13. Биологические мембраны клетки. Их свойства, строение и функции. Классификация и строение мембранных органелл клетки реферат


5. Органеллы мембранного типа. Их строение и ф-ции.

Мембранные: шероховатая эндоплазматическая сеть, гладкая эндоплазматическая сеть

пластинчатый комплекс (аппарат Гольджи), митохондрии, лизосомы, пероксисомы

Гранулярная ЭС состоит из: уплощенные замкнутые мешочки, цистерны, трубочки

рибосомы ФУНКЦИИ: синтез экспортируемых белков, изоляция экспортируемых белков от гиалоплазмы, транспорт белков в комплекс Гольджи, химическая модификация этих белков

синтез структурных компонентов клеточных мембран

Гладкая ЭС: состоит из уплощенные замкнутые мешочки, цистерны, трубочки Её функции: синтез липидов, включения гликогена, депо кальция (мышечные ткани), дезактивация токсинов

(Аппарат Гольджи) Состоит из: 5-10 плоских цистерн, диктиосома, есть проксимальный участок, дистальный участок, ампулы, везикулы. Функции АГ:сегрегация продуктов, накопление продуктов, химическая перестройка продуктов, полисахариды, гликопротеиды, выведение продуктов, образование лизосом

Лизосомы: представляют собой вакуоли разного размера, окружены мембраной, содержат гидролитические ферменты (гидролазы)ФУНКЦИИ:расщепление различных биополимеров при кислом значении рНЛизосомы подразделяются:1)первичные лизосомы,2)вторичные лизосомы (фаголизосомы, аутофагосомы), 3)остаточные тельца (липофусцин – пигмент старения)

Пероксисомы: имеют овальную форму, окружены мембраной, имеют гранулярный матрикс-это кристаллоподобные структуры(фибриллы,трубки), содержат фермент каталазу.

Функции: содержат фермент каталаза, разрушение перекиси водорода

Митохондрии: имеют наружная мембрану( она имеет ровные контуры и замкнута, представляет собой мембранный мешок) и внутренняя мембрану( она ограничивает внутреннее содержимое митохондрии, её матрикс) Внут. мембр. имеет кристы-это выпячивание в виде плоских гребней.

Матрикс имеет зернистое строение, в нем есть нити (ДНК) и гранулы (рибосомы)

Функции:выработка АТФ, набор ферментов, синтез ферментов

Принцип строения мембранных органелл

Мембранные органеллы представляют собой замкнутые и изолированные участки (компартменты) в гиалоплазме, имеющие свою внутреннюю структуру. Стенка их состоит из билипидной мембраны и белков подобно плазмолемме. Однако билипидные мембраны органелл имеют особенности: толщина билипидных мембран органелл меньше, чем плазмолеммы (7 нм против 10 нм), мембранные отличаются по количеству и по содержанию белков, встроенных в них.

Однако, несмотря на различия, мембраны органелл имеют одинаковый принцип строения, поэтому они обладают способностью взаимодействовать друг с другом, встраиваться, сливаться, разъединяться, отшнуровываться.

Общий принцип строения мембран органелл можно объяснить тем, что все они образуются в эндоплазматической сети, а затем происходит их функциональная перестройка в комплексе Гольджи.

6. Органеллы немембранного типа. Их строение и ф-ции.

Немембранные: рибосомы, клеточный центр, элементы цитоскелета, микротрубочки, микрофиламенты, промежуточные филаменты,

Рибосомы: это элементарные аппараты синтеза белковых, полипептидных молекул- есть во всех кл. Рибосома состоит из рибосомальные РНК, большая субъединица и малая субъединица. Рибосомы могут располагаться свободно в гиалоплазме или быть связанными с мембранами ЭПС.Функции :синтез секреторных белков, синтез структурных белков

Цитоскелет – опорно-двигательная система клетки, включающая немембранные белковые нитчатые образования, выполняющие как каркасную, так и двигательную функции.

Цитоскелет включает: фибриллярные структуры и микротрубочки

Фибриллярные структуры: К ним относятсямикрофилламенты. Они встречаются во всех типах кл. Располаг-ся в цитоплазме под плазмолеммой, пучками или слоями. Состав микрофилламентов: актин, миозин, протомиозин, а-актин. Они обеспечивают движение и опорную функции.Промежуточные филаменты: (микрофибриллы) – это белковые стр-ры, их функция опорная, скелетная. В эпителии пром. филламентов входит кератин. В соединительных тканях входит белок виментин, в мышечных тканях-белок десмин.

Микротрубочки:предст. собой прямые неветвящиеся цилиндры, кольца из 13 субъединиц, содержат белок- тубулин. Различаювременные: цитоскелет, веретено деления ипостоянные: центриоли, реснички, жгутики микротрубочки.

Кл. центр: состоит из центриолей и связанных с ними микротрубочек-центросферы. Основой строения центриолей являются расположенные по окружности 9 триплетов микротрубочек, образ-х полый цилиндр. Системы микротрубочек центриоли можно описать формулой – (9х3) + 0. Часто с с центриолями можно обнаружить дополнительные структуры: спутники (сателлиты)

studfiles.net

Вопрос 4. Органеллы клеток (определение, классификация, характеристика строения и функций митохондрий, пластинчатого комплекса, лизосом, эндоплазматической сети).

