реферат - Оборудование для обработки проэкспонированных фотоматериалов

ОБОРУДОВАНИЕ ДЛЯ ОБРАБОТКИ ПРОЭКСПОНИРОВАННЫХ ФОТОМАТЕРИАЛОВ

1. Полиграфические фотоматериалы

В полиграфической промышленности для машинной обработки используются фотопленки разных типов: контрастные типа «Лайн» —ФТ-41М, ФТ-51М; ФТФ-2 и ФТФ-3 — для фототелеграфных копий газетных полос; ФТ-ФН — для фотонабора; сверхконтрастные типа «Лит» — ФТ-101М и ФТ-111, а также цветная и черно-белая фотобумага.

Основными требованиями к фотопленкам и фотобумаге для машинной обработки являются: наличие высоких физико-механических свойств; сокращение продолжительности обработки. Состав светочувствительных слоёв обеспечивает сохранение проявителя при обработке фотоматериалов разных типов на одной установке.

Необходимыми физико-механическими свойствами фотоматериалов являются малая деформация подложки, высокая стойкость эмульсионного слоя к повышенной температуре рабочих растворов и сушки, малое набухание и высокая механическая прочность эмульсионного и контрслоёв. С целью сокращения продолжительности технологического процесса в фотопленках, созданных для машинной обработки, толщина эмульсионного и контрслоёв уменьшена до 4...6 мкм.

В состав фотопленок вводят специальные примеси, которые уменьшают возможность накопления зарядов статического электричества.

Лучше всего требованиям машинной обработки удовлетворяют фотопленки с подложкой из полиэтилентерефталата (лавсана) толщиной 50 … 200 мкм. По сравнению с нитроцеллюлозными и триацетатными фотопленками они обеспечивают постоянную плоскостность во время обработки в рабочих растворах и сушки, и тем самым надежное транспортирование в современных проявочных установках. Лавсановая подложка почти не набухает в растворах, имеет высокую механическую прочность и стойкость к тепловому действию.

Особенностью технологического процесса машинной обработки фотоматериалов (сравнительно с обработкой в кюветах) является стабильность всех стадий обработки, без которой невозможно воспроизведение полученных результатов. Поэтому в проявочных установках необходимо поддерживать постоянство состава и свойств растворов и постоянство установленного режима обработки — температуры растворов, продолжительности отдельных операций, условий перемешивания и фильтрации растворов, промывки и сушки фотоматериалов.

С целью интенсификации процессов машинная обработка фотопленок проводится при повышенной температуре рабочих растворов до 40°С, которая автоматически поддерживается с точностью до 0,1...0,5°С, и температуре сушки до 70°С.

2. Фототехнические пленки четвертого поколения Fuji

Обычные пленки благодаря их характеристикам обеспечивают воспроизведение растровых точек с некоторой неравномерностью, характеризуемой терминами твердость и мягкость. Неравномерность точки изменяется в зависимости от типа лазера и оптической плотности получаемых пленок (уровня экспозиции в ФНА). Эта же неравномерность частично обуславливает необходимость линеаризации ФНА для конкретного уровня экспозиции. Например, если Ваш ФНА настроен и линеаризован под плотность 3.5D, a пришедший клиент просит вывести пленки с плотностью 4.0D, то необходимо, строго говоря, нетолько увеличить уровень экспозиции, но и провести линеаризацию заново.

Неравномерность точки требует при контактном копировании тщательного подбора экспозиции для точной передачи полутонов. Обычно выполняемый подбор экспозиции с помощью многопольной шкалы, не учитывая неравномерность точки, дает лишь некоторое условное значение, поэтому для точного подбора экспозиции необходим денситометрический контроль полученных с тестовой формы отпечатков. Еще больше проблем возникает при использовании стохастического (частотно-модулированного) растрирования. Хорошие растровые процессоры (RIP) имеютспециальную процедуру для двухэтапной линеаризации ФНА.

В настоящее время фирмаFuji представляет пленки четвертого поколенияHQSeries. Главное отличие этих пленок — очень «твердая» точка практически вне зависимости от типа лазера.

Пленки обеспечивают высокую четкость воспроизведения, большие значения максимальной оптической плотности и облегчают процесс линеаризации ФНА.

