www.yurii.ru

 

Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Реферат: Высокотемпературное коксование углей. Коксование угля реферат


Реферат: Реферат: Высокотемпературное коксование углей

Санкт-Петербургский Государственный Технологический Институт

Кафедра: Технологии нефтехимических и углехимических производств

Факультет: Технологии органического синтеза и полимерных материалов

Реферат

Тема: Высокотемпературное коксование углей

Выполнил: Шеков А.П.

Проверил: Розенталь Д.А,

 

 

 

 

 

С.-Петербург

2007

Введение

 

Высокотемпературное коксование углей в мире, имеет главенствующее значение в области переработки твёрдых горючих ископаемых. И это естественно связано с тем, что кокс, как неотъемлемая часть, используется в производстве стали и чугуна, из которых соответственно делают все металлические детали. А это является основой всего, что человек создаёт, для того чтобы жить. Отсюда вытекает назначение этого процесса: получить высококачественный кокс, а также наряду с ним, другие углеводороды (фенолы, бензол, смолу, коксовый газ) из твёрдых горючих ископаемых, с помощью высоких температур (до 11000С) и без доступа воздуха в коксовых печах или коксовых батареях.

Для проведения такого сложного процесса, нужно четко знать и соблюдать его параметры. Поддерживать высокую температуру в камере коксования, за счёт сжигания отопительных (коксовых или дымовых) газов. А так же учитывать определенную последовательность выгрузки готового кокса, в том плане, чтобы одновременно не разгружались две соседние камеры коксования, для поддержания более или менее стабильной температуры отопительных простенков и предотвращения их разрушения. Из параметров, можно ещё указать на своевременную выгрузку готового кокса и загрузку сырья (шихты), которая тоже должна отвечать определённым требованиям. Шихта – это оптимальная смесь из коксующихся углей, которая содержит в себе определённое соотношение витренита и фюзенита (компоненты, отвечающие за спекаемость). И для приготовления шихты необходимо создать (усреднить) смесь из углей разной спекаемости. Этот процесс проводят на местах хранения углей. С помощью грейфера набирают определённую марку угля и далее краном, тонко и равномерно рассыпают по полю из другой марки угля. Операцию повторяют многократно, тем самым получая многослойный «пирог» или штабель – это сумма тонких слоёв из разных марок углей. При взятии угля из штабеля грейфер погружается на большую глубину и таким образом осуществляется хорошее усреднение.

Практически, сейчас приходится решать проблему создания кокса, заданного качества, из имеющегося на складе сырья. И это решение затрудняется вследствие ограниченного количества хорошо спекающихся углей.

Технологическое оснащение процесса

Данный высокотемпературный процесс осуществляют на современных коксохимических заводах, в коксовых печах, которые состоят из камер коксования обогревательных простенков. Если они стоят на одном фундаменте, и работают в одном режиме, то всё вместе это называют коксовой батареей.

Пример такой батареи приведён на рисунке 1:

Рис. 1

Из рисунка видно, что батарея состоит из камер коксования и отопительной системы. У камеры имеется по три загрузочных люка, для загрузки шихты, и по два газоотводящих, для отвода летучих продуктов (в печах иностранного производства возможны вариации). Сторону батареи, вдоль которой движется коксовыталкивающая машина, называют машинной стороной, а противоположную, на которую выдаётся кокс – коксовая сторона. Ширина всей камеры не одинакова: она увеличивается от машинной стороны к коксовой соответственно. Эта особенность сделана для того, чтобы облегчить выгрузку (выталкивание) коксового пирога из камеры. В зависимости от конструкций печей, размеры камер могут колебаться по длине и ширине. В длину от 12 до 17(м), и ширину от 407 до 480(мм) соответственно.

Отметим, что заполнение коксовой камеры проводят не доверху, а оставляют около 300мм под сводом. Это пространство нужно для выхода парогазовых продуктов. Кроме того, при коксовании происходит усадка шихты, около 5 – 15%. Тогда возможно, если обогрев простенка будет выше высоты угольной загрузки, то подсводовое пространство будет перегреваться, что ухудшит прочность кладки и свойства кокса. Высоту и длину коксовой камеры имеет смысл увеличивать, из расчета на увеличение угольной загрузки и соответственно производительности. Однако высота ограничена равномерностью прогрева шихты и физической прочности кладки печи. А длина печи из-за возможности смятия коксового пирога и усложнения конструкции выталкивателя.

Обогрев печи. Отопительная система состоит из отопительных простенков, газораспределительной зоны и регенераторов. Функция отопительной системы самая главная – это, подвести отопительный газ в зону горения, передать тепло загрузке и отвести продукты горения. Схема приведена на рисунке 2:

Рис. 2

В этой системе (ПВР), вертикалы работают попарно и переменно. Простенок делится на пары вертикалов, из которых один работает на нисходящем потоке газов, а другой – на восходящем. Примерно через каждые 20 минут потоки меняются на противоположные. Это сделано для того, чтобы равномерно прогревать простенок, который сделан из огнеупорного материала (кирпича). Сторона простенка, соприкасающаяся с угольной загрузкой, называется рабочей, а противоположная сторона – огневой. В отопительном простенке, за счёт горения, образуется факел, который может быть короче или длиннее, в зависимости от интенсивности подачи газа и использования рециркуляционного окна. С помощью этого окна происходит подсос отработанных газов в факел горения, уменьшая концентрацию кислорода и тем самым вытягивая пламя. В отопительный простенок одновременно поступают газ и воздух, из газораспределительной зоны. В этой зоне расположены распределительные каналы коксового или другого богатого газа – корнюрная зона(8). И каналы, по которым подаётся обеднённый газ (доменный или генераторный) – косые ходы(6). Ниже корнюров расположены регенераторы (а-г), представляющие собой узкие камеры, в которых в определённом порядке уложен кирпич, так чтобы увеличить поверхность теплообмена. Они предназначены для использования тепла, выходящего вместе с дымовыми газами из отопительных простенков и нагревания обеднённого газа с воздухом. Под регенераторами, прямо на плите, расположены подовые каналы (3). По ним движется воздух, который через колосниковую решётку (4) поступает прямо в регенератор. Основными требованиями к этой конструкции являются: создание герметичности между стеной, разделяющей газовые потоки на восходящий (топочные газы) и нисходящий (дымовые) потоки, и зону с коксующейся загрузкой.

Кроме этой системы обогрева, существуют ещё несколько видов, например, с парными вертикалами и рециркуляцией (системы ПК-2К и ПК-2КР) отработанных газов через перекидной канал. Печи с групповым обогревом: собирают сгоревший газ в горизонтальный сборный канал и отправляя его в группу противоположных вертикалов. Так же существуют печи с нижним подводом тепла. Главное отличие заключается в том, что богатый газ через специальные металлические патрубки, заложенные при строительстве, проходит в газоподводящие каналы – дюзы, находящиеся в стенках регенераторов, а из них через горелки с отверстием выходит в вертикалы. Это позволяет точно дозировать подвод тепла не только к каждому отопительному простенку, но и к каждому вертикалу. Есть печи с иным подводом тепла, а именно, с внешним подогревом, предназначенные для коксования крупнокускового слабоспекающегося или неспекающегося угля или получения металлургического кокса из сланцев. Отопительный простенок здесь может быть разделён перегородками, как на вертикалы, так и на горизонталы. Остальные системы обогрева не значительно отличаются от уже изложенных.

б) Для осуществления бесперебойного процесса коксования нужно специальное оборудование, обеспечивающее работу коксовой батареи. Она обслуживается коксовыталкивателем, двересьёмной машиной с коксонаправляющей и загрузочным вагоном. Кроме того имеется тушильный вагон с тягачом, для транспортировки кокса на охлаждение. Назначение этого оборудования заключается в обеспечении выполнения операций по загрузке шихты, выдаче и приёмке коксового пирога и транспортирование его в тушильное устройство. На схеме видно оборудование, которое используется для обслуживания печи (рис. 3):

Рис. 3

Углезагрузочная машина (5) передвигается по верху батареи на рельсах и используется для загрузки шихты в печь, при опорожнении её от коксового пирога. При этом очищает стояки от нагара и подаёт инжекцией воду для устранения пыли. Схема на рисунке 4:

Рис. 4

Коксовыталкиватель (17) предназначен для извлечения (выталкивания), с помощью выталкивающей штанги, готового коксового пирога из печи в коксовозный вагон (13), с тягачом. Коксовыталкиватель также перемещается по рельсам, проложенным вдоль машинной стороны батареи. Он снимает дверь коксовой камеры, выдавливает кокс, потом с помощью специального устройства очищает дверь от смолы и графита, образовавшегося при коксовании, и устанавливает дверь обратно. В период загрузки коксовыталкиватель специальным устройством - планирной штангой (3), разравнивает шихту в камере коксования. Схема коксовыталкивателя приведена на рисунке 5:

Рис. 5

Двересъёмная машина с коксонаправляющей, предназначены для обслуживания коксовой стороны. Они расположены на отдельных тележках и связанных между собой шарнирной сцепкой. Двересъёмная машина является ведущей. Сняв дверь, корзина коксонаправляющей вставляется в проём камеры коксования. После выдачи кокса корзина возвращается назад и двересъёмная машина с коксонаправляющей получают возможность работать дальше или везти кокс на тушение.

Для сохранности коксовых печей и поддержания её в рабочем состоянии применяется так же специальное оборудование, имеющее название – анкераж. В состав оборудования анкеража входят анкерные колоны (1), брони (2) и рамы печных камер, пружины (6), анкерные болты (5,7), броневые листы (4), анкерные стяжки. Основная задача анкеража – сохранение и предотвращение деформации кладки в процессе работы батареи. Схема анкеража соответственно разобрана на рисунке 6:

Рис. 6

При разогреве батареи большое значение имеет продольное армирование, осуществляемое регулированием нагрузок продольными анкерными стяжками (5,7) и пружинами, расположенными в верхней части батареи.

Всё перечисленное оборудование является основным, поэтому возможны модификации и дополнения. Поэтому проводить обзор бессмысленно. Перейдём к следующему не маловажному вопросу, связанному с продуктами коксования.