Органеллы (органоиды) – постоянные структуры цитоплазмы, выполняющие в ней определенные функции.

Классификация органелл учитывает особенности их строения и физиологических отправлений.

На основе учета характера выполняемых функций все органоиды подразделяются на две большие группы:

1. Органеллы общего назначения, выражены во всех клетках организма, обеспечивают наиболее общие функции, поддерживающие их структуру и жизненные процессы (митохондрии, центросома, рибосомы, лизосомы, пероксисомы, микротрубочки, цитоплазматическая сеть, комплекс Гольджи)

2. Специальные – встречаются лишь в клетках, которые выполняют специфические функции (миофибриллы, тонофибриллы, нейрофибриллы, синаптические пузырьки, тигроидное вещество, микроворсинки, реснички, жгутики).

По структурному признаку различаем органоиды мембранного и немембранного строения.

Органеллы мембранного строения в своей основе имеют выраженными одну или две биологические мембраны (митохондрии, пластинчатый комплекс, лизосомы, пероксисомы, эндоплазмамическая сеть).

Органеллы немембранного строения формируются микротрубочками, глобулами из комплекса молекул и их пучками (центросома, микротрубочки, микрофиламенты и рибосомы).

По величине выделяем группу органелл, видимых в световой микроскоп (аппарат Гольджи, митохондрии, клеточный центр), и ультрамикроскопических органелл, видимых только в электронный микроскоп (лизосомы, пероксисомы, рибосомы, эндоплазматическая сеть, микротрубочки и микрофиламенты).

Комплекс Гольджи (пластинчатый комплекс) при световой микроскопии виден в виде коротких и длинных нитей (до 15 мкм длиной). При электронной микроскопии каждая такая нить (диктиосома) представляет комплекс плоских цистерн, наслоенных друг на друга, трубочек и пузырьков. Пластинчатый комплекс обеспечивает накопление и выведение секретов, синтезирует некоторые липиды и углеводы, формирует первичные лизосомы.

Митохондрии при световой микроскопии обнаруживаются в цитоплазме клеток в виде мелких зерен и коротких нитей (длиной до 10 мкм), от наименований которых образовано само название органоида. При электронной микроскопии каждая из них представляется в форме телец округлой или продолговатой формы, состоящих из двух мембран и матрикса. Внутренняя мембрана имеет гребневидные выпячивания – кристы. В матриксе выявляются митохондриальные ДНК и рибосомы, синтезирующие некоторые структурные белки. Ферменты, локализованные на мембранах митохондрий, обеспечивают процессы окисления органических веществ (клеточное дыхание) и запасание АТФ (энергетическая функция).

Лизосомы представлены мелкими пузырьковидными образованиями, стенка которых сформирована биологической мембраной, внутри которой заключен широкий набор гидролитических ферментов (около 70).

Выполняют роль пищеварительной системы клеток, нейтрализуют вредные агенты и чужеродные частицы, осуществляют утилизацию собственных устаревших и поврежденных структур.

Различают первичные лизосомы, вторичные (фаголизосомы, аутофаголизосомы) и третичные телолизосомы (остаточные тельца).

Эндоплазматическая сеть – это система мельчайших цистерн и канальцев, анастомозирующих между собой и пронизывающих цитоплазму. Их стенки образованы одиночными мембранами, на которых упорядоченно располагаются ферменты для синтеза липидов и углеводов – гладкая эндоплазматическая сеть (агранулярная) или фиксируются рибосомы – шероховатая (гранулярная) сеть. Последняя предназначена для ускоренного синтеза белковых молекул на общие нужды организма (на экспорт). Обе разновидности ЭПС обеспечивают также циркуляцию и транспорт различных веществ.

studfiles.net

Доклад - Немембранные органеллы клетки

Алтайский Государственный Медицинский Университет

Реферат

по дисциплине «Гистология»

Тема: Немембранные органоиды клетки

Выполнила: студентка 1 курса

135 группы

Жигулина Елена Александровна

Барнаул, 2011

Основные группы органелл. Органеллы — постоянные внутриклеточные структуры, имеющие определенное строение и выполняющие соответствующие функции. Органеллы делятся на две группы: мембранные и немембранные. К немембранным органеллам клетки относятся центриоли, микротрубочки, филаменты, рибосомы и полисомы.

Рибосома — важнейший немембранный органоид живой клетки сферической или слегка эллипсоидной формы, диаметром 100—200 ангстрем , состоящий из большой и малой субъединиц. Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации , предоставляемой матричной РНК , или мРНК . Этот процесс называется трансляцией .

В эукариотических клетках рибосомы располагаются на мембранах эндоплазматического ретикулума , хотя могут быть локализованы и в неприкрепленной форме в цитоплазме . Нередко с одной молекулой мРНК ассоциировано несколько рибосом, такая структура называется полирибосомой. Синтез рибосом у эукариот происходит в специальной внутриядерной структуре — ядрышке .

Рибосомы представляют собой нуклеопротеид , в составе которого отношение РНК/белок составляет 1:1 у высших животных и 60-65:35-40 у бактерий.

