Реферат: Теорема Котельникова. Котельников теорема реферат


Реферат: Теорема Котельникова

Теорема Котельникова.

Для того, чтобы восстановить исходный непрерывный сигнал из дискретизированного с малыми искажениями (погрешностями), необходимо рационально выбрать шаг дискретизации. Поэтому при преобразовании ана­логового сигнала в дискретный обязательно возникает вопрос о величине шага дискретизации. Интуитивно нетрудно понять следующую идею. Ес­ли аналоговый сигнал обладает низкочастотным спектром, ограниченным некоторой верхней частотойFe, (т.е. функцияu(t)имеет вид плавно изме­няющейся кривой, без резких изменений амплитуды), то вряд ли на некото­ром небольшом временном интервале дискретизацииэта функция может существенно изменяться по амплитуде.Совершенно очевидно, что точность восстановления аналогового сиг­нала по последовательности его отсчетов зависит от величины интервала дискретизации. Чем он короче, тем меньше будет отличаться функция u(t) от плавной кривой, проходящей через точки отсчетов. Однако с уменьшени­ем интервала дискретизациисущественно возрастает сложность и объем обрабатывающей аппаратуры. При достаточно большом интервале дискре­тизациивозрастает вероятность искажения или потери информации при восстановлении аналогового сигнала.Оптимальная величина интервала дискретизации устанавливается тео­ремой Котельникова (другие названия — теорема отсчетов, теорема К. Шеннона, теорема X. Найквиста: впервые теорема была открыта в мате­матике О. Коши, а затем описана повторно Д. Карсоном и Р. Хартли), дока­занной им в 1933 г. Теорема В. А. Котельникова имеет важное теоретическое и практическое значение: дает возмож­ность правильно осуществить дискре­тизацию аналогового сигнала и опреде­ляет оптимальный способ его восста­новления на приемном конце по отсчетным значениям.

Рис.14.1. Представление спектральной плотности

Согласно одной из наиболее из­вестных и простых интерпретаций тео­ремы Котельникова, произвольный сиг­нал u(t), спектр которого ограничен некоторой частотойFeможет - быть полностью восстановлен по последо­вательности своих отсчетных значений, следующих с интервалом времени

(1)

Интервал дискретизациии частотуFe(1) в радиотехнике часто называют соответственно интервалом и частотой Найквиста. Аналитически теорема Котельникова представляется рядом

(2)

где k — номер отсчета;— значение сигнала в точках отсчета;— верхняя частота спектра сигнала.Для доказательства теоремы Котельникова рассмотрим произвольный непрерывный сигнал и(t), спектральная плотностькоторого сосредото­чена в полосе частот(сплошная линия на рис.14.1).Мысленно дополним график спектральной плотностисимметрично значениям, повторяющимся с периодом, (штриховые линии на рис.14.1). Полученную таким образом периодическую функцию разложим в ряд Фу­рье, заменив в формуле

аргументtна с, частотунаи (фор­мально)пнаk. Тогда

(3)

период — это, а интервал дис­кретизациизапишем

(4)

Воспользуемся формулой обратного преобразования Фурье и представим исходный непрерывный сигнал в следующем виде:(5)

Таким же образом запишем значение дискретизированного сигнала для некоторого k-то отсчета времени. Поскольку время, тоСравнив это выражение с формулой для Ck, замечаем, чтоС учетом этого соотношения спектральная функция (3), после несложных преобра­зований, примет вид:

(7)

Затем проделаем следующее: подставим выражениев соотношение, изменим порядок интегрирования и суммирования, представим отно­шение как, и вычислим интеграл.В результате получим такую фор­мулу:

Из этого соотношения следует, что непрерывная функция u(t) дейст­вительно определяется совокупностью ее дискретных значений амплиту­ды в отсчетные моменты времени, что и доказывает теорему Ко­тельникова.Простейшие сигналы видаортогональные друг другу на интерва­ле времени -,, называются функ­циями отсчетов, базисными функция­ми, или функциями Котельникова. График k-й функции Котельникова представлен на рис. 2. Каждая из ба­зисных функцийsk(t)сдвинута относи­тельно подобной ближайшей функцииsk-1(t)илиsk+1(t)на интервал дискрети­зации. Элементарный анализ фор­мулы (10) и графика на рис. 14.3 пока­зывает, что сигналsk(t)отражается

Рис. 14.2. График базисной функции КотельниковаРис.14.3. Аппроксимация непрерывного сигнала рядом Котельникова функцией sinx/x, которая также характеризует огибающую спектральной плотности прямоугольного импульса.

