Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

9. Ньютоновские и неньютоновские жидкости, их виды и характеристика. Ньютоновские и неньютоновские жидкости реферат


Ньютоновские и неньютоновские жидкости.

У большинства жидкостей (вода, низкомолекулярные органические соединения, истинные растворы, расплавленные металлы и их соли) коэффициент вязкости зависит только от природы жидкости и температуры. Такие жидкости называются ньютоновскими и силы внутреннего трения, возникающие в них, подчиняются закону Ньютона (формула 11).

У некоторых жидкостей, преимущественно высокомолекулярных (например, растворы полимеров) или представляющих дисперсионные системы (суспензии и эмульсии),  зависит также от режима течения - давления и градиента скорости. При их увеличении вязкость жидкости уменьшается вследствие нарушения внутренней структуры потока жидкости. Их вязкость характеризуют так называемым условным коэффициентом вязкости, который относится к определенным условиям течения жидкости (давление, скорость). Такие жидкости называются структурно вязкими или неньютоновскими.

1.4. Течение вязкой жидкости. Формула Пуазейля.

Занимаясь исследованием кровообращения, французский врач и физик Пуазейль пришел к необходимости количественного описания процессов течения вязкой жидкости вообще. Установленные им для этого случая закономерности имеют важное значение для понимания сущности гемодинамических явлений и их количественного описания.

Пуазейль установил, что вязкость жидкости может быть определена по объему жидкости, протекающей через капиллярную трубку. Этот метод применим только к случаю ламинарного течения жидкости.

Пусть на концах вертикальной капиллярной трубки длиной lи радиусомRсоздана постоянная разность давленийр. Выделим внутри капилляра столбик жидкости радиусомrи высотойh. На боковую поверхность этого столбика действует сила внутреннего трения:

(17)

Рис. 6 Схема для вывода формулы Пуазейля.

Еслир1ир2– давления на верхнее и нижнее сечения соответственно, то силы давления на эти сечения будут равны:

F1=p1r2 и F2=p2r2.

Сила тяжести равна Fтяж=mgh=r2gl.

При установившемся движении жидкости, согласно второму закону Ньютона:

Fтр+Fдавления+Fтяж=0,

Учитывая, что (р1-р2)=р,dv равно:

Интегрируем:

Постоянную интегрирования находим из условия, что при r=Rскоростьv=0 (слои, прилегающие непосредственно к трубе, неподвижны):

Скорость частиц жидкости в зависимости от расстояния от оси равна:

Объем жидкости, протекающий через некоторое сечение трубки в пространстве между цилиндрическими поверхностями радиусами rи r+drза время t, определяется по формулеdV=2rdrvtили:

Полный объем жидкости, протекающей через сечение капилляра за время t:

(19)

В случае, когда пренебрегаем силой тяжести жидкости (горизонтальный капилляр), объем жидкости, протекающий через сечение капилляра, выражается формулой Пуазейля:

(20)

Формулу 20 можно преобразовать: разделим обе части этого выражения на время истечения t. Слева получим объемную скорость течения жидкости Q (объем жидкости, протекающий через сечение за единицу времени). Величину8l/ 8R4обозначим через Х..Тогда формула 20 принимает вид:

(21)

В такой записи формула Пуазейля (ее еще называют уравнением Гагена-Пуазейля) аналогична закону Ома для участка электрической цепи.

Можно провести аналогию между законами гидродинамики и законами протекания электрического тока по электрическим цепям. Объемная скорость течения жидкости Q является гидродинамическим аналогом силы электрического тока I.Гидродинамическим аналогом разности потенциалов1-2является перепад давленийР1 - Р2. Закон ОмаI =(1-2)/Rимеет своим гидродинамическим аналогом формулу 20. ВеличинаХпредставляет собойгидравлическое сопротивление- аналог электрического сопротивления R.

studfiles.net

Ньютоновские и неньютоновские жидкости

Количество просмотров публикации Ньютоновские и неньютоновские жидкости - 507

Рис. 24.Агрегацияэритроцитовпри патологии крови
Ньютоновские жидкости – в этих жидкостях вязкость не зависит от градиента скорости. Οʜᴎ подчиняются уравнению Ньютона (вода, водные растворы, низкомолекулярные органические соединœения ‑ этиловый спирт, ацетон).

Неньютоновские жидкости - ϶ᴛᴏ жидкости, для которых вязкость зависит от режима течения и градиента скорости. Это высокомолекулярные органические соединœения, суспензии, эмульсии. Эти жидкости состоят из сложных и крупных молекул, которые могут образовывать пространственные структуры. Этот вид вязкости много больше, чем у ньютоновских жидкостей. Здесь работа затрачивается не только на преодоление сил трения между слоями, но и на разрушение структурных образований.

Цельная кровь (суспензия элементов в белковом растворе – плазме) является неньютоновской жидкостью. Ее вязкость тем выше, чем медленнее она течет. В основном это обусловлено агрегацией эритроцитов (рис. 24). В неподвижной крови эритроциты образуют, так называемые ʼʼМонетные столбикиʼʼ. При быстром течении крови агрегаты эритроцитов распадаются и вязкость уменьшается.

а) Ламинарное течение. Течение крови в артериях в норме является ламинарным, ᴛ.ᴇ. упорядоченным.

Рассмотрим ламинарное течение ньютоновской жидкости в трубе радиусом R и длиной L (рис. 25).

Рис. 25.
Важно заметить, что для сохранения постоянного режима течения нужен перепад давлений (P1–P2). Выделим цилиндрический слой радиусом r. Течение жидкости в нем тормозится под действием силы трения, пропорциональной вязкости и площади боковой поверхности , а также градиенту скорости ; (см. 18.1). Силу трения можно найти через разность давлений:

Приравняем правые части выражений для Fтр и разделим переменные:

Проинтегрируем это выражение

Поменяем местами пределы интегрирования для .

