Линейка логарифмическая – главное счетное устройство XX века. Логарифмическая линейка реферат


Логарифмическая линейка - это... Что такое Логарифмическая линейка?

Логарифми́ческая лине́йка, Счётная линейка — аналоговое вычислительное устройство, позволяющее выполнять несколько математических операций, в том числе умножение и деление чисел, возведение в степень (чаще всего в квадрат и куб) и вычисление квадратных и кубических корней, вычисление логарифмов, потенцирование, вычисление тригонометрических и гиперболических функций и другие операции.

Также, если разбить вычисление на три действия, то с помощью логарифмической линейки можно возводить числа в любую действительную степень и извлекать корень любой действительной степени.

Логарифмическая линейка. Умножение 1,3 × 2 или деление 2,6 / 2 (см. шкалы C и D)

Устройство и принципы использования

Принцип действия логарифмической линейки основан на том, что умножение и деление чисел заменяется соответственно сложением и вычитанием их логарифмов.

Первый вариант линейки разработал английский математик-любитель Уильям Отред в 1622 году. Круговая логарифмическая линейка (логарифмический круг)

Простейшая логарифмическая линейка состоит из двух шкал в логарифмическом масштабе, способных передвигаться относительно друг друга. Более сложные линейки содержат дополнительные шкалы и прозрачный бегунок с несколькими рисками. На обратной стороне линейки могут находиться какие-либо справочные таблицы.

Для того чтобы вычислить произведение двух чисел, начало подвижной шкалы совмещают с первым множителем на неподвижной шкале, а на подвижной шкале находят второй множитель. Напротив него на неподвижной шкале находится результат умножения этих чисел:

\lg(x) + \lg(y) = \lg(xy)

Чтобы разделить числа, на подвижной шкале находят делитель и совмещают его с делимым на неподвижной шкале. Начало подвижной шкалы указывает на результат:

\lg(x) - \lg(y) = \lg(x/y)

С помощью логарифмической линейки находят лишь мантиссу числа, его порядок вычисляют в уме. Точность вычисления обычных линеек — два-три десятичных знака. Для выполнения других операций используют бегунок и дополнительные шкалы.

Несмотря на то, что у логарифмической линейки отсутствуют функции сложения и вычитания, с её помощью можно осуществлять и эти операции, воспользовавшись следующими формулами:

x + y= (x / y + 1) * y x - y = (x / y - 1) * y

Следует отметить, что, несмотря на простоту, на логарифмической линейке можно выполнять достаточно сложные расчёты. Раньше выпускались довольно объёмные пособия по их использованию.

Логарифмическая линейка в наши дни

Во всём мире, в том числе и в СССР, логарифмические линейки широко использовались для выполнения инженерных расчётов примерно до начала 1980-х годов, когда они были вытеснены калькуляторами.

Часы Breitling Navitimer

Однако в начале XXI века логарифмические линейки получили второе рождение в наручных часах. Дело в том, что, следуя моде, производители дорогих и престижных марок часов перешли от электронных хронометров с ЖК-экранами к стрелочным и места для встраиваемого калькулятора оказалось недостаточно. Однако спрос на хронометры со встроенным вычислительным устройством среди следящих за модой людей заставил производителей часов выпустить модели с встроенной логарифмической линейкой, выполненной в виде вращающихся колец со шкалами вокруг циферблата. По прихоти производителей такие устройства обычно называются «навигационная линейка». Их достоинство — можно сразу, в отличие от микрокалькулятора, получить таблицу (например, расхода топлива на пройденное расстояние, перевода миль в километры и т. п.). Однако, в большинстве случаев логарифмические линейки, встроенные в часы, не оснащены шкалами для вычисления значений тригонометрических функций.

Примером таких часов можно назвать Breitling Navitimer, CITIZEN (модели BJ7010-59E, JQ8005-56E, JR3130-55E), Orient (модели OCEM58002DV, OCTD09001B, OCTD09003D) и некоторые другие.

В наши дни изготовить логарифмическую линейку можно и самостоятельно из заготовки, распечатанной на принтере. Существует несколько сайтов, предлагающих готовые файлы для распечатки таких заготовок. Если изготавливаемая таким способом логарифмическая линейка является круговой, необходимо использовать принтер, имеющий одинаковую разрешающую способность по горизонтали и вертикали. Этому требованию отвечает большинство лазерных и струйных принтеров, но не отвечают многие матричные. По причине возможности наличия ошибок в файле для распечатки, использование самодельных логарифмических линеек для ответственных расчётов не допускается.

Крупногабаритные демонстрационные логарифмические линейки, аналогично созданным позже крупногабаритным демонстрационным микрокалькуляторам, предназначены для одновременного обучения приёмам пользования прибором большой группы лиц. Одна из таких линеек показана в кинокартине Владимира Меньшова «Розыгрыш». Она имеет длину порядка 1,5 м и ширину порядка 0,3 м.