Представление (точнее, аппроксимация) заданного непрерывного сигнала u(t) рядом Котельникова (2) иллюстрируется диаграммами на рис. 14.3. графике (здесь базисные функции для упрощения показаны без аргументаtпостроены четыре первых члена ряда, соответствующие отсчетам сигнала в моменты времени 0,, 2и 3, взятым в соответствии с теоремой Котельникова. При суммировании этих членов ряда в любые отсчетные моменты времени kDt, непрерывный сигнал абсолютно точно аппроксимируется независимо от числа выбранных отсчетов. В интервале же между любыми отсчетами сигнал u(t) аппроксимируется тем точнее, чем больше суммируется членов ряда Котельникова (2).Оценим возможность применения теоремы Котельникова к импульсному сигналу u(t) конечной длительностиTх. Как известно, такие сигналы теоретически обладают бесконечно широким спектром. Однако на практике можно ограничиться некоторой верхней частотойFвза пределами которой в спектре содержится пренебрежительно малая доля энергии по сравнению с энергией всего исходного сигнала. В радиотехнике таким критерием является содержание 90% средней мощности сигнала в границах спектра. В этом случае сигнал u(t) длительностьюTхс верхней граничной частотой спектраFвможет быть представлен рядом Котельникова с определенным, ограниченным числом отсчетов

(10)

Здесь— число отсчетов.

Рис.14.4. Представление прямоугольного импульса отсчетами:о—двумя; б—тремя

superbotanik.net

Реферат: Теорема Котельникова

 

Теорема Котельникова.

   Для того, чтобы восстановить исходный непрерывный сигнал из дискретизированного с малыми искажениями (погрешностями), необходимо рационально выбрать шаг дискретизации. Поэтому при преобразовании ана­логового сигнала в дискретный обязательно возникает вопрос о величине шага дискретизации . Интуитивно нетрудно понять следующую идею. Ес­ли аналоговый сигнал обладает низкочастотным спектром, ограниченным некоторой верхней частотой Fe, (т.е. функция u(t) имеет вид плавно изме­няющейся кривой, без резких изменений амплитуды), то вряд ли на некото­ром небольшом временном интервале дискретизации  эта функция может существенно изменяться по амплитуде.    Совершенно очевидно, что точность восстановления аналогового сиг­нала по последовательности его отсчетов зависит от величины интервала дискретизации . Чем он короче, тем меньше будет отличаться функция u(t) от плавной кривой, проходящей через точки отсчетов. Однако с уменьшени­ем интервала дискретизации  существенно возрастает сложность и объем обрабатывающей аппаратуры. При достаточно большом интервале дискре­тизации  возрастает вероятность искажения или потери информации при восстановлении аналогового сигнала.    Оптимальная величина интервала дискретизации устанавливается тео­ремой Котельникова (другие названия — теорема отсчетов, теорема К. Шеннона, теорема X. Найквиста: впервые теорема была открыта в мате­матике О. Коши, а затем описана повторно Д. Карсоном и Р. Хартли), дока­занной им в 1933 г. Теорема В. А. Котельникова имеет важное теоретическое и практическое значение: дает возмож­ность правильно осуществить дискре­тизацию аналогового сигнала и опреде­ляет оптимальный способ его восста­новления на приемном конце по отсчетным значениям.

Рис.14.1. Представление спектральной плотности

  Согласно одной из наиболее из­вестных и простых интерпретаций тео­ремы Котельникова, произвольный сиг­нал u(t), спектр которого ограничен некоторой частотой Fe может - быть полностью восстановлен по последо­вательности своих отсчетных значений, следующих с интервалом времени

                                            (1)

   Интервал дискретизации  и частоту Fe (1) в радиотехнике часто называют соответственно интервалом и частотой Найквиста. Аналитически теорема Котельникова представляется рядом

                         (2)

где k — номер отсчета;  — значение сигнала в точках отсчета;  — верхняя частота спектра сигнала.    Для доказательства теоремы Котельникова рассмотрим произвольный непрерывный сигнал и(t), спектральная плотность  которого сосредото­чена в полосе частот  (сплошная линия на рис.14.1).    Мысленно дополним график спектральной плотности  симметрично значениям, повторяющимся с периодом , (штриховые линии на рис.14.1). Полученную таким образом периодическую функцию разложим в ряд Фу­рье, заменив в формуле

аргумент t на с , частоту  на  и (фор­мально) п на k. Тогда

                                   (3)

Полагая, что в соотношении

период — это , а интервал дис­кретизации  запишем

                             (4)

