Реферат: Тема: нетрадиционные источники энергии. Источники энергии реферат


 

Реферат на тему: 

“Альтернативные источники энергии”

 

 

Содержание

Введение  3

1.Ветровая энергия  3

2.Энергия рек  4

3.Геотермальная энергия  5

4.Гидротермальные системы   5

5.Горячие системы вулканического происхождения  6

6.Системы с высоким тепловым потоком   6

7. Энергия мирового океана  7

8.Энергия приливов и отливов  7

9. Энергия солнца  8

10.Атомная энергия  9

11. Водородная энергетика  10

 

Введение

 

 

В наше время людям энергии требуется всё больше и больше энергии, поскольку они придумывают всё больше и больше новых изобретений, для которых требуется энергия.

Энергетика зародилась много миллионов лет назад, когда люди научились добывать огонь: они охотились с помощью огня, получали свет и тепло, и он служил источником радости и оптимизма на протяжении многих лет.

В нашем проекте мы расскажем о возможных экологически-чистых источниках энергии, которыми бы люди не загрязняли окружающий мир, в котором мы живём.

 

 

 

1.Ветровая энергия

 

Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветры – от легкого ветерка, несущего желанную прохладу в летний зной, до могучих ураганов, приносящих неисчислимый урон и разрушения. Всегда неспокоен воздушный океан, на дне которого мы живем. Ветры, дующие на просторах нашей страны, могли бы легко удовлетворить все ее потребности в электроэнергии! Почему же столь обильный, доступный да и экологически чистый источник энергии так слабо используется? В наши дни двигатели, использующие ветер, покрывают всего одну тысячную мировых потребностей в энергии.

            Они дают довольно много энергии, тем более если поставить несколько ветроэлектрических станций, то этой энергии хватит на долго.

            Но существует несколько важных проблем: избыток энергии в ветреную погоду и недостаток ветра в безветренную погоду.

            Для этого существует простое решение: ветряное колесо движет насос, которой накачивает воду в расположенное ниже водяное хранилище и вода стекая вниз приводит в действие водяную турбину. Существует ещё один более перспективный способ – электрический ток от ветряной мельницы разлагает воду на кислород и водород, который хранится в хранилище и его можно сжигать на тепловых электростанциях по мере надобности.

           

2.Энергия рек

           

Многие тысячелетия верно служит человеку энергия, заключенная в текущей воде. Запасы ее на Земле колоссальны. Недаром некоторые ученые считают, что нашу планету правильнее было бы называть не Земля, а Вода – ведь около трех четвертей поверхности планеты покрыты водой. Огромным аккумулятором энергии служит Мировой океан, поглощающий большую ее часть, поступающую от Солнца. Здесь плещут волны, происходят приливы и отливы, возникают могучие океанские течения. Рождаются могучие реки, несущие огромные массы воды в моря и океаны. Понятно, что человечество в поисках энергии не могло пройти мимо столь гигантских ее запасов. Раньше всего люди научились использовать энергию рек.

Вода была первым источником энергии, и, вероятно, первой машиной, в которой человек использовал энер­гию воды, была примитивная водяная турбина. Свыше 2000 лет назад горцы на Ближнем Востоке уже поль­зовались водяным колесом в виде вала с лопатками.

Шагом вперед было водяное колесо Витрувия. Это вертикальное колесо с большими лопатками и гори­зонтальным валом. Вал колеса связан деревянными зубчатыми колесами с вертикальным валом, на кото­ром сидит мельничный жернов.

            Этот способ получения энергии даёт меньше энергии, чем ветровой, но тоже весьма практичен и не требует много затрат.

           

3.Геотермальная энергия

           

Земля, эта маленькая зеленая планета, наш общий дом, из которого мы пока не можем, да и не хотим, ухо­дить. По сравнению с мириадами других планет Земля действительно невелика: большая ее часть покрыта уют­ной и живительной зеленью. Но эта прекрасная и спо­койная планета порой приходит в ярость, и тогда с ней шутки плохи – она способна уничтожить все, что мило­стиво дарила нам с незапамятных времен. Грозные смерчи и тайфуны, неукротимые воды рек и морей разрушают все на своем пути, лесные пожары за считанные часы опустошают огромные тер­ритории вместе с постройками и посевами.

Но все это мелочи по сравнению с извержением про­снувшегося вулкана. Едва ли сыщешь на Земле другие примеры стихийного высвобождения природной энергии, которые по силе могли бы соперничать с некоторыми вулканами.

С геологической точки зрения геотермальные энерго­ресурсы можно разделить на гидротермальные конвективные системы, горячие сухие системы вулканического происхождения и системы с высоким тепловым потоком.

 

            4.Гидротермальные системы

 

К категории гидротермальных  систем относят подземные бассейны пара или горячей воды, ко­торые выходят на поверхность земли, образуя гейзеры, сернистые грязевые озера и фумаролы. Образование та­ких систем связано с наличием источника теплоты  го­рячен или расплавленной скальной породой, располо­женной относительно близко к поверхности земли. Они обычно размещаются по границам тектонических плит земной коры, которым свойственна вулканическая активность.

В принципе для производства электроэнергии на месторождениях с горячей водой применяется метод, основанный на использовании пара, образовавшегося при испарении горячей жидкости на поверхности. Этот метод использует то явление, что при приближении го­рячей воды (находящейся под высоким давлением) по скважинам из бассейна к поверхности давление падает и около 20 % жидкости вскипает и превращается в пар.

Этот способ очень трудно осуществить этот способ в Латвии, так как очень трудно найти подводные воды в Латвии.

 

5.Горячие системы вулканического происхождения

 

Ко второму типу геотермальных ресурсов (горячие системы вулканического происхождения) относятся маг­ма и непроницаемые горячие сухие породы (зоны за­стывшей породы вокруг магмы и покрывающие ее скаль­ные породы). Получение геотермальной энергии непо­средственно из магмы пока технически неосуществимо. Технология, необходимая для использования энергии горячих сухих пород, только начинает разрабатываться. Предварительные технические разработки методов использования этих энергетических ресурсов предусматри­вают устройство замкнутого контура с циркулирующей по нему жидкостью, проходящего через горячую породу. Сначала пробуривают скважину, достигающую области залегания горячей породы; затем через нее в породу под большим давлением закачивают холодную воду, что приводит к образованию в ней трещин. После этого через образованную таким образом зону трещино­ватой породы пробуривают вторую скважину. Наконец, холодную воду с поверхности закачивают в первую скважину. Проходя через горячую породу, она нагрева­ется  (извлекается через вторую скважину в виде пара или горячей воды, которые затем можно использовать для производства электроэнергии одним из рассмотрен­ных ранее способов).

Этот способ невозможно использовать этот способ, всвязи с отсутствием вулканов.

 

6.Системы с высоким тепловым потоком

 

 

Геотермальные системы третьего типа существуют в тех районах, где в зоне с высокими значениями теплово­го потока располагается глубокозалегающий осадочный бассейн. В таких районах, как Парижский или Венгерский бассейны, температура воды, поступающая из сква­жин, может достигать 100 °С.

Особая категория месторождений этого типа нахо­дится в районах, где нормальный тепловой поток через грунт оказывается в ловушке из изолирующих непрони­цаемых пластов глины, образовавшихся в быстро опускающихся геосинклинальных зонах или в областях опускания земной коры. Температу­ра воды, поступающей из геотермальных месторождений в некоторых зонах, может достигать 150–180°С.

 

7. Энергия мирового океана

 

Резкое увеличение цен на топливо, трудности с его полученном, сообщения об истощении топливных ресурсов – все эти видимые признаки энергетического кризиса вызвали в последние годы во многих странах значительный интерес к новым источникам энергии, в том числе к энергии Мирового океана.

 

8.Энергия приливов и отливов

 

Веками люди размышляли над причиной морских приливов и отливов. Сегодня мы достоверно знаем, что могучее природное явление – ритмичное движение морских вод вызывают силы притяжения Луны и Солнца. Поскольку Солнце находится от Земли в 400 раз дальше, гораздо меньшая масса Луны действует на земные поды вдвое сильнее, чем масса Солнца. Поэтому решающую роль играет прилив, вызванный Луной (лунный прилив). В морских просторах приливы чередуются с отливами теоретически через 6 ч 12 мин 30 с. Если Луна, Солнце и Земля находятся на одной прямой, Солнце своим притяжением усиливает воздействие Луны, и тогда наступает сильный прилив. Когда же Солнце стоит под прямым углом к отрезку Земля-Луна, наступает слабый прилив. Сильный и слабый приливы чередуются через семь дней.

Однако истинный ход прилива и отлива весьма сложен. На него влияют особенности движения небесных тел, характер береговой линии, глубина воды, морские течения и ветер.

Самые высокие и сильные приливные волны возникают в мелких и узких заливах или устьях рек, впадающих в моря и океаны. Приливная волна Индийского океана катится против течения Ганга на расстояние 250 км от его устья. Приливная волна Атлантического океана распространяется на 900 км вверх по Амазонке. В закрытых морях, например Черном или Средиземном, возникают малые приливные волны высотой 50-70 см.