Литература

Ссылки

dic.academic.ru

Линейка логарифмическая – главное счетное устройство XX века

линейка логарифмическая

В век компьютерных технологий большинство расчетов при проектировании техники полностью автоматизировано, инженерам остается лишь ввести через удобный интерфейс требуемые параметры.

XX столетие называли по-разному. Оно было и атомным, и космическим, и информационным. Авиаконструкторы совершенствовали самолеты, и они превращались из неуклюжих бипланов в стремительные сверхзвуковые МиГи, «Миражи» и «Фантомы». Гигантские авианосцы и подводные лодки стали бороздить моря и океаны на всех широтах. В Лос-Аламосе (штат Нью-Мексико) испытывали атомную бомбу, а в подмосковном Обнинске начала давать энергию первая АЭС. Взмывали ввысь ракеты…

Исторические хроники демонстрируют процесс работы над этими достижениями. Ученые и инженеры в белых халатах, стоя у кульманов и сидя за заваленными чертежами столами, производят сложнейшие технические и научные расчеты на арифмометрах. Порой в руках у Туполева, Курчатова или Теллера вдруг оказывалась вещь, незнакомая современному молодому человеку - логарифмическая линейка. Фото тех, чья молодость прошла в послевоенные десятилетия, вплоть до 80-х годов, также зафиксировали этот немудреный предмет, успешно заменявший им калькулятор во время учебы в институте или аспирантуре. Да и диссертации тоже считали на ней, на родненькой.

логарифмическая линейка фото

По какому принципу устроена линейка логарифмическая?

Главный принцип работы этого деревянного предмета, аккуратно оклеенного целлулоидными белыми шкалами, основан на логарифмическом исчислении, как это и следует из названия. Точнее, на десятичном логарифме. Ведь каждый, кто учил высшую математику, знает, что их сумма равна логарифму произведения, а, следовательно, правильно нанеся деления на подвижные части, можно добиться того, что умножение (а значит, и деление), возведение в квадрат (и извлечение корня) станут делом несложным.

Линейка логарифмическая стала популярной еще в XIX веке, когда главным средством для проведения вычислений были обычные счеты. Это изобретение - настоящая находка для тогдашних ученых и инженеров. Не сразу все они разобрались в том, как пользоваться этим устройством. Чтобы научиться всем премудростям и выявить ее возможности в полной мере, поклонники нового счетного механизма должны были прочесть специальные пособия, достаточно объемные. Но дело того стоило.

линейка логарифмическая круговая

Линейки бывают разные, даже круглые

Тем не менее, главное достоинство, которым обладает линейка логарифмическая - ее простота, а следовательно, надежность. По сравнению с другими способами расчетов (пока не было калькуляторов), операции выполнялись куда быстрее. Но есть и моменты, о которых не следует забывать. Производить вычисления можно лишь с мантиссами, то есть целой (до девяти) и дробной частью числа, с точностью до двух (трех, у кого очень хорошее зрение) десятичных знаков. Порядок цифры нужно было держать в голове. Был и еще один недостаток. Линейка логарифмическая хоть и небольшая, но и карманным устройством ее назвать трудно - 30 сантиметров все-таки.

Однако размеры не стали преградой для пытливых умов. Для тех, кто по роду деятельности должен иметь счетное приспособление всегда при себе, была изобретена компактная линейка логарифмическая. Круговая шкала со стрелками придавала ей сходство с часами, и некоторые модели дорогих хронометров содержали ее на своем циферблате. Конечно, возможности этого устройства и его точность несколько уступали соответствующим параметрам классической линейки, но зато его всегда можно было носить в кармане. Да и выглядело оно более эстетично!

fb.ru

История развития вычислительной техники - ручной этап

Появление логарифмов

Хорошо приспособленный к выполнению операций сложения и вычитания, абак оказался недостаточно эффективным прибором для выполнения операций умножения и деления. Поэтому открытие логарифмов и логарифмических таблиц Дж. Непером в начале XVII в., позволивших заменять умножение и деление соответственно сложением и вычитанием, явилось следующим крупным шагом в развитии вычислительных систем ручного этапа. Его "Канон о логарифмах" начинался так: "Осознав, что в математике нет ничего более скучного и утомительного, чем умножение, деление, извлечение квадратных и кубических корней, и что названные операции являются бесполезнойлогарифмические таблицы тратой времени и неиссякаемым источником неуловимых ошибок, я решил найти простое и надежное средство, чтобы избавиться от них". В работе "Описание удивительной таблицы логарифмов" (1614) изложил свойства логарифмов, дал описание таблиц, правила пользования ими и примеры применений. Основанием таблицы логарифмов Непера является иррациональное число, к которому неограниченно приближаются числа вида (1 + 1/n)n при безграничном возрастании n. Это число называют неперовым числом и обозначают буквой е:

e=lim(1+1/n)n=2,71828...палочки Непера

Впоследствии появляется целый ряд модификаций логарифмических таблиц. Однако в практической работе их использование имеет ряд неудобств, поэтому Дж. Непер в качестве альтернативного метода предложил специальные счетные палочки (названные впоследствии палочками Непера), позволявшие производить операции умножения и деления непосредственно над исходными числами. В основу данного метода Непер положил способ умножения решеткой.