Получим следующее выражение для скорости:

(19.1)

Это выражение показывает, что скорость от осœевой линии до стенки трубы меняется по параболическому закону (рис. 26).

Рис. 26.Скорости слоев через трубку жидкости распределœены

по параболе. На частицы действует сила F,

которая толкает ее к центру трубки

Низкая скорость около стенки означает, что давление здесь высокое в соответствие с уравнением Бернулли, в центре трубы минимальное. В связи с этим частицы (к примеру, клетки крови) будут испытывать силу, толкающую их к центру трубы. По этой же причинœе клетки крови скапливаются вдоль оси потока, а плазма (малая вязкость) – по его периферии. Толщина плазмы составляет 0,004–0,04 мм. Эритроциты в данный слой практически не попадают. Плазма играет роль смазки, благодаря которой сопротивление движению эритроцитов снижается. Чем тоньше сосуд, тем более выражено снижение сопротивления.

б) Турбулентное течение - ϶ᴛᴏ хаотическое, крайне нерегулярное, неупорядоченное течение. Элементы жидкости совершают движение по сложным траекториям, что приводит к перемешиванию. При турбулентном течении эритроциты, которые обычно ориентированы своей длинной осью по направлению потока, переориентируются и располагаются хаотически. При таком движении местное изменение давления вызывает колебательное движение жидкости, ĸᴏᴛᴏᴩᴏᴇ сопровождается шумом. Турбулентное движение приводит к дополнительной работе сердца. Шум при турбулентности должна быть использован для диагностирования заболевания. Шум прослушивается, к примеру, на плечевой артерии при измерении давления крови.

referatwork.ru

Доклад - Изучение некоторых свойств жидкостей

Изучение некоторых свойств жидкости

Цель: Изучение свойств жидкости

1. Введение: жидкость окружает везде и всегда. Сами люди состоят из жидкости, вода дает нам жизнь, из воды мы вышли и к воде всегда возвращаемся. Но что же такое жидкость, с научной точки зрения жидкость это — одно из агрегатных состояний вещества. Основным свойством жидкости является, то, что она способна менять свою форму под действием механического воздействия. Жидкости бывают идеальные и реальные. Идеальные — невязкие жидкости, обладающие абсолютной подвижностью, т.е. отсутствием сил трения и касательных напряжений и абсолютной неизменностью, а объёме под воздействием внешних сил. Реальные — вязкие жидкости, обладающие сжимаемостью, сопротивлением, растягивающим и сдвигающим усилиям и достаточной подвижностью, т.е. наличием сил трения и касательных напряжений.

2. Характеристика жидкого состояния: Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое. Жидкости бывают идеальные и реальные. Идеальные — невязкие жидкости, обладающие абсолютной подвижностью, т.е. отсутствием сил трения и касательных напряжений и абсолютной неизменностью, а объёме под воздействием внешних сил. Реальные — вязкие жидкости, обладающие сжимаемостью, сопротивлением, растягивающим и сдвигающим усилиям и достаточной подвижностью, т.е. наличием сил трения и касательных напряжений. Реальные жидкости могут быть ньютоновскими и неньютоновскими (бингамовскими).

3. Ньютоновские и Неньютоновские жидкости: Если в движущейся жидкости её вязкость зависит только от её природы и температуры и не зависит от градиента скорости, то такие жидкости называют ньютоновскими. К ним относятся однородные жидкости. Когда жидкость неоднородна, например, состоит из крупных молекул, образующих сложные пространственные структуры, то при её течении вязкость зависит от градиента скорости. Такие жидкости называют неньютоновскими. Неньютоновские жидкости не поддаются законам обычных жидкостей, эти жидкости меняют свою плотность и вязкость при воздействии на них физической силой, причем не только механическим воздействие, но и даже звуковыми волнами. Если воздействовать механически на обычную жидкость то чем большее будет воздействие на нее, тем больше будет сдвиг между плоскостями жидкости, иными словами чем сильнее воздействовать на жидкость, тем быстрее она будет течь и менять свою форму. Если воздействовать на Неньютоновскую жидкость механическими усилиями, мы получим совершенно другой эффект, жидкость начнет принимать свойства твердых тел и вести себя как твердое тело, связь между молекулами жидкости будет усиливаться с увеличением силы воздействия на нее, в следствии мы столкнемся с физическим затруднением сдвинуть слои таких жидкостей. Вязкость неньютоновских жидкостей возрастает при уменьшение скорости тока жидкости

4. Свойства жидкости: Как у всего сущего на земле, у жидкости есть свои свойства, такие как вязкость, плотность, текучесть, температура кипения и замерзания и многие другие. Данная работа больше основана на изучении вязкости жидкости, но стоит упомянуть и о других ее свойствах

a. Вязкость — это способность оказывать сопротивление перемещению одной из части относительно другой — то есть как внутреннее трение.

b. Плотность — физическая величина, определяемая для однородного вещества массой его единичного объёма. Плотность воды при температуре 4о С равна 1г/см3 .

c. Кипение — процесс парообразования внутри жидкости. При достаточно высокой температуре давление пара становится выше давления внутри жидкости, и там начинают образовываться пузырьки пара, которые (в условиях земного притяжения) всплывают наверх.