С помощью научных формул можно рассчитать место, где можно поставить электростанцию и получить самое большое количество энергии.

 

9. Энергия солнца

Для древних народов Солнце было богом. В Верхнем Египте, культура которого восходит к четвертому тысячелетию до н.э., верили, что род фараонов ведет свое происхождение от Ра – бога Солнца. Надпись на одной из пирамид представляет фараона как наместника Солнца на Земле, «который исцеляет нас своей заботой, когда выйдет, подобно Солнцу, что дает зелень землям.

Своей жизнетворной силой Солнце всегда вызывало у людей чувства поклонения и страха. Народы, тесно связанные с природой, ждали от него милостивых даров – урожая и изобилия, хорошей погоды и свежего дождя или же кары – ненастья, бурь, града. Поэтому в народном искусстве мы всюду видим изображение Солнца: над фасадами домов, на вышивках, в резьбе и т. п.

Почти все источники энергии, о которых мы до сих пор говорили, так или иначе используют энергию Солнца: уголь, нефть, природный газ суть не что иное, как «законсервированная» солнечная энергия. Она заключена в этом топливе с незапамятных времен; под действием солнечного тепла и света на Земле росли растения, накапливали в себе энергию, а потом в результате длительных процессов превратились в употребляемое сегодня топливо. Солнце каждый год даст человечеству миллиарды тонн зерна и древесины. Энергия рек и горных водопадов также происходит от Солнца, которое поддерживает кругооборот воды на Земле.

Во всех приведенных примерах солнечная энергия используется косвенно, через многие промежуточные превращения. Заманчиво было бы исключить эти превращения и найти способ непосредственно преобразовывать тепловое и световое излучение Солнца, падающее на Землю, в механическую или электрическую энергию. Всего за  три  дня Солнце посылает на Землю   столько   энергии, сколько ее содержится во всех разведанных запасах ископаемых топлив, а за 1 с – 170 млрд.

Солнечная энергия, падающая на поверхность одного озера, эквивалентна мощности крупной электростанции.

Существуют несколько способ применения солнечной энергии как альтернативной энергии: водоём, нагреваемый солнцем, плита с аккумулятором, находящаяся на возвышенности и изогнутое зеркало.

           

            10.Атомная энергия

           

            Энергетический ядерный реактор устроен довольно просто – в нем, так же как и в обычном котле, вода превращается в пар. Для этого используют энергию, выделяющуюся при цепной реакции распада атомов урана или другого ядерного топлива. На атомной электростанции нет громадного парового котла, состоящего из тысяч километров стальных трубок, по которым при огромном давлении циркулирует вода, превращаясь в пар. Эту махину заменил относительно небольшой ядерный реактор.

Атомные реакторы на тепловых нейтронах различаются между собой главным образом по двум признакам: какие вещества используются в качестве замедлителя нейтронов и какие в качестве теплоносителя, с помощью которого производится отвод тепла из активной зоны реактора. Наибольшее распространение в настоящее время имеют водо-водяные реакторы.

 

11. Водородная энергетика

 

Передача электроэнергии по проводам обходится очень дорого: она составляет около трети себестоимости энергии для потребителя. Чтобы снизить расходы, строят линии электропередачи все более высокого напряжения. Но воздушные высоковольтные линии требуют отчуждения большой земельной площади, к тому же они уязвимы для очень сильных ветров и иных метеорологических факторов. А подземные кабельные линии обходятся в 10 – 20 раз дороже, и их прокладывают лишь в исключительных случаях (например, когда это вызвано соображениями архитектуры или надежности).

Серьезнейшую проблему составляет накопление и хранение электроэнергии, поскольку электростанции наиболее экономично работают при постоянной мощности и полной нагрузке. Между тем спрос на электроэнергию меняется в течение суток, недели и года, так что мощность электростанций приходится к нему приспосабливать. Единственную возможность сохранять впрок большие количества электроэнергии в настоящее время дают гидроаккумулирующие электростанции, но и они в свою очередь связаны с множеством проблем.

Все эти проблемы, стоящие перед современной энергетикой, могло бы – по мнению многих специалистов – разрешить использование водорода в качестве топлива и создание так называемого водородного энергетического хозяйства.

Водород, самый простой и легкий из всех химических элементов, можно считать идеальным топливом. Он имеется всюду, где есть вода. При сжигании водорода образуется вода, которую можно снова разложить на водород и кислород, причем этот процесс не вызывает никакого загрязнения окружающей среды.

Водород – синтетическое топливо. Его можно получать из угля, нефти, природного газа либо путем разложения воды. Согласно оценкам, сегодня в мире производят и потребляют около 20 млн. т водорода в год. Половина этого количества расходуется на производство аммиака и удобрений, а остальное – на удаление серы из газообразного топлива, в металлургии, для гидрогенизации угля и других топлив. В современной экономике водород остается скорее химическим, нежели энергетическим сырьем.

Его можно транспортировать по трубам как природный газ.

Ещё одно полезное качество водорода – им можно заменить бензин и выхлопные газы больше не будут загрязнять нашу природу.

referati-besplatno.ru

Реферат - Альтернативные источники энергии

Энергоснабжение

Содержание

Введение

1.Поиск новых видов энергии…………………………………………………….. 2

1.1. Источники развития энергетики …………………………………………….. 4

1.2. Необходимость энергетических ресурсов…………………………………… 5

2. Альтернативные возобновляемые источники энергии……………………..… 7

2.1. Энергия ветра……………………………………………………………….…. 8

2.1.1. Аккумулирование ветровой энергии ………………………………………10

2.2. Гидроэнергия. ………………………………………………………………….11

2.3. Геотермальная энергия ………………………………………………………..12

2.3.1. Гидротермальные системы …………………………………………13

2.3.2.Горячие системы вулканического происхождения ………………..14

2.3.3. Системы с высоким тепловым потоком …………………………...14

2.4. Энергия мирового океана …………………………………………………….15

2.5.Энергия приливов и отливов. ………………………………………………...16

2.6. Энергия морских течений ……………………………………………………17

2.7. Солнечная энергия ……………………………………………………………17

3. Атомная энергия…………………………………………………………………21

4.Водородная энергетика ………………………………………………………….22

4.1. Перспективные методы производства водорода ……………………24

4.2.Применение водорода …………………………………………………25

Заключение……………………………………………………………………….. 25

Список литературы ………………………………………………………………..26

Введение

Понятие энергии – не только физическое или естественнонаучного , а также и техническое. Цель данной работы – прежде всего ознакомиться с современным положением дел в этой необычайно широкой проблематике, анализ новых путей получения практически полезных форм энергии. Человечеству нужна энергия, причем потребности в ней увеличиваются с каждым годом. Вместе с тем запасы традиционных природных топлив (нефти, угля, газа и др.) конечны. Конечны также и запасы ядерного топлива - урана и тория. Практически неисчерпаемы запасы термоядерного топлива – водорода, однако управляемые термоядерные реакции пока не освоены и неизвестно, когда они будут использованы для промышленного получения энергии в чистом виде, т.е. без участия в этом процессе реакторов деления. Остаются два пути: строгая экономия при расходовании энергоресурсов и использование нетрадиционных возобновляемых источников энергии.

При рассмотрении энергетики, как отрасли народного хозяйства, можно отследить эволюцию источников энергии, а также проблемы освоения и использования новых ресурсов энергии (альтернативные источники энергии).

К возобновляемым источникам энергии относятся: солнечная и геотермальная энергия, приливная, атомная, энергия ветра и энергия волн. В отличие от ископаемых топлив эти формы энергии не ограничены геологически накопленными запасами (если атомную энергию рассматривать вместе с термоядерной). Это означает, что их использование и потребление не ведет к неизбежному исчерпанию запасов.

Все новые схемы преобразования энергии можно объединить единым термином “ экоэнергетика ”, под которым подразумеваются любые методы получения чистой энергии, не вызывающие загрязнения окружающей среды.

Поиски новых видов энергии

В настоящее время человечество прилагает все усилия к поиску новых путей получения энергии, не считаясь с огромными финансовыми расходами. Проблемы, связанные с происхождением, экономичностью, техническим освоением и способами использования различных источников энергии, были и будут неотъемлемой частью жизни на нашей планете. Прямо или косвенно с ними сталкивается каждый житель Земли. Понимание принципов производства и потребления энергии составляет необходимую предпосылку для успешного решения приобретающих все большую остроту проблем современности и в еще большей степени – ближайшего будущего.