Полные рибосомные частицы и их субчастицы принято обозначать в соответствии с их коэффициентами седиментации (скоростями осаждения, лат. sedimentum — осадок) в ультрацентрифуге, выражаемыми в единицах Сведберга (S). S — коэффициент седиментации, он зависит от молекулярной массы и пространственной конформации частицы, осаждаемой при центрифугировании. Рибосомная РНК составляет около 70 % всей РНК клетки. Рибосомы эукариот включают четыре молекулы рРНК, из них 18S , 5.8S и 28S рРНК синтезируются в ядрышке РНК полимеразой I в виде единого предшественника (45S), который затем подвергается модификациям и нарезанию. 5S рРНК синтезируется РНК полимеразой III в другой части генома и не нуждаются в дополнительных модификациях. Почти вся рРНК находится в виде магниевой соли, что необходимо для поддержания структуры; при удалении ионов магния рибосома подвергается диссоциации на субъединицы. Рибосомы впервые были описаны как уплотненные частицы, или гранулы, клеточным биологом румынского происхождения Джорджем Паладе в середине 1950-х годов. В 1974 г. Паладе, Клод и Кристиан Де Дюв получили Нобелевскую премию по физиологии и медицине «за открытия, касающиеся структурной и функциональной организации клетки». Термин «рибосома» был предложен Ричардом Робертсом в 1958 вместо «рибонуклеобелковая частица микросомальной фракции». Биохимические и мутационные исследования рибосомы начиная с 1960-х позволили описать многие функциональные и структурные особенности рибосомы.

Центриоль — внутриклеточный органоид эукариотической клетки, представляющий тельца в структуре клетки, размер которых находится на границе разрешающей способности светового микроскопа.

Эти органеллы в делящихся клетках принимают участие в формировании веретена деления и располагаются на его полюсах. В неделящихся клетках центриоли часто определяют полярность клеток эпителия и располагаются вблизи комплекса Гольджи .

Термин был предложен Теодором Бовери в 1895 году . Тонкое строение центриолей удалось изучить с помощью электронного микроскопа. В некоторых объектах удавалось наблюдать центриоли, обычно расположенные в паре (диплосома), и окруженные зоной более светлой цитоплазмы, от которой радиально отходят тонкие фибриллы (центросфера). Совокупность центриолей и центросферы называют клеточным центром.

Чаще всего пара центриолей лежит вблизи ядра . Каждая центриоль построена из цилиндрических элементов ( микротрубочек ), образованных в результате полимеризации белка тубулина . Девять триплетов микротрубочек расположены по окружности.

Центриоли принимают участие в формировании цитоплазматических микротрубочек во время деления клетки и в регуляции образования митотического веретена. В клетках высших растений и большинства грибов центриолей нет, и митотическое веретено образуется там иным способом. Кроме того, ученые полагают, что ферменты клеточного центра принимают участие в процессе перемещения дочерних хромосом к разным полюсам в анафазе митоза.

Микротрубочки — белковые внутриклеточные структуры, входящие в состав цитоскелета .

Микротрубочки представляют собой полые внутри цилиндры диаметром 25 нм . Длина их может быть от нескольких микрометров до, вероятно, нескольких миллиметров в аксонах нервных клеток. Их стенка образована димерами тубулина . Микротрубочки, подобно актиновым микрофиламентам , полярны: на одном конце происходит самосборка микротрубочки, на другом — разборка. В клетках микротрубочки играют роль структурных компонентов и участвуют во многих клеточных процессах, включая митоз , цитокинез и везикулярный транспорт .

Микротрубочки — это структуры, в которых 13 тубулиновых α-/β-гетеродимеров уложены по окружности полого цилиндра. Внешний диаметр цилиндра около 25 нм, внутренний — около 15.

Один из концов микротрубочки, называемый плюс-концом, постоянно присоединяет к себе свободный тубулин. От противоположного конца — минус-конца — тубулиновые единицы отщепляются.

В образовании микротрубочки выделяют три фазы:

Лабораторные исследования показывают, что сборка микротрубочек из тубулинов происходит только в присутствии гуанозинтрифосфата и ионов магния .

Микротрубочки являются динамическими структурами и в клетке постоянно полимеризуются и деполимеризуются. Центросома , локализованная вблизи ядра , выступает в клетках животных и многих протистов как центр организации микротрубочек ( ЦОМТ ): они растут от неё к периферии клетки. В то же время микротрубочки могут внезапно прекратить свой рост и укоротиться обратно по направлению к центросоме вплоть до полного разрушения, а затем вырасти снова. При присоединении к микротрубочке молекулы тубулина, несущие ГТФ, образуют «шапочку», которая обеспечивает рост микротрубочки. Если локальная концентрация тубулина падает, связанная с бета-тубулином ГТФ постепенно гидролизуется. Если полностью гидролизуется ГТФ «шапочки» на ±конце, это приводит к быстрому распаду микротрубочки. Таким образом, сборка и разборка микротрубочек связана с затратами энергии ГТФ.

Динамическая нестабильность микротрубочек играет важную физиологическую роль. Например, при делении клетки микротрубочки растут очень быстро и способствуют правильной ориентации хромосом и образованию митотического веретена .