5. Методика определения свойств жидкости

a. определение вязкости: Капиллярные вискозиметры измеряют расход фиксированного объема жидкости через малое отверстие при контролируемой температуре. Скорость сдвига можно измерить примерно от нуля до 106 с-1, заменяя капиллярный диаметр и приложенное давление. Типы капиллярных вискозиметров и их режимы работы: Стеклянный капиллярный вискозиметр (ASTM D 445) — Жидкость проходит через отверстие устанавливаемого — диаметра под влиянием силы тяжести. Скорость сдвига — меньше чем 10 с-1. Кинематическая вязкость всех автомобильных масел измеряется капиллярными вискозиметрами. Капиллярный вискозиметр высокого давления (ASTM D 4624 и D 5481) — Фиксированный объем жидкости выдавливается через стеклянный капилляр диаметра под действием приложенного давления газа. Скорость сдвига может быть изменена до 106 с-1. Эта методика обычно используется, чтобы моделировать вязкость моторных масел в рабочих коренных подшипниках. Эта вязкость называется, вязкостью при высокой температуре и высоком сдвиге (HTHS) и измеряется при 150°C и 106 с-1. HTHS вязкость измеряется также имитатором конического подшипника, ASTM D 4683

6. Образование свободной поверхности и поверхностное натяжение. Из-за сохранения объёма жидкость способна образовывать свободную поверхность. Такая поверхность является поверхностью раздела фаз данного вещества: по одну сторону находится жидкая фаза, по другую — газообразная (пар), и, возможно, другие газы, например, воздух. Если жидкая и газообразная фазы одного и того же вещества соприкасаются, возникают силы, которые стремятся уменьшить площадь поверхности раздела — силы поверхностного натяжения. Поверхность раздела ведёт себя как упругая мембрана, которая стремится стянуться. Поверхностное натяжение может быть объяснено притяжением между молекулами жидкости. Каждая молекула притягивает другие молекулы, стремится «окружить» себя ими, а значит, уйти с поверхности. Соответственно, поверхность стремится уменьшиться. Поэтому мыльные пузыри и пузыри при кипении стремятся принять сферическую форму: при данном объёме минимальной поверхностью обладает шар. Если на жидкость действуют только силы поверхностного натяжения, она обязательно примет сферическую форму — например, капли воды в невесомости. Маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади поверхности.

Эксперимент №1

Цель: изучение некоторых свойств неньютоновских жидкостей

Реактивы: крахмал картофельный, вода

Посуда: глубокая чашка (кристаллизатор), металлическая палочка

Ход работы:

1. Взять крахмал и насыпать его в кристаллизатор

2. Налить небольшое количество воды и размешать с помощью металлической палочки (не использовать стеклянные палочки, из-за их хрупкости)

3. Постепенно подливать воды и мешать, пока не получится однородная масса

Получившуюся жидкость можно налить в руку и попробовать скатать шарик, при воздействии на жидкость, пока мы будем катать шарик, в руках будет твердый шар из жидкости, причем, чем быстрее и сильнее мы будем на него воздействовать, тем плотнее и тверже будет наш шарик. Как только мы разожмем руки, твердый до этого времени шар тут же растечется по руке. Связанно это будет с тем, что, после прекращения воздействия на него, жидкость снова примет свойства жидкой фазы.

Если налить получившейся жидкости в высокий резервуар, и положить

сверху бросок дерева, в него свободно можно будет забить гвоздь. Так же можно просто свободно без усилий погрузить палец в данный раствор, но если попробовать быстро ткнуть в него, палец остановится именно на поверхности раствора, не проникнув внутрь, и чем быстрее и сильнее пробовать пробить верхнюю мембрану, тем большее сопротивление мы будем получать в замен.

Применение Неньютоновских жидкостей: в мире как ни странно очень популярны данные жидкости. В США на основе данных жидкостей, министерство обороны начало выпуск бронежилетов для военных. Данные бронежилеты по своим характеристикам даже лучше обычных, так как легче по весу и проще в изготовлении.

Так же Неньютоновские жидкости используются в автопроме, моторные масла синтетического производства на основе неньютоновских жидкостей уменьшают свою вязкость в несколько десятков раз, пи повышении оборотов двигателя, позволяя при этом уменьшить трение в двигатели.

Магнитные мелкодисперсные неньютоновские жидкости, еще один представитель данного чуда природы. Состоят они из мелкодисперсных кристаллов магнетита, взвешенных в синтетическом масле, при воздействии на такую жидкость магнитным полем, жидкость увеличивает плотность в 100 раз, но все равно остается гибкой. Данные жидкости применяют в новейших технологиях для амортизации некоторых элементов транспортного оборудования или механических машин

Данный эксперимент позволяет нам не только познакомится с неньютоновскими жидкостями, но и изучить некоторые свойства данных жидкостей, а так позволяют наглядно продемонстрировать свойства жидкости, что помогает в работе со студентами, наглядные примеры помогают лучше запомнить данную преподавателем теорию.

«Эффект Кайе»

Введение: В 1963 году ученый химик и физик Артур Кайе проводил опыты на основе неньютоновских жидкостей и наблюдал интересные изменения. Ученый заметил, что если жидкость вливать с небольшой высоты в такую же жидкость или в жидкость с одинаковой плотностью и вязкостью, то струйка не растворяется в жидкости, а как бы отскакивает от самой себя. Связанно данное явление с тем, что струя жидкости, падающая вниз не может пробить поверхностное натяжение верхнего слоя и отскакивает в сторону. Это явление назвали «Эффект Кайе».