Рекомендуемая фирмойFUJI оптическая плотность для пленокHQSeries при использовании химикатовFUJI составляет 5,2D. Такая высокая плотность обеспечивает стабильность формного процесса и простоту выбора экспозиции для контактного копирования как для регулярного, так и для стохастического растрирования.

Структура всех пленок включает антистатический, противоореольный и защитный слои, а также специальный водонепроницаемый слой, предотвращающий изменение линейных размеров изображения. Защитный слой имеет пористую поверхность, что позволяет уменьшить время при переконтакте на пленку или пластину в два раза.

3. Обработка фотоформ

Наиболее распространенной является такая схема технологического процесса: проявка — фиксирование — промывка — сушка (рис. 1). После выполнения этих операций получают готовое фотографическое изображение (негатив или диапозитив).

Рис. 1. Схема проявочного аппарата типа РПП-50А:

1— загрузка фотоматериала; 2— мокрая обработка; 3— сушка; 4— выгрузка сухой плёнки

Рассмотрим назначение и физическую суть отдельных технологических операций.

Во время проявления фотографического изображения происходит преобразование скрытого изображения в видимое. Это — основной процесс химико-фотографической обработки светочувствительных слоёв. При одинаковых условиях (качество фотоматериала, правильность экспозиции и др.) от процесса проявления в первую очередь зависит качество фотографического изображения.

Фиксирование — это растворение и вывод (удаление) из эмульсионного слоя невозобновленного галогенида серебра, той его части, которая не была переведена в серебро при проявлении.

Промывка служит для удаления остатков рабочих растворов и загрязнений из поверхности фотоматериала, которые могло бы испортить изображения при сохранении фотоматериала.

При сушке фотоматериала происходит удаление влаги из эмульсионного слоя до такого состояния, которое отвечает условиям эксплуатации и сохранения материала.

Процесс удаления влаги из фотоматериала сопровождается физико-химическими преобразованиями вещества и изменением его структурно-механических свойств. Это значит, что процесс сушки является важным этапом в технологическом процессе обработки фотоматериала.

Для достижения оптимальных результатов машинной обработки при изготовлении проявочных растворов используются химикаты высокой чистоты. Рабочие растворы должны быть высокостабильными по своим свойствам. В процессе работы может осуществляться их непрерывная фильтрация.

4. Основные узлы проявочных машин

В состав проявочной машины входят системы транспортирования фотоматериалов, циркуляции и термостатирования рабочих растворов, корректирования рабочих свойств растворов, а также сушильное и электрическое оборудование.

Система транспортирования фотоматериала. Она осуществляет его перемещение во время обработки пленки. Основные требования к системе — обеспечение надежного перемещения пленки на всех стадиях ее обработки. Устройства транспортирования не должны заминать пленку или деформировать ее светочувствительный слой, они должны быть стойкими к действию рабочих растворов.

Различают устройства транспортирования с периодическим перемещением пленки и непрерывным. В первых, пленка непосредственно не затрагивает механизм транспортирования, в них можно обрабатывать фотоматериалы на тонких подложках и с малой прочностью эмульсионного слоя. Тем не менее, эти устройства довольно сложные и ненадежные в работе. Второй тип построения транспортирования обеспечивает более высокую производительность и качество обработки пленки, он более надежный, простой и удобный при обслуживании, имеет меньшую металлоемкость.

Непрерывное перемещение пленки обеспечивается спаренными или строенными валиками или пластмассовыми лентами, между которыми двигается пленка (рис. 2.35). Во время перемещения может быть исключено проскальзывание пленки, поэтому все валики связаны друг с другом с помощью шестерен. Скорость транспортирования пленки может быть стабильной.

Рис. 2. Устройства транспортирования пленки

Валиковые устройства транспортирования пленки (рис. 2., а, б) состоят из отдельных пар валиков 1, между которыми протягивается фотопленка 2. Надежное ее перемещение гарантируется при толщине основы 0,1...0,25 мм. Транспортировочные валики подпружинены. После обработки пленки в ванне она захватывается передающими валиками 3, которые выводят ее из ванны и передают с помощью направляющей 4 в следующую секцию обработки 5.

В устройствах транспортирования ленточного типа (рис. 2. в) пленка перемещается перфорированными лентами, которыми она прижимается к вращающимся валикам. Пленка касается валиков эмульсионным боком. Ленточный конвейер надежно защищает пленку (в особенности тонкую) от скручивания, образования складок или перекосов во время движения.