Наряду с палочками Непер предложил счетную доску для выполнения операций умножения, деления, возведения в квадрат и извлечения квадратного корня в двоичной системе счисления, предвосхитив тем самым преимущества такой системы счисления для автоматизации вычислений.

Так как же работают логарифмы Непера? Слово изобретателю: "Отбросьте числа, произведение, частное или корень которых необходимо найти, и возьмите вместо них такие, которые дадут тот же результат после сложения, вычитания и деления на два и на три". Иными словами, используя логарифмы, умножение можно упростить до сложения, деление превратить в вычитание, а извлечение квадратного и кубического корней - в деление на два и на три соответственно. Например, чтобы перемножить числа 3,8 и 6,61, определим с помощью таблицы и сложим их логарифмы: 0,58+0,82=1,4. Теперь найдем в таблице число, логарифм которого равен полученной сумме, и получим почти точное значение искомого произведения: 25,12. И никаких ошибок!

Логарифмическая линейка

Логарифмы послужили основой создания замечательного вычислительного инструмента - логарифмической линейки, более 360 лет служащего инженерно-техническим работникам всего мира. Прообразом современной логарифмической линейки считается логарифмическая шкала Э. Гюнтера, использованная У. Отредом и Р. Деламейном при создании первых логарифмических линеек. Усилиями целого ряда исследователей логарифмическая линейка постоянно совершенствовалась и видом, наиболее близким к современному, она обязана 19-летнему французскому офицеру А. Манхейму.

Логарифмическая линейка - логарифмическая линейкааналоговое вычислительное устройство, позволяющее выполнять несколько математических операций, в том числе, умножение и деление чисел, возведение в степень (чаще всего в квадрат и куб), вычисление логарифмов, тригонометрических функций и другие операции

Для того чтобы вычислить произведение двух чисел, начало подвижной шкалы совмещают с первым множителем на неподвижной шкале, а на подвижной шкале находят второй множитель. Напротив него на неподвижной шкале находится результат умножения этих чисел:

lg(x) + lg(y) = lg(xy)

Чтобы разделить числа, на подвижной шкале находят делитель и совмещают его с делимым на неподвижной шкале. Начало подвижной шкалы указывает на результат:

lg(x) - lg(y) = lg(x/y)

С помощью логарифмической линейки находят лишь мантиссу числа, его порядок вычисляют в уме. Точность вычисления обычных линеек - два-три десятичных знака. Для выполнения других операций используют бегунок и дополнительные шкалы.

Следует отметить, что, несмотря на простоту, на логарифмической линейке можно выполнять достаточно сложные расчёты. Раньше выпускались довольно объёмные пособия по их использованию.

логарифмическая линейка

Принцип действия логарифмической линейки основан на том, что умножение и деление чисел заменяется, соответственно, сложением и вычитанием их логарифмов.

Вплоть до 1970-х гг. логарифмические линейки были так же распространены, как пишущие машинки и мимеографы. Ловким движением рук инженер без труда перемножал и делил любые числа и извлекал квадратные и кубические корни. Чуть больше усилий требовалось для вычисления пропорций, синусов и тангенсов.

Украшенная дюжиной функциональных шкал, логарифмическая линейка символизировала сокровенные тайны науки. На самом деле, основную работу выполняли всего две шкалы, поскольку практически все технические расчеты сводились к умножению и делению.

на начало

Отправляясь на Луну, американские астронавты брали с собой линейку Pickett N600-ES в качестве запасного калькулятора.

istrasvvt.narod.ru

Линейка логарифмическая – забытое счетное устройство из прошлого? :: SYL.ru

Логарифмическая линейка (фото см. ниже) была придумана как прибор для экономии умственных затрат и времени, связанных с математическими расчетами. Особое распространение она получила в практике инженеров в институтах, ориентированных на научно-исследовательскую деятельность, и в статистических бюро до момента внедрения электронной вычислительной техники.

Линейка логарифмическая

Линейка логарифмическая: история

Прообразом счетного устройства была шкала для вычислений английского математика Э. Гантера. Он придумал ее в 1623 г., вскоре после открытия логарифмов, для упрощения работы с ними. Шкала использовалась в сочетании с циркулем. Им отмеривались необходимые градуированные отрезки, которые потом складывались или вычитались. Операции с числами заменялись действиями с логарифмами. Используя их основные свойства, умножить, делить, возводить в степень или вычислять корень числа оказалось намного проще.