Цель: изучение образования слоя поверхностного натяжения

Реактивы: жидкое мыло (шампунь)

Посуда: глубокая, широкая чашка (кристаллизатор), бюретка, штатив, металлическая пластина

Ход работы:

1. установить штатив на ровную поверхность и закрепить на ней бюретку на высоте 20-25 см от поверхности стола

2. под бюретку установить кристаллизатор

3. налить в кристаллизатор исследуемую жидкость слоем в 3-5 см

4. аккуратно заполнить бюретку исследуемой жидкостью, ровным слоем, без образования воздушных пузырьков

После того как жидкость через бюретку падает с высоты 20 см вниз в себе подобную жидкость, мы можем наблюдать интересное явление связанное с поверхностным натяжением. Струйка жидкости, падающая вниз, начинает отскакивать от поверхности жидкости находящейся внизу. Объяснить это можно тем что, проникая внутрь жидкости, находящейся в кристаллизаторе, струйка несет в себе запас кинетической энергии, а поскольку жидкость имеет высокую плотность и вязкость, и по закону сохранения энергии, кинетическая энергия, внесенная в уравновешенную систему, должна, куда-то перейти, и выстреливает такой же струйкой из жидкости. Если поставить под струйку металлическую пластину под углом примерно 450и смочить ее тем же жидким мылом, то струйка падающая вниз будет по наклонной траектории падать отскакивая пару раз от пластины.

Данный опыт дает представление о кинетической энергии и уравновешенных системах, так же данный опыт очень эффектно выглядит и запоминается надолго, что позволяет лучше воспринять пройденный теоретический материал.

www.ronl.ru

Неньютоновская жидкость

Введение

…материал, который обладает удивительнымисвойствами: при малых нагрузках он мягкийи эластичный, а при больших – становитсятвердым и очень упругим.

Ни один человек не может уйти от реального материального мира, окружающего его и в котором он сам живёт. Природа, быт, техника и всё то, что нас окружает и в нас самих происходит, подчинено единым законам происхождения и развития – законам ФИЗИКИ.

Природа – настоящая физическая лаборатория, в которой человек должен быть активным наблюдателем, творцом, но не рабом природы, неспособным хотя бы приближенно объяснить наблюдаемые им природные явления. С самого рождения каждый человек знакомится с веществами, окружающими его, подрастая, человек начинает отличать разного рода жидкости от газов или твёрдых тел, понимая, какие отличительные свойства присущи веществам. В малом возрасте ребёнок не сильно задумывается над этими интересными признаками, не понимает, почему вода – это жидкость, а снег – твёрдое тело… Чем старше становится человек, тем шире становится область его знаний, тем глубже он понимает суть вещей. Так, для каждого человека наступает момент, когда под понятием жидкость он будет понимать не просто молоко или же воду, он поймёт, что жидкость, как и любой другой род материи, имеет свою классификацию, основные свойства. Основным свойством жидкости, отличающим её от других агрегатных состояний, является способность неограниченно менять форму под действием касательных механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём. Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое. Жидкости делят на идеальные и реальные. Идеальные – невязкие жидкости, обладающие абсолютной подвижностью, т.е. отсутствием сил трения и касательных напряжений и абсолютной неизменностью. Реальные – вязкие жидкости, обладающие сжимаемостью, сопротивлением, растягивающим и сдвигающим усилиям и достаточной подвижностью, т.е. наличием сил трения и касательных напряжений.

Актуальность проекта:

Нас окружает огромное количество жидкостей. Жидкость окружает везде и всегда. Сами люди состоят из жидкости, вода дает нам жизнь, из воды мы вышли и к воде всегда возвращаемся. Мы все время сталкиваемся с использованием жидкостей, пьем чай, моем руки, заливаем бензин в автомобиль, наливаем масло на сковороду. Основным свойством жидкости является то, что она способна менять свою форму под действием механического воздействия. Но оказалось, что не все жидкости ведут себя привычным образом. Это так называемые неньютоновские жидкости. Мы заинтересовалась необычными свойствами таких жидкостей и провели несколько опытов.

Гипотеза:Провести опыты, в которых наглядно можно увидеть некоторые физические свойства неньютоновских жидкостей.

Цели проекта:Получить неньютоновскую жидкостьИзучить некоторые физические свойства неньютоновской жидкости

Задачи проекта:Собрать теоретический материал о неньютоновской жидкостиОпытным путём изучить некоторые физические свойства неньютоновских жидкостей (плотность, температура кипения, температура кристаллизации)Узнать область применения неньютоновских жидкостей

Методы исследования:НаблюдениеИзучение теоретических материаловПроведение опытовАнализ

Теоретическая часть

Жидкость – это одно из состояний вещества. Таких состояний три, их еще называют агрегатными, это газ, жидкость и твердое вещество. Жидким вещество называют, если оно обладает свойством неограниченно менять форму под внешним воздействием, сохраняя при этом объём.

Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое. Жидкости бывают идеальные и реальные. Идеальные – невязкие жидкости, обладающие абсолютной подвижностью, т.е. отсутствием сил трения и касательных напряжений и абсолютной неизменностью объёма под воздействием внешних сил. Реальные – вязкие жидкости, обладающие сжимаемостью, сопротивлением, растягивающим и сдвигающим усилиям и достаточной подвижностью, т.е. наличием сил трения и касательных напряжений. Реальные жидкости могут быть ньютоновскими и неньютоновскими.

К ньютоновским относятся однородные жидкости. Ньютоновская жидкость – это вода, масло и большая часть привычных нам в ежедневном использовании текучих веществ, то есть таких, которые сохраняют свое агрегатное состояние, что бы вы с ними не делали (если речь не идет об испарении или замораживании, конечно).

Другое дело – это неньютоновские жидкости. Их особенность заключена в том, что их текучие свойства колеблются в зависимости от скорости ее тока.

Еще в конце XVII века великий физик Ньютон обратил внимание, что грести веслами быстро гораздо тяжелее, нежели если делать это медленно. И тогда он сформулировал закон, согласно которому вязкость жидкости увеличивается пропорционально силе воздействия на нее. Ньютон пришел к изучению течения жидкостей, когда пытался моделировать движение планет Солнечной система посредством вращения цилиндра, изображавшего Солнце, в воде. В своих наблюдениях он установил, что если поддерживать вращение цилиндра, то оно постепенно передаётся всей массе жидкости. Впоследствии для описания подобных свойств жидкостей стали использовать термины «внутреннее трение» и «вязкость», получившие одинаковое распространение. Исторически, эти работы Ньютона положили начало изучению вязкости и реологии.