Микротрубочки в клетке используются в качестве «рельсов» для транспортировки частиц. По их поверхности могут перемещаться мембранные пузырьки и митохондрии. Транспортировку по микротрубочкам осуществляют белки, называемые моторными. Это высокомолекулярные соединения, состоящие из двух тяжёлых (массой около 300 кДа ) и нескольких лёгких цепей. В тяжёлых цепях выделяют головной и хвостовой домены. Два головных домена связываются с микротрубочками и являются собственно двигателями, а хвостовые — связываются с органеллами и другими внутриклеточными образованиями, подлежащими транспортировке.

Выделяют два вида моторных белков:

Динеины перемещают груз только от плюс-конца к минус-концу микротрубочки, то есть из периферийных областей клетки к центросоме. Кинезины , напротив, перемещаются к плюс-концу, то есть к клеточной периферии.

Перемещение осуществляется за счёт энергии АТФ . Головные домены моторных белков для этого содержат АТФ - связывающие участки .

Помимо транспортной функции , микротрубочки формируют центральную структуру ресничек и жгутиков — аксонему . Типичная аксонема содержит 9 пар объединённых микротрубочек по периферии и две полных микротрубочки в центре . Из микротрубочек состоят также центриоли и веретено деления , обеспечивающее расхождение хромосом к полюсам клетки при митозе и мейозе . Микротрубочки участвуют в поддержании формы клетки и расположения органоидов ( в частности , аппарата Гольджи ) в цитоплазме клеток .

ФИЛАМЕНТЫ. Промежуточные филаменты являются наименее понятной структурой среди основных компонентов цитоскелета в отношении их сборки , динамики и функций . Их свойства и динамика сильно отличаются от соответствующих характеристик как микротрубочек , так и актиновых филаментов . Функции же промежуточных филаментов до сих пор остаются в области гипотез .

Цитоплазматические промежуточные филаменты обнаружены в подавляющем большинстве эукариотических клеток, как у позвоночных , так и беспозвоночных животных , у высших растений . Редкие примеры клеток животных , у которых не обнаружены промежуточные филаменты , не могут считаться окончательными , так как белки промежуточных филаментов могут образовывать необычные структуры .

Промежуточные филаменты представляют собой фибриллы диаметром 8-12 нм . Несмотря на то , что промежуточные филаменты в разных типах клеток морфологически неразличимы , они состоят из разных белков . Существует пять ткане - специфических классов белков промежуточных филаментов: виментин, десмин, глиальный фибриллярный кислый белок, белки нейрофиламентов и кератины. Общие структурные особенности этих белков , несмотря на различия по первичной структуре , позволяют им образовывать морфологически сходные филаменты . Недавно в семейство белков промежуточных филаментов включили ламины — белки , образующие скелет ядерной оболочки на внутренней стороне мембраны. Относительно функций промежуточных филаментов известно очень мало . Ситуация с определением функций этой цитоскелетной системы осложняется результатами экспериментов по получению трансгенных животных . Показано , например , что у трансгенных мышей , эктопически экспрессирующих десмин или виментин , не обнаруживается каких - либо очевидных нарушений физиологии или развития. Тем не менее существует ряд гипотез , касающихся функций промежуточных филаментов . Например , предполагается , что промежуточные филаменты играют механическую роль в межклеточных взаимодействиях и в организации тканевой структуры

Полисома , или полирибосома — несколько рибосом , одновременно транслирующих одну молекулу иРНК . Поскольку длина средней молекулы мРНК значительно превышает количество нуклеотидов , занимаемых на РНК рибосомой , одну молекулу РНК , в зависимости от скорости инициации одновременно транслируют несколько рибосом . Образование и количество рибосом в полисоме зависит от скорости инициации , элонгации и терминации на данной конкретной РНК . В настоящее время принята модель , в которой у эукариот начало мРНК (5' нетранслируемый участок ) и её конец (3' нетранслируемый участок ) расположены близко друг другу за счёт взаимодействия одного из факторов инициации трансляции IF4G/F с белком , ассоциированным с 3' нетранслируемый участком ( ПАБ ).

Список литературы:

1. Руководство по цитологии, т. 1—2, М.—Л., 1965—66. 2. Большая советская энциклопедия.

www.ronl.ru

Реферат - Немембранные органеллы клетки

Алтайский Государственный Медицинский Университет

Реферат

по дисциплине «Гистология»

Тема: Немембранные органоиды клетки

Выполнила: студентка 1 курса

135 группы

Жигулина Елена Александровна

Барнаул, 2011

Основные группы органелл. Органеллы — постоянные внутриклеточные структуры, имеющие определенное строение и выполняющие соответствующие функции. Органеллы делятся на две группы: мембранные и немембранные. К немембранным органеллам клетки относятся центриоли, микротрубочки, филаменты, рибосомы и полисомы.

Рибосома — важнейший немембранный органоид живой клетки сферической или слегка эллипсоидной формы, диаметром 100—200 ангстрем , состоящий из большой и малой субъединиц. Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации , предоставляемой матричной РНК , или мРНК . Этот процесс называется трансляцией .

В эукариотических клетках рибосомы располагаются на мембранах эндоплазматического ретикулума , хотя могут быть локализованы и в неприкрепленной форме в цитоплазме . Нередко с одной молекулой мРНК ассоциировано несколько рибосом, такая структура называется полирибосомой. Синтез рибосом у эукариот происходит в специальной внутриядерной структуре — ядрышке .

Рибосомы представляют собой нуклеопротеид , в составе которого отношение РНК/белок составляет 1:1 у высших животных и 60-65:35-40 у бактерий.