В 1623 году линейка логарифмическая была усовершенствована У. Отредом. Он добавил вторую подвижную шкалу. Она перемещалась вдоль основной линейки. Отмерять отрезки и считывать результаты исчислений стало легче. Для повышения точности устройства в 1650 году была реализована попытка увеличения длины шкалы за счет ее расположения по спирали на вращающемся цилиндре.

Добавление в конструкцию бегунка (1850 г.) сделало процесс исчисления еще более удобными. Дальнейшее усовершенствование механизма и способа нанесения логарифмических шкал на стандартную линейку не добавили точности прибору.Как пользоваться логарифмической линейкой

Устройство

Линейка логарифмическая (стандартная) изготавливалась из плотной древесины, стойкой к истиранию. Для этого в промышленных масштабах использовалось грушевое дерево. Из него изготавливался корпус и движок – планка меньшего размера, монтируемая во внутреннем пазе. Ее можно перемещать параллельно основанию. Бегунок изготавливался из алюминия или стали со смотровым окошком из стекла или пластика. На него нанесена тонкая вертикальная линия (визир). Бегунок двигается по боковым направляющим и подпружинивается стальной пластинкой. Корпус и движок облицованы светлым целлулоидом, на котором тиснением нанесены шкалы. Их деления заполнены типографской краской.

На лицевой стороне линейки располагаются семь шкал: четыре- на корпусе и три - на движке. На боковых гранях нанесена простая измерительная разметка (25 см) с делениями 1 мм. Шкалы (C) на движке внизу и (D) на корпусе сразу под ней считаются главными. На основании сверху располагается кубическая разметка (K), под ней – квадратичная (A). Ниже (сверху на движке) есть точно такая же симметричная вспомогательная шкала (B). Внизу на корпусе еще есть разметка для значений логарифмов (L). В самом центре лицевой части линейки между разметками (B) и (C) нанесена обратная шкала чисел (R). С другой стороны движка (планку можно вынуть из пазов и перевернуть) присутствуют еще три шкалы для расчета тригонометрических функций. Верхняя (Sin) – предназначена для синусов, нижняя (Tg) – тангенсов, средняя (Sin и Tg) – общая.

Логарифмическая линейка фото

Разновидности

Стандартная линейка логарифмическая имеет длину измерительной шкалы 25 см. Выпускался еще карманный вариант длиной 12,5 см и устройство повышенной точности 50 см. Существовало деление линеек на первый и второй сорта в зависимости от качества исполнения. Внимание уделялось четкости наносимых штрихов, обозначений и вспомогательных линий. Движок и корпус должны были быть ровными и идеально подогнаны друг к другу. Изделия второго сорта могли иметь незначительные царапины и точки на целлулоиде, но они не искажали обозначений. Также мог присутствовать незначительный люфт в пазах и прогиб.

Существовали и другие карманные (похожие на часы диаметром 5 см) варианты устройства – логарифмическая дисковая (типа «Спутник») и круговая (КЛ-1) линейки. Они отличались и конструкцией, и меньшей точностью измерений. В первом случае для установки чисел на замкнутых круговых логарифмических шкалах использовалась прозрачная крышка с линией-визиром. Во втором – механизм управления (две вращающиеся ручки) был смонтирован на корпусе: одной управлялся дисковый движок, другая управляла стрелкой-визиром.

Логарифмическая линейка инструкция

Возможности

Логарифмической линейкой общего назначения можно было осуществлять деление и умножение чисел, возведить их в квадрат и куб, извлекать корень, решать уравнения. Кроме этого, по шкалам производились тригонометрические вычисления (синус и тангенс) по заданным углам, определялись мантиссы логарифмов и обратные действия – находились числа по их значениям.

Правильность вычислений во многом зависела от качества линейки (длинны ее шкал). В идеале можно было надеяться на точность до третьего знака после запятой. Такие показатели были вполне достаточными для технических расчетов в XIX веке.

Возникает вопрос: как пользоваться логарифмической линейкой? Одного знания назначения шкал и способов нахождения на них чисел еще не достаточно для произведения расчетов. Чтобы использовать все возможности линейки, нужно понимать, что такое логарифм, знать его характеристики и свойства, а также принципы построения и зависимости шкал.

Как считать на логарифмической линейке

Для уверенной работы с устройством требовались определенные навыки. Сравнительно простые вычисления с одним бегунком. Для удобства движок (чтобы не отвлекал) можно удалять. Установив черту на значения любого числа на основной (D) шкале можно сразу же по визиру получить результат возведения его в квадрат на шкале выше (A) и в куб – на самой верхней (K). Внизу (L) будет значение его логарифма.