Когда жидкость неоднородна, например, состоит из крупных молекул, образующих сложные пространственные структуры, то при её течении вязкость зависит от градиента скорости. Такие жидкости называют неньютоновскими. Неньютоновскими, или аномальными, называют жидкости, течение которых не подчиняется закону Ньютона. Таких, аномальных с точки зрения гидравлики, жидкостей немало. Они широко распространены в нефтяной, химической, перерабатывающей и других отраслях промышленности.

Неньютоновские жидкости не поддаются законам обычных жидкостей, эти жидкости меняют свою плотность и вязкость при воздействии на них физической силой, причем не только механическим воздействие, но даже звуковыми волнами и электромагнитными полями. Если воздействовать механически на обычную жидкость, то, чем большее будет воздействие на нее, тем больше будет сдвиг между плоскостями жидкости, иными словами, чем сильнее воздействовать на жидкость, тем быстрее она будет течь и менять свою форму. Если воздействовать на неньютоновскую жидкость механическими усилиями, мы получим совершенно другой эффект, жидкость начнет принимать свойства твердых тел и вести себя как твердое тело, связь между молекулами жидкости будет усиливаться с увеличением силы воздействия на нее, вследствии мы столкнемся с физическим затруднением сдвинуть слои таких жидкостей. Вязкость неньютоновских жидкостей возрастает при уменьшение скорости тока жидкости.

Экспериментальная часть

В практической части мы провели несколько опытов.

Эксперимент №1 «Получение неньютоновской жидкости»

Цель: получить неньютоновскую жидкость и проверить, как она ведёт себя в обычных условиях.

Оборудование: вода, крахмал, чаша.

Ход эксперимента:1 Взяли чашу с водой и крахмал. Смешали в равных долях вещества. 2 Получилась белая жидкость.

Заметили, если мешать быстро, чувствуется сопротивление, а если медленнее, то нет. Получившуюся жидкость можно налить в руку и попробовать скатать шарик. При воздействии на жидкость, пока мы будем катать шарик, в руках будет твердый шар из жидкости, причем, чем быстрее и сильнее мы будем на него воздействовать, тем плотнее и тверже будет наш шарик. Как только мы разожмем руки, твердый до этого времени шар тут же растечется по руке. Связано это будет с тем, что после прекращения воздействия на него, жидкость снова примет свойства жидкой фазы.

Эксперимент №2 «Изучение некоторых физических свойств неньютоновских жидкостей»

Для изучения свойств мы взяли смесь крахмала с водой, полученную в предыдущем эксперименте, гель для душа и подсолнечное масло.

Цель этого эксперимента: опытным путём определить плотность, температуру кипения и температуру кристаллизации данных жидкостей.

В результате проведённых опытов, мы получили следующие данные:

Эксперимент №3 «Изучение влияния магнитных полей на неньютоновскую жидкость»

Эксперименты с ферромагнитной жидкостью широко распространены в виде видеороликов в интернете. Дело в том, что данный вид жидкости под действием магнита совершает определенные движения, что делает эксперименты очень зрелищными.

Ферромагнитную жидкость можно изготовить своими руками в домашних условиях. Для этого возьмём масло (подойдет моторное, подсолнечное и прочие), а также тонер для лазерного принтера (субстанция в виде порошка). Теперь смешаем оба ингредиента до консистенции сметаны.

Для того, чтобы эффект был максимальным, погреем получившуюся смесь на водяной бане в течение приблизительно получаса, не забывая при этом ее помешивать.Ферромагнитная жидкость (феррофлюид) – это жидкость, которая сильно поляризуется под воздействием магнитного поля. Проще говоря, если приблизить обычный магнит к этой жидкости, она производит определенные движения, например, становится похожей на ежика, встает горбом и т.д.

Видео

Изготовление игрушки – лизуна

Самая первая игрушка-лизун или слайм (slime) была сделана компанией Mattel в 1976 году. Игрушка-Лизун заслужила популярность благодаря своим забавным свойствам – одновременно текучести, эластичности и возможности постоянно трансформироваться. Обладающий свойствами неньютоновской жидкости, игрушка-лизун быстро стала безумно популярной у детей и взрослых. Лизуна можно было купить не везде, но забавную игрушку скоро научились делать в домашних условиях.

Изготовление лизуна своими руками и в домашних условиях отличается от оригинального рецепта. Поэтому будем использовать более доступные вещества:

1. Клей ПВА. Белый, желательно свежий клей можно купить в любом канцелярском или строительном магазине. Клея для Лизуна нам понадобится примерно половина обычного стакана, около 100 гр.2. Вода – самая обычная вода из-под крана. При желании можно взять кипяченую, комнатной температуры. Понадобится немного больше стакана.3. Тетраборат натрия, боракс или бура. Может быть приобретен в аптеке, в форме 4%-ного раствора.4. Пищевой краситель или несколько капель зеленки. Оригинальный лизун – зеленый, и зеленка отлично подходит на роль подкрашивающего вещества. 5. Мерный стакан, посуда и палочка для смешивания. В качестве палочки можно взять карандаш, ложку или любой другой подходящий предмет.

Переходим к самому процессу создания лизуна:

- Растворяем столовую ложку боракса в стакане воды.- Четверть стакана воды и четверть стакана клея превращаем в однородную смесь в другой посуде. При желании туда же добавляем краситель. - Перемешивая клеевую смесь, постепенно добавляем туда раствор буры, примерно полстакана. Мешаем до получения желеобразной однородной массы.- Проверяем результат: загустевшая субстанция, собственно, и является игрушкой лизуном. Ее можно выложить на стол, помять и проверить все ее оригинальные свойства.