 

Характеристика продуктов высокотемпературного коксования

Одновременно с коксом в процессе образуется ряд жидких и газообразных продуктов: фенолы, бензолы, смолы, коксовый газ, а так же не значительное количество Nh4 и h3S, имеющие большое значение в химической промышленности. Выход которых на массу угля составляет: 13-15% (330-380 м3/г массовых) - газы, 3-5% - смола, сырой бензол или газовый бензин – 0.8-1.1%. Выделившийся коксовый газ является высококалорийным, благодаря значительному содержанию метана Ch5 (25-28%) и Н2 (60-85%). В смоле присутствуют от 1 до 3% фенолов, которые представлены в основном простейшими производными фенола, крезолами и не значительным содержанием ди- и три - метил-фенолами. Кроме этого в смоле содержится 7-12% нафталина и 3-4% органических оснований, производных пиридина. Сырой бензол состоит из ароматики - 80-88%, олефинов (10-15%), насыщенных углеводородов (2-5%), а так же сернистых соединений (сероуглерода, тиофена и его производных). А выход летучих продуктов и их состав зависит от качества угольного сырья и режимов коксования.

Для характеристики главного продукта – кокса, определяют его химические, физико-химические и физико-механические свойства. К физическим свойствам относятся: плотность, пористость, микроструктура, прочность, электропроводность и теплопроводность. Истинная плотность кокса зависит от шихты и конечной температуры нагревания. Чем больше конечная температура шихты, тем больше истинная плотность кокса. Электропроводность зависит от сырья, скорости и конечной температуры. Чем ниже степень метаморфизма, выше скорость и меньше температура коксования, тем больше электропроводность кокса. Теплоёмкость увеличивается при повышении конечной температуры и уменьшении зольности. Теплопроводность кокса также зависит от зольности и от его структуры. Химические свойства кокса – это влажность, выход летучих, зольность, содержание серы, фосфора, углерода, водорода, кислорода, азота и др. элементов, а так же теплота его сгорания. Влажность зависит от методов охлаждения. Содержание золы напрямую зависит от зольности исходного угля. Сера, содержащаяся в коксе, отрицательно влияет на процессы, в которых он участвует. Выход летучих зависит от конечной температуры и колеблется от 0.7 до 3%. Теплота сгорания зависит от его элементного состава и зольности. К физико-химическим свойствам относят реакционную способность. Определяют её в основном с помощью реакции восстановления СО2:

С + СО2 = 2СО -+ 160.1 кДж/моль

Эта способность зависит от метаморфизма угля, скорости и конечной температуры коксования. Чем ниже метаморфизм, тем выше реакционная способность. А увеличение температуры приводит к снижению этой способности. Под физико-механическими свойствами представляют гранулометрический состав (равномерность всех зёрен) и прочность кокса. Также важным показателем качества кокса является его трещиноватость. Различают общую, продольную и поперечную трещиноватость, которая оценивается по числу и длине трещин куска. Прочность кокса, одно из наиболее важных показателей качества, оно имеет большое значение для определения его пригодности. В настоящее время одного метода, который бы позволял оценить качество по одному параметру, поэтому пользуются отдельными параметрами характеристиками кокса. В итоге нужно получить кокс с хорошей прочностью, минимальной влажностью, оптимальной реакционноспособностью и теплопроводностью (учитывая все остальные параметры), но это «палка на двух концах», т.к. не достичь одновременно всех оптимальных показателей.

Заключение

В заключение, можно описать основной режим работы механизмов коксовой батареи для получения кондиционной продукции. Изначально, необходимо как можно лучше размельчить уголь, для шихты. После, перед загрузкой шихты в печь, желательно её подогреть, для уменьшения времени процесса коксования. Обогрев крайних печей нужно вести интенсивней, для избежание падения температуры и укрупнения кусков кокса. Выгрузку готового продукта, тоже ведут по определённому принципу (графику). А именно, кокс выгружают из печей в таком порядке, чтобы одновременно не разгружались две соседние печи, были на середине процесса. Это делается для поддержания температуры в печи и сохранения прочности кладки. В общем виде серийность выдачи можно записать в виде m-n, где m- число печей, расположенных между печами, выдающими кокс и n-интервал между печами, выдающими кокс. Наиболее распространённые серийности 9-2, 2-1 и 5-2. Расчёты показывают, что разница во времени между серединой коксования и фактическим временем, прошедшем от начала коксования при серийности 9-2 составляет 2-2.5ч, 2-1 – около 1.5ч, и для 5-2 до 3.2ч. Отсюда следует, что оптимальный режим – 2-1, которую и применяют на новых батареях. Для соблюдения оптимальной серийности и постоянства коксования во всех печах строят поминутный график выдачи, который делают либо непрерывным, либо циклическим. Достоинством циклического графика является, что время оборота печи разбивается на рабочую и ремонтную части. Выдача, после остановки, всегда должна начинаться с той же печи, с которой начали, и в рабочую часть цикла должен быть извлечён весь кокс из всех печей, независимо от серийности. При этом режиме также можно планировать время остановок работы коксовых машин, проводить ремонт и диагностику их поломок. Работая по этому графику, не нарушается период коксования ни в одной печи.

Список литературы

1.  Справочник по химии и технологии твёрдых горючих ископаемых / под ред. А.Н. Чистякова. СПб: изд. комп. «Синтез». 1996.

2.  Химическая технология твёрдых горючих ископаемых / под ред. Г.Н. Макарова и Г.Д. Харламповича. М: Химия. 1986.

3.  Курс лекций по спец. курсу. Д.А. Розенталь.

www.neuch.ru

Реферат - Высокотемпературное коксование углей

Санкт-Петербургский Государственный Технологический Институт

Кафедра: Технологии нефтехимических и углехимических производств

Факультет: Технологии органического синтеза и полимерных материалов

Реферат

Тема:Высокотемпературное коксование углей

Выполнил: Шеков А.П.

Проверил: Розенталь Д.А,

С.-Петербург

2007

Введение

Высокотемпературное коксование углей в мире, имеет главенствующее значение в области переработки твёрдых горючих ископаемых. И это естественно связано с тем, что кокс, как неотъемлемая часть, используется в производстве стали и чугуна, из которых соответственно делают все металлические детали. А это является основой всего, что человек создаёт, для того чтобы жить. Отсюда вытекает назначение этого процесса: получить высококачественный кокс, а также наряду с ним, другие углеводороды (фенолы, бензол, смолу, коксовый газ) из твёрдых горючих ископаемых, с помощью высоких температур (до 1100С) и без доступа воздуха в коксовых печах или коксовых батареях.

Для проведения такого сложного процесса, нужно четко знать и соблюдать его параметры. Поддерживать высокую температуру в камере коксования, за счёт сжигания отопительных (коксовых или дымовых) газов. А так же учитывать определенную последовательность выгрузки готового кокса, в том плане, чтобы одновременно не разгружались две соседние камеры коксования, для поддержания более или менее стабильной температуры отопительных простенков и предотвращения их разрушения. Из параметров, можно ещё указать на своевременную выгрузку готового кокса и загрузку сырья (шихты), которая тоже должна отвечать определённым требованиям. Шихта – это оптимальная смесь из коксующихся углей, которая содержит в себе определённое соотношение витренита и фюзенита (компоненты, отвечающие за спекаемость). И для приготовления шихты необходимо создать (усреднить) смесь из углей разной спекаемости. Этот процесс проводят на местах хранения углей. С помощью грейфера набирают определённую марку угля и далее краном, тонко и равномерно рассыпают по полю из другой марки угля. Операцию повторяют многократно, тем самым получая многослойный «пирог» или штабель – это сумма тонких слоёв из разных марок углей. При взятии угля из штабеля грейфер погружается на большую глубину и таким образом осуществляется хорошее усреднение.

Практически, сейчас приходится решать проблему создания кокса, заданного качества, из имеющегося на складе сырья. И это решение затрудняется вследствие ограниченного количества хорошо спекающихся углей.

Технологическое оснащение процесса

Данный высокотемпературный процесс осуществляют на современных коксохимических заводах, в коксовых печах, которые состоят из камер коксования обогревательных простенков. Если они стоят на одном фундаменте, и работают в одном режиме, то всё вместе это называют коксовой батареей.

Пример такой батареи приведён на рисунке 1:

/>

Рис. 1

Из рисунка видно, что батарея состоит из камер коксования и отопительной системы. У камеры имеется по три загрузочных люка, для загрузки шихты, и по два газоотводящих, для отвода летучих продуктов (в печах иностранного производства возможны вариации). Сторону батареи, вдоль которой движется коксовыталкивающая машина, называют машинной стороной, а противоположную, на которую выдаётся кокс – коксовая сторона. Ширина всей камеры не одинакова: она увеличивается от машинной стороны к коксовой соответственно. Эта особенность сделана для того, чтобы облегчить выгрузку (выталкивание) коксового пирога из камеры. В зависимости от конструкций печей, размеры камер могут колебаться по длине и ширине. В длину от 12 до 17(м), и ширину от 407 до 480(мм) соответственно.

Отметим, что заполнение коксовой камеры проводят не доверху, а оставляют около 300мм под сводом. Это пространство нужно для выхода парогазовых продуктов. Кроме того, при коксовании происходит усадка шихты, около 5 – 15%. Тогда возможно, если обогрев простенка будет выше высоты угольной загрузки, то подсводовое пространство будет перегреваться, что ухудшит прочность кладки и свойства кокса. Высоту и длину коксовой камеры имеет смысл увеличивать, из расчета на увеличение угольной загрузки и соответственно производительности. Однако высота ограничена равномерностью прогрева шихты и физической прочности кладки печи. А длина печи из-за возможности смятия коксового пирога и усложнения конструкции выталкивателя.

Обогрев печи. Отопительная система состоит из отопительных простенков, газораспределительной зоны и регенераторов. Функция отопительной системы самая главная – это, подвести отопительный газ в зону горения, передать тепло загрузке и отвести продукты горения. Схема приведена на рисунке 2:

/>

Рис. 2

В этой системе (ПВР), вертикалы работают попарно и переменно. Простенок делится на пары вертикалов, из которых один работает на нисходящем потоке газов, а другой – на восходящем. Примерно через каждые 20 минут потоки меняются на противоположные. Это сделано для того, чтобы равномерно прогревать простенок, который сделан из огнеупорного материала (кирпича). Сторона простенка, соприкасающаяся с угольной загрузкой, называется рабочей, а противоположная сторона – огневой. В отопительном простенке, за счёт горения, образуется факел, который может быть короче или длиннее, в зависимости от интенсивности подачи газа и использования рециркуляционного окна. С помощью этого окна происходит подсос отработанных газов в факел горения, уменьшая концентрацию кислорода и тем самым вытягивая пламя. В отопительный простенок одновременно поступают газ и воздух, из газораспределительной зоны. В этой зоне расположены распределительные каналы коксового или другого богатого газа – корнюрная зона(8). И каналы, по которым подаётся обеднённый газ (доменный или генераторный) – косые ходы(6). Ниже корнюров расположены регенераторы (а-г), представляющие собой узкие камеры, в которых в определённом порядке уложен кирпич, так чтобы увеличить поверхность теплообмена. Они предназначены для использования тепла, выходящего вместе с дымовыми газами из отопительных простенков и нагревания обеднённого газа с воздухом. Под регенераторами, прямо на плите, расположены подовые каналы (3). По ним движется воздух, который через колосниковую решётку (4) поступает прямо в регенератор. Основными требованиями к этой конструкции являются: создание герметичности между стеной, разделяющей газовые потоки на восходящий (топочные газы) и нисходящий (дымовые) потоки, и зону с коксующейся загрузкой.