Мир, в котором мы живем, можно изучать с самых разных точек зрения. Новые знания ведут к постоянному их сужению, ко все большей дифференциации научных дисциплин и соответствующих им областей человеческой деятельности. Результаты объективной оценки “состояния дел” в этих областях весьма различны . Если говорить о существующей и поныне угрозе войн, о миллионах недоедающих и голодных, о все возрастающем загрязнении жизненной среды, то приходится констатировать наличие серьезнейших проблем, решение которых не терпит отлагательства. Проблемы эти тревожат весь прогрессивный мир и не позволяют человечеству удовлетвориться достигнутым . Если же оценивать развитие пауки и техники само по себе, в самом широком смысле слова, то здесь успехи весьма велики и заслуживают высочайшего уважения.

Сейчас, как никогда остро, встал вопрос: что ждет человечество - энергетический голод или энергетическое изобилие? Не сходят со страниц газет и журналов статьи об энергетическом кризисе. Из-за нефти возникают войны, расцветают и беднеют государства, сменяются правительства. К разряду газетных сенсаций стали относить сообщения о запуске новых установок или о новых изобретениях в области энергетики. Разрабатываются гигантские энергетические программы, осуществление которых потребует громадных усилий и огромных материальных затрат.

Энергетическая энергия в конце прошлого века играла, в общем, вспомогательную и незначительную в мировом балансе роль, то уже в 1930 году в мире было произведено около 300 миллиардов киловатт-часов электроэнергии. Вполне реален прогноз, по которому в 2000 году будет произведено 30 тысяч миллиардов киловатт-часов! Гигантские цифры, небывалые темпы роста! И все равно энергии будет мало, а потребности в ней растут еще быстрее.

Уровень материальной, а в конечном счете и духовной культуры людей находится в прямой зависимости от количества энергии, имеющейся в их распоряжении. Чтобы добыть руду, выплавить из нее металл, построить дом, сделать любую вещь, нужно израсходовать энергию. А потребности человека все время растут, да и людей становится все больше.

Ученые и изобретатели уже давно разработали многочисленные способы производства энергии, в первую очередь электрической. Если строить все больше и больше электростанций, и энергии будет столько, сколько понадобится. Но такое, казалось бы, очевидное решение сложной задачи, оказывается, таит в себе немало подводных камней.

Получить энергию, пригодную для использования, можно только за счет ее преобразований из других форм в соответствие с определенными законами. Вечные двигатели, якобы производящие энергию и ниоткуда ее не берущие, к сожалению, невозможны. А структура мирового энергохозяйства к сегодняшнему дню сложилась таким образом, что четыре из каждых пяти произведенных киловатт получаются в принципе тем же способом, которым пользовался первобытный человек для согревания, то есть при сжигании топлива, или при использовании запасенной в нем химической энергии, преобразовании ее в электрическую на тепловых электростанциях. Но, способы сжигания топлива стали намного сложнее и совершеннее.

Возрастание требований к защите окружающей среды, возросшие цены на нефть, быстрое развитие атомной энергетики, , потребовали нового подхода к энергетике.

Энергетическую программу разрабатывали виднейшие ученые нашей страны, специалисты различных министерств и ведомств. С помощью новейших математических моделей электронно-вычислительные машины рассчитали несколько сотен вариантов структуры будущего энергетического баланса страны. Были найдены принципиальные решения, определившие стратегию развития энергетики страны на грядущие десятилетия.

Но все-таки в основе энергетики ближайшего будущего по-прежнему останется теплоэнергетика на не возобновляемых ресурсах, хотя структура ее изменится. Должно сократиться использование нефти. Существенно возрастет производство электроэнергии на атомных электростанциях. Начнется использование пока еще не тронутых гигантских запасов дешевых углей, например, в Кузнецком, Канско-Ачинском, Экиба c тузском бассейнах. Широко будет применяться природный газ, запасы которого в стране намного превосходят запасы в других странах.

Основа нашей техники и экономики в канун 21 века - Энергетическая программа страны. Но ученые заглядывают и вперед, за пределы сроков, установленных Энергетической программой, учитывают реальности будущего. К сожалению, запасы нефти, газа, угля отнюдь не бесконечны. Природе, чтобы создать эти запасы, потребовались миллионы лет, израсходованы они будут за сотни лет. Сегодня в мире стали всерьез задумываться над тем, как не допустить хищнического разграбления земных богатств. Ведь лишь при этом условии запасов топлива может хватить на века. К сожалению, многие нефтедобывающие страны живут сегодняшним днем. Они нещадно расходуют подаренные им природой нефтяные запасы. Сейчас многие из этих стран, особенно в районе Персидского залива, буквально купаются в золоте, не задумываясь, что через несколько десятков лет эти запасы иссякнут. Что же произойдет тогда –, а это рано или поздно случится, – когда месторождения нефти и газа будут исчерпаны? Происшедшее повышение цен на нефть, необходимую не только энергетике, но и транспорту, и химии, заставило задуматься о других видах топлива, пригодных для замены нефти и газа. Особенно призадумались тогда те страны, где нет собственных запасов нефти и газа и которым приходится их покупать.

Все больше ученых инженеров занимаются поисками новых, нетрадиционных источников, которые могли бы взять на себя хотя бы часть забот по снабжению человечества энергией. Решение этой задачи исследователи ищут на разных путях. Самым заманчивым, конечно, является использование вечных, возобновляемых источников энергии-энергии текущей воды и ветра, океанских приливов и отливов, тепла земных недр, солнца. Много внимания уделяется развитию атомной энергетики, ученые ищут способы воспроизведения на Земле процессов, протекающих в звездах и снабжающих их колоссальными запасами энергии.

1.1. Источники развития энергетики

Анализируя историю развития, может показаться, что совершенствование человека происходило невообразимо медленно. Ему в буквальном смысле слова приходилось ждать милостей от природы. Он был практически беззащитен перед холодом, ему непрестанно угрожали дикие звери, его жизнь постоянно висела на волоске. Но постепенно человек развился настолько, что сумел найти оружие, которое в сочетании со способностью мыслить и творить окончательно возвысило его над всем живым окружением. Сначала огонь добывали случайно – например, из горящих деревьев, в которые ударила молния, затем стали добывать сознательно: за счет трения друг о друга двух подходящих кусков дерева человек впервые зажег огонь 80–150 тысяч лет назад. Животворный, таинственный, вселяющий уверенность и чувство гордости огонь.

После этого люди уже не отказывались от возможности использовать огонь в борьбе против суровых холодов и хищных зверей, для приготовления с трудом добытой пищи. Сколько ловкости, настойчивости, опыта да и просто везения это требовало! Представим себе человека, окруженного нетронутой природой – без построек, которые бы его защищали, без знания хотя бы элементарных физических законов, с запасом слов, не превышающим нескольких десятков. (Кстати, многие ли из нас, даже обладающие солидной научной подготовкой, смогли бы зажечь огонь, не прибегая к каким-либо техническим средствам–хотя бы спичкам?) К этому открытию человек шел очень долго и распространялось Оно медленно, но ознаменовало собой один из важнейших переломных этапов в истории цивилизации.

В процессе развития люди научились получать тепло, но не располагали никакой силой, кроме собственных мускулов, которая помогала бы им подчинить себе природу. И все же постепенно, мало-помалу они стали использовать силу прирученных животных, ветра и воды. По данным историков, первые тягловые животные была запряжены в плуг около 5000 лет назад. Упоминание о первом использовании водной энергии – запуске первой мельницы с колесом, приводимым в движение водяным потоком,– относится к началу нашего летосчисления. Однако потребовалась еще тысяча лет, прежде чем это изобретение получило распространение. А древнейшие из известных сегодня ветряных мельниц в Европа были построены в XI в.

На протяжении столетий степень использования новых источников энергии - домашних животных, ветра и воды – оставалась очень низкой. Главным же источником энергии, при помощи которой человек строил жилье, обрабатывал поля, “путешествовал”, защищался и нападал, служила сила его собственных рук и ног. И так продолжалось примерно до середины нашего тысячелетия. Правда, уже в 1470 г. был спущен на воду первый большой четырехмачтовый корабль; около 1500 г. гениальный Леонардо да Винчи предложил не только весьма остроумную модель ткацкого станка, но и проект сооружения летающей машины. Ему же принадлежат многие другие, для того времени просто фантастические идеи и замыслы, осуществление которых должно было способствовать расширению знаний и производительных сил. Но подлинный перелом в технической мысли человечества наступил сравнительно недавно, немногим более трех столетий назад.

Одним из первых гигантов на пути научного прогресса человечества, несомненно, был Исаак Ньютон. Этот выдающийся английский естествоиспытатель всю свою долгую жизнь и незаурядный талант посвятил пауке : физике, астрономии и математике. Он сформулировал основные законы классической механики, разработал теорию тяготения, заложил основы гидродинамики и акустики, в значительной мере способствовал развитию оптики, вместе с Лейбницем создал начала теории исчисления бесконечно малых и теории симметричных функций. Физику XVIII и XIX столетий по праву называют ньютоновской . Труды Исаака Ньютона во многом помогли умножить силу человеческих мускулов и творческие возможности человеческого мозга.