Применение неньютоновских жидкостей

В мире, как ни странно, очень популярны данные жидкости. При исследовании неньютоновских жидкостей в первую очередь изучают их вязкость. Знания о вязкости и о том, как ее измерять и поддерживать, помогают и в медицине, и в технике, и в кулинарии, и в производстве косметики.

Применение в косметологии

Косметические компании зарабатывают огромную прибыль на том, что смогли найти идеальный баланс вязкости, который нравится покупателям.

Чтобы косметика держалась на коже, ее делают вязкой, будь это жидкий тональный крем, блеск для губ, подводка для глаз, тушь для ресниц, лосьоны, или лак для ногтей. Вязкость для каждого изделия подбирается индивидуально, в зависимости от того, для какой цели оно предназначено. Блеск для губ, например, должен быть достаточно вязким, чтобы долго оставаться на губах, но не слишком вязким, иначе тем, кто им пользуется, будет неприятно ощущать на губах что-то липкое. В массовом производстве косметики используют специальные вещества, называемые модификаторами вязкости. В домашней косметике для тех же целей используют разные масла и воск.

В гелях для душа вязкость регулируют для того, чтобы они оставались на теле достаточно долго, чтобы смыть грязь, но не дольше, чем нужно, иначе человек почувствует себя снова грязным. Обычно вязкость готового косметического средства изменяют искусственно, добавляя модификаторы вязкости.

Наибольшая вязкость — у мазей. Вязкость кремов — ниже, а лосьоны — наименее вязкие. Благодаря этому лосьоны ложатся на кожу более тонким слоем, чем мази и кремы, и действуют на кожу освежающе. По сравнению с более вязкой косметикой, их приятно использовать даже летом, хотя втирать их нужно сильнее и чаще приходится наносить повторно, так как они долго не задерживаются на коже. Кремы и мази дольше остаются на коже, чем лосьоны, и сильнее ее увлажняют. Их особенно хорошо использовать зимой, когда в воздухе меньше влаги. В холодную погоду, когда кожа сохнет и трескается, очень помогают такие средства как, например, масло для тела — это что-то среднее между мазью и кремом. Мази намного дольше впитываются и после них кожа остается жирной, но они намного дольше остаются на теле. Поэтому их часто используют в медицине.

От того, понравилась ли вязкость косметического средства покупателю, часто зависит, выберет ли он это средство в будущем. Именно поэтому производители косметики тратят много усилий на то, чтобы получить оптимальную вязкость, которая должна понравиться большинству покупателей. Один и тот же производитель часто выпускает продукт для одних и тех же целей, например гель для душа, в разных вариантах и с разной вязкостью, чтобы у покупателей был выбор. Во время производства строго следуют рецепту, чтобы вязкость соответствовала стандартам.

Применение в кулинарииЧтобы улучшить оформление блюд, сделать еду более аппетитной и чтобы ее было легче есть, в кулинарии используют вязкие продукты питания.

Продукты с большой вязкостью, например, соусы, очень удобно использовать, чтобы намазывать на другие продукты, как хлеб. Их также используют для того, чтобы удерживать слои продуктов на месте. В бутерброде для этих целей используют масло, маргарин, или майонез — тогда сыр, мясо, рыба или овощи не соскальзывают с хлеба. В салатах, особенно многослойных, также часто используют майонез и другие вязкие соусы, чтобы эти салаты держали форму. Самые известные примеры таких салатов — селедка под шубой и оливье. Если вместо майонеза или другого вязкого соуса использовать оливковое масло, то овощи и другие продукты не будут держать форму.

Вязкие продукты с их способностью удерживать форму используют также для украшения блюд. Например, йогурт или майонез на фотографии не только остаются в той форме, которую им придали, но и поддерживают украшения, которые на них положили.

Применение в медицине

В медицине необходимо уметь определять и контролировать вязкость крови, так как высокая вязкость способствует ряду проблем со здоровьем. По сравнению с кровью нормальной вязкости, густая и вязкая кровь плохо движется по кровеносным сосудам, что ограничивает поступление питательных веществ и кислорода в органы и ткани, и даже в мозг. Если ткани получают недостаточно кислорода, то они отмирают, так что кровь с высокой вязкостью может повредить как ткани, так и внутренние органы. Повреждаются не только части тела, которым нужно больше всего кислорода, но и те, до которых крови дольше всего добираться, то есть, конечности, особенно пальцы рук и ног. При обморожении, например, кровь становится более вязкой, несет недостаточно кислорода в руки и ноги, особенно в ткань пальцев, и в тяжелых случаях происходит отмирание ткани. В такой ситуации пальцы, а иногда и части конечностей приходится ампутировать.

Применение в технике

Неньютоновские жидкости используются в автопроме, моторные масла синтетического производства на основе неньютоновских жидкостей уменьшают свою вязкость в несколько десятков раз, при повышении оборотов двигателя, позволяя при этом уменьшить трение в двигатели.

Заключение и выводы

В результате проделанной работы был проведён обзор теоретических источников информации. Проведена серия экспериментов с неньютоновской жидкостью, рассчитали плотность, определили температуру кипения и кристаллизации неньютоновских жидкостей.

По результатам экспериментов можно сделать следующие выводы:1. Если мешаем быстро неньютоновскую жидкость, чувствуется сопротивление, а если медленнее, то нет. При быстром движении такая жидкость ведёт себя как твердое тело.2. При изменении температуры изменяется плотность жидкости.

Существует много удивительных вещей вокруг нас, и неньютоновская жидкость яркий этому пример. Мы надеемся, что нам удалось наглядно продемонстрировать ее удивительные свойства.По итогам работы были выполнены все поставленные задачи и сделаны все запланированные опыты. Проведенные опыты и презентация проиллюстрировали цель проделанной нами работы.