Полные рибосомные частицы и их субчастицы принято обозначать в соответствии с их коэффициентами седиментации (скоростями осаждения, лат. sedimentum — осадок) в ультрацентрифуге, выражаемыми в единицах Сведберга (S). S — коэффициент седиментации, он зависит от молекулярной массы и пространственной конформации частицы, осаждаемой при центрифугировании. Рибосомная РНК составляет около 70 % всей РНК клетки. Рибосомы эукариот включают четыре молекулы рРНК, из них 18S , 5.8S и 28S рРНК синтезируются в ядрышке РНК полимеразой I в виде единого предшественника (45S), который затем подвергается модификациям и нарезанию. 5S рРНК синтезируется РНК полимеразой III в другой части генома и не нуждаются в дополнительных модификациях. Почти вся рРНК находится в виде магниевой соли, что необходимо для поддержания структуры; при удалении ионов магния рибосома подвергается диссоциации на субъединицы. Рибосомы впервые были описаны как уплотненные частицы, или гранулы, клеточным биологом румынского происхождения Джорджем Паладе в середине 1950-х годов. В 1974 г. Паладе, Клод и Кристиан Де Дюв получили Нобелевскую премию по физиологии и медицине «за открытия, касающиеся структурной и функциональной организации клетки». Термин «рибосома» был предложен Ричардом Робертсом в 1958 вместо «рибонуклеобелковая частица микросомальной фракции». Биохимические и мутационные исследования рибосомы начиная с 1960-х позволили описать многие функциональные и структурные особенности рибосомы.

Центриоль — внутриклеточный органоид эукариотической клетки, представляющий тельца в структуре клетки, размер которых находится на границе разрешающей способности светового микроскопа.

Эти органеллы в делящихся клетках принимают участие в формировании веретена деления и располагаются на его полюсах. В неделящихся клетках центриоли часто определяют полярность клеток эпителия и располагаются вблизи комплекса Гольджи .

Термин был предложен Теодором Бовери в 1895 году . Тонкое строение центриолей удалось изучить с помощью электронного микроскопа. В некоторых объектах удавалось наблюдать центриоли, обычно расположенные в паре (диплосома), и окруженные зоной более светлой цитоплазмы, от которой радиально отходят тонкие фибриллы (центросфера). Совокупность центриолей и центросферы называют клеточным центром.

Чаще всего пара центриолей лежит вблизи ядра . Каждая центриоль построена из цилиндрических элементов ( микротрубочек ), образованных в результате полимеризации белка тубулина . Девять триплетов микротрубочек расположены по окружности.

Центриоли принимают участие в формировании цитоплазматических микротрубочек во время деления клетки и в регуляции образования митотического веретена. В клетках высших растений и большинства грибов центриолей нет, и митотическое веретено образуется там иным способом. Кроме того, ученые полагают, что ферменты клеточного центра принимают участие в процессе перемещения дочерних хромосом к разным полюсам в анафазе митоза.

Микротрубочки — белковые внутриклеточные структуры, входящие в состав цитоскелета .

Микротрубочки представляют собой полые внутри цилиндры диаметром 25 нм . Длина их может быть от нескольких микрометров до, вероятно, нескольких миллиметров в аксонах нервных клеток. Их стенка образована димерами тубулина . Микротрубочки, подобно актиновым микрофиламентам , полярны: на одном конце происходит самосборка микротрубочки, на другом — разборка. В клетках микротрубочки играют роль структурных компонентов и участвуют во многих клеточных процессах, включая митоз , цитокинез и везикулярный транспорт .

Микротрубочки — это структуры, в которых 13 тубулиновых α-/β-гетеродимеров уложены по окружности полого цилиндра. Внешний диаметр цилиндра около 25 нм, внутренний — около 15.

Один из концов микротрубочки, называемый плюс-концом, постоянно присоединяет к себе свободный тубулин. От противоположного конца — минус-конца — тубулиновые единицы отщепляются.

В образовании микротрубочки выделяют три фазы:

Лабораторные исследования показывают, что сборка микротрубочек из тубулинов происходит только в присутствии гуанозинтрифосфата и ионов магния .

Микротрубочки являются динамическими структурами и в клетке постоянно полимеризуются и деполимеризуются. Центросома , локализованная вблизи ядра , выступает в клетках животных и многих протистов как центр организации микротрубочек ( ЦОМТ ): они растут от неё к периферии клетки. В то же время микротрубочки могут внезапно прекратить свой рост и укоротиться обратно по направлению к центросоме вплоть до полного разрушения, а затем вырасти снова. При присоединении к микротрубочке молекулы тубулина, несущие ГТФ, образуют «шапочку», которая обеспечивает рост микротрубочки. Если локальная концентрация тубулина падает, связанная с бета-тубулином ГТФ постепенно гидролизуется. Если полностью гидролизуется ГТФ «шапочки» на ±конце, это приводит к быстрому распаду микротрубочки. Таким образом, сборка и разборка микротрубочек связана с затратами энергии ГТФ.

Динамическая нестабильность микротрубочек играет важную физиологическую роль. Например, при делении клетки микротрубочки растут очень быстро и способствуют правильной ориентации хромосом и образованию митотического веретена .