Вслед за кембриджскими исследованиями Ньютона в Лондоне в 1633 г. вышла книга “Сто примеров изобретений”. Ее автором был мало кому известный сегодня лорд Эдвард Сомерсет (маркиз Вустер ). Один из примеров, приведенных в этой книге под номером 68, настолько напоминает водяной насос с паровым приводом, что многие специалисты приписывают Сомерсету честь изобретения паровой машины.

Промышленная революция – эпоха великих открытий – существенно изменила течение жизни на нашей планете. Одним из ее последствий было окончательное падение феодализма, который уже не мог приспособиться к развитию новых производительных сил, и упрочение капиталистических производственных отношений. Джеймс Уатт изобрел паровую машину, которая раскрутила колесо истории до небывалых прежде оборотов.

Паровую машину низкого давлен ия Уа тта совершенствовали многие мастера и инженеры. Среди них следует выделить американца Оливера Эванса. Преодолев многие препятствия, этот талантливый механик, полный энтузиазма и смелых идей, в 1801 г, приступил к сооружению малой паровой машины, в которой давление пара в десять раз превышало атмосферное. Уже первые две машины получились необычайно удачными, и в 1802 г. Эванс открыл в Филадельфии первый завод паровых машин высокого давления. Он поставил заказчикам до 50 машин мощностью от 7,4 до 29,4 кВт (10–40 л. с .).

В 1807 г. американский изобретатель Роберт Фултон сконструировал первый пароход “ Клермонт ”, который совершал регулярные рейсы по реке Гудзон между Нью-Йорком и Олбани . Успех “ Клермонта ” оказался настолько убедительным, что в 1819 г. в США был спущен на воду морской пароход.

Английский техник Джордж Стефенсон в 1823 г. основал завод по изготовлению подвижного состава для общественного транспорта, и в 1825 г.– через шесть лет после смерти Уатта – на трассе Стоктон – Дарлингтон начала действовать первая железная дорога .В наши дни паровую машину скоро можно будет увидеть только в технических музеях, но и там мы будем смотреть на нее с уважением.

Итальянский физик Алессандро Вольта родился в 1745 г. Он продолжил эксперименты своего земляка Луиджи Гальвани и прославился изобретением электрической батареи (1800). В его честь мы называем основную единицу электрического напряжения вольтом. (В). Вольтову батарею–так называемый элемент–составляли два разных проводника электрического тока (электроды), погруженные в жидкость (электролит), через которую протекал электрический ток. В качестве электродов Вольта использовал медь и цинк, а электролитом служила соленая вода. Долгим и трудным был путь от этого первого источника постоянного тока до современной электрификации большей части нашей планеты. Остановимся на некоторых знаменательных событиях из истории электричества.

Первым убедительным доказательством полезности вольтова элемента было изобретение электрического телеграфа, которое чаще всего приписывают немецкому врачу и натуралисту Самуэлю Земмерингу (1809). Через два года английскому физику и химику Гемфри Дэви удалось получить между двумя угольными электродами электрическую дугу–светящуюся струю электрически заряженных частиц необычайно высокой температуры. Дэви был автором и ряда других открытий в зарождающейся области науки–электрохимии, изучающей связь между электрическими и химическими процессами и явлениями.

Затем последовало множество открытий, связанных с магнитными свойствами электрического тока. Французский физик Андре Ампер стал основоположником новой науки – учения об электромагнетизме. Отсюда оставался один шаг до создания электродвигателя, Этот решающий шаг помогли сделать великий английский физик и химик, бывший ученик переплетчика Майкл Фарадей, немецкий физик, живший и работавший в России, Герман Якоби и многие другие известные и неизвестные механики, физики и химики. Первые электродвигатели работали от усовершенствованных вольтовых элементов. Они обладали малой мощностью и постепенно были вытеснены двигателями переменного тока. Для этого потребовалось создать новые источники такого тока – генераторы, а затем турбины, чтобы приводить их в движение.

Путь к всеобщей электрификации проходил через множество крупных и мелких открытий и изобретений. Но это был логичный и целенаправленный путь. Электрическую энергию легко можно передавать на большие расстояния и непосредственно использовать для самых разнообразных целей. Все прежние машины и механизмы требовали “топлива”, т. е. источника энергии, непосредственно на месте: паровая машина не в состоянии работать без достаточного количества топлива, ветряная мельница – без ветра, водяная мельница – без потока воды. А электрический двигатель работает и за сотни километров от источника потребляемой им энергии.

Необходимость энергетических ресурсов

Рождение энергетики произошло несколько миллионов лет тому назад, когда люди научились использовать огонь. Огонь давал им тепло и свет, был источником вдохновения и оптимизма, оружием против врагов и диких зверей, лечебным средством, помощником в земледелии, консервантом продуктов, технологическим средством и т.д.

На протяжении многих лет огонь поддерживался путем сжигания растительных энергоносителей (древесины, кустарников, камыша, травы, сухих водорослей и т.п.), а затем была обнаружена возможность использовать для поддержания огня ископаемые вещества: каменный уголь, нефть, сланцы, торф.

Прекрасный миф о Прометее, даровавшем людям огонь, появился в древней Греции значительно позже того, как во многих частях света были освоены методы довольно изощренного обращения с огнем, его получением и тушением, сохранением огня и рациональным использованием топлива.

Сейчас известно, что древесина - это аккумулированная с помощью фотосинтеза солнечная энергия. При сгорании каждого килограмма сухой древесины выделяется около 20 000 кДж тепла (эта величина в теплотехнике именуется теплотой сгорания). Напомним также, что теплота сгорания бурого угла равна примерно 13000 кДж/кг, антрацита 25000 кДж/кг, нефти и нефтепродуктов 42000 кДж/кг, а природного газа 45000 кДж/кг. Самой высокой теплотой сгорания обладает водород -120000 кДж/кг.

Пришло время объяснить, что же такое энергия, т.е. величина, измеряемая килоджоулями. Известна и другая физическая величина - работа, имеющая ту же размерность, что и энергия, Зачем нужны два разных понятия?

Оказывается, вопрос имеет принципиальное значение. Энергия - слово греческое, означающее в переводе деятельность .. Термином "энергия" обозначают единую скалярную меру различных форм движения материи. Энергию можно получить при сгорании 1 кг угля или 1 кг нефти, которые называются энергоносителями. Законы физики утверждают: та работа, которую можно получить в реальных машинах и использовать на наши нужды, будет всегда меньше энергии, заключенной в энергоносителе. Энергия - это, по сути дела, энергетический потенциал (или просто потенциал), а работа - это та часть потенциала, которая дает полезный эффект. Разницу между энергией и работой называют диссипированной (или рассеявшейся) энергией. До сих пор по традиции еще применяют понятия потенциальной и кинетической энергии, хотя в действительности из-за огромного разнообразия видов энергии было бы целесообразно пользоваться единственным термином - энергия. Таким образом, работа совершается в процессе преобразования одних видов энергии в другие и характеризует полезную ее часть, полученную в процессе такого преобразования. Рассеянная в процессе совершения работы энергия неизменно превращается в тепло, которое сообщается окружающему пространству. Поскольку процессы преобразования одних видов энергии в другие бесконечны, любая работа в конце концов переходит в тепло, т.е. обесценивается. Это означает, что чем больше человечество добывает угля, нефти и других энергоресурсов, тем больше оно в конечном итоге нагревает окружающую среду.

Прогноз роста потребности в энергии чаще всего связывают с ростом численности населения Земли. При этом предполагают, что на каждого жителя уровень полученной энергии будет также увеличиваться. 15 июля 1987 года численность населения Земли перешла 5-миллиардный рубеж (прогнозы 1975 года утверждали, что это произойдет только после 1990 года!). Ожидается, что к 2000 году население составит не меньше 6 млрд. человек, а на каждого жителя будет приходиться в год в среднем около 29 МВт·ч получаемой энергии, в то время как общая годовая потребность в ней составит 20-200 млрд. МВт·ч.

Таким образом, можно сказать, что на одного человека в 2000 году будет приходиться 29МВт·ч всех видов вырабатываемой энергии. Каждый житель Земли в том же 2000 году будет потреблять мощность 3 кВт. Надо заметить, что в развитых странах это значение уже достигнуто, а в США, СССР и ряде других стран на одного человека приходится до 10 кВт энергии всех видов. Развивающиеся страны потребляют значительно меньше, так что среднее мировое значение в настоящее время не превышает 2 кВт на человека.

Предполагается, что к 2000 году общая потребляемая электрическая мощность должна удвоиться по отношению к нынешнему уровню и составить (1,8-2,0) 1010кВт (или 20 млрд. кВт). Были предприняты и более глобальные оценки энергопотребления землян в следующем тысячелетии. Большинство экспертов предполагают, что численность населения Земли и потребление энергии должны стабилизироваться на каком-то одном уровне и что произойдет это в середине или конце XXI века. Диапазон оценок такого "стабильного" потребления электрической мощности довольно широк: от 3-1010 до 1011 кВт, что всего в 3-10 раз больше нынешнего уровня. Соответствующие зависимости приведены на рис. 1, откуда видно, что стабилизация на уровне 3·1011 кВт еще может быть понятна, в то время как другая оценка (1011 кВт) весьма сомнительна даже для ориентировочного прогноза.