Деление и умножение чисел производится с помощью движка. Применяются свойства логарифмов. Согласно им, итог умножения двух чисел равен результату сложения их логарифмов (аналогично: деление и разница). Зная это, можно достаточно быстро производить расчеты, используя графические шкалы.

Чем сложна логарифмическая линейка? Инструкция по ее правильному использованию шла в комплекте с каждым экземпляром. Кроме знания свойств и характеристик логарифмов, нужно было уметь правильно находить исходные числа на шкалах и уметь в нужном месте считывать результаты, в том числе самостоятельно определять точное место расположения запятой.

Как считать на логарифмической линейке

Актуальность

Как пользоваться логарифмической линейкой, в наше время знают и помнят немногие, и с уверенностью можно утверждать, что число таких людей будет снижаться.

Логарифмическая линейка из разряда карманных счетных приспособлений давно стала раритетом. Для уверенной работы с ней нужна постоянная практика. Методика расчетов с примерами и разъяснениями тянет на брошюру в 50 листов.

Для среднестатистического человека, далекого от высшей математики, логарифмическая линейка может представлять какую-то ценность разве что справочными материалами, размещенными на обратной стороне корпуса (плотность некоторых веществ, температура плавления и пр.). Преподаватели даже не утруждаются вводить запрет на ее наличие при сдаче экзаменов и зачетов, понимая, что разобраться с тонкостями ее использования современному студенту очень сложно.

www.syl.ru

Реферат Логарифмическая таблица

скачать

Реферат на тему:

План:

Введение

Рис. 1. Графики логарифмических функций

Логари́фм числа b по основанию a (от греч. λόγος — «слово», «отношение» и ἀριθμός — «число»[1]) определяется как показатель степени, в которую надо возвести основание a, чтобы получить число b. Обозначение: \log_a b\,. Из определения следует, что записи \log_a b = x\, и a^x=b\,\! равносильны.

Например, \log_2 8 = 3\,, потому что 2^3 = 8\,\!.

1. Вещественный логарифм

Логарифм вещественного числа logab имеет смысл при a>0, a \ne 1, b>0. Как известно, показательная функция y = ax монотонна и каждое значение принимает только один раз, причём диапазон её значений содержит все положительные вещественные числа. Отсюда следует, что значение вещественного логарифма положительного числа вcегда существует и определено однозначно.

Наиболее широкое применение нашли следующие виды логарифмов.

1.1. Свойства

Доказательство  

Докажем, что a^{\log_a |b| + \log_a |c|} = bc.

a^{\log_a |b| + \log_a |c|}= a^{\log_a |b|} \cdot a^{\log_a |c|}=|b| \cdot |c| = |b \cdot c|=bc   (так как по условию bc > 0). ■

Доказательство  

Докажем, что a^{\log_a |b| - \log_a |c|} = \frac {b} {c}

a^{\log_a |b| - \log_a |c|}= \frac {a^{\log_a |b|}} {a^{\log_a |c|}}= \frac {|b|} {|c|} = \left | \frac {b} {c} \right |= \frac {b} {c}   (так как по условию  \frac {b} {c} >0)

Доказательство  

Используем для доказательства тождество a^{\log_a b} = b. Логарифмируем обе части тождества по основанию c. Получаем:

\log_c a^{\log_a b} = \log_c b \Leftrightarrow \log_a b \cdot \log_c a = log_c b \Leftrightarrow \log_a b = \frac {\log_c b} {\log_c a}

Доказательство  

Докажем, что a^{p\ \log_a |b|} = b^p.

a^{p\ \log_a |b|} = \left (a^{\log_a |b|} \right)^p = |b|^p=\left |b^p \right |=b^p    (так как bp > 0 по условию). ■

Доказательство  

Докажем, что (a^k)^{\frac {1} {k} \log_a b} = b

(a^k)^{\frac {1} {k} \log_a b} = a^{k \cdot \frac {1} {k} \log_a b} = a^{\log_a b} = b

Доказательство  

Логарифмируем левую и правую части по основанию c:

Левая часть: \log_c d \cdot \log_c a Правая часть: \log_c a \cdot \log_c d

Равенство выражений очевидно. Т. к. логарифмы равны, то в силу монотонности логарифмической функции равны и сами выражения. ■

1.2. Логарифмическая функция

Если рассматривать логарифмируемое число как переменную, мы получим логарифмическую функцию y = logax (см. рис. 1). Она определена при ~a>0;\ a \ne 1; x>0. Область значений: E(y)=(-\infty; + \infty ).

Функция является строго возрастающей при a > 1 и строго убывающей при 0 < a < 1. График любой логарифмической функции проходит через точку (1;0). Функция непрерывна и неограниченно дифференцируема всюду в своей области определения.

Прямая x = 0 является левой вертикальной асимптотой, поскольку \lim_{x \to 0+0} \log_a x = - \infty при a > 1 и \lim_{x \to 0+0} \log_a x = + \infty при 0 < a < 1.