Кроме этой системы обогрева, существуют ещё несколько видов, например, с парными вертикалами и рециркуляцией (системы ПК-2К и ПК-2КР) отработанных газов через перекидной канал. Печи с групповым обогревом: собирают сгоревший газ в горизонтальный сборный канал и отправляя его в группу противоположных вертикалов. Так же существуют печи с нижним подводом тепла. Главное отличие заключается в том, что богатый газ через специальные металлические патрубки, заложенные при строительстве, проходит в газоподводящие каналы – дюзы, находящиеся в стенках регенераторов, а из них через горелки с отверстием выходит в вертикалы. Это позволяет точно дозировать подвод тепла не только к каждому отопительному простенку, но и к каждому вертикалу. Есть печи с иным подводом тепла, а именно, с внешним подогревом, предназначенные для коксования крупнокускового слабоспекающегося или неспекающегося угля или получения металлургического кокса из сланцев. Отопительный простенок здесь может быть разделён перегородками, как на вертикалы, так и на горизонталы. Остальные системы обогрева не значительно отличаются от уже изложенных.

б) Для осуществления бесперебойного процесса коксования нужно специальное оборудование, обеспечивающее работу коксовой батареи. Она обслуживается коксовыталкивателем, двересьёмной машиной с коксонаправляющей и загрузочным вагоном. Кроме того имеется тушильный вагон с тягачом, для транспортировки кокса на охлаждение. Назначение этого оборудования заключается в обеспечении выполнения операций по загрузке шихты, выдаче и приёмке коксового пирога и транспортирование его в тушильное устройство. На схеме видно оборудование, которое используется для обслуживания печи (рис. 3):

/>

Рис. 3

Углезагрузочная машина (5) передвигается по верху батареи на рельсах и используется для загрузки шихты в печь, при опорожнении её от коксового пирога. При этом очищает стояки от нагара и подаёт инжекцией воду для устранения пыли. Схема на рисунке 4:

/>

Рис. 4

Коксовыталкиватель (17) предназначен для извлечения (выталкивания), с помощью выталкивающей штанги, готового коксового пирога из печи в коксовозный вагон (13), с тягачом. Коксовыталкиватель также перемещается по рельсам, проложенным вдоль машинной стороны батареи. Он снимает дверь коксовой камеры, выдавливает кокс, потом с помощью специального устройства очищает дверь от смолы и графита, образовавшегося при коксовании, и устанавливает дверь обратно. В период загрузки коксовыталкиватель специальным устройством — планирной штангой (3), разравнивает шихту в камере коксования. Схема коксовыталкивателя приведена на рисунке 5:

/>

Рис. 5

Двересъёмная машина с коксонаправляющей, предназначены для обслуживания коксовой стороны. Они расположены на отдельных тележках и связанных между собой шарнирной сцепкой. Двересъёмная машина является ведущей. Сняв дверь, корзина коксонаправляющей вставляется в проём камеры коксования. После выдачи кокса корзина возвращается назад и двересъёмная машина с коксонаправляющей получают возможность работать дальше или везти кокс на тушение.

Для сохранности коксовых печей и поддержания её в рабочем состоянии применяется так же специальное оборудование, имеющее название – анкераж. В состав оборудования анкеража входят анкерные колоны (1), брони (2) и рамы печных камер, пружины (6), анкерные болты (5,7), броневые листы (4), анкерные стяжки. Основная задача анкеража – сохранение и предотвращение деформации кладки в процессе работы батареи. Схема анкеража соответственно разобрана на рисунке 6:

/>

Рис. 6

При разогреве батареи большое значение имеет продольное армирование, осуществляемое регулированием нагрузок продольными анкерными стяжками (5,7) и пружинами, расположенными в верхней части батареи.

Всё перечисленное оборудование является основным, поэтому возможны модификации и дополнения. Поэтому проводить обзор бессмысленно. Перейдём к следующему не маловажному вопросу, связанному с продуктами коксования.

Характеристика продуктов высокотемпературного коксования

Одновременно с коксом в процессе образуется ряд жидких и газообразных продуктов: фенолы, бензолы, смолы, коксовый газ, а так же не значительное количество Nh4 и h3S, имеющие большое значение в химической промышленности. Выход которых на массу угля составляет: 13-15% (330-380 м3/г массовых) — газы, 3-5% — смола, сырой бензол или газовый бензин – 0.8-1.1%. Выделившийся коксовый газ является высококалорийным, благодаря значительному содержанию метана Ch5 (25-28%) и Н2 (60-85%). В смоле присутствуют от 1 до 3% фенолов, которые представлены в основном простейшими производными фенола, крезолами и не значительным содержанием ди- и три — метил-фенолами. Кроме этого в смоле содержится 7-12% нафталина и 3-4% органических оснований, производных пиридина. Сырой бензол состоит из ароматики — 80-88%, олефинов (10-15%), насыщенных углеводородов (2-5%), а так же сернистых соединений (сероуглерода, тиофена и его производных). А выход летучих продуктов и их состав зависит от качества угольного сырья и режимов коксования.

--PAGE_BREAK--

Для характеристики главного продукта – кокса, определяют его химические, физико-химические и физико-механические свойства. К физическим свойствам относятся: плотность, пористость, микроструктура, прочность, электропроводность и теплопроводность. Истинная плотность кокса зависит от шихты и конечной температуры нагревания. Чем больше конечная температура шихты, тем больше истинная плотность кокса. Электропроводность зависит от сырья, скорости и конечной температуры. Чем ниже степень метаморфизма, выше скорость и меньше температура коксования, тем больше электропроводность кокса. Теплоёмкость увеличивается при повышении конечной температуры и уменьшении зольности. Теплопроводность кокса также зависит от зольности и от его структуры. Химические свойства кокса – это влажность, выход летучих, зольность, содержание серы, фосфора, углерода, водорода, кислорода, азота и др. элементов, а так же теплота его сгорания. Влажность зависит от методов охлаждения. Содержание золы напрямую зависит от зольности исходного угля. Сера, содержащаяся в коксе, отрицательно влияет на процессы, в которых он участвует. Выход летучих зависит от конечной температуры и колеблется от 0.7 до 3%. Теплота сгорания зависит от его элементного состава и зольности. К физико-химическим свойствам относят реакционную способность. Определяют её в основном с помощью реакции восстановления СО2:

С + СО2 = 2СО -+ 160.1 кДж/моль

Эта способность зависит от метаморфизма угля, скорости и конечной температуры коксования. Чем ниже метаморфизм, тем выше реакционная способность. А увеличение температуры приводит к снижению этой способности. Под физико-механическими свойствами представляют гранулометрический состав (равномерность всех зёрен) и прочность кокса. Также важным показателем качества кокса является его трещиноватость. Различают общую, продольную и поперечную трещиноватость, которая оценивается по числу и длине трещин куска. Прочность кокса, одно из наиболее важных показателей качества, оно имеет большое значение для определения его пригодности. В настоящее время одного метода, который бы позволял оценить качество по одному параметру, поэтому пользуются отдельными параметрами характеристиками кокса. В итоге нужно получить кокс с хорошей прочностью, минимальной влажностью, оптимальной реакционноспособностью и теплопроводностью (учитывая все остальные параметры), но это «палка на двух концах», т.к. не достичь одновременно всех оптимальных показателей.

Заключение

В заключение, можно описать основной режим работы механизмов коксовой батареи для получения кондиционной продукции. Изначально, необходимо как можно лучше размельчить уголь, для шихты. После, перед загрузкой шихты в печь, желательно её подогреть, для уменьшения времени процесса коксования. Обогрев крайних печей нужно вести интенсивней, для избежание падения температуры и укрупнения кусков кокса. Выгрузку готового продукта, тоже ведут по определённому принципу (графику). А именно, кокс выгружают из печей в таком порядке, чтобы одновременно не разгружались две соседние печи, были на середине процесса. Это делается для поддержания температуры в печи и сохранения прочности кладки. В общем виде серийность выдачи можно записать в виде m-n, где m — число печей, расположенных между печами, выдающими кокс и n-интервал между печами, выдающими кокс. Наиболее распространённые серийности 9-2, 2-1 и 5-2. Расчёты показывают, что разница во времени между серединой коксования и фактическим временем, прошедшем от начала коксования при серийности 9-2 составляет 2-2.5ч, 2-1 – около 1.5ч, и для 5-2 до 3.2ч. Отсюда следует, что оптимальный режим – 2-1, которую и применяют на новых батареях. Для соблюдения оптимальной серийности и постоянства коксования во всех печах строят поминутный график выдачи, который делают либо непрерывным, либо циклическим. Достоинством циклического графика является, что время оборота печи разбивается на рабочую и ремонтную части. Выдача, после остановки, всегда должна начинаться с той же печи, с которой начали, и в рабочую часть цикла должен быть извлечён весь кокс из всех печей, независимо от серийности. При этом режиме также можно планировать время остановок работы коксовых машин, проводить ремонт и диагностику их поломок. Работая по этому графику, не нарушается период коксования ни в одной печи.

Список литературы

Справочник по химии и технологии твёрдых горючих ископаемых / под ред. А.Н. Чистякова. СПб: изд. комп. «Синтез». 1996.

Химическая технология твёрдых горючих ископаемых / под ред. Г.Н. Макарова и Г.Д. Харламповича. М: Химия. 1986.

Курс лекций по спец. курсу. Д.А. Розенталь.

www.ronl.ru

Курсовая работа - Высокотемпературное коксование углей

Санкт-Петербургский Государственный Технологический Институт

Кафедра: Технологии нефтехимических и углехимических производств

Факультет: Технологии органического синтеза и полимерных материалов

Реферат

Тема:Высокотемпературное коксование углей

Выполнил: Шеков А.П.