   Воспользуемся формулой обратного преобразования Фурье  и представим исходный непрерывный сигнал в следующем виде:                 (5)

   Таким же образом запишем значение дискретизированного сигнала для некоторого k-то отсчета времени. Поскольку время , то    Сравнив это выражение с формулой для Ck , замечаем, что  С учетом этого соотношения спектральная функция (3), после несложных преобра­зований, примет вид:

             (7)

   Затем проделаем следующее: подставим выражение в соотношение , изменим порядок интегрирования и суммирования, представим отно­шение как , и вычислим интеграл.    В результате получим такую фор­мулу:

   Из этого соотношения следует, что непрерывная функция u(t) дейст­вительно определяется совокупностью ее дискретных значений амплиту­ды в отсчетные моменты времени , что и доказывает теорему Ко­тельникова.    Простейшие сигналы вида  ортогональные друг другу на интерва­ле времени -, , называются функ­циями отсчетов, базисными функция­ми, или функциями Котельникова. График k-й функции Котельникова представлен на рис. 2. Каждая из ба­зисных функций sk(t) сдвинута относи­тельно подобной ближайшей функции sk-1(t) или sk+1(t) на интервал дискрети­зации . Элементарный анализ фор­мулы (10) и графика на рис. 14.3 пока­зывает, что сигнал sk(t) отражается

Рис. 14.2. График базисной функции Котельникова Рис.14.3. Аппроксимация непрерывного сигнала рядом Котельникова функцией sinx/x, которая также характеризует огибающую спектральной плотности прямоугольного импульса.

  Представление (точнее, аппроксимация) заданного непрерывного сигнала u(t) рядом Котельникова (2) иллюстрируется диаграммами на рис. 14.3. графике (здесь базисные функции  для упрощения показаны без аргумента t построены четыре первых члена ряда, соответствующие отсчетам сигнала в моменты времени 0, , 2 и 3, взятым в соответствии с теоремой Котельникова. При суммировании этих членов ряда в любые отсчетные моменты времени kDt, непрерывный сигнал абсолютно точно аппроксимируется независимо от числа выбранных отсчетов. В интервале же между любыми отсчетами сигнал u(t) аппроксимируется тем точнее, чем больше суммируется членов ряда Котельникова (2). Оценим возможность применения теоремы Котельникова к импульсному сигналу u(t) конечной длительности Tх. Как известно, такие сигналы теоретически обладают бесконечно широким спектром. Однако на практике  можно ограничиться некоторой верхней частотой Fв за пределами которой в спектре содержится пренебрежительно малая доля энергии по сравнению с энергией всего исходного сигнала. В радиотехнике таким критерием является содержание 90% средней мощности сигнала в границах спектра. В этом случае сигнал u(t) длительностью Tх с верхней граничной частотой спектра Fв может быть представлен рядом Котельникова с определенным, ограниченным числом отсчетов

                    (10)

   Здесь — число отсчетов.

Рис.14.4. Представление прямоугольного импульса отсчетами: о—двумя; б—тремя

 

www.referatmix.ru

Реферат: Теорема Котельникова

Теорема Котельникова.

Для того, чтобы восстановить исходный непрерывный сигнал из дискретизированного с малыми искажениями (погрешностями), необходимо рационально выбрать шаг дискретизации. Поэтому при преобразовании ана­логового сигнала в дискретный обязательно возникает вопрос о величине шага дискретизации . Интуитивно нетрудно понять следующую идею. Ес­ли аналоговый сигнал обладает низкочастотным спектром, ограниченным некоторой верхней частотой Fe , (т.е. функция u(t) имеет вид плавно изме­няющейся кривой, без резких изменений амплитуды), то вряд ли на некото­ром небольшом временном интервале дискретизации эта функция может существенно изменяться по амплитуде.Совершенно очевидно, что точность восстановления аналогового сиг­нала по последовательности его отсчетов зависит от величины интервала дискретизации . Чем он короче, тем меньше будет отличаться функция u(t) от плавной кривой, проходящей через точки отсчетов. Однако с уменьшени­ем интервала дискретизации существенно возрастает сложность и объем обрабатывающей аппаратуры. При достаточно большом интервале дискре­тизации возрастает вероятность искажения или потери информации при восстановлении аналогового сигнала.Оптимальная величина интервала дискретизации устанавливается тео­ремой Котельникова (другие названия — теорема отсчетов, теорема К. Шеннона, теорема X. Найквиста: впервые теорема была открыта в мате­матике О. Коши, а затем описана повторно Д. Карсоном и Р. Хартли), дока­занной им в 1933 г. Теорема В. А. Котельникова имеет важное теоретическое и практическое значение: дает возмож­ность правильно осуществить дискре­тизацию аналогового сигнала и опреде­ляет оптимальный способ его восста­новления на приемном конце по отсчетным значениям.