Производная логарифмической функции равна:

Доказательство [2]  

I. Докажем, что (\ln x)' = \frac {1} {x}

Запишем тождество elnx = x и продифференцируем его левую и правую части

Получаем, что e^{\ln x} \cdot (\ln x)' = 1, откуда следует, что (\ln x)' = \frac {1} {e^{\ln x}} = \frac {1} {x}

II. Докажем, что (\log_a x)' = \frac {1} {x \cdot \ln a}

(\log_a x)' = \left( \frac {\ln x} {\ln a} \right)'=\frac {1} {\ln a} (\ln x)' = \frac {1} {x \cdot \ln a}

Логарифмическая функция осуществляет изоморфизм мультипликативной группы положительных вещественных чисел и аддитивной группы всех вещественных чисел.

1.3. Натуральные логарифмы

Связь с десятичным логарифмом: \ln x \approx 2{,}30259\ \lg x;\ \ \lg x \approx 0{,}43429\ \ln x.

Как указано выше, для производной натурального логарифма справедлива простая формула:

(\ln x )' = \frac{1}{x}

По этой причине в математических исследованиях преимущественно используют именно натуральные логарифмы. Они нередко появляются при решении дифференциальных уравнений, исследовании статистических зависимостей (например, распределения простых чисел) и т. п.

Неопределенный интеграл от натурального логарифма легко найти интегрированием по частям:

\int{\ln x\,\mathrm dx} = x\ln x-x+C

Разложение в ряд Тейлора может быть представлено следующим образом:при -1 < x \leqslant 1 справедливо равенство

\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots (1)

В частности,

\ln 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots

Формула (1) не имеет большой практической ценности из-за того, что ряд очень медленно сходится и значение x ограничено весьма узким диапазоном. Однако нетрудно получить из неё более удобную формулу:

\ln \left(\frac{1+x}{1-x}\right)=2\left(x+\frac{x^3}{3}+\frac{x^5}{5}+\frac{x^7}{7}+\dots\right) (2)

Этот ряд сходится быстрее, а кроме того, левая часть формулы теперь может выразить логарифм любого положительного числа.

1.4. Десятичные логарифмы

Рис. 2а. Логарифмическая шкала

Рис. 2б. Логарифмическая шкала с обозначениями

Логарифмы по основанию 10 (обозначение: lg a) до изобретения калькуляторов широко применялись для вычислений. Неравномерная шкала десятичных логарифмов обычно наносится и на логарифмические линейки. Подобная шкала используется во многих областях науки, например:

Логарифмическая шкала также широко применяется для выявления показателя степени в степенных зависимостях и коэффициента в показателе экспоненты. При этом график, построенный в логарифмическом масштабе по одной или двум осям, принимает вид прямой, более простой для исследования.

2. Комплексный логарифм

2.1. Определение и свойства

Для комплексных чисел логарифм определяется так же, как вещественный. На практике используется почти исключительно натуральный комплексный логарифм, который обозначим \mathrm{Ln}\, w и определим как множество всех комплексных чисел z таких, что ez = w. Комплексный логарифм существует для любого w \ne 0, и его вещественная часть определяется однозначно, в то время как мнимая имеет бесконечное множество значений. По этой причине его называют многозначной функцией. Если представить w в показательной форме:

w=r \cdot e^{i \varphi},

то логарифм \mathrm{Ln}\,w находится по формуле:

\mathrm{Ln}\,w = \{\ln r + i \left ( \varphi + 2 \pi k \right ),\,k\in\Z \} .

Здесь \ln\,r — вещественный логарифм, r = | w | , k — произвольное целое число. Значение, получаемое при k = 0, называется главным значением комплексного натурального логарифма; принято брать в нём значение аргумента \varphi в интервале ( − π,π]. Соответствующая (уже однозначная) функция называется главной ветвью логарифма и обозначается \ln\,z. Иногда через \ln\, z также обозначают значение логарифма, лежащее не на главной ветви.

Из формулы следует:

\operatorname{Re}(\ln(x+iy)) = \frac{1}{2} \ln(x^2+y^2) \ln (-x) = \ln x + i \pi (2 k + 1) \qquad (x>0,\ k = 0, \pm 1, \pm 2 \dots)

Поскольку комплексные тригонометрические функции связаны с экспонентой (формула Эйлера), то комплексный логарифм как обратная к экспоненте функция связан с обратными тригонометрическими функциями. Пример такой связи:

\arcsin z = -i \ln (i z + \sqrt{1-z^2})

2.2. Примеры

Приведём главное значение логарифма для некоторых аргументов:

Следует быть осторожным при преобразованиях комплексных логарифмов, принимая во внимание, что они многозначны, и поэтому из равенства логарифмов каких-либо выражений не следует равенство этих выражений. Пример ошибочного рассуждения:

iπ = ln( − 1) = ln(( − i)2) = 2ln( − i) = 2( − iπ / 2) = − iπ — явная нелепость.