Проверил: Розенталь Д.А,

С.-Петербург

2007

Введение

Высокотемпературное коксование углей в мире, имеет главенствующее значение в области переработки твёрдых горючих ископаемых. И это естественно связано с тем, что кокс, как неотъемлемая часть, используется в производстве стали и чугуна, из которых соответственно делают все металлические детали. А это является основой всего, что человек создаёт, для того чтобы жить. Отсюда вытекает назначение этого процесса: получить высококачественный кокс, а также наряду с ним, другие углеводороды (фенолы, бензол, смолу, коксовый газ) из твёрдых горючих ископаемых, с помощью высоких температур (до 1100С) и без доступа воздуха в коксовых печах или коксовых батареях.

Для проведения такого сложного процесса, нужно четко знать и соблюдать его параметры. Поддерживать высокую температуру в камере коксования, за счёт сжигания отопительных (коксовых или дымовых) газов. А так же учитывать определенную последовательность выгрузки готового кокса, в том плане, чтобы одновременно не разгружались две соседние камеры коксования, для поддержания более или менее стабильной температуры отопительных простенков и предотвращения их разрушения. Из параметров, можно ещё указать на своевременную выгрузку готового кокса и загрузку сырья (шихты), которая тоже должна отвечать определённым требованиям. Шихта – это оптимальная смесь из коксующихся углей, которая содержит в себе определённое соотношение витренита и фюзенита (компоненты, отвечающие за спекаемость). И для приготовления шихты необходимо создать (усреднить) смесь из углей разной спекаемости. Этот процесс проводят на местах хранения углей. С помощью грейфера набирают определённую марку угля и далее краном, тонко и равномерно рассыпают по полю из другой марки угля. Операцию повторяют многократно, тем самым получая многослойный «пирог» или штабель – это сумма тонких слоёв из разных марок углей. При взятии угля из штабеля грейфер погружается на большую глубину и таким образом осуществляется хорошее усреднение.

Практически, сейчас приходится решать проблему создания кокса, заданного качества, из имеющегося на складе сырья. И это решение затрудняется вследствие ограниченного количества хорошо спекающихся углей.

Технологическое оснащение процесса

Данный высокотемпературный процесс осуществляют на современных коксохимических заводах, в коксовых печах, которые состоят из камер коксования обогревательных простенков. Если они стоят на одном фундаменте, и работают в одном режиме, то всё вместе это называют коксовой батареей.

Пример такой батареи приведён на рисунке 1:

/>

Рис. 1

Из рисунка видно, что батарея состоит из камер коксования и отопительной системы. У камеры имеется по три загрузочных люка, для загрузки шихты, и по два газоотводящих, для отвода летучих продуктов (в печах иностранного производства возможны вариации). Сторону батареи, вдоль которой движется коксовыталкивающая машина, называют машинной стороной, а противоположную, на которую выдаётся кокс – коксовая сторона. Ширина всей камеры не одинакова: она увеличивается от машинной стороны к коксовой соответственно. Эта особенность сделана для того, чтобы облегчить выгрузку (выталкивание) коксового пирога из камеры. В зависимости от конструкций печей, размеры камер могут колебаться по длине и ширине. В длину от 12 до 17(м), и ширину от 407 до 480(мм) соответственно.

Отметим, что заполнение коксовой камеры проводят не доверху, а оставляют около 300мм под сводом. Это пространство нужно для выхода парогазовых продуктов. Кроме того, при коксовании происходит усадка шихты, около 5 – 15%. Тогда возможно, если обогрев простенка будет выше высоты угольной загрузки, то подсводовое пространство будет перегреваться, что ухудшит прочность кладки и свойства кокса. Высоту и длину коксовой камеры имеет смысл увеличивать, из расчета на увеличение угольной загрузки и соответственно производительности. Однако высота ограничена равномерностью прогрева шихты и физической прочности кладки печи. А длина печи из-за возможности смятия коксового пирога и усложнения конструкции выталкивателя.

Обогрев печи. Отопительная система состоит из отопительных простенков, газораспределительной зоны и регенераторов. Функция отопительной системы самая главная – это, подвести отопительный газ в зону горения, передать тепло загрузке и отвести продукты горения. Схема приведена на рисунке 2:

/>

Рис. 2

В этой системе (ПВР), вертикалы работают попарно и переменно. Простенок делится на пары вертикалов, из которых один работает на нисходящем потоке газов, а другой – на восходящем. Примерно через каждые 20 минут потоки меняются на противоположные. Это сделано для того, чтобы равномерно прогревать простенок, который сделан из огнеупорного материала (кирпича). Сторона простенка, соприкасающаяся с угольной загрузкой, называется рабочей, а противоположная сторона – огневой. В отопительном простенке, за счёт горения, образуется факел, который может быть короче или длиннее, в зависимости от интенсивности подачи газа и использования рециркуляционного окна. С помощью этого окна происходит подсос отработанных газов в факел горения, уменьшая концентрацию кислорода и тем самым вытягивая пламя. В отопительный простенок одновременно поступают газ и воздух, из газораспределительной зоны. В этой зоне расположены распределительные каналы коксового или другого богатого газа – корнюрная зона(8). И каналы, по которым подаётся обеднённый газ (доменный или генераторный) – косые ходы(6). Ниже корнюров расположены регенераторы (а-г), представляющие собой узкие камеры, в которых в определённом порядке уложен кирпич, так чтобы увеличить поверхность теплообмена. Они предназначены для использования тепла, выходящего вместе с дымовыми газами из отопительных простенков и нагревания обеднённого газа с воздухом. Под регенераторами, прямо на плите, расположены подовые каналы (3). По ним движется воздух, который через колосниковую решётку (4) поступает прямо в регенератор. Основными требованиями к этой конструкции являются: создание герметичности между стеной, разделяющей газовые потоки на восходящий (топочные газы) и нисходящий (дымовые) потоки, и зону с коксующейся загрузкой.

Кроме этой системы обогрева, существуют ещё несколько видов, например, с парными вертикалами и рециркуляцией (системы ПК-2К и ПК-2КР) отработанных газов через перекидной канал. Печи с групповым обогревом: собирают сгоревший газ в горизонтальный сборный канал и отправляя его в группу противоположных вертикалов. Так же существуют печи с нижним подводом тепла. Главное отличие заключается в том, что богатый газ через специальные металлические патрубки, заложенные при строительстве, проходит в газоподводящие каналы – дюзы, находящиеся в стенках регенераторов, а из них через горелки с отверстием выходит в вертикалы. Это позволяет точно дозировать подвод тепла не только к каждому отопительному простенку, но и к каждому вертикалу. Есть печи с иным подводом тепла, а именно, с внешним подогревом, предназначенные для коксования крупнокускового слабоспекающегося или неспекающегося угля или получения металлургического кокса из сланцев. Отопительный простенок здесь может быть разделён перегородками, как на вертикалы, так и на горизонталы. Остальные системы обогрева не значительно отличаются от уже изложенных.

б) Для осуществления бесперебойного процесса коксования нужно специальное оборудование, обеспечивающее работу коксовой батареи. Она обслуживается коксовыталкивателем, двересьёмной машиной с коксонаправляющей и загрузочным вагоном. Кроме того имеется тушильный вагон с тягачом, для транспортировки кокса на охлаждение. Назначение этого оборудования заключается в обеспечении выполнения операций по загрузке шихты, выдаче и приёмке коксового пирога и транспортирование его в тушильное устройство. На схеме видно оборудование, которое используется для обслуживания печи (рис. 3):

/>

Рис. 3

Углезагрузочная машина (5) передвигается по верху батареи на рельсах и используется для загрузки шихты в печь, при опорожнении её от коксового пирога. При этом очищает стояки от нагара и подаёт инжекцией воду для устранения пыли. Схема на рисунке 4:

/>

Рис. 4

Коксовыталкиватель (17) предназначен для извлечения (выталкивания), с помощью выталкивающей штанги, готового коксового пирога из печи в коксовозный вагон (13), с тягачом. Коксовыталкиватель также перемещается по рельсам, проложенным вдоль машинной стороны батареи. Он снимает дверь коксовой камеры, выдавливает кокс, потом с помощью специального устройства очищает дверь от смолы и графита, образовавшегося при коксовании, и устанавливает дверь обратно. В период загрузки коксовыталкиватель специальным устройством — планирной штангой (3), разравнивает шихту в камере коксования. Схема коксовыталкивателя приведена на рисунке 5:

/>

Рис. 5

Двересъёмная машина с коксонаправляющей, предназначены для обслуживания коксовой стороны. Они расположены на отдельных тележках и связанных между собой шарнирной сцепкой. Двересъёмная машина является ведущей. Сняв дверь, корзина коксонаправляющей вставляется в проём камеры коксования. После выдачи кокса корзина возвращается назад и двересъёмная машина с коксонаправляющей получают возможность работать дальше или везти кокс на тушение.

Для сохранности коксовых печей и поддержания её в рабочем состоянии применяется так же специальное оборудование, имеющее название – анкераж. В состав оборудования анкеража входят анкерные колоны (1), брони (2) и рамы печных камер, пружины (6), анкерные болты (5,7), броневые листы (4), анкерные стяжки. Основная задача анкеража – сохранение и предотвращение деформации кладки в процессе работы батареи. Схема анкеража соответственно разобрана на рисунке 6:

/>

Рис. 6

При разогреве батареи большое значение имеет продольное армирование, осуществляемое регулированием нагрузок продольными анкерными стяжками (5,7) и пружинами, расположенными в верхней части батареи.

Всё перечисленное оборудование является основным, поэтому возможны модификации и дополнения. Поэтому проводить обзор бессмысленно. Перейдём к следующему не маловажному вопросу, связанному с продуктами коксования.

Характеристика продуктов высокотемпературного коксования

Одновременно с коксом в процессе образуется ряд жидких и газообразных продуктов: фенолы, бензолы, смолы, коксовый газ, а так же не значительное количество Nh4 и h3S, имеющие большое значение в химической промышленности. Выход которых на массу угля составляет: 13-15% (330-380 м3/г массовых) — газы, 3-5% — смола, сырой бензол или газовый бензин – 0.8-1.1%. Выделившийся коксовый газ является высококалорийным, благодаря значительному содержанию метана Ch5 (25-28%) и Н2 (60-85%). В смоле присутствуют от 1 до 3% фенолов, которые представлены в основном простейшими производными фенола, крезолами и не значительным содержанием ди- и три — метил-фенолами. Кроме этого в смоле содержится 7-12% нафталина и 3-4% органических оснований, производных пиридина. Сырой бензол состоит из ароматики — 80-88%, олефинов (10-15%), насыщенных углеводородов (2-5%), а так же сернистых соединений (сероуглерода, тиофена и его производных). А выход летучих продуктов и их состав зависит от качества угольного сырья и режимов коксования.