Литература

Методические материалы:

1. А. В.Перышкин. Физика 7 класс, Дрофа, Москва 2008 г.2. Зарембо Л.К., Болотовский Б.М., Стаханов И.П. и др. Школьникам о современной физике. Просвещение,2006г.3. Кабардин О.Ф., Физика, справочные материалы, Просвещение, 1988

Интернет-ресурсы:

http://ru.wikipedia.orghttp://www.google.ruhttp://nglib.ruhttp://ngpedia.ru

Работу выполнили:Скибин Илья, ученик 9 классаХаритонов Вадим, ученик 9 класса

Руководитель:Гиевская Людмила Ивановнаучитель физики

Муниципальное казённое общеобразовательное учреждениеНовокалитвенская средняя общеобразовательная школаРоссошанского муниципального районаВоронежской области

livescience.ru

IX. Ньютоновские и неньютоновские жидкости, их виды и характеристика.

Ньютоновскими называются жидкости, которые подчиняются уравнению Ньютона (вода).

Для них «» не зависит от градиента скорости «». Коэффициент вязкости является постоянным и зависит от вида жидкости и от температуры (т.е. увеличением температуры вязкость уменьшается).

Неньютоновскими называются жидкости, которые не подчиняются уравнению Ньютона (кровь, эмульсии). Для них вязкость зависит от режима течения и градиента скорости. Эти жидкости состоят из сложных частиц и крупных молекул. Благодаря сцеплению частиц, в них образуются пространственные структуры. Увеличение вязкости происходит потому, что при течении этих жидкостей работа внешней силы затрачивается параллельно и на разрушение структурных образований жидкостей.

Т.о. неньютоновские жидкости начинают течь не сразу. Минимальное напряжение сдвига, при котором начинается их течение, называется пределом текучести «0».

Свойства ньютоновских и неньютоновских жидкостей оцениваются с помощью реограмм. Это графики зависимости напряжения сдвига «» от градиента скорости «», и коэффициента вязкости «» от градиента скорости «».

Ньютоновские жидкости

 

для глицерина

для воды

0 0

нет предела текучести “” не зависит от “

Неньютоновские жидкости имеют 3 разновидности:

а) Пластические – обладают пределом текучести 0, коэффициент вязкости  не зависит от градиента скорости .

 

0

0 0

б) Псевдопластические – имеют предел текучести “0”, коэф. вязкости зависит от градиента скорости: он уменьшается до определенного значения, а затем остается постоянным.

 

0

0 0

в) Дилатантные – имеют предел текучести 0, коэф. вязкости увеличивается с увеличением градиента скорости, а затем не изменяется.

 

0

0 0

III. Течение жидкости, ее количественная оценка.

Течением называется перемещение условных частиц или микрообъемов жидкости относительно друг друга и тела отсчета.

Основное условие течения жидкости:

!!!Жидкость течет при наличии сил, вызывающих разность давлений!!!

Текущая жидкость называется потоком, а линии, вдоль которых перемещается частица – линиями тока.

- линии тока

Стационарный поток - это поток, в котором скорость, давления и направления течения не изменяется со временем.

Нестационарный поток – это поток, в котором хотя бы один из параметров изменяется со временем.

КОЛИЧЕСТВЕННЫЕ ХАРАКТЕРИСТИКИ ПОТОКА.

  1. Сечение S – площадка, перпендикулярная к направлению течения жидкости, [м²] .

2.Объемный расход Q = V/t – отношение объема, протекающего через площадь сечения, ко времени ее протекания ,м³с .

3.Массовый расход M = m/t – отношение массы жидкости, протекающей через сечение, ко времени ee протекания, [кг/с] .

Течение называется непрерывным, если через любое сечение трубы в единицу времени протекает одинаковый объем жидкости.

S1<S2 ; Q1=Q2 => V1/t=V2/t

S2

S1

Т.к.V = S·l│→ S1·l1/t=S2·l2/t→ S1·1 = S2·2 1 2

l/t=v

l1

l2

S1/S2=21

уравнение неразрывности струи

Т.о.: в трубе с большим сечением скорость течения жидкости меньше и наоборот.

studfiles.net

Что такое неньютоновская жидкость? Примеры и эксперименты

Что такое неньютоновские жидкости? Примеры наверняка можно обнаружить даже у вас в холодильнике, однако наиболее очевидным образцом научного чуда считается зыбучий песок - текучий и твердый одновременно благодаря взвешенным (суспендированным) частицам.

О вязкости

неньютоновская жидкость

Сэр Исаак Ньютон утверждал, что вязкость, или резистентность жидкости к течению, зависит от температуры. Так, к примеру, вода может превратиться в лед и обратно именно под воздействием нагревающих или охлаждающих элементов. Однако некоторые субстанции, существующие в мире, меняют вязкость вследствие применения силы, а не изменения температуры. Интересно, что к неньютоновским жидкостям причисляют повсеместно применяемый томатный соус, который становится жиже при условии длительного размешивания. Сливки же, наоборот, загустевают при взбивании. Этим веществам не важна температура - вязкость неньютоновских жидкостей меняется ввиду физического воздействия.

Эксперимент

Для тех, кто интересуется вопросами прикладной науки или просто желает поразить своих гостей и друзей невероятно простым и в то же время потрясающе увлекательным научным экспериментом, создан специальный рецепт коллоидного крахмального раствора. Настоящая неньютоновская жидкость, своими руками сделанная буквально из двух обыкновенных кулинарных ингредиентов, поразит своей консистенцией и школьников, и студентов. Вам понадобится только крахмал и чистая вода, а в итоге получится уникальное вещество, являющееся одновременно и жидкостью, и твердым телом.