Очевидно, при этом учитывались результаты существующих прогнозов по истощению к середине – концу следующего столетия запасов нефти, природного газа и других традиционных энергоресурсов, а также сокращение потребления угля (которого, по расчетам, должно хватить на 300 лет) из-за вредных выбросов в атмосферу, а также употребления ядерного топлива, которого при условии интенсивного развития реакторов-размножителей хватит не менее чем на 1000 лет (из-за трудностей с удалением радиоактивных отходов и захоронением отработавших агрегатов АЭС).

В таблице 1 приведена приближенная оценка процентной доли отдельных источников энергии в различные периоды развития человечества.

– Доля отдельных источников энергии (%)

Таблица 1.

Период

500 000 лет до н. э. 2000 г. до н. э. Около 1500 г. н. э. 1990 г.
Мускульная энергия человека Органические вещества Древесина Уголь Нефть Природный газ Водная энергия Атомная энергия
100
70 25 5
10 20 70

1910 г.

16

16

65

3

1935 г.

13

7

55

15

3

5

1972 г.

10

32

34

18

5

1

1 20 33 26 4 16

Таким образом, ресурсы практически неисчерпаемы, а потребности должны соответствовать не только земным нуждам, но и нуждам космического строительства, космических сообщений по трассе Земля – орбита, межорбитальных сообщений, освоения Луны, планет и астероидов. В дальнейшем, по-видимому, потребуются огромные энергетические затраты на обнаружение и установление связи с другими цивилизациями Вселенной.

Мир наполнен энергией, которая может быть использована для совершения работы разного характера. Энергия может находиться и находится в людях и животных, в камнях и растениях, в ископаемом топливе, деревьях и воздухе, в реках и озерах, а мы, в свою очередь, рассмотрим способы извлечения этой энерг ии и ее преобразования.

Раздел 2.

2.Альтернативные возобновляемые источники энергии

2.1. Энергия ветра

Мы живем на дне воздушного океана, в мире ветров. Люди давно это поняли, они постоянно ощущали на себе воздействие ветра, хотя долгое время не могли объяснить многие явления. Наблюдением за ветрами занимались еще в Древней Греции. Уже в III в . до н. э. было известно, что ветер приносит ту или иную погоду. Правда, греки определяли только направление ветра. В Афинах около 100 г. до н. э. построили так называемую Башню ветров с укрепленной на ней “розой ветров” (башня существует по сей день, нет только “розы”). В Японии и Китае также были известны розы ветров: изготовленные в виде драконов, они указывали направление ветра. Но главное назначение их было иное: отпугивать злых духов – чужие ветры.

Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветры – от легкого ветерка, несущего желанную прохладу в летний зной, до могучих ураганов, приносящих неисчислимый урон и разрушения. Всегда неспокоен воздушный океан, на дне которого мы живем. Ветры, дующие на просторах нашей страны, могли бы легко удовлетворить все ее потребности в электроэнергии! Климатические условия позволяют развивать ветроэнергетику на огромной территории – от наших западных границ до берегов Енисея. Богаты энергией ветра северные районы страны вдоль побережья Северного Ледовитого океана, где она особенно необходима мужественным людям, обживающим эти богатейшие края. Почему же столь обильный, доступный да и экологически чистый источник энергии так слабо используется? В наши дни двигатели, использующие ветер, покрывают всего одну тысячную мировых потребностей в энергии.

По оценкам различных авторов, общий ветроэнергетический потенциал Земли равен 1200 ТВт, однако возможности использования этого вида энергии в различных районах Земли неодинаковы. Среднегодовая скорость ветра на высоте 20–30 м над поверхностью Земли должна быть достаточно большой, чтобы мощность воздушного потока, проходящего через надлежащим образом ориентированное вертикальное сечение, достигала значения, приемлемого для преобразования. Ветроэнергетическая установка, расположенная на площадке, где среднегодовая удельная мощность воздушного потока составляет около 500 Вт/м 2 (скорость воздушного потока при этом равна 7 м/с), может преобразовать в электроэнергию около 175 из этих 500 Вт/м2.

Энергия, содержащаяся в потоке движущегося воздуха, пропорциональна кубу скорости ветра. Однако не вся энергия воздушного потока может быть использована даже с помощью идеального устройства. Теоретически коэффициент полезного использования (КПИ) энергии воздушного потока может быть равен 59,3 %. На практике, согласно опубликованным данным, максимальный КПИ энергии ветра в реальном ветроагрегате равен приблизительно 50 %, однако и этот показатель достигается не при всех скоростях, а только при оптимальной скорости, предусмотренной проектом. Кроме того, часть энергии воздушного потока теряется при преобразовании механической энергии в электрическую, которое осуществляется с КПД обычно 75–95 %. Учитывая все эти факторы, удельная электрическая мощность, выдаваемая реальным ветроэнергетическим агрегатом, видимо, составляет 30–40 % мощности воздушного потока при условии, что этот агрегат работает устойчиво в диапазоне скоростей, предусмотренных проектом. Однако иногда ветер имеет скорость, выходящую за пределы расчетных скоростей. Скорость ветра бывает настолько низкой, что ветроагрегат совсем не может работать, или настолько высокой, что ветроагрегат необходимо остановить и принять меры по его защите от разрушения. Если скорость ветра превышает номинальную рабочую скорость, часть извлекаемой механической энергии ветра не используется, с тем чтобы не превышать номинальной электрической мощности генератора. Учитывая эти факторы, удельная выработка электрической энергии в течение года, видимо, составляет 15–30% энергии ветра, или даже меньше, в зависимости от местоположения и параметров ветроагрегата .

Новейшие исследования направлены преимущественно на получение электрической энергии из энергии ветра. Стремление освоить производство ветроэнергетических машин привело к появлению на свет множества таких агрегатов. Некоторые из них достигают десятков метров в высоту, и, как полагают, со временем они могли бы образовать настоящую электрическую сеть. Малые ветроэлектрические агрегаты предназначены для снабжения электроэнергией отдельных домов.

Сооружаются ветроэлектрические станции преимущественно постоянного тока. Ветряное колесо приводит в движение динамо-машину – генератор электрического тока, который одновременно заряжает параллельно соединенные аккумуляторы. Аккумуляторная батарея автоматически подключается к генератору в тот момент, когда напряжение на его выходных клеммах становится больше, чем на клеммах батареи, и также автоматически отключается при противоположном соотношении.

В небольших масштабах ветроэлектрические станции нашли применение несколько десятилетий назад. Самая крупная из них мощностью 1250 кВт давала ток в сеть электроснабжения американского штата Вермонт непрерывно с 1941 по 1945 г. Однако после поломки ротора опыт прервался – ротор не стали ремонтировать, поскольку энергия от соседней тепловой электростанции обходилась дешевле. По экономическим причинам прекратилась эксплуатация ветроэлектрических станций и в европейских странах.

Сегодня ветроэлектрические агрегаты надежно снабжают током нефтяников; они успешно работают в труднодоступных районах, на дальних островах, в Арктике, на тысячах сельскохозяйственных ферм, где нет поблизости крупных населенных пунктов и электростанций общего пользования. Американец Генри Клюз в штате Мэн построил две мачты и укрепил на них ветродвигатели с генераторами. 20 аккумулятором по 6 В и 60 по 2 В служат ему в безветренную погоду, а в качестве резерва он имеет бензиновый движок. За месяц Клюз получает от своих ветроэлектрических агрегатов 250 кВт· ч энергии; этого ему хватает для освещения всего хозяйства, питания бытовой аппаратуры (телевизора, проигрывателя, пылесоса, электрической пишущей машинки), а также для водяного насоса и хорошо оборудованной мастерской.

Широкому применению ветроэлектрических агрегатов в обычных условиях пока препятствует их высокая себестоимость. Вряд ли требуется говорить, что за ветер платить не нужно, однако машины, нужные для того, чтобы запрячь его в работу, обходятся слишком дорого.

Сейчас созданы самые разнообразные прототипы ветроэлектрических генераторов (точнее, ветродвигателей с электрогенераторами). Одни из них похожи на обычную детскую вертушку, другие – на велосипедное колесо с алюминиевыми лопастями вместо спиц. Существуют агрегаты в виде карусели или же в виде мачты с системой подвешенных друг над другом круговых ветроуловителей , с горизонтальной или вертикальной осью вращения, с двумя или пятьюдесятью лопастями.