--PAGE_BREAK--

Для характеристики главного продукта – кокса, определяют его химические, физико-химические и физико-механические свойства. К физическим свойствам относятся: плотность, пористость, микроструктура, прочность, электропроводность и теплопроводность. Истинная плотность кокса зависит от шихты и конечной температуры нагревания. Чем больше конечная температура шихты, тем больше истинная плотность кокса. Электропроводность зависит от сырья, скорости и конечной температуры. Чем ниже степень метаморфизма, выше скорость и меньше температура коксования, тем больше электропроводность кокса. Теплоёмкость увеличивается при повышении конечной температуры и уменьшении зольности. Теплопроводность кокса также зависит от зольности и от его структуры. Химические свойства кокса – это влажность, выход летучих, зольность, содержание серы, фосфора, углерода, водорода, кислорода, азота и др. элементов, а так же теплота его сгорания. Влажность зависит от методов охлаждения. Содержание золы напрямую зависит от зольности исходного угля. Сера, содержащаяся в коксе, отрицательно влияет на процессы, в которых он участвует. Выход летучих зависит от конечной температуры и колеблется от 0.7 до 3%. Теплота сгорания зависит от его элементного состава и зольности. К физико-химическим свойствам относят реакционную способность. Определяют её в основном с помощью реакции восстановления СО2:

С + СО2 = 2СО -+ 160.1 кДж/моль

Эта способность зависит от метаморфизма угля, скорости и конечной температуры коксования. Чем ниже метаморфизм, тем выше реакционная способность. А увеличение температуры приводит к снижению этой способности. Под физико-механическими свойствами представляют гранулометрический состав (равномерность всех зёрен) и прочность кокса. Также важным показателем качества кокса является его трещиноватость. Различают общую, продольную и поперечную трещиноватость, которая оценивается по числу и длине трещин куска. Прочность кокса, одно из наиболее важных показателей качества, оно имеет большое значение для определения его пригодности. В настоящее время одного метода, который бы позволял оценить качество по одному параметру, поэтому пользуются отдельными параметрами характеристиками кокса. В итоге нужно получить кокс с хорошей прочностью, минимальной влажностью, оптимальной реакционноспособностью и теплопроводностью (учитывая все остальные параметры), но это «палка на двух концах», т.к. не достичь одновременно всех оптимальных показателей.

Заключение

В заключение, можно описать основной режим работы механизмов коксовой батареи для получения кондиционной продукции. Изначально, необходимо как можно лучше размельчить уголь, для шихты. После, перед загрузкой шихты в печь, желательно её подогреть, для уменьшения времени процесса коксования. Обогрев крайних печей нужно вести интенсивней, для избежание падения температуры и укрупнения кусков кокса. Выгрузку готового продукта, тоже ведут по определённому принципу (графику). А именно, кокс выгружают из печей в таком порядке, чтобы одновременно не разгружались две соседние печи, были на середине процесса. Это делается для поддержания температуры в печи и сохранения прочности кладки. В общем виде серийность выдачи можно записать в виде m-n, где m — число печей, расположенных между печами, выдающими кокс и n-интервал между печами, выдающими кокс. Наиболее распространённые серийности 9-2, 2-1 и 5-2. Расчёты показывают, что разница во времени между серединой коксования и фактическим временем, прошедшем от начала коксования при серийности 9-2 составляет 2-2.5ч, 2-1 – около 1.5ч, и для 5-2 до 3.2ч. Отсюда следует, что оптимальный режим – 2-1, которую и применяют на новых батареях. Для соблюдения оптимальной серийности и постоянства коксования во всех печах строят поминутный график выдачи, который делают либо непрерывным, либо циклическим. Достоинством циклического графика является, что время оборота печи разбивается на рабочую и ремонтную части. Выдача, после остановки, всегда должна начинаться с той же печи, с которой начали, и в рабочую часть цикла должен быть извлечён весь кокс из всех печей, независимо от серийности. При этом режиме также можно планировать время остановок работы коксовых машин, проводить ремонт и диагностику их поломок. Работая по этому графику, не нарушается период коксования ни в одной печи.

Список литературы

Справочник по химии и технологии твёрдых горючих ископаемых / под ред. А.Н. Чистякова. СПб: изд. комп. «Синтез». 1996.

Химическая технология твёрдых горючих ископаемых / под ред. Г.Н. Макарова и Г.Д. Харламповича. М: Химия. 1986.

Курс лекций по спец. курсу. Д.А. Розенталь.

www.ronl.ru

Реферат Коксование

скачать

Реферат на тему:

План:

    Введение
  • 1 Коксование углей
  • 2 Полукоксование твёрдых топлив
  • 3 Коксование тяжёлых нефтяных остатков

Введение

Коксова́ние — процесс переработки жидкого и твёрдого топлива нагреванием без доступа кислорода. При разложении топлива образуются твёрдый продукт — кокс и летучие продукты.

1. Коксование углей

Широко распространённый технологический процесс, который состоит из стадий: подготовка к коксованию, собственно коксование, улавливание и переработка летучих продуктов.

Подготовка включает обогащение (для удаления минеральных примесей) низкосернистых, малозольных, коксующихся углей, измельчение до зёрен размером около 3 мм, смешение нескольких сортов угля, сушка полученной т. н. «шихты».

Коксовая печь — технологический агрегат, в котором осуществляется коксование каменного угля.(на заводе бездымного топлива, Южный Уэльс)

Для коксования шихту загружают в щелевидную коксовую печь (ширина 400—450 мм, объём 30-40 м³). Каналы боковых простенков печей, выложенных огнеупорным кирпичом, обогреваются продуктами сгорания газов: коксового (чаще всего), доменного, генераторного, их смесей и др.

Продолжительность нагрева составляет 14-16 часов. Температура процесса — 900—1050 °C. Полученный кокс (75-78 % от массы исходного угля) в виде т. н. «коксового пирога» (спёкшейся в пласт массы) — выталкивается специальными машинами («коксовыталкивателями») в железнодорожные вагоны, в которых охлаждается («тушится») водой или инертным газом (азотом).

Парогазовая смесь выделяющихся летучих продуктов (до 25 % от массы угля) отводится через газосборник для улавливания и переработки. Для разделения летучие продукты охлаждают впрыскиванием распыленной воды (от 70 °C до 80 °C) — при этом из паровой фазы выделяется большая часть смол, дальнейшее охлаждение парогазовой смеси проводят в кожухотрубчатых холодильниках (до 25-35 °C). Конденсаты объединяют и отстаиванием выделяют надсмольную воду и каменноугольную смолу. Затем сырой коксовый газ последовательно очищают от Nh4 и h3S, промывают поглотительным маслом (для улавливания сырого бензола и фенола), серной кислотой (для улавливания пиридиновых оснований). Очищенный коксовый газ (14-15 % от массы угля) используют в качестве топлива для обогрева батареи коксовых печей и для других целей.

Из надсмольной воды (9-12 % от массы угля) отгонкой с паром выделяют: Nh4 (в виде концентрированной аммиачной воды), фенолы, пиридиновые основания. Очищенную воду после разбавления технической водой направляют на тушение кокса или на биологическую очистку сточных вод на очистные сооружения.

Каменноугольная смола (3-4 % от массы угля) является сложной смесью органических веществ (в настоящее время идентифицировано только ~60 % компонентов смолы — более 500 веществ). Смолу методом ректификации подвергают разделению на фракции: нафталиновую, поглотительную, антраценовую и каменноугольный пёк. Из них, в свою очередь, кристаллизацией, фильтрованием, прессованием и химической очисткой выделяют: нафталин, антрацен, фенантрен, фенолы и каменноугольные масла.

Коксохимические заводы являются одним из крупнейших потребителей каменного угля — до ¼ мировой добычи.

2. Полукоксование твёрдых топлив

Метод переработки твёрдых горючих топлив нагреванием до 500—550 °C без доступа воздуха. Наиболее распространено полукоксование горючих сланцев и бурых углей. Для проведения процесса используют аппараты непрерывного действия с внешним или внутренним подводом тепла. В результате процесса образуются: полукокс (50—70 % от массы исходного топлива), первичная смола (5—25 %), первичный газ, подсмольная вода.

3. Коксование тяжёлых нефтяных остатков

Разновидность глубокого термического крекинга углеводородов с целью получения нефтяного кокса и газойлевых фракций. Осуществляется при 420—560 °C и давлениях до 0,65 МПа. Продолжительность процесса варьирует от десятков минут до десятков часов.

Описание и схема процесса

Сырьём для процесса служат: тяжёлые фракции перегонки нефти, остатки деасфальтизации, термического и каталитического крекинга, пиролиза бензинов и газойлей.

Сущность процесса состоит в последовательном протекании реакций крекинга, дегидрирования, циклизации, ароматизации, поликонденсации и уплотнения с образованием сплошного «коксового пирога». Выделяющиеся летучие продукты подвергают ректификации для выделения целевых фракций и их стабилизации, кубовый остаток возвращают в процесс. Готовый кокс периодически выгружают, подвергают сушке и прокаливанию.

По аппаратурному оформлению различают: т. н. «замедленное» коксование в необогреваемых камерах (для получения малозольного кокса), обогреваемых кубах (для получения электродного и специальных видов кокса), коксование в «кипящем слое» порошкообразного кокса (т. н. «термоконтактный крекинг»). При сочетании последнего способа с газификацией кокса в процесс могут быть вовлечены кроме нефтяных остатков природные асфальты и битумы.

См. также

Сухая перегонка

wreferat.baza-referat.ru

2.2 Коксовый цех. Коксование каменных углей

Коксование каменных углей

Основное назначение коксового цеха - производить из угольной шихты кокс, соответствующий техническим условиям, при обеспечении установленной производительности коксовых печей, нормативного срока их службы и минимального влияния на окружающую среду.

Технологический режим коксовой печи

Выход химических продуктов коксования зависит как от состава исходной шихты, так и от условий ее коксования. Так, газовые угли дают больший выход смолы и бензола по сравнению с углями коксовыми или отощенными.

На состав химических продуктов значительное влияние оказывают температура коксования и время пребывания парогазовой смеси в камере печей.

Процесс коксования в камере коксовой печи происходит под воздействием температурного поля поверхности греющих стен. Образующиеся у стен пластические слои перемещаются к оси камеры. По другую сторону каждого пластического слоя образуется полукокс, постепенно превращающийся в кокс.