Отметим, что слева стоит главное значение логарифма, а справа — значение из нижележащей ветви (k = − 1). Причина ошибки — неосторожное использования свойства \log_a{(b^p)} = p~\log_a b, которое, вообще говоря, подразумевает в комплексном случае весь бесконечный набор значений логарифма, а не только главное значение.

2.3. Аналитическое продолжение

Рис. 3. Комплексный логарифм (мнимая часть)

Логарифм комплексного числа также может быть определён как аналитическое продолжение вещественного логарифма на всю комплексную плоскость. Пусть кривая Γ начинается в единице, не проходит через нуль и не пересекает отрицательную часть вещественной оси. Тогда главное значение логарифма в конечной точке w кривой Γ можно определить по формуле:

\ln w = \int\limits_\Gamma {dz \over z}

Если Γ — простая кривая (без самопересечений), то для чисел, лежащих на ней, логарифмические тождества можно применять без опасений, например

\ln (wz) = \ln w + \ln z, ~\forall z,w\in\Gamma\colon zw\in \Gamma

Если разрешить кривой Γ пересекать отрицательную часть вещественной оси, то первое такое пересечение переносит результат с ветви главного значения на соседнюю ветвь, а каждое следующее пересечение вызывает аналогичное смещение по ветвям логарифмической функции (см. рисунок).

Из формулы аналитического продолжения следует, что на любой ветви логарифма

\ln' z = {1\over z}

Для любой окружности S, охватывающей точку 0:

\oint\limits_S {dz \over z} = 2\pi i

Интеграл берётся в положительном направлении (против часовой стрелки). Это тождество лежит в основе теории вычетов.

Можно также определить аналитическое продолжение комплексного логарифма с помощью вышеприведенного ряда (1), обобщённого на случай комплексного аргумента. Однако из вида разложения следует, что в единице он равен нулю, то есть ряд относится только к главной ветви многозначной функции комплексного логарифма.

2.4. Риманова поверхность

Комплексная логарифмическая функция — пример римановой поверхности; её мнимая часть (рис. 3) состоит из бесконечного числа ветвей, закрученных в виде спирали. Эта поверхность односвязна; её единственный нуль (первого порядка) получается при z = 1, особые точки: z = 0 и z=\infty (точки разветвления бесконечного порядка).

Риманова поверхность логарифма является универсальной накрывающей для комплексной плоскости без точки 0.

3. Исторический очерк

3.1. Вещественный логарифм

Потребность в сложных расчётах в XVI веке быстро росла, и значительная часть трудностей была связана с умножением и делением многозначных чисел, а также извлечением корней. В конце века нескольким математикам, почти одновременно, пришла в голову идея: заменить трудоёмкое умножение на простое сложение, сопоставив с помощью специальных таблиц геометрическую и арифметическую прогрессии, при этом геометрическая будет исходной. Тогда и деление автоматически заменяется на неизмеримо более простое и надёжное вычитание, а извлечение корня степени n сводится к делению логарифма подкоренного выражения на n. Первым эту идею опубликовал в своей книге «Arithmetica integra» Михаэль Штифель, который, впрочем, не приложил серьёзных усилий для реализации своей идеи.

В 1614 году шотландский математик-любитель Джон Непер опубликовал на латинском языке сочинение под названием «Описание удивительной таблицы логарифмов» (лат. Mirifici Logarithmorum Canonis Descriptio). В нём было краткое описание логарифмов и их свойств, а также 8-значные таблицы логарифмов синусов, косинусов и тангенсов, с шагом 1'. Термин логарифм, предложенный Непером, утвердился в науке. Теорию логарифмов Непер изложил в другой своей книге «Построение удивительной таблицы логарифмов» (лат. Mirifici Logarithmorum Canonis Constructio), изданной посмертно в 1619 году его сыном.

Понятия функции тогда ещё не было, и Непер определил логарифм кинематически, сопоставив равномерное и логарифмически-замедленное движение; например, логарифм синуса он определил следующим образом[3]:

Логарифм данного синуса есть число, которое арифметически возрастало всегда с той же скоростью, с какой полный синус начал геометрически убывать.

В современных обозначениях кинематическую модель Непера можно изобразить дифференциальным уравнением: dx/x = -dy/M, где M — масштабный множитель, введённый для того, чтобы значение получилось целым числом с нужным количеством знаков (десятичные дроби тогда ещё не нашли широкого применения). Непер взял M = 10000000.