Микротрубочки в клетке используются в качестве «рельсов» для транспортировки частиц. По их поверхности могут перемещаться мембранные пузырьки и митохондрии. Транспортировку по микротрубочкам осуществляют белки, называемые моторными. Это высокомолекулярные соединения, состоящие из двух тяжёлых (массой около 300 кДа ) и нескольких лёгких цепей. В тяжёлых цепях выделяют головной и хвостовой домены. Два головных домена связываются с микротрубочками и являются собственно двигателями, а хвостовые — связываются с органеллами и другими внутриклеточными образованиями, подлежащими транспортировке.

Выделяют два вида моторных белков:

Динеины перемещают груз только от плюс-конца к минус-концу микротрубочки, то есть из периферийных областей клетки к центросоме. Кинезины , напротив, перемещаются к плюс-концу, то есть к клеточной периферии.

Перемещение осуществляется за счёт энергии АТФ . Головные домены моторных белков для этого содержат АТФ - связывающие участки .

Помимо транспортной функции , микротрубочки формируют центральную структуру ресничек и жгутиков — аксонему . Типичная аксонема содержит 9 пар объединённых микротрубочек по периферии и две полных микротрубочки в центре . Из микротрубочек состоят также центриоли и веретено деления , обеспечивающее расхождение хромосом к полюсам клетки при митозе и мейозе . Микротрубочки участвуют в поддержании формы клетки и расположения органоидов ( в частности , аппарата Гольджи ) в цитоплазме клеток .

ФИЛАМЕНТЫ. Промежуточные филаменты являются наименее понятной структурой среди основных компонентов цитоскелета в отношении их сборки , динамики и функций . Их свойства и динамика сильно отличаются от соответствующих характеристик как микротрубочек , так и актиновых филаментов . Функции же промежуточных филаментов до сих пор остаются в области гипотез .

Цитоплазматические промежуточные филаменты обнаружены в подавляющем большинстве эукариотических клеток, как у позвоночных , так и беспозвоночных животных , у высших растений . Редкие примеры клеток животных , у которых не обнаружены промежуточные филаменты , не могут считаться окончательными , так как белки промежуточных филаментов могут образовывать необычные структуры .

Промежуточные филаменты представляют собой фибриллы диаметром 8-12 нм . Несмотря на то , что промежуточные филаменты в разных типах клеток морфологически неразличимы , они состоят из разных белков . Существует пять ткане - специфических классов белков промежуточных филаментов: виментин, десмин, глиальный фибриллярный кислый белок, белки нейрофиламентов и кератины. Общие структурные особенности этих белков , несмотря на различия по первичной структуре , позволяют им образовывать морфологически сходные филаменты . Недавно в семейство белков промежуточных филаментов включили ламины — белки , образующие скелет ядерной оболочки на внутренней стороне мембраны. Относительно функций промежуточных филаментов известно очень мало . Ситуация с определением функций этой цитоскелетной системы осложняется результатами экспериментов по получению трансгенных животных . Показано , например , что у трансгенных мышей , эктопически экспрессирующих десмин или виментин , не обнаруживается каких - либо очевидных нарушений физиологии или развития. Тем не менее существует ряд гипотез , касающихся функций промежуточных филаментов . Например , предполагается , что промежуточные филаменты играют механическую роль в межклеточных взаимодействиях и в организации тканевой структуры

Полисома , или полирибосома — несколько рибосом , одновременно транслирующих одну молекулу иРНК . Поскольку длина средней молекулы мРНК значительно превышает количество нуклеотидов , занимаемых на РНК рибосомой , одну молекулу РНК , в зависимости от скорости инициации одновременно транслируют несколько рибосом . Образование и количество рибосом в полисоме зависит от скорости инициации , элонгации и терминации на данной конкретной РНК . В настоящее время принята модель , в которой у эукариот начало мРНК (5' нетранслируемый участок ) и её конец (3' нетранслируемый участок ) расположены близко друг другу за счёт взаимодействия одного из факторов инициации трансляции IF4G/F с белком , ассоциированным с 3' нетранслируемый участком ( ПАБ ).

Список литературы:

1. Руководство по цитологии, т. 1—2, М.—Л., 1965—66. 2. Большая советская энциклопедия.

www.ronl.ru

5. Органеллы мембранного типа. Их строение и ф-ции.

Мембранные: шероховатая эндоплазматическая сеть, гладкая эндоплазматическая сеть

пластинчатый комплекс (аппарат Гольджи), митохондрии, лизосомы, пероксисомы

Гранулярная ЭС состоит из: уплощенные замкнутые мешочки, цистерны, трубочки

рибосомы ФУНКЦИИ: синтез экспортируемых белков, изоляция экспортируемых белков от гиалоплазмы, транспорт белков в комплекс Гольджи, химическая модификация этих белков

синтез структурных компонентов клеточных мембран

Гладкая ЭС: состоит из уплощенные замкнутые мешочки, цистерны, трубочки Её функции: синтез липидов, включения гликогена, депо кальция (мышечные ткани), дезактивация токсинов

(Аппарат Гольджи) Состоит из: 5-10 плоских цистерн, диктиосома, есть проксимальный участок, дистальный участок, ампулы, везикулы. Функции АГ:сегрегация продуктов, накопление продуктов, химическая перестройка продуктов, полисахариды, гликопротеиды, выведение продуктов, образование лизосом

Лизосомы: представляют собой вакуоли разного размера, окружены мембраной, содержат гидролитические ферменты (гидролазы)ФУНКЦИИ:расщепление различных биополимеров при кислом значении рНЛизосомы подразделяются:1)первичные лизосомы,2)вторичные лизосомы (фаголизосомы, аутофагосомы), 3)остаточные тельца (липофусцин – пигмент старения)

Пероксисомы: имеют овальную форму, окружены мембраной, имеют гранулярный матрикс-это кристаллоподобные структуры(фибриллы,трубки), содержат фермент каталазу.