Рис.14.1. Представление спектральной плотности

Согласно одной из наиболее из­вестных и простых интерпретаций тео­ремы Котельникова, произвольный сиг­нал u(t), спектр которого ограничен некоторой частотой Fe может - быть полностью восстановлен по последо­вательности своих отсчетных значений, следующих с интервалом времени

(1)

Интервал дискретизации и частоту Fe (1) в радиотехнике часто называют соответственно интервалом и частотой Найквиста. Аналитически теорема Котельникова представляется рядом

(2)

где k — номер отсчета; — значение сигнала в точках отсчета; — верхняя частота спектра сигнала.Для доказательства теоремы Котельникова рассмотрим произвольный непрерывный сигнал и(t), спектральная плотность которого сосредото­чена в полосе частот (сплошная линия на рис.14.1).Мысленно дополним график спектральной плотности симметрично значениям, повторяющимся с периодом , (штриховые линии на рис.14.1). Полученную таким образом периодическую функцию разложим в ряд Фу­рье, заменив в формуле

аргумент t на с , частоту на и (фор­мально) п на k . Тогда

(3)

период — это , а интервал дис­кретизации запишем

(4)

Воспользуемся формулой обратного преобразования Фурье и представим исходный непрерывный сигнал в следующем виде: (5)

Таким же образом запишем значение дискретизированного сигнала для некоторого k-то отсчета времени. Поскольку время , тоСравнив это выражение с формулой для Ck , замечаем, что С учетом этого соотношения спектральная функция (3), после несложных преобра­зований, примет вид:

(7)

Затем проделаем следующее: подставим выражение в соотношение , изменим порядок интегрирования и суммирования, представим отно­шение как , и вычислим интеграл.В результате получим такую фор­мулу:

Из этого соотношения следует, что непрерывная функция u(t) дейст­вительно определяется совокупностью ее дискретных значений амплиту­ды в отсчетные моменты времени , что и доказывает теорему Ко­тельникова.Простейшие сигналы вида ортогональные друг другу на интерва­ле времени -, , называются функ­циями отсчетов, базисными функция­ми, или функциями Котельникова. График k-й функции Котельникова представлен на рис. 2. Каждая из ба­зисных функций sk (t) сдвинута относи­тельно подобной ближайшей функции sk-1 (t) или sk+1 (t) на интервал дискрети­зации . Элементарный анализ фор­мулы (10) и графика на рис. 14.3 пока­зывает, что сигнал sk (t) отражается

Рис. 14.2. График базисной функции КотельниковаРис.14.3. Аппроксимация непрерывного сигнала рядом Котельникова функцией sinx/x, которая также характеризует огибающую спектральной плотности прямоугольного импульса.

Представление (точнее, аппроксимация) заданного непрерывного сигнала u(t) рядом Котельникова (2) иллюстрируется диаграммами на рис. 14.3. графике (здесь базисные функции для упрощения показаны без аргумента t построены четыре первых члена ряда, соответствующие отсчетам сигнала в моменты времени 0, , 2 и 3, взятым в соответствии с теоремой Котельникова. При суммировании этих членов ряда в любые отсчетные моменты времени kDt, непрерывный сигнал абсолютно точно аппроксимируется независимо от числа выбранных отсчетов. В интервале же между любыми отсчетами сигнал u(t) аппроксимируется тем точнее, чем больше суммируется членов ряда Котельникова (2).Оценим возможность применения теоремы Котельникова к импульсному сигналу u(t) конечной длительности Tх . Как известно, такие сигналы теоретически обладают бесконечно широким спектром. Однако на практике можно ограничиться некоторой верхней частотой Fв за пределами которой в спектре содержится пренебрежительно малая доля энергии по сравнению с энергией всего исходного сигнала. В радиотехнике таким критерием является содержание 90% средней мощности сигнала в границах спектра. В этом случае сигнал u(t) длительностью Tх с верхней граничной частотой спектра Fв может быть представлен рядом Котельникова с определенным, ограниченным числом отсчетов

(10)

Здесь — число отсчетов.

Рис.14.4. Представление прямоугольного импульса отсчетами:о—двумя; б—тремя

www.yurii.ru


Смотрите также