Система циркуляции и термостатирования рабочих растворов.

Онаобеспечивает непрерывное интенсивное перемешивание и фильтрацию растворов и стабильную поддержку их температуры во всем объеме бака.

На рис. 3 показана упрощенная схема замкнутого контура циркуляции раствора. Принцип действия системы состоит в том, что раствор откачивается из бака 1 центробежным насосом 2 и через фильтр 3 подается в теплообменник 4, изкоторого потом по трубе 8 направляется снова в бак машины. Такой замкнутый цикл циркуляции растворов осуществляется в большинства современных проявочных машин.

Рис. 3. Упрощенная схема замкнутого контура циркуляции раствора

фотоматериал пленка фотоформа проявочный

Система термостатирования рабочих растворов обеспечивает непрерывный контроль температуры и поддержание ее с необходимой точностью. Система включает элементы для нагрева и охлаждения раствора, блок контроля температуры 6 (см. рис. 3) с термодатчиком 7 и исполнительные элементы 5 (пусковое реле и электромагнитные вентили).

В полиграфических проявочных машинах электронагреватели и змеевики охлаждения располагаются, как правило, непосредственно в баках проявителя и фиксажа. Как хладагент в змеевике наиболее часто используется холодная вода из водопроводной сети, температура которой должна быть ниже, чем температуры раствора не менее чем на 6°С. В противном случае необходимо использовать установки для охлаждения воды, например холодильный агрегат. Рабочая температура проявителя может поддерживаться с точностью ±(0,1...0,5)°С.

Температура фиксажа поддерживается с меньшей точностью. Поэтому с целью экономии электроэнергии для его термостатирования применяются более простые системы, например бак с двойным дном, через пустоту которого пропускается вода нужной температуры.

В большинстве проявочных машинах в качестве теплоносителя используется обратная (оборотная) вода. В этом случае электронагреватели и змеевики охлаждения располагаются в отдельной ванной с водой. Теплообменная вода циркулирует по замкнутому контуру и передает теплоту рабочим растворам через стенки двойного дна или через теплообменник, построенный по схеме «труба в трубе». При этом в одной из них течет вода, а в другой — рабочий раствор. Датчик терморегулятора может находиться в баке с раствором или в теплообменнике.

При увеличении или уменьшении температуры раствора блок контроля температуры включает охлаждение или нагрев теплообменного оборудования.

Если внутренняя труба (змеевик) выполнена из металла (нержавеющий стали), то практически отсутствующее тепловое сопротивление перехода между двумя ёмкостями, в одной из них находится фотообрабатывающий раствор, а в другой — хладоагент, который подается в теплообменник.

Изменение регулированной величины происходит спустя некоторое время, поскольку элементы для нагрева, холодильное оборудование и термодатчик имеют некоторую инерционность. Вследствие этого наблюдается колебание температуры относительно заданной, что определяет точность системы термостатирования растворов. В качестве термодатчиков используются терморезисторы, которые вводятся в одно плечо мостика Уитстона.

Системы корректирования рабочих свойств растворов.

Эти системы бывают трех типов: полуавтоматические, автоматические и с подачей примесей вручную. Нужная доза вручную отмеривается мензуркой или определяется временем работы дозирующего устройства. Качество корректирования при этом зависит от квалификации оператора.

В полуавтоматических системах оператор определяет количество примесей с помощью таблиц, построенных на основе известных соотношений между количеством пленки и количеством процентов проэкспонированных плоскостей со степенью потерь рабочих свойств обрабатываемых растворов. Этот более объективный метод, но качество коррекции также зависит от квалификации оператора.

В автоматических системах используются специальные датчики для определения степени почернения обработанной пленки. Информация о формате и степени почернения пленки, которая поступает из датчиков, подается в систему управления, которая определяет дозу и время введения закрепляющих примесей.