На рис. 2. схематически показана ветроэлектрическая установка, построенная Национальным управлением по аэронавтике и исследованию космического пространства (НАСА) в штате Огайо. На башне высотой 30,5 м укреплен генератор в поворотном обтекаемом корпусе; на валу генератора сидит пропеллер с двумя алюминиевыми лопастями длиной 19 м и весом 900 кг. Агрегат начинает работать при скорости ветра 13 км/ч, а наибольшей производительности (100 кВт) достигает при 29 км/ч. Максимальная скорость вращения пропеллера составляет 40 об /мин.

В проектировании установки самая трудная проблема состояла в том, чтобы при разной силе ветра обеспечить одинаковое число оборотов пропеллера. Ведь при подключении к сети генератор должен давать не просто r какую-то электрическую энергию, а только переменный ток с заданным числом циклов в секунду, т. е. со стандартной частотой 60 Гц. Поэтому угол наклона лопастей по отношению к ветру регулируют за счет попорота их вокруг продольной оси: при сильном ветре этот угол острее, воздушный поток свободнее обтекает лопасти и отдает им меньшую часть своей энергии. Помимо регулирования лопастей весь генератор автоматически поворачивается на мачте против ветра.

2.1.1. Аккумулирование ветряной энергии.

При использовании ветра возникает серьезная проблема: избыток энергии в ветреную погоду и недостаток ее в периоды безветрия. Как же накапливать и сохранить впрок энергию ветра? Простейший способ состоит в том, что ветряное колесо движет насос, который накачивает воду в расположенный выше резервуар, а потом вода, стекая из него, приводит в действие водяную турбину и генератор постоянного или переменного тока. Существуют и другие способы и проекты: от обычных, хотя и маломощных аккумуляторных батарей до раскручивания гигантских маховиков или нагнетания сжатого воздуха в подземные пещеры и вплоть до производства водорода в качестве топлива. Особенно перспективным представляется последний способ. Электрический ток от ветроагрегата разлагает воду на кислород и водород. Водород можно хранить в сжиженном виде и сжигать в топках тепловых электростанций по мере надобности.

Американский ученый Уильям Херонимус считает, что производить водород за счет энергии ветра лучше всего па море. С этой целью он предлагает установить у берега высокие мачты с ветродвигателями диаметром 60 м и генераторами. 13 тысяч таких установок могли бы разместиться вдоль побережья Новой Англии (северо-восток США) и “ловить” преобладающие восточные ветры. Некоторые агрегаты будут закреплены на дне мелкого моря, другие будут плавать на его поверхности. Постоянный ток от ветроэлектрических генераторов будет питать расположенные на дне электролизные установки, откуда водород будет по подводному трубопроводу подаваться на сушу.

2.2.Гидроэнергия.

Многие тысячелетия верно служит человеку энергия, заключенная в текущей воде. Запасы ее на Земле колоссальны. Недаром некоторые ученые считают, что нашу планету правильнее было бы называть не Земля, а Вода – ведь около трех четвертей поверхности планеты покрыты водой. Огромным аккумулятором энергии служит Мировой океан, поглощающий большую ее часть, поступающую от Солнца. Здесь плещут волны, происходят приливы и отливы, возникают могучие океанские течения. Рождаются могучие реки, несущие огромные массы воды в моря и океаны. Понятно, что человечество в поисках энергии не могло пройти мимо столь гигантских ее запасов. Раньше всего люди научились использовать энергию рек.

Вода была первым источником энергии, и, вероятно, первой машиной, в которой человек использовал энергию воды, была примитивная водяная турбина. Свыше 2000 лет назад горцы на Ближнем Востоке уже пользовались водяным колесом в виде вала с лопатками (рис. 3). Суть устройства сводилась к следующему. Поток воды, отведенный из ручья или речки, давит на лопатки, передавая им свою кинетическую энергию. Лопатки приходят в движение, а поскольку они жестко скреплены с палом, вал вращается. С ним в свою очередь скреплен мельничный жернов, который вместе с валом вращается по отношению к неподвижному нижнему жернову. Именно так работали первые “механизированные” мельницы для зерна. Но их сооружали только в горных районах, где есть речки и ручьи с большим перепадом и сильным напором. На медленно текущих потоках водяные колеса с горизонтально размещенными лопатками малоэффективны.

Шагом вперед было водяное колесо Витрувия (1 в. н. э.), схема которого показана на рис. 4. Это вертикальное колесо с большими лопатками и горизонтальным валом. Вал колеса связан деревянными зубчатыми колесами с вертикальным валом, на котором сидит мельничный жернов. Подобные мельницы и сегодня можно встретить на Малом Дунае; они перемалывают в час до 200 кг зерна.

Почти полторы тысячи лет после распада Римской империи водяные колеса служили основным источником энергии для всевозможных производственных процессов в Европе, заменяя физический труд человека.

Устройства, в которых энергия воды используется для совершения работы, принято называть водяными (или гидравлическими.) двигателями. Простейшие и самые древние из них – описанные выше водяные колеса. Различают колеса с верхним, средним и нижним подводом воды.

В современной гидроэлектростанции масса воды с большой скоростью устремляется на лопатки турбин. Вода из-за плотины течет – через защитную сетку и регулируемый затвор – по стальному трубопроводу к турбине, над которой установлен генератор. Механическая энергия воды посредством турбины передается генераторам и в них преобразуется в электрическую . После совершения работы вода стекает в реку через постепенно расширяющийся туннель, теряя при этом свою скорость.

Гидроэлектростанции классифицируются по мощности на мелкие (с установленной электрической мощностью до 0,2 МВт), малые (до 2 МВт), средние (до 20 МВт) и крупные (свыше 20 МВт). Второй критерий, по которому разделяются гидроэлектростанции, – напор. Различают низконапорные ГЭС (напор до 10 м), среднего напора (до 100 м) и высоконапорные (свыше 100 м). В редких случаях плотины высоконапорных ГЭС достигают высоты 240 м. Такие плотины сосредоточивают перед турбинами водную энергию, накапливая воду и подним ая ее у ровень.

Затраты на строительство ГЭС велики, но они компенсируются тем, что не приходится платить (во всяком случае, в явной форме) за источник энергии – воду. Мощность современных ГЭС, спроектированных на высоком инженерном уровне, превышает 100 МВт, а К.П.Д. составляет 95% (во дяные колеса имеют К.П.Д. 50–85%). Такая мощность достигается при довольно малых скоростях вращения ротора (порядка 100 об / мин ), поэтому современные гидротурбины поражают своими размерами. Например, рабочее колесо турбины Волжской ГЭС им. В. И. Ленина имеет высоту около 10 м и весит 420 т.

Турбина – энергетически очень выгодная машина, потому что вода легко и просто меняет поступательное движение на вращательное. Тот же принцип часто используют и в машинах, которые внешне совсем не похожи на водяное колесо (если на лопатки воздействует пар, то речь идет о паровой турбине).

Преимущества гидроэлектростанций очевидны – постоянно возобновляемый самой природой запас энергии, простота эксплуатации, отсутствие загрязнения окружающей среды. Да и опыт постройки и эксплуатации водяных колес мог бы оказать немалую помощь гидроэнергетикам. Однако постройка плотины крупной гидроэлектростанции оказалась задачей куда более сложной, чем постройка небольшой запруды для вращения мельничного колеса. Чтобы привести во вращение мощные гидротурбины, нужно накопить за плотиной огромный запас воды. Для постройки плотины требуется уложить такое количество материалов, что объем гигантских египетских пирамид по сравнению с ним покажется ничтожным.

Поэтому в начале XX века было построено всего несколько гидроэлектростанций. Вблизи Пятигорска, на Северном Кавказе на горной реке Подкумок успешно действовала довольно крупная электростанция с многозначительным названием "Белый уголь". Это было лишь началом.

Уже в историческом плане ГОЭЛРО предусматривалось строительство крупных гидроэлектростанций. В 1926 году в строй вошла Волховская ГЭС, в следующем – началось строительство знаменитой Днепровской. Дальновидная энергетическая политика, проводящаяся в нашей стране, привела к тому, что у нас, как ни в одной стране мира, развита система мощных гидроэлектрических станций. Ни одно государство не может похвастаться такими энергетическими гигантами, как Волжские, Красноярская и Братская, Саяно-Шушенская ГЭС. Эти станции, дающие буквально океаны энергии, стали центрами, вокруг которых развились мощные промышленные комплексы.

Но пока людям служит лишь небольшая часть гидроэнергетического потенциала земли. Ежегодно огромные потоки воды, образовавшиеся от дождей и таяния снегов, стекают в моря неиспользованными . Если бы удалось задержать их с помощью плотин, человечество получило бы дополнительно колоссальное количество энергии.

2.3. Геотермальная энергия

Земля, эта маленькая зеленая планета, –н аш общий дом, из которого мы пока не можем, да и не хотим, уходить. По сравнению с мириадами других планет Земля действительно невелика: большая ее часть покрыта уютной и живительной зеленью. Но эта прекрасная и спокойная планета порой приходит в ярость, и тогда с ней шутки плохи – она способна уничтожить все, что милостиво дарила нам с незапамятных времен. Грозные смерчи и тайфуны уносят тысячи жизней, неукротимые воды рек и морей разрушают все на своем пути, лесные пожары за считанные часы опустошают огромные территории вместе с постройками и посевами.