Функции: содержат фермент каталаза, разрушение перекиси водорода

Митохондрии: имеют наружная мембрану( она имеет ровные контуры и замкнута, представляет собой мембранный мешок) и внутренняя мембрану( она ограничивает внутреннее содержимое митохондрии, её матрикс) Внут. мембр. имеет кристы-это выпячивание в виде плоских гребней.

Матрикс имеет зернистое строение, в нем есть нити (ДНК) и гранулы (рибосомы)

Функции:выработка АТФ, набор ферментов, синтез ферментов

Принцип строения мембранных органелл

Мембранные органеллы представляют собой замкнутые и изолированные участки (компартменты) в гиалоплазме, имеющие свою внутреннюю структуру. Стенка их состоит из билипидной мембраны и белков подобно плазмолемме. Однако билипидные мембраны органелл имеют особенности: толщина билипидных мембран органелл меньше, чем плазмолеммы (7 нм против 10 нм), мембранные отличаются по количеству и по содержанию белков, встроенных в них.

Однако, несмотря на различия, мембраны органелл имеют одинаковый принцип строения, поэтому они обладают способностью взаимодействовать друг с другом, встраиваться, сливаться, разъединяться, отшнуровываться.

Общий принцип строения мембран органелл можно объяснить тем, что все они образуются в эндоплазматической сети, а затем происходит их функциональная перестройка в комплексе Гольджи.

6. Органеллы немембранного типа. Их строение и ф-ции.

Немембранные: рибосомы, клеточный центр, элементы цитоскелета, микротрубочки, микрофиламенты, промежуточные филаменты,

Рибосомы: это элементарные аппараты синтеза белковых, полипептидных молекул- есть во всех кл. Рибосома состоит из рибосомальные РНК, большая субъединица и малая субъединица. Рибосомы могут располагаться свободно в гиалоплазме или быть связанными с мембранами ЭПС.Функции :синтез секреторных белков, синтез структурных белков

Цитоскелет – опорно-двигательная система клетки, включающая немембранные белковые нитчатые образования, выполняющие как каркасную, так и двигательную функции.

Цитоскелет включает: фибриллярные структуры и микротрубочки

Фибриллярные структуры: К ним относятсямикрофилламенты. Они встречаются во всех типах кл. Располаг-ся в цитоплазме под плазмолеммой, пучками или слоями. Состав микрофилламентов: актин, миозин, протомиозин, а-актин. Они обеспечивают движение и опорную функции.Промежуточные филаменты: (микрофибриллы) – это белковые стр-ры, их функция опорная, скелетная. В эпителии пром. филламентов входит кератин. В соединительных тканях входит белок виментин, в мышечных тканях-белок десмин.

Микротрубочки:предст. собой прямые неветвящиеся цилиндры, кольца из 13 субъединиц, содержат белок- тубулин. Различаювременные: цитоскелет, веретено деления ипостоянные: центриоли, реснички, жгутики микротрубочки.

Кл. центр: состоит из центриолей и связанных с ними микротрубочек-центросферы. Основой строения центриолей являются расположенные по окружности 9 триплетов микротрубочек, образ-х полый цилиндр. Системы микротрубочек центриоли можно описать формулой – (9х3) + 0. Часто с с центриолями можно обнаружить дополнительные структуры: спутники (сателлиты)

studfiles.net

13. Биологические мембраны клетки. Их свойства, строение и функции.

Плазматическая мембрана, или плазмалемма, — наиболее постоянная, основная, универсальная для всех клеток мембрана. Она представляет собой тончайшую (около 10 нм) пленку, покрывающую всю клетку. Плазмалемма состоит из молекул белков и фосфолипидов (рис. 1.6).

Молекулы фосфолипидов расположены в два ряда — гидрофобными концами внутрь, гидрофильными головками к внутренней и внешней водной среде. В отдельных местах бислой (двойной слой) фосфолипидов насквозь пронизан белковыми молекулами (интегральные белки). Внутри таких белковых молекул имеются каналы — поры, через которые проходят водорастворимые вещества. Другие белковые молекулы пронизывают бислой липидов наполовину с одной или с другой стороны (полуинтегральные белки). На поверхности мембран эукариотических клеток имеются периферические белки. Молекулы липидов и белков удерживаются благодаря гидрофильно-гидрофобным взаимодействиям.

Свойства и функции мембран. Все клеточные мембраны представляют собой подвижные текучие структуры, поскольку молекулы липидов и белков не связаны между собой ковалентными связями и способны достаточно быстро перемещаться в плоскости мембраны. Благодаря этому мембраны могут изменять свою конфигурацию, т. е. обладают текучестью.