Применяются электронные, магнитные и электроннооптические датчики. Первые два вида датчиков определяют только площадь обработанной пленки и потому не обеспечивают высокого качества коррекции растворов. Электроннооптические датчики учитывают дополнительно степень почернения пленки и обеспечивают высокую стабильность рабочих свойств растворов. На рис. 4 показано фотоэлектрическое оборудование для контроля проявления фотопленки 3, которая проходит под рейкой с датчиками (светодиодами) 2, которые просвечивают пленку инфракрасным излучением. Рейка с фотоприемниками (фотодиодами) 4 расположена под пленкой и воспринимает это излучение 1. Сила электрического сигнала в любом фотодиоде пропорциональна почернению пленки в зоне действия соответствующего датчика, то есть количеству проявленного серебра. Электрические сигналы фотодиодов поступают в электронное вычислительное оборудование, которое по этим сигналам вычисляет объем примеси фиксажа и частоту введения примесей в проявитель.

Внесение примесей в рабочий раствор приводит к изменению его температуры. Наибольшее ее отклонение будет при одновременной подаче примесей в раствор проявителя, поскольку дозирующие насосы, которые подают корректирующую и противоокислюющую примеси, работают независимо друг от друга.

Изменение температуры рабочего раствора при внесении примесей не должно превышать заданную точность поддержки его температуры.

Сушильное оборудование. В полиграфических проявочных машинах оно может обеспечивать высокую интенсивность процесса с одновременным обеспечением «мягкого» режима сушки. Этим требованиям наиболее соответствует конвективний способ сушки, по которому она осуществляется благодаря процессам тепло — и массообмена влажного материала и воздуха. Интенсивность процесса зависит от температуры воздуха, относительной его влажности и скорости движения.

Сушильное оборудование состоит из камеры сушки, калорифера с электронагревателями подогрева воздуха и вентилятора для подачи воздуха в камеру сушки. Воздух подается на пленку через специальные сопла или через трубки с отверстиями, в некоторых устройствах он нагнетается с помощью лопастных вентиляторов. Воздух подогревается электронагревателями, размещенными непосредственно в камере сушки, в которую оно поступает через фильтры. Скорость подачи воздуха на поверхность фотоматериала регулируется с помощью заслонок или шиберов.

Системы автоматики и блокировки. В проявочных машинах предусмотрены автоматические устройства контроля и поддержки температуры рабочих растворов и воздуха в секции сушки, стабилизации скорости перемещения фотоматериала и оборудование для корректирования рабочих свойств обрабатывающих растворов.

Системы блокирования выключают привод машины при выходе из строя транспортировочного оборудования или задержки в нем фотоматериала и предотвращают включению электронагревателей в секции мокрой обработки при отключенных циркуляционных насосах, а также включению калорифера без включения вентилятора и выключения систем циркуляции в случае отсутствия растворов в баках машины.

www.ronl.ru

Основы технологии производства рукавных полиэтиленовых пленок

Производство пленок из полиэтилена (термоусадочной, стретч, пленочных изделий) в настоящее время представляет большой практический интерес и имеет хорошие экономические перспективы роста объемов производства. Полиэтиленовая ленка является прекрасным упаковочным материалом, допущена к контакту с пищевыми продуктами Минздравсоцразвития РФ, широко используется для групповой упаковки алкогольных и прохладительных напитков, молочных продуктов, замороженной птицы, колбас и сыров, а также целого ряда других промышленных товаров народного потребления и производства пленочных изделий, пакетов: строительные материалы и инструменты, групповая упаковка лекарственных препаратов и др.

Достоинство такого рода упаковки заключается в относительной простоте самого процесса упаковки, ее прочности, эстетичности при относительно небольшой стоимости. Кроме того, можно отметить доступную сырьевую базу, простоту и экологичность утилизации использованной пленки и отходов ее производства.

В настоящее время в нашей стране потребность в пленке и пленочных изделиях удовлетворяется, в основном, за счет местных производителей, а также, частично, за счет импорта из стран дальнего и ближнего зарубежья.

Развитие перспективного направления малого бизнеса требует понимания теоретических основ переработки полимеров.