Схема процесса коксования в камере:

1 - стенка печи, 2 - кокс, 3 - пластический слой, 4 - угольная смесь, 5 - газовые потоки.

Величина давления в камере коксования может достигать 0,08 МПа.

Постепенно отдельные пластические слои сливаются в единую массу, из которой постепенно формируется коксовый пирог, разделенный по оси камеры смоляным швом.

Замедленный нагрев камеры и отсутствие в ней давления вспучивания ведут к образованию в смоляном (пластическом) шве крупных пор и губчатой структуры кокса. Полукокс постепенно упрочняется, и в диапазоне температуры 500--800 °С разлагаются тяжелые смолы с выделением карбоидов.

Дальнейший нагрев до 900--1050 °С ведет к усадке и образованию трещин вследствие газовых выделений. К концу процесса коксовый пирог отходит от стенок камеры, что облегчает операцию его выдавливания из камеры.

Коксовые печи

Современные коксовые печи по способу загрузки угольной шихты и выдачи кокса подразделяют на горизонтальные и вертикальные. Наиболее широко распространены горизонтальные печи периодического действия. Такие печи состоят из камеры коксования, обогревательных простенков, расположенных по обе стороны камеры, регенераторов. Сверху на камере коксования предусмотрены загрузочные люки, с торцов она закрыта съемными дверями. Длина камер достигает 13--16 м, высота -- 4--7 м, ширина не более 0,4--0,5 м. Обогрев камер осуществляется за счет сжигания в вертикальных каналах простенков коксового, доменного или другого горючего газа. Период коксования одной угольной загрузки зависит от ширины камеры и температуры в обогревательных каналах и составляет обычно 13--18 ч. Важную роль в сокращении периода коксования сыграло появление динасового кирпича, устойчивого при температурах, близких к его точке плавления.

По окончании коксования раскаленный кокс выталкивают из камеры через дверные проемы коксовыталкивателем и тушат. Для компактности коксового цеха и лучшего использования тепла, коксовые печи объединяют в батареи (по 61--77 печей) с общими для всех печей системами подвода отопительного газа, подачи угля, отвода коксового газа.

Известно много способов коксования и полукоксования каменных и бурых углей. Основной признак, по которому могут быть систематизированы известные способы,-- это теплопередача. Поданному признаку различают две разновидности процессов коксования и полукоксования: с косвенной теплопередачей и с прямой теплопередачей. При косвенной теплопередаче тепло передается через металлические или кирпичные стенки, а при прямой -- непосредственно от теплоносителя к углю. Среди способов, основанных на прямой теплопередаче, различают нагревание угля топочными газами и частичное сжигание угля. Используют также комбинированные способы.

Коксовые батареи

Коксовые батареи сооружают на железобетонном основании, внутри которого размещены четыре газовых коллектора (борова), по два для каждой стороны батареи. Коллекторы для сбора продуктов горения от печей размещают вдоль батареи. Эти коллекторы образуют сводный боров, соединенный с дымовой трубой. В центре основания находится вентиляционный коллектор, к которому внизу примыкают поперечные каналы для охлаждения железобетонного основания батареи.

Над фундаментом расположен подовый канал для подвода воздуха и бедного газа или же отвода продуктов горения из регенераторов.

Регенераторы предназначены для подогрева воздуха и бедного газа своей насадкой, предварительно нагретой теплом отходящих продуктов горения из обогревательных простенков печей. Продукты горения, поступающие в регенератор, имеют температуру 1300-- 1350 °С, а при выходе из регенератора -- 280--350 °С.

Регенераторы представляют собой узкие прямоугольные камеры, заполненные огнеупорной насадкой. При прохождении продуктов горения насадка нагревается. После этого продукты горения переключаются на группу регенераторов, через которые проходил воздух или доменный газ. Эта операция носит название «кантование». Далее через нагретую насадку пропускают воздух или бедный газ с целью их подогрева перед поступлением в отопительную систему печей. Через каждые 20--30 мин переключают направления потоков продуктов горения, воздуха и доменного газа.

Над регенераторами находится корнюрная зона, которая является основанием камер печей и обогревательных простенков. В ней расположены каналы для подвода коксового газа к вертикалам обогревательного простенка. Эти каналы иначе называются корнюрами. В корнюрной зоне расположены также отверстия для подвода подогретого воздуха и доменного (бедного) газа в вертикалы; эти отверстия расположены под углом к вертикалам, поэтому названы косыми ходами. Косые ходы служат также и для отвода продуктов горения из обогревательного простенка.

Над корнюрной зоной расположена зона обогревательных простенков, в которой находятся камеры печей для коксования углей. Наружные стены обогревательных простенков одновременно являются стенами камер печи. Обогревательные простенки выкладываются из динасового фасонного кирпича.

С торцов батареи кладка печей ограждается железобетонными контрфорсами для упрочнения каркаса батареи. Контрфорсы предназначены для восприятия усилий, возникающих при температурном расширении кладок печей в направлении продольной оси батареи в процессе разогрева и при эксплуатации. С коксовой и машинной сторон нижнее строение батареи ограждено обслуживающими тоннелями. С машинной стороны стена тоннеля образована фундаментом пути коксовыталкивателя, а с коксовой стороны сооружают специальную подпорную стенку.

В обслуживающих тоннелях размещены: арматура и распределительные газопроводы, реверсивные газовоздушные клапаны, тяги кантовочных механизмов.

Кантовонный механизм предназначен для периодического изменения направления потоков газа, воздуха и продуктов горения в обогревательной системе коксовой батареи. Приводами канто-вочного механизма являются лебедки, работа которых автоматизирована. Штанги для управления кантовочными кранами и газовоздушными клапанами изготавливаются из стали (марки Ст.З) диаметром 25--32 мм. Ход штанг кантовочных кранов и газовоздушных клапанов порядка 600 мм. Кантовочные механизмы размещают в кантовочном помещении, которое, как правило, находится на площадке между угольной башней и батареей на уровне второго этажа угольной башни.

Угольная башня располагается, как правило, между двумя батареями печей. Другое расположение башни -- в центре блока батарей. Преимущества сооружения двух башен в сравнении с одной башней в центре блока следующие:

* возможность самостоятельного и независимого обслуживания каждой батареи своим загрузочным вагоном;

* одинаковые условия загрузки для всех батарей и наименьший пробег загрузочного вагона;

* улучшение условий выполнения ремонтных работ и эксплуатации на батареях.

Бункерная часть угольной башни делится внутренними перегородками на секции (обычно три-четыре) для обеспечения возможности проведения ремонта пневмообрушающих устройств и очистки башен от зависаний шихты. Деление башни на секции позволяет проводить подготовку опытных партий шихт.

В стенках бункеров угольной башни установлены сопла, к которым подводится сжатый воздух давлением 0,5--0,6 МПа. Для восстановления нормального схода шихты достаточно кратковре`еной подачи воздуха в течение 1 --2 сек.

Комплекс пневматического обрушения шихты состоит из двух основных частей:

* коллекторы сжатого воздуха, запорные клапаны, разводящие трубы и сопла;

* источник сжатого воздуха.

На 4-батарейном коксовом блоке устанавливают компрессорную станцию производительностью 10 м3/мин при давлении 0,8 Мпа и ресивером емкостью 10 м3.

Коксовая шихта в башню загружается с помощью ленточного транспортера. Емкость башни рассчитывается из условия обеспечения суточной работы печей двух батарей. Угольная башня обычно содержит запас угольной шихты, обеспечивающий 14--16-часовую потребность коксового блока. Таким образом, емкость угольной башни, обслуживающей две батареи печей, позволяет хранить 3000 т, а четыре батареи -- 6000 т шихты.

Тушение кокса

Кокс, выгружаемый из печи в коксотушильный вагон, имеет температуру 950--1100°С. Чтобы предотвратить его горение на воздухе и обеспечить возможность транспортировки до склада и хранение, кокс должен быть охлажден до температуры 250--100°С, при которой исключается его самовозгорание. Для этого раскаленный кокс интенсивно охлаждают (тушат) мокрым или сухим методом.

При мокром тушении вагон с коксом интенсивно орошается в тушильной камере водой. Расход воды на тушение составляет 4--5 м3/т кокса. Недостаток мокрого метода тушения -- значительная потеря тепла, так как все тепло кокса, поглощаемое водой, идет на ее испарение и не утилизируется. С парами воды теряется до 50% тепла, затраченного на коксование.

При сухом тушении раскаленный кокс охлаждается циркулирующими инертными газами, теплосодержание которых используется затем в котле-утилизаторе (рис. 8.7). В качестве инертных газов используются топочные газы (СО2 + N2), образующиеся при пуске установки тушения в результате продувки воздухом первой порции раскаленного кокса.

him.bobrodobro.ru

Доклад - Кокс и коксование

Кокс-серое, чуть серебристое, пористое и очень твердое вещество, более чем на 96% состоящее из углерода и получаемое при на­гревании каменного угля или нефтяных пеков без доступа воздуха при 950-1050°С. Процесс получения- кокса в результате переработки природных топлив называется коксованием.

Схема коксования: 1. — коксовая батарея; 2. — сборный канал продуктов горения; 3. — газопровод; 4. — отделитель конденсата; 5. — газовый холодильник; 6. — электрофильтр; 7. — газодувка; 8. — трубопровод для отвода конденсата; 9. – отстойник; 10. – хранилище смолы; 11. – хранилище аммиачной воды; 12. – аммиачная колонна; 13. – сатуратор; 14. – бензольный скруббер; 15. – бензольная колонка.

Кокс применяют для изготовления элек­тродов, для фильтрования жидкостей и, самое главное, для восстановления железа из железных руд и концентратов в доменном процессе выплавки чугуна. В доменной печи кокс сгорает и образуется оксид углерода (IV):

С + 02 = СО2 + Q ,

который взаимодействует с раскаленным кок­сом с образованием оксида углерода (II):

С + С O2 = 2CO — Q

Оксид углерода (II) и является восстановите­лем железа, причем сначала из оксида железа (III) образуется оксид железа (II, III), затем оксид железа (II) и, наконец, железо:

3Fe2 O3 + CO = 2Fe3 O4 + CO2 + Q

Fe3 O4 + CO = 3FeO + CO2 – Q

FeO + CO = Fe + CO2 + Q

В результате доменного процесса получают жидкий чугун-сплав железа с примесями, со­держащимися в железной руде и каменно­угольном коксе, — углеродом, кремнием, мар­ганцем, фосфором и серой .

Коксование возникло в XVIII в., когда ис­требление лесов для получения древесного угля, использовавшегося при выплавке желе­за, стало угрожающим и потребовалось заме­нить этот уголь другим топливом. В 1735 г. в Англии была проведена первая доменная плавка на коксе.