Но все это мелочи по сравнению с извержением проснувшегося вулкана. Едва ли сыщешь на Земле другие примеры стихийного высвобождения природной энергии, которые по силе могли бы соперничать с некоторыми вулканами.

Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Память человечества хранит предания о катастрофических извержениях вулканов, унесших миллионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже сравнительно небольшого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится – нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов.

Энергетика земли – геотермальная энергетика базируется на использовании природной теплоты Земли. Верхняя часть земной коры имеет термический градиент, равный 20–30 °С в расчете на 1 км глубины, и, по данным Уайта (1965 г.), количество теплоты, содержащейся в земной коре до глубины 10 км (без учета температуры поверхности), равно приблизительно 12,6-10^26 Дж. Эти ресурсы эквивалентны теплосодержанию 4,6·1016 т угля (принимая среднюю теплоту сгорания угля равной 27,6-109 Дж/т), что более чем в 70 тыс. раз превышает теплосодержание всех технически и экономически извлекаемых мировых ресурсов угля. Однако геотермальная теплота в верхней части земной коры (до глубины 10 км) слишком рассеяна, чтобы на ее базе решать мировые энергетические проблемы. Ресурсы, пригодные для промышленного использования, представляют собой отдельные месторождения геотермальной энергии, сконцентрированной на доступной для разработки глубине, имеющие определенные объемы и температуру, достаточные для использования их в целях производства электрической энергии или теплоты.

С геологической точки зрения геотермальные энергоресурсы можно разделить на гидротермальные конвективные системы, горячие сухие системы вулканического происхождения и системы с высоким тепловым потоком.

2.3.1.Гидротермальные системы

К категории гидротермальных конвективных систем относят подземные бассейны пара или горячей воды, которые выходят на поверхность земли, образуя гейзеры, сернистые грязевые озера и фумаролы. Образование таких систем связано с наличием источника теплоты горячен или расплавленной скальной породой, расположенной относительно близко к поверхности земли. Над этой зоной высокотемпературной скальной породы находится формация из проницаемой горной породы, содержащая воду, которая поднимается вверх в результате ее подстилающей горячей породой. Проницаемая порода, в свою очередь, сверху покрыта непроницаемой скальной породой, образующей “ловушку” для перегретой воды. Однако наличие в этой породе трещин или пор позволяет горячей воде или пароводяной смеси подниматься к поверхности земли. Гидротермальные конвективные системы обычно размещаются по границам тектонических плит земной коры, которым свойственна вулканическая активность.

В принципе для производства электроэнергии на месторождениях с горячей водой применяется метод, основанный на использовании пара, образовавшегося при испарении горячей жидкости на поверхности. Этот метод использует то явление, что при приближении горячей воды (находящейся под высоким давлением) по скважинам из бассейна к поверхности давление падает и около 20 % жидкости вскипает и превращается в пар. Этот пар отделяется с помощью сепаратора от воды и направляется в турбину. Вода, выходящая из сепаратора, может быть подвергнута дальнейшей обработке в зависимости от ее минерального состава. Эту воду можно закачивать обратно в скальные породы сразу или, если это экономически оправдано, с предварительным извлечением из нее минералов. Примерами геотермальных месторождений с горячей водой являются Уайракей и Бродлендс в Новой Зеландии, Серро-Прието в Мексике, Солтон-Си в Калифорнии, Отаке в Японии.

Другим методом производства электроэнергии на базе высоко- или среднетемпературных геотермальных вод является использование процесса с применением двухконтурного (бинарного) цикла. В этом процессе вода, полученная из бассейна, используется для нагрева теплоносителя второго контура (фреона или изобутана), имеющего низкую температуру кипения. Пар, образовавшийся в результате кипения этой жидкости, используется для привода турбины. Отработавший пар конденсируется и вновь пропускается через теплообменник, создавая тем самым замкнутый цикл. Установки, использующие фреон в качестве теплоносителя второго контура, о настоящее время подготовлены для промышленного освоения в диапазоне температур 75–150 °С и при единичной электрической мощности в пределах 10–100 кВт. Такие установки могут быть использованы для производства электроэнергии в подходящих для этого местах, особенно в отдаленных сельских районах.

2.3.2. Горячие системы вулканического происхождения

Ко второму типу геотермальных ресурсов (горячие системы вулканического происхождения) относятся магма и непроницаемые горячие сухие породы (зоны застывшей породы вокруг магмы и покрывающие ее скальные породы). Получение геотермальной энергии непосредственно из магмы пока технически неосуществимо. Технология, необходимая для использования энергии горячих сухих пород, только начинает разрабатываться. Предварительные технические разработки методов использования этих энергетических ресурсов предусматривают устройство замкнутого контура с циркулирующей по нему жидкостью, проходящего через горячую породу (рис. 5). Сначала пробуривают скважину, достигающую области залегания горячей породы; затем через нее в породу под большим давлением закачивают холодную воду, что приводит к образованию в ней трещин. После этого через образованную таким образом зону трещиноватой породы пробуривают вторую скважину. Наконец, холодную воду с поверхности закачивают в первую скважину. Проходя через горячую породу, она нагревается II извлекается через вторую скважину в виде пара или горячей воды, которые затем можно использовать для производства электроэнергии одним из рассмотренных ранее способов.

referat.store

Реферат - Традиционные источники электрической энергии

Оглавление.

1.Введение………………………………………………………..…….стр.2

2. Основная часть.

2.1.Тепловые электростанции…………………………………… стр.3

2.2.  Гидроэлектрическиеэлектростанции……………………….стр.6

2.3.  Атомные электростанции………………………………… стр.10

3.Заключение………………………………………………………….стр.15

Введение.

Электроэнергия– не только одно из чаще всего обсуждаемыхсегодня понятий; помимо своего основного физического (а в более широком смысле– естественнонаучного) содержания, оно имеетмногочисленные экономические, технические, политические и иные аспекты.

Почему же электрификация так важна дляраз­вития экономики?

Научно-технический прогресс невозможен без развития энергетики,электрификации. Для повы­шения производительности труда первостепенное значениеимеет механизация и автоматизация про­изводственных процессов, заменачеловеческого тру­да (особенно тяжелого или монотонного) машин­ным. Ноподавляющее большинство технических средств механизации и автоматизации(оборудова­ние, приборы, ЭВМ) имеет электрическую основу. Особенно широкоеприменение электрическая энергия получила для привода в действие электри­ческихмоторов. Мощность электрических машин (в зависимости от их назначения)различна: от до­лей ватта (микродвигатели, применяемые во многих отрасляхтехники и в бытовых изделиях) до огром­ных величин, превышающих миллионкиловатт (генераторы электростанций).

Человечествуэлектроэнергия нужна, причем потребности в ней увеличиваются с каждым годом.Вместе с тем запасы тради­ционных природных топлив (нефти, угля, газа и др.)конечны. Конечны также и запасы ядерного топлива- урана и тория, из которого можно получать в реакторах-размножителяхплутоний. Поэтому важно на сегодняшний день найти выгодные  источники электроэнергии, причем выгодные не только с точки зрения  дешевизны топлива, но и с точки зренияпростоты конструкций, эксплуатации, дешевизны материалов, необходимых дляпостройки станции, долговечности станций.

Данный реферат являетсякратким, обзором современного состояния энергоресурсов человечества. В работерассмотрены традиционные источники электрической энергии. Цель работы – преждевсего ознакомиться с современным положением дел в этой необычайно широкойпроблематике, проанализовать наиболее выгодные в нынешнее время способыполучения электроэнергии.

К традиционным источникам,рассмотренным в моем реферате в пер­вую очередь относятся: тепловая, атомная иэнергия пока воды.

Российская энергетикасегодня — это 600 тепловых, 100 гидравлических, 9 атомных электростанций, общаямощность которых по состоянию на октябрь 1999го года составляет 210млн квт. В 1998 году они выработали около 1 триллиона кВт/ч электроэнергии и790 млн. Гкал тепла. Есть, конечно, несколько электростанций использующих вкачестве первичного источника солнечную, ветровую, гидротермальную, приливнуюэнергию, но доля производимой ими энергии очень мала по сравнению с тепловыми,атомными  и гидравлическими станциями.

Тепловые электростанции.

Тепловаяэлектростанция (ТЭС), электростанция, вырабатываю­щая электрическую энергию врезультате пре­образования тепловой энергии, выделяю­щейся при сжиганииорганического топлива. Первые ТЭС появились в кон. 19 в (в 1882 — в Нью-Йорке,1883 — в Петер­бурге, 1884 — в Берлине) и получили преимущественноераспространение.  В сер. 70-х гг. 20 в.ТЭС — основной вид элек­трической станций. Доля вырабатываемой имиэлектроэнергии составляла: в России и США св. 80% (1975), в мире около 76%(1973).