неньютоновские жидкости примеры

Рецепт

  • Высыпьте приблизительно четверть упаковки кукурузного крахмала в чистую миску и медленно влейте примерно полстакана воды. Помешайте. Иногда удобнее готовить коллоидный крахмальный раствор прямо руками.
  • Продолжайте добавлять крахмал и воду небольшими порциями до тех пор, пока у вас не получится субстанция, по консистенции напоминающая мед. Это будущая неньютоновская жидкость. Как сделать ее однородной, если все попытки равномерного размешивания оканчиваются провалом? Не беспокойтесь; просто уделите процессу побольше времени. В итоге на одну упаковку кукурузного крахмала у вас, скорее всего, уйдет от одного до двух стаканов воды. Обратите внимание: вещество приобретает большую плотность по мере того, как вы добавляете в него все больше порошка.
  • Вылейте полученную субстанцию в сковородку или форму для выпечки. Присмотритесь к ее необычной консистенции, пока "твердая" жидкость льется вниз. Перемешайте вещество по кругу указательным пальцем - сначала медленно, затем все быстрее и быстрее, пока у вас не получится удивительная неньютоновская жидкость.

Опыты

неньютоновская жидкость своими руками

Как в целях научного познания, так и просто ради развлечения, можно попробовать провести следующие опыты:

  • Проведите пальцем по поверхности получившегося сгустка. Заметили ли вы что-нибудь?
  • Погрузите всю кисть руки в загадочное вещество и попытайтесь сжать его пальцами и вытащить наружу из контейнера.
  • Попробуйте покатать субстанцию в ладонях, чтобы слепить шарик.
  • Можно даже со всей силы хлопнуть по сгустку ладонью. Присутствующие зрители наверняка разбегутся в стороны, ожидая, что их сейчас обрызгает крахмальным раствором, однако необычное вещество останется в контейнере. (Если, разумеется, вы не пожалели крахмала.)
  • Зрелищный эксперимент предлагают видеоблогеры. Для него вам понадобится музыкальная колонка, которую следует аккуратно обтянуть плотной пищевой пленкой в несколько слоев. Вылейте раствор на пленку и включите музыку на большой громкости. Вы сможете наблюдать потрясающие визуальные эффекты, возможные только при применении этого уникального состава.

Если вы проводите эксперимент в лаборатории перед школьниками или студентами, спросите их, почему неньютоновская жидкость ведет себя именно таким образом. По какой причине она кажется твердым телом, если сжать ее в руке, но при этом течет, как сироп, если разжать пальцы? По окончании дискуссии можно упаковать сгусток в большой пластиковый пакет с застежкой-молнией, чтобы сохранить его до следующего раза. Он пригодится вам для демонстрации свойств суспензии.

неньютоновская жидкость как сделать

Тайна вещества

Почему в одних случаях коллоидный крахмальный раствор ведет себя как твердое тело, а в других - как жидкость? На самом деле вами была создана настоящая неньютоновская жидкость - вещество, отвергающее закон вязкости.

Ньютон считал, что вязкость вещества меняется только вследствие повышения или понижения температуры. К примеру, моторное масло легко течет при нагреве и приобретает особую густоту при охлаждении. Строго говоря, неньютоновские жидкости тоже подчиняются этому физическому закону, но при этом их вязкость можно изменить и путем применения силы или давления. Когда вы сжимаете коллоидный сгусток в руке, его плотность существенно увеличивается, и (пусть даже временно) он как будто превращается в твердое тело. Когда вы разжимаете кулак, коллоидный раствор течет как обычная жидкость.

Что нужно иметь в виду

вязкость неньютоновских жидкостей

Ирония заключается в том, что невозможно смешать крахмал с водой навсегда, так как в результате эксперимента у вас получается не однородное вещество, а суспензия. Со временем частички порошка отслоятся от молекул воды и соберутся в твердый комочек на дне вашего пластикового пакета. Именно по этой причине подобная неньютоновская жидкость мгновенно засоряет канализационные трубы, если просто взять и вылить ее в раковину. Ни в коем случае не выливайте ее в водосток - лучше упакуйте в пакет и просто выбросьте в мусоропровод.

fb.ru

9. Ньютоновские и неньютоновские жидкости, их виды и характеристика.

Ньютоновскими называются жидкости, которые подчиняются уравнению Ньютона (вода).

Для них «» не зависит от градиента скорости «». Коэффициент вязкости является постоянным и зависит от вида жидкости и от температуры (т.е. увеличением температуры вязкость уменьшается).

Неньютоновскими называются жидкости, которые не подчиняются уравнению Ньютона (кровь, эмульсии). Для них вязкость зависит от режима течения и градиента скорости. Эти жидкости состоят из сложных частиц и крупных молекул. Благодаря сцеплению частиц, в них образуются пространственные структуры. Увеличение вязкости происходит потому, что при течении этих жидкостей работа внешней силы затрачивается параллельно и на разрушение структурных образований жидкостей.

Т.о. неньютоновские жидкости начинают течь не сразу. Минимальное напряжение сдвига, при котором начинается их течение, называется пределом текучести «0».

Свойства ньютоновских и неньютоновских жидкостей оцениваются с помощью реограмм. Это графики зависимости напряжения сдвига «», от градиента скорости «», и коэффициента вязкости «» от градиента скорости «».

Ньютоновские жидкости

 

для воды

0 0

нет предела текучести “” не зависит от “

Неньютоновские жидкости имеют 3 разновидности:

а) Пластические – обладают пределом текучести 0, коэффициент вязкости  не зависит от градиента скорости .

τη

Пас

α

τ0

0 0

б) Псевдопластические – имеют предел текучести “0”, коэф. вязкости зависит от градиента скорости: он уменьшается до определенного значения, а затем остается постоянным.

η

τ Пас

Па

0

11

studfiles.net


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.