В наше время 10% добываемого в мире ка­менного угля превращают в кокс. Коксование проводят в камерах коксовой печи, обогре­ваемых снаружи горящим газом. При повы­шении температуры в каменном угле проис­ходят разнообразные процессы. При 2500Сиз него испаряется влага, выделяются СО и СО2; при 3500С уголь размягчается, перехо­дит в тестообразное, пластическое состояние, из него выделяются углеводороды-газоо­бразные и низкокипящие, а также азотистые и фосфористые соединения. Тяжелые уг-листые остатки спекаются при 5000С, давая полукокс. А при 7000С и выше полукокс те­ряет остаточные летучие вещества, главным образом водород, и превращается в кокс.

Все летучие продукты поступают в газо­сборник, а оставшийся раскаленный кокс вы­талкивают в так называемый тушильный ва­гон, где его охлаждают (тушат) водой или инертным газом. Летучие вещества при кон­денсации образуют аммиачную воду и смолу. Часть неконденсирующегося газа используют для нагрева угля в камерах печи; остаток га­за, аммиачная вода и смола идут на перера­ботку. Из них получают разнообразные неор­ганические и органические (главным образом ароматические) соединения. Из 1 т каменного угля получают примерно 800 кг кокса, 150 кг газа и 50 кг прочих продуктов.

Коксохимическое производство:

Важным источником промышленного получения ароматических углеводородов наряду с переработкой нефти является коксование каменного угля.

Процесс коксования можно провести в лаборатории. Если каменный уголь сильно нагревать в железной трубке без доступа воздуха, то через некоторое время можно будет наблюдать выделение газов и паров. В U-образ-ой трубке конденсируется смола, имеющая неприятный запах, и над ней вода, содержащая аммиак. Проходящие далее газы собираются в сосуде над водой. В железной трубке после опыта остается кокс. Собранный газ хорошо горит, его называют коксовым газом.

Таким образом, при нагревании каменного угля без доступа воздуха образуются четыре основных продукта: кокс, каменноугольная смола, аммиачная вода, коксовый газ.

Коксохимическое производство в основе своей имеет много общего с лабораторным опытом коксования угля, оно как бы воспроизводит его в крупных масштабах.

Промышленная коксовая печь состоит из длинной узкой камеры, в которую сверху через отверстия загружают каменный уголь, и отопительных простенков, в каналах которых сжигают газообразное топливо (коксовый или доменный газ). Несколько десятков таких камер образуют батарею коксовых печей. Для достижения высокой температуры горения газ и воздух предварительно нагревают в регенераторах, расположенных под камерами, подобно тому как это осуществляется в мартеновском способе производства стали.

При нагревании угля без доступа воздуха до 900-1050 о С приводит к его термическому разложению с образованием летучих продуктов и твердого остатка-кокса.

Процесс коксования длится около 14 часов. После того как он закончится, образовавшийся кокс-«коксовый пирог»-выгружают из камеры в вагон и затем гасят водой или инертным газом; в камеру загружают новую партию угля, и процесс коксования начинается снова. Коксование угля-периодический процесс. Основные продукты: кокс-96-98% углерода; коксовый газ-60% водорода, 25% метана, 7% оксида углерода ( II ) и др. Побочные продукты: каменноугольная смола (бензол, толуол), аммиак (из коксового газа)и др.

После остывания кокс сортируют и направляют на металлургические заводы для доменных печей.

Летучие продукты выводятся через отверстия вверху камер и поступают в общий газосборник, где из них, как в нашем опыте, конденсируется смола и аммиачная вода.

Из неконденсирующегося газа извлекают аммиак и легкие ароматические углероды (главным образом бензол). С целью извлечения аммиака газ пропускают через раствор серной кислоты; образующийся сульфат аммония используется в качестве азотного удобрения.

Ароматические углеводы получаются путем поглощения их растворителем и последующей отгонки из образующегося раствора.

Из каменноугольной смолы путем фракционирования получают гомологи бензола, фенол (карболовую кислоту), нафталин и др.

Коксовый газ после отчистки применяется в качестве топлива в промышленных печах, так как содержит много горючих веществ. Он используется и как химическое сырье. Например, из коксового газа выделяют водород для различных синтезов.

Проблемы использования углеводородного сырья:

До недавнего времени в топливном балансе страны огромная доля приходилась на нефть. В связи с развитием энергоснабжения осуществляется перевод энергетики с использованием нефти и нефтепродуктов в качестве топлива на широкое применение в этих целях природного газа, угля, на использование атомной энергии. Это значит, что тяжелые остатки переработки нефти-мазуты будут более полно перерабатываться в светлые нефтепродукты, необходимые для современного органического синтеза. Химической науке предстоит задача изыскать более эффективные пути переработки нефти, природного и попутных газов, угля, сланцев, а также усовершенствовать существующие с целью более полного и комплексного использования природного углеводородного сырья.

Получение искусственного жидкого топлива не является новой проблемой. Установка гидрирования угля была введена в Германии еще в 1923 году, а в 1943 этим путем в Германии было получено 2 миллиона тонн бензина и 800000 тонн дизельного топлива. Процесс получения искусственного жидкого топлива был весьма дорогим и проходил при давлении 70 Мпа и температуре 180 о С. В послевоенные годы гидрирование угля практически потеряло промышленное значение.

В настоящее время учеными разрабатываются другие экономически более выгодные методы гидрирования угля с использованием эффективных катализаторов, что даст возможность снизить температуру и давление.

Другим перспективным путем получения синтетического жидкого топлива является его синтез из оксида углерода (II) и водорода.

www.ronl.ru

Реферат: Высокотемпературное коксование углей

Санкт-Петербургский Государственный Технологический Институт

Кафедра: Технологии нефтехимических и углехимических производств

Факультет: Технологии органического синтеза и полимерных материалов

Реферат

Тема:Высокотемпературное коксование углей

Выполнил: Шеков А.П.

Проверил: Розенталь Д.А,

С.-Петербург

2007

Введение

Высокотемпературное коксование углей в мире, имеет главенствующее значение в области переработки твёрдых горючих ископаемых. И это естественно связано с тем, что кокс, как неотъемлемая часть, используется в производстве стали и чугуна, из которых соответственно делают все металлические детали. А это является основой всего, что человек создаёт, для того чтобы жить. Отсюда вытекает назначение этого процесса: получить высококачественный кокс, а также наряду с ним, другие углеводороды (фенолы, бензол, смолу, коксовый газ) из твёрдых горючих ископаемых, с помощью высоких температур (до 11000 С) и без доступа воздуха в коксовых печах или коксовых батареях.

Для проведения такого сложного процесса, нужно четко знать и соблюдать его параметры. Поддерживать высокую температуру в камере коксования, за счёт сжигания отопительных (коксовых или дымовых) газов. А так же учитывать определенную последовательность выгрузки готового кокса, в том плане, чтобы одновременно не разгружались две соседние камеры коксования, для поддержания более или менее стабильной температуры отопительных простенков и предотвращения их разрушения. Из параметров, можно ещё указать на своевременную выгрузку готового кокса и загрузку сырья (шихты), которая тоже должна отвечать определённым требованиям. Шихта – это оптимальная смесь из коксующихся углей, которая содержит в себе определённое соотношение витренита и фюзенита (компоненты, отвечающие за спекаемость). И для приготовления шихты необходимо создать (усреднить) смесь из углей разной спекаемости. Этот процесс проводят на местах хранения углей. С помощью грейфера набирают определённую марку угля и далее краном, тонко и равномерно рассыпают по полю из другой марки угля. Операцию повторяют многократно, тем самым получая многослойный «пирог» или штабель – это сумма тонких слоёв из разных марок углей. При взятии угля из штабеля грейфер погружается на большую глубину и таким образом осуществляется хорошее усреднение.

Практически, сейчас приходится решать проблему создания кокса, заданного качества, из имеющегося на складе сырья. И это решение затрудняется вследствие ограниченного количества хорошо спекающихся углей.

Технологическое оснащение процесса

Данный высокотемпературный процесс осуществляют на современных коксохимических заводах, в коксовых печах, которые состоят из камер коксования обогревательных простенков. Если они стоят на одном фундаменте, и работают в одном режиме, то всё вместе это называют коксовой батареей.

Пример такой батареи приведён на рисунке 1:

Рис. 1

Из рисунка видно, что батарея состоит из камер коксования и отопительной системы. У камеры имеется по три загрузочных люка, для загрузки шихты, и по два газоотводящих, для отвода летучих продуктов (в печах иностранного производства возможны вариации). Сторону батареи, вдоль которой движется коксовыталкивающая машина, называют машинной стороной, а противоположную, на которую выдаётся кокс – коксовая сторона. Ширина всей камеры не одинакова: она увеличивается от машинной стороны к коксовой соответственно. Эта особенность сделана для того, чтобы облегчить выгрузку (выталкивание) коксового пирога из камеры. В зависимости от конструкций печей, размеры камер могут колебаться по длине и ширине. В длину от 12 до 17(м), и ширину от 407 до 480(мм) соответственно.

Отметим, что заполнение коксовой камеры проводят не доверху, а оставляют около 300мм под сводом. Это пространство нужно для выхода парогазовых продуктов. Кроме того, при коксовании происходит усадка шихты, около 5 – 15%. Тогда возможно, если обогрев простенка будет выше высоты угольной загрузки, то подсводовое пространство будет перегреваться, что ухудшит прочность кладки и свойства кокса. Высоту и длину коксовой камеры имеет смысл увеличивать, из расчета на увеличение угольной загрузки и соответственно производительности. Однако высота ограничена равномерностью прогрева шихты и физической прочности кладки печи. А длина печи из-за возможности смятия коксового пирога и усложнения конструкции выталкивателя.