Строго говоря, Непер табулировал не ту функцию, которая сейчас называется логарифмом. Если обозначить его функцию LogNap(x), то она связана с натуральным логарифмом следующим образом:

\operatorname{LogNap}(x) = M \cdot (\ln(M) - \ln(x))

Очевидно, LogNap(M) = 0, то есть логарифм «полного синуса» есть нуль — этого и добивался Непер своим определением. \operatorname{LogNap}(0) = \infty.

Основное свойство логарифма Непера: если величины образуют геометрическую прогрессию, то их логарифмы образуют прогрессию арифметическую. Однако правила логарифмирования для неперовой функции отличались от правил для современного логарифма.

Например, LogNap(ab) = LogNap(a) + LogNap(b) — LogNap(1).

К сожалению, все значения таблицы Непера содержали вычислительную ошибку после шестого знака. Однако это не помешало новой методике вычислений получить широчайшую популярность, и составлением логарифмических таблиц занялись многие европейские математики, включая Кеплера. Уже спустя 5 лет, в 1619 г., лондонский учитель математики Джон Спайделл (John Speidell) переиздал таблицы Непера, преобразованные так, что они фактически стали таблицами натуральных логарифмов (хотя масштабирование до целых чисел Спайделл сохранил). Термин «натуральный логарифм» предложил итальянский математик Пьетро Менголи (Pietro Mengoli)) в середине XVI века[4].

В 1620-е годы Эдмунд Уингейт и Уильям Отред изобрели первую логарифмическую линейку, до появления карманных калькуляторов — незаменимый инструмент инженера.

Близкое к современному понимание логарифмирования — как операции, обратной возведению в степень — впервые появилось у Валлиса и Иоганна Бернулли, а окончательно было узаконено Эйлером в XVIII веке. В книге «Введение в анализ бесконечных» (1748) Эйлер дал современные определения как показательной, так и логарифмической функций, привёл разложение их в степенные ряды, особо отметил роль натурального логарифма.

Эйлеру принадлежит и заслуга распространения логарифмической функции на комплексную область.

3.2. Комплексный логарифм

Первые попытки распространить логарифмы на комплексные числа предпринимали на рубеже XVII—XVIII веков Лейбниц и Иоганн Бернулли, однако создать целостную теорию им не удалось — в первую очередь по той причине, что тогда ещё не было ясно определено само понятие логарифма. Дискуссия по этому поводу велась сначала между Лейбницем и Бернулли, а в середине XVIII века — между Даламбером и Эйлером. Бернулли и Даламбер считали, что следует определить log(-x) = log(x). Полная теория логарифмов отрицательных и комплексных чисел была опубликована Эйлером в 1747—1751 годах и по существу ничем не отличается от современной.

Хотя спор продолжался (Даламбер отстаивал свою точку зрения и подробно аргументировал её в статье своей «Энциклопедии» и в других трудах), точка зрения Эйлера быстро получила всеобщее признание.

4. Логарифмические таблицы

Логарифмические таблицы

Из свойств логарифма следует, что вместо трудоёмкого умножения многозначных чисел достаточно найти (по таблицам) и сложить их логарифмы, а потом по тем же таблицам выполнить потенцирование, то есть найти значение результата по его логарифму. Выполнение деления отличается только тем, что логарифмы вычитаются. Лаплас говорил, что изобретение логарифмов «продлило жизнь астрономов», многократно ускорив процесс вычислений.

При переносе десятичной запятой в числе на n разрядов значение десятичного логарифма этого числа изменяется на n. Например, lg8314,63 = lg8,31463 + 3. Отсюда следует, что достаточно составить таблицу десятичных логарифмов для чисел в диапазоне от 1 до 10.

Первые таблицы логарифмов опубликовал Джон Непер (1614), и они содержали только логарифмы тригонометрических функций, причём с ошибками. Независимо от него свои таблицы опубликовал Иост Бюрги, друг Кеплера (1620). В 1617 году оксфордский профессор математики Генри Бригс опубликовал таблицы, которые уже включали десятичные логарифмы самих чисел, от 1 до 1000, с 8 (позже — с 14) знаками. Но и в таблицах Бригса обнаружились ошибки. Первое безошибочное издание на основе таблиц Вега (1783) появилось только в 1857 году в Берлине (таблицы Бремивера).

В России первые таблицы логарифмов были изданы в 1703 году при участии Л. Ф. Магницкого. В СССР выпускались несколько сборников таблиц логарифмов.

Таблицы Брадиса (1921) использовались в учебных заведениях и в инженерных расчётах, не требующих большой точности. Они содержали мантиссы десятичных логарифмов чисел и тригонометрических функций, натуральные логарифмы и некоторые другие полезные расчётные инструменты.

Профессиональный сборник для точных вычислений.

В настоящее время с распространением калькуляторов необходимость в использовании таблиц логарифмов отпала.

5. Приложения

Логарифмическая спираль Наутилуса

Logarithm animation.gif

Литература

wreferat.baza-referat.ru


Смотрите также