Мембраны — структуры очень динамичные. Они быстро восстанавливаются после повреждения, а также растягиваются и сжимаются при клеточных движениях.

Мембраны разных типов клеток существенно различаются как по химическому составу, так и по относительному содержанию в них белков, гликопротеинов, липидов, а следовательно, и по характеру имеющихся в них рецепторов. Каждый тип клеток поэтому характеризуется индивидуальностью, которая определяется в основном гликопротеинами. Разветвленные цепи гликопротеинов, выступающие из клеточной мембраны, участвуют в распознава-нии факторов внешней среды, а также во взаимном узнавании родственных клеток. Например, яйцеклетка и сперматозоид узнают друг друга по гликопротеинам клеточной поверхности, которые подходят другкдругу как отдельные элементы цельной структуры. Такое взаимное узнавание — необходимый этап, предшествующий оплодотворению.

Подобное явление наблюдается в процессе дифференциров-ки тканей. В этом случае сходные по строению клетки с помощью распознающих участков плазмалеммы правильно ориентируются относительно друг друга, обеспечивая тем самым их сцепление и образование тканей. С распознаванием связана и регуляция транспорта молекул и ионов через мембрану, а также иммунологический ответ, в котором гликопротеины играют роль антигенов. Сахара, таким образом, могут функционировать как информационные молекулы (подобно белкам и нуклеиновым кислотам). В мембранах содержатся также специфические рецепторы, переносчики электронов, преобразователи энергии, ферментные белки. Белки участвуют в обеспечении транспорта определенных молекул внутрь клетки или из нее, осуществляют структурную связь цитоскелета с клеточными мембранами или же служат в качестве рецепторов для получения и преобразования химических сигналов из окружающей среды.

Важнейшим свойством мембраны является также избирательная проницаемость. Это значит, что молекулы и ионы проходят через нее с различной скоростью, и чем больше размер молекул, тем меньше скорость прохождения их через мембрану. Это свойство определяет плазматическую мембрану как осмотический барьер. Максимальной проникающей способностью обладает вода и растворенные в ней газы; значительно медленнее проходят сквозь мембрану ионы. Диффузия воды через мембрану называется осмосом.

Существует несколько механизмов транспорта веществ через мембрану.

Диффузия —проникновение веществ через мембрану по градиенту концентрации {из области, где их концентрация выше, в область, где их концентрация ниже). Диффузный транспорт веществ (воды, ионов) осуществляется при участии белков мембраны, в которых имеются молекулярные поры, либо при участии липидной фазы (для жирорастворимых веществ).

При облегченной диффузии специальные мембранные белки-переносчики избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану по градиенту концентрации.

Активный транспорт сопряжен с затратами энергии и служит для переноса веществ против их градиента концентрации. Он осуществляется специальными белками-переносчиками, образующими так называемыеионные насосы. Наиболее изученным является Na-/ К--насос в клетках животных, активно выкачивающих ионы Na+ наружу, поглощая при этом ионы К-. Благодаря этому в клетке поддерживается большая концентрация К- и меньшая Na+ по сравнению с окружающей средой. На этот процесс затрачивается энергия АТФ.

В результате активного транспорта с помощью мембранного насоса в клетке происходит также регуляция концентрации Mg2-и Са2+.

В процессе активного транспорта ионов в клетку через цито-плазматическую мембрану проникают различные сахара, нукле-отиды, аминокислоты.

Макромолекулы белков, нуклеиновых кислот, полисахаридов, липопротеидные комплексы и др. сквозь клеточные мембраны не проходят, в отличие от ионов и мономеров. Транспорт макромолекул, их комплексов и частиц внутрь клетки происходит совершенно иным путем — посредством эндоцитоза. При эндоци-тозе {эндо... — внутрь) определенный участок плазмалеммы захватывает и как бы обволакивает внеклеточный материал, заключая его в мембранную вакуоль, возникшую вследствие впя-чивания мембраны. В дальнейшем такая вакуоль соединяется с лизосомой, ферменты которой расщепляют макромолекулы до мономеров.

Процесс, обратный эндоцитозу, — экзоцитоз (экзо... — наружу). Благодаря ему клетка выводит внутриклеточные продукты или непереваренные остатки, заключенные в вакуоли или пу-

зырьки. Пузырек подходит к цитоплазматической мембране, сливается с ней, а его содержимое выделяется в окружающую среду. Гак выводятся пищеварительные ферменты, гормоны, гемицел-люлоза и др.

Таким образом, биологические мембраны как основные структурные элементы клетки служат не просто физическими границами, а представляют собой динамичные функциональные поверхности. На мембранах органелл осуществляются многочисленные биохимические процессы, такие как активное поглощение веществ, преобразование энергии, синтез АТФ и др.

Функции биологических мембран следующие:

  1. Отграничивают содержимое клетки от внешней среды и содержимое органелл от цитоплазмы.

  2. Обеспечивают транспорт веществ в клетку и из нее, из цитоплазмы в органеллы и наоборот.

  3. Выполняют роль рецепторов (получение и преобразование сит-налов из окружающей среды, узнавание веществ клеток и т. д.).

  4. Являются катализаторами (обеспечение примембранных химических процессов).

  5. Участвуют в преобразовании энергии.

studfiles.net


Смотрите также