Описание основной сырьевой базы

ПЭНД (HDPE, 2) - пленки более жесткие, прочные по сравнению с пленками из полиэтилена высокого давления, более мутные и полупрозрачные. Температура размягчения ПЭНД выше, чем у ПЭВД (121°C), поэтому он выдерживает стерилизацию паром. Морозостойкость примерно такая же, как и у ПЭВД (-60°C). Прочность при растяжении и сжатии выше, чем у ПЭВД, сопротивление удару и раздиру - ниже. Из-за линейной структуры макромолекулы ПЭНД ориентируются в направлении течения, поэтому сопротивление раздиру в продольном направлении пленок значительно ниже, чем в поперечном направлении. Проницаемость ПЭНД ниже, чем у ПЭВД, примерно в 5-6 раз. По химической стойкости пленки из ПЭНД превосходят пленки из ПЭВД, особенно по стойкости к маслам и жирам. Качество готовых изделий (пленки и пленочные изделия) определяется, прежде всего, качеством исходного сырья, его постоянными реологическими характеристиками и качеством пластикации в материальном цилиндре экструдера. При этом особое внимание уделяется улучшению качества смешения, получению гомогенного расплава, постоянной объемной производительности. В качестве одного из вариантов улучшения качества расплава компанией Kung Hsing разрабатываются и постоянно совершенствуются форма и конструкция пластицирующих систем применительно к конкретному материалу.

ПЭВД (LDPE, 4) - пленки обладают комплексом таких свойств, как прочность при растяжении и сжатии, стойкость к удару и раздиру, сохраняют прочность при низких температурах (-60°C). Пленки водо- и паронепроницаемы, газопроницаемы, поэтому непригодны для упаковки продуктов, чувствительных к окислению. Изделия из ПЭВД имеют высокую химическую стойкость к кислотам, щелочам и неорганическим растворителям, низкую стойкость к углеводородам, галогенированным углеводородам, маслам и жирам, обладают хорошей свариваемостью нагретым инструментом. Относительно низкая температура размягчения ПЭВД ограничивает область применения материалов для стерилизации паром. В силу химической природы полиэтилена поверхность пленок гидрофобная, поэтому для печати любым из методов необходимо осуществляться предварительную обработки поверхности коронным разрядом электрического тока. Наиболее распространенными для пленок являются методы флексографической печати, тампонной, глубокой и трафаретной печати.

ЛПЭВД (LLDPE, 4) применяется практически во всех областях производства пленки, как в чистом виде, так и в различных смесях с полиэтиленом низкой или высокой плотности, для получения растягивающейся «стретч» пленки. Использование ЛПЭВД позволяет значительно уменьшить толщину пленки на 20-40% при сохранении прочностных характеристик. Стретч пленки из ЛПЭВД имеют меньшую по сравнению с пленками из ПВХ и СЭВА липкость. Данный недостаток устраняется введением в полимер увеличивающих липкость добавок, либо приданием поверхности пленки шероховатости механическим путем. ЛПЭВД применяют в качестве одного из слоев при изготовлении многослойных пленок.

Основной состав и конструкция технологического оборудования

Экструзия это непрерывный технологический процесс, заключающийся в продавливании расплава термопластичного материала через формующий инструмент (головку), с последующим калиброванием и охлаждением для получения изделия с заданной геометрической формой.

Для подготовки расплава при производстве рукавных, а также плоскощелевых пленок можно использовать следующие виды экструдеров: одношнековые, двухшнековые, планетарные, дисковые, комбинированные, каскадные.

По характеру процессов, протекающих в канале материального цилиндра одношнекового экструдера, можно условно выделить несколько зон (Рис. 1): питания, плавления и дозирования.

Рис. 1. Общий вид шнека и условное расположение функциональных зон

I- зона питания, II - зона плавления, III - зона дозирования.

Зона питания. Полимер в виде гранул или порошка поступает из бункера, расположенного над экструдером в загрузочную воронку. Под действием гравитационных сил и сил трения (за счет разницы коэффициентов трения полимера к шнеку и цилиндру, при этом коэффициент трения полимерного материала к шнеку должен быть меньше, чем к цилиндру) гранулы продвигаются вдоль. По мере движения полимера вдоль в материале развиваются высокие сдвиговые напряжения, вызывающие дополнительное нагревание полимера (саморазогрев). Часть тепла подводится конвекцией от нагревателей различной конструкции (индукционные, инфракрасные и т.д.). Гранулы уплотняются, нагреваются, частично плавятся.

Зона питания располагается после зоны загрузки. Зона загрузки обычно имеет продольные канавки для улучшения подачи гранул, а также водяное охлаждение, чтобы гранулы материала при контакте со шнеком не прилипали к его поверхности и не препятствовали поступлению других гранул. В случае неправильной работы или отсутствия водяного охлаждения зоны загрузки возможно образование так называемого "козла", со всеми вытекающими последствиями его устранения и чистки оборудования.