Обогрев печи. Отопительная система состоит из отопительных простенков, газораспределительной зоны и регенераторов. Функция отопительной системы самая главная – это, подвести отопительный газ в зону горения, передать тепло загрузке и отвести продукты горения. Схема приведена на рисунке 2:

Рис. 2

В этой системе (ПВР), вертикалы работают попарно и переменно. Простенок делится на пары вертикалов, из которых один работает на нисходящем потоке газов, а другой – на восходящем. Примерно через каждые 20 минут потоки меняются на противоположные. Это сделано для того, чтобы равномерно прогревать простенок, который сделан из огнеупорного материала (кирпича). Сторона простенка, соприкасающаяся с угольной загрузкой, называется рабочей, а противоположная сторона – огневой. В отопительном простенке, за счёт горения, образуется факел, который может быть короче или длиннее, в зависимости от интенсивности подачи газа и использования рециркуляционного окна. С помощью этого окна происходит подсос отработанных газов в факел горения, уменьшая концентрацию кислорода и тем самым вытягивая пламя. В отопительный простенок одновременно поступают газ и воздух, из газораспределительной зоны. В этой зоне расположены распределительные каналы коксового или другого богатого газа – корнюрная зона(8). И каналы, по которым подаётся обеднённый газ (доменный или генераторный) – косые ходы(6). Ниже корнюров расположены регенераторы (а-г), представляющие собой узкие камеры, в которых в определённом порядке уложен кирпич, так чтобы увеличить поверхность теплообмена. Они предназначены для использования тепла, выходящего вместе с дымовыми газами из отопительных простенков и нагревания обеднённого газа с воздухом. Под регенераторами, прямо на плите, расположены подовые каналы (3). По ним движется воздух, который через колосниковую решётку (4) поступает прямо в регенератор. Основными требованиями к этой конструкции являются: создание герметичности между стеной, разделяющей газовые потоки на восходящий (топочные газы) и нисходящий (дымовые) потоки, и зону с коксующейся загрузкой.

Кроме этой системы обогрева, существуют ещё несколько видов, например, с парными вертикалами и рециркуляцией (системы ПК-2К и ПК-2КР) отработанных газов через перекидной канал. Печи с групповым обогревом: собирают сгоревший газ в горизонтальный сборный канал и отправляя его в группу противоположных вертикалов. Так же существуют печи с нижним подводом тепла. Главное отличие заключается в том, что богатый газ через специальные металлические патрубки, заложенные при строительстве, проходит в газоподводящие каналы – дюзы, находящиеся в стенках регенераторов, а из них через горелки с отверстием выходит в вертикалы. Это позволяет точно дозировать подвод тепла не только к каждому отопительному простенку, но и к каждому вертикалу. Есть печи с иным подводом тепла, а именно, с внешним подогревом, предназначенные для коксования крупнокускового слабоспекающегося или неспекающегося угля или получения металлургического кокса из сланцев. Отопительный простенок здесь может быть разделён перегородками, как на вертикалы, так и на горизонталы. Остальные системы обогрева не значительно отличаются от уже изложенных.

б) Для осуществления бесперебойного процесса коксования нужно специальное оборудование, обеспечивающее работу коксовой батареи. Она обслуживается коксовыталкивателем, двересьёмной машиной с коксонаправляющей и загрузочным вагоном. Кроме того имеется тушильный вагон с тягачом, для транспортировки кокса на охлаждение. Назначение этого оборудования заключается в обеспечении выполнения операций по загрузке шихты, выдаче и приёмке коксового пирога и транспортирование его в тушильное устройство. На схеме видно оборудование, которое используется для обслуживания печи (рис. 3):

Рис. 3

Углезагрузочная машина (5) передвигается по верху батареи на рельсах и используется для загрузки шихты в печь, при опорожнении её от коксового пирога. При этом очищает стояки от нагара и подаёт инжекцией воду для устранения пыли. Схема на рисунке 4:

Рис. 4

Коксовыталкиватель (17) предназначен для извлечения (выталкивания), с помощью выталкивающей штанги, готового коксового пирога из печи в коксовозный вагон (13), с тягачом. Коксовыталкиватель также перемещается по рельсам, проложенным вдоль машинной стороны батареи. Он снимает дверь коксовой камеры, выдавливает кокс, потом с помощью специального устройства очищает дверь от смолы и графита, образовавшегося при коксовании, и устанавливает дверь обратно. В период загрузки коксовыталкиватель специальным устройством - планирной штангой (3), разравнивает шихту в камере коксования. Схема коксовыталкивателя приведена на рисунке 5:

Рис. 5

Двересъёмная машина с коксонаправляющей, предназначены для обслуживания коксовой стороны. Они расположены на отдельных тележках и связанных между собой шарнирной сцепкой. Двересъёмная машина является ведущей. Сняв дверь, корзина коксонаправляющей вставляется в проём камеры коксования. После выдачи кокса корзина возвращается назад и двересъёмная машина с коксонаправляющей получают возможность работать дальше или везти кокс на тушение.

Для сохранности коксовых печей и поддержания её в рабочем состоянии применяется так же специальное оборудование, имеющее название – анкераж. В состав оборудования анкеража входят анкерные колоны (1), брони (2) и рамы печных камер, пружины (6), анкерные болты (5,7), броневые листы (4), анкерные стяжки. Основная задача анкеража – сохранение и предотвращение деформации кладки в процессе работы батареи. Схема анкеража соответственно разобрана на рисунке 6:

Рис. 6

При разогреве батареи большое значение имеет продольное армирование, осуществляемое регулированием нагрузок продольными анкерными стяжками (5,7) и пружинами, расположенными в верхней части батареи.

Всё перечисленное оборудование является основным, поэтому возможны модификации и дополнения. Поэтому проводить обзор бессмысленно. Перейдём к следующему не маловажному вопросу, связанному с продуктами коксования.

Характеристика продуктов высокотемпературного коксования

Одновременно с коксом в процессе образуется ряд жидких и газообразных продуктов: фенолы, бензолы, смолы, коксовый газ, а так же не значительное количество Nh4 и h3 S, имеющие большое значение в химической промышленности. Выход которых на массу угля составляет: 13-15% (330-380 м3 /г массовых) - газы, 3-5% - смола, сырой бензол или газовый бензин – 0.8-1.1%. Выделившийся коксовый газ является высококалорийным, благодаря значительному содержанию метана Ch5 (25-28%) и Н2 (60-85%). В смоле присутствуют от 1 до 3% фенолов, которые представлены в основном простейшими производными фенола, крезолами и не значительным содержанием ди- и три - метил-фенолами. Кроме этого в смоле содержится 7-12% нафталина и 3-4% органических оснований, производных пиридина. Сырой бензол состоит из ароматики - 80-88%, олефинов (10-15%), насыщенных углеводородов (2-5%), а так же сернистых соединений (сероуглерода, тиофена и его производных). А выход летучих продуктов и их состав зависит от качества угольного сырья и режимов коксования.

Для характеристики главного продукта – кокса, определяют его химические, физико-химические и физико-механические свойства. К физическим свойствам относятся: плотность, пористость, микроструктура, прочность, электропроводность и теплопроводность. Истинная плотность кокса зависит от шихты и конечной температуры нагревания. Чем больше конечная температура шихты, тем больше истинная плотность кокса. Электропроводность зависит от сырья, скорости и конечной температуры. Чем ниже степень метаморфизма, выше скорость и меньше температура коксования, тем больше электропроводность кокса. Теплоёмкость увеличивается при повышении конечной температуры и уменьшении зольности. Теплопроводность кокса также зависит от зольности и от его структуры. Химические свойства кокса – это влажность, выход летучих, зольность, содержание серы, фосфора, углерода, водорода, кислорода, азота и др. элементов, а так же теплота его сгорания. Влажность зависит от методов охлаждения. Содержание золы напрямую зависит от зольности исходного угля. Сера, содержащаяся в коксе, отрицательно влияет на процессы, в которых он участвует. Выход летучих зависит от конечной температуры и колеблется от 0.7 до 3%. Теплота сгорания зависит от его элементного состава и зольности. К физико-химическим свойствам относят реакционную способность. Определяют её в основном с помощью реакции восстановления СО2 :

С + СО2 = 2СО -+ 160.1 кДж/моль

Эта способность зависит от метаморфизма угля, скорости и конечной температуры коксования. Чем ниже метаморфизм, тем выше реакционная способность. А увеличение температуры приводит к снижению этой способности. Под физико-механическими свойствами представляют гранулометрический состав (равномерность всех зёрен) и прочность кокса. Также важным показателем качества кокса является его трещиноватость. Различают общую, продольную и поперечную трещиноватость, которая оценивается по числу и длине трещин куска. Прочность кокса, одно из наиболее важных показателей качества, оно имеет большое значение для определения его пригодности. В настоящее время одного метода, который бы позволял оценить качество по одному параметру, поэтому пользуются отдельными параметрами характеристиками кокса. В итоге нужно получить кокс с хорошей прочностью, минимальной влажностью, оптимальной реакционноспособностью и теплопроводностью (учитывая все остальные параметры), но это «палка на двух концах», т.к. не достичь одновременно всех оптимальных показателей.

Заключение

В заключение, можно описать основной режим работы механизмов коксовой батареи для получения кондиционной продукции. Изначально, необходимо как можно лучше размельчить уголь, для шихты. После, перед загрузкой шихты в печь, желательно её подогреть, для уменьшения времени процесса коксования. Обогрев крайних печей нужно вести интенсивней, для избежание падения температуры и укрупнения кусков кокса. Выгрузку готового продукта, тоже ведут по определённому принципу (графику). А именно, кокс выгружают из печей в таком порядке, чтобы одновременно не разгружались две соседние печи, были на середине процесса. Это делается для поддержания температуры в печи и сохранения прочности кладки. В общем виде серийность выдачи можно записать в виде m-n, где m- число печей, расположенных между печами, выдающими кокс и n-интервал между печами, выдающими кокс. Наиболее распространённые серийности 9-2, 2-1 и 5-2. Расчёты показывают, что разница во времени между серединой коксования и фактическим временем, прошедшем от начала коксования при серийности 9-2 составляет 2-2.5ч, 2-1 – около 1.5ч, и для 5-2 до 3.2ч. Отсюда следует, что оптимальный режим – 2-1, которую и применяют на новых батареях. Для соблюдения оптимальной серийности и постоянства коксования во всех печах строят поминутный график выдачи, который делают либо непрерывным, либо циклическим. Достоинством циклического графика является, что время оборота печи разбивается на рабочую и ремонтную части. Выдача, после остановки, всегда должна начинаться с той же печи, с которой начали, и в рабочую часть цикла должен быть извлечён весь кокс из всех печей, независимо от серийности. При этом режиме также можно планировать время остановок работы коксовых машин, проводить ремонт и диагностику их поломок. Работая по этому графику, не нарушается период коксования ни в одной печи.

Список литературы

1. Справочник по химии и технологии твёрдых горючих ископаемых / под ред. А.Н. Чистякова. СПб: изд. комп. «Синтез». 1996.

2. Химическая технология твёрдых горючих ископаемых / под ред. Г.Н. Макарова и Г.Д. Харламповича. М: Химия. 1986.

3. Курс лекций по спец. курсу. Д.А. Розенталь.


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.