Зона плавления. Благодаря уменьшению глубины нарезки шнека в этой зоне, уменьшается свободный объем витка, происходит дальнейшее уплотнение и расплавление частиц полимера до расплавленной массы.

Зона дозирования. Расплав полимера в зоне дозирования подвергается интенсивному смесительному воздействию благодаря специальным конструктивным элементам шнека. В этой зоне глубина нарезки шнека минимальная. Отношение объема витка в зоне дозирования к объему витка в зоне питания определяет коэффициент сжатия. Для различных материалов конструируются шнеки с индивидуальным значением коэффициента сжатия для получения оптимальных реологических характеристик расплава полимера.

Способ производства рукавной пленки по схеме «снизу-вверх» применяют при изготовлении пленок практически любой ширины. Схема производства «сверху-вниз» рациональна для производства узких, тонких пленок. Горизонтальный прием рукава представляет интерес при изготовлении, например, толстых газонаполненных (вспененных) пленок.

Технологическая линия для получения рукавной ПЭНД пленки по схеме «снизу-вверх» компании Kung Hsing модели KS-FE50 представлена на рис. 2.

Рис. 2. Общий вид экструзионной линии KUNG HSING KS-FE50.

1 – автоматический загрузчик, 2 – бункер, 3 – экструдер, 4 – экструзионная головка, 5 – кольцо охлаждения, 6 – стабилизатор, 7 – корзина, 8 – складывающие щеки, 9 – приемное устройство, 10 – направляющие ролики, 11 – устройство обработки пленки коронным разрядом, 12 – устройство намотки, 13 – панель управления, 14 – башня.

Технологическая линия для получения рукавной ПЭВД пленки по схеме «снизу-вверх» Kung Hsing модели KS-FLL65 представлена на рис. 3.

Рис. 3. Общий вид экструзионной линии KUNG HSING KS-FLL65.

1 – автоматический загрузчик, 2 – бункер, 3 – экструдер, 4 – экструзионная головка, 5 – кольцо охлаждения, 6 – корзина, 7 – складывающие щеки, 8 – приемное устройство, 9 – направляющие ролики, 10 – устройство намотки, 11 – панель управления, 12 – башня.

Краткое описание технологического процесса производства рукавной пленки по схеме «снизу-вверх»

Сырье в виде основного полимерного материала, добавок и пигментов подается автоматическим загрузчиком из транспортной тары (мешки, контейнеры «биг-бэг» и др.) в бункер, расположенный над экструдером. Из бункера сырье поступает в материальный цилиндр одношнекового экструдера, где уплотняется, плавится, интенсивно перемешивается. Из экструдера через фильтр и переходник материал попадает в экструзионную головку, где происходит формирование однородного потока расплава полимера заданной геометрической формы и выходит через кольцевую щель в виде кольцевой цилиндрической заготовки. Затем заготовка раздувается до необходимых размеров постоянным объемом воздуха внутри баллона. Для изменения размеров получаемой пленки достаточно открыть подачу воздуха внутрь баллона через воздуховод в центре дорна, или сделать одно/несколько сквозных отверстий в баллоне. За счет разницы давлений по обе стороны пленки диаметр рукава уменьшится. Охлаждение рукава осуществляется с потоком воздуха из нагнетаемого воздуходувкой через зазор кольца охлаждения. Далее пленочный рукав проходит через стабилизационную корзину, складывающие щеки. В сложенном виде пленка протягивается через приемное устройство, направляющие ролики, устройство обработки пленки коронным разрядом и подается на устройство намотки.

К основным технологическим параметрам, влияющим на физико-механические свойства пленки, относятся кратность вытяжки, степень ориентации полимера, интенсивность охлаждения пленки, расположение линии кристаллизации, равномерность толщины получаемой пленки.

Получение продукции высокого качества невозможно без обеспечения стабильной и надежной работы оборудования в целом и отдельных устройств, механизмов и контролирующих систем. Внедрение различных систем механизации и автоматизации позволяет снизить издержки производства, максимально снизить долю ручного немеханизированного труда обслуживающего персонала, устранить негативное влияние так называемого человеческого фактора.

Но даже в условиях высокоавтоматизированных производств получение высококачественных пленок во многом зависит от квалификации и опыта оператора, обслуживающего экструзионную линию.

Список литературы

www.neuch.ru


Смотрите также