Около 75% всейэлектроэнергии России производится на тепловых электростанциях.  Большинство городов России снабжаются именноТЭС. Часто в городах используются ТЭЦ — теплоэлектроцентрали, производящие нетолько электроэнергию, но и тепло в виде горячей воды. Такая система являетсядовольно-таки непрактичной т.к. в отличие от электрокабеля надежность  теплотрасс чрезвычайно низка на большихрасстояниях, эффективность централизованного теплоснабжения сильно при передачетакже понижается. Подсчитано, что при протяженности теплотрасс более 20 км(типичная ситуация для большинства городов) установка электрического бойлера вдельно стоящем доме   становитсяэкономически выгодна.

На тепловых электростанцияхпреобразуется химическая энергия топлива сначала в механическую, а затем вэлектрическую.

Топливом для такойэлектростанции могут служить уголь, торф, газ, горючие сланцы, мазут. Тепловыеэлектрические стан­ции подразделяют на конденсационные (КЭС), предназначенныедля выработки только электрической энергии, и теплоэлектро­централи (ТЭЦ),производящие кроме электрической тепловую энергию в виде горячей воды и пара.Крупные КЭС районного значения получили название государственных районныхэлектро­станций (ГРЭС)..

<img src="/cache/referats/3575/image002.jpg" align=«left» hspace=«12» v:shapes="_x0000_s1026">Простейшая принципиальная схема КЭС, работающей наугле, представлена на рис. Уголь подается в топливный бункер 1, а из него — вдробильную установку 2, где превраща­ется в пыль. Угольная пыль поступает втопку парогенератора (парового котла) 3, имеющего систему трубок, в которых цир­кулируетхимически очищенная вода, называемая питательной. В котле вода нагревается,испаряется, а образовавшийся насы­щенный пар доводится до температуры 400—650°Си под дав­лением 3—24 МПа поступает по паропроводу в паровую турби­ну 4.Параметры пара зависят от мощности агрегатов.

Способ преобразования тепловой энергии в механическую в паровой турбине.

<img src="/cache/referats/3575/image004.jpg" align=«left» hspace=«12» v:shapes="_x0000_s1027">Тепловые конденсацион­ные электростанции име­ютневысокий кпд (30— 40%), так как большая часть энергии теряется сотходящими   топочными газами иохлаждающей водой конденсатора.

Сооружать КЭС выгодно внепосредственной близости от мест добычи топлива. При этом потребители    электроэнергии могут находиться на значи­тельномрасстоянии от стан­ции.

Теплоэлектроцентраль отли­чается  от конденсационной станции установленной на ней специальнойтеплофикационной турбиной с отбором пара. На ТЭЦ одна часть пара полностью  используется в турбине для выработкиэлектроэнергии в генераторе 5 и затем поступает в конденсатор 6, а другая,имеющая большую температуру и давление (на рис. штриховая ли­ния), отбираетсяот промежуточной ступени турбины и исполь­зуется для теплоснабжения. Конденсатнасосом 7 через деаэра­тор 8 и далее питательным насосом 9 подается впарогенератор. Количество отбираемого пара зависит от потребности предприя­тийв тепловой энергии.

Коэффициент полезногодействия ТЭЦ достигает 60—70%.

Такие станции строят обычновблизи потребителей — про­мышленных предприятий или жилых массивов. Чаще всегоони работают на привозном топливе.

<img src="/cache/referats/3575/image006.jpg" align=«left» hspace=«12» v:shapes="_x0000_s1028">Рассмотренные тепловые электростанции по видуосновного теплового агрегата — паровой турбины — относятся к паротур­биннымстанциям. Значительно меньшее распространение полу­чили тепловые станции сгазотурбинными (ГТУ), парогазовы-ми (ПГУ) и дизельными установками.

Наиболее экономичными яв­ляются крупные тепловые паро­турбинныеэлектростанции (сокра­щенно ТЭС). Большинство ТЭС нашей страны используют в ка­честветоплива угольную пыль. Для выработки 1 кВт-ч электроэнергии затрачиваетсянесколько сот грам­мов угля. В паровом котле свыше 90% выделяемой топливомэнергии передается пару. В турбине кине­тическая энергия струй пара пере­даетсяротору. Вал турбины жестко соединен с валом генератора.  

Современные паровые турбины для ТЭС — весьма совершенные, быстроходные,высокоэкономичные машины с большим ресурсом работы. Их мощность в одновальномисполнении достигает 1 млн. 200 тыс. кВт, и это не является пределом. Такиемашины всегда бывают многоступенчатыми, т. е. имеют обыч­но несколько десятковдисков с рабочими лопат­ками и такое же

Энергоблок мощностью 1 млн. 200 тыс.

        кВтКостромской ГРЭС.

количество,перед каждым диском, групп сопел, через которые протекает струя пара. Давлениеи температура пара постепенно снижаются.

Из курса физики  из­вестно, что КПД тепловых двига­телейувеличивается с ростом на­чальной температуры рабочего тела. Поэтомупоступающий в турбину пар доводят до высоких параметров: температуру — почти до550 °С и давление — до 25 МПа. Коэффи­циент полезного действия ТЭС дости­гает40%. Большая часть энергии теряется вместе с горячим отрабо­танным паром.

По мнению ученых в основеэнергетики ближайшего будущего по-прежнему останется теплоэнергетика на невозобновляемых ресурсах. Но струк­тура ее изменится. Должно сократитьсяиспользование нефти.  Су­щественновозрастет производство электроэнергии на атомных электростанциях. Начнетсяиспользование пока еще не тронутых гигантских запасов дешевых углей, например,в Кузнецком, Канс­ко-Ачинском, Экибаcтузском бассейнах. Широко будетприменяться природный газ, запасы которого в стране намного превосходят запасыв других странах.

Ксожалению, запасы нефти, газа, угля отнюдь не бесконечны. Природе, чтобысоздать эти запасы, потребовались миллионы лет, израсходованы они будут засотни лет. Сегодня в мире стали всерьез задумываться над тем, как не допуститьхищнического разграбления земных богатств. Ведь лишь при этом условии запа­совтоплива может хватить на века. К сожалению, многие нефте­добывающие страныживут сегодняшним днем. Они нещадно расходу­ют подаренные им природой нефтяныезапасы. Сейчас многие из этих стран, особенно в районе Персидского залива,буквально купаются в золоте, не задумываясь, что через несколько десятков летэти запасы иссякнут. Что же произойдет тогда –, а это рано или поздно случится,– когда месторождения нефти и газа будут исчерпаны? Происшедшее повышение ценна нефть, необходимую не только энергетике, но и транспорту, и химии, заставилозаду­маться о других видах топлива, пригодных для замены нефти и газа. Особеннопризадумались тогда те страны, где нет собс­твенных запасов нефти и газа икоторым приходится их покупать.

        

Гидроэлектрическая станция.

Гидроэлектрическаястанция, гидроэлектростанция (ГЭС), комплекс сооружений и оборудования,посредством которых энергия потока воды преобразуется в электрическую энергию.ГЭС состоит из последовательной цепи гид­ротехнических сооружений, обеспечи­вающихнеобходимую концентрацию по­тока воды и создание напора, и энергетического.оборудования,   преобразующего энергиюдвижущейся под напором воды в механическую энергию вращения  которая, в свою очередь, преобразуется вэлектрическую энергию.

НапорГЭС создается концентрацией падения реки на используемом участкеплотиной(рис1), либо дерива<img src="/cache/referats/3575/image008.gif" align=«left» hspace=«12» v:shapes="_x0000_s1029">цией, либо плотиной и дери­вациейсовместно (рис. 3). Основное энергетическое оборудование ГЭС размещается вздании ГЭС: в машинном зале электростанции — гидроагрегаты, вспомогательноеоборудование,   устройства  автоматического управления и контроля; вцентральном посту управления — пульт оператора-диспетчера или автооператоргидро­электростанции. Повышающая транс­форматорная подстанция размещается каквнутри здания ГЭС, так и в отдельных зда­ниях или на открытых площадках. Рас­пределительныеустройства зачастую располагаются на открытой площадке. Здание ГЭС может бытьразделено на секции с одним или несколькими агрегатами и вспомогательнымоборудованием, отделённые от смежных частей здания. При здании ГЭС или внутринего создаётся монтаж­ная площадка для сборки и ремонта раз­личногооборудования и для вспомогательных операций по обслуживанию ГЭС.

<img src="/cache/referats/3575/image010.gif" align=«left» hspace=«12» v:shapes="_x0000_s1030">По установленной мощности (в.Мвт) различают ГЭС мощные (св. 250), сред­ние (до 25) и малые (до 5). МощностьГЭС зависит от напора На (разности уровней верхнего и нижнего бьефа), расходаводы, используемого в гидротурбинах, и кпд гидроагрегата. По ряду причин(вследствие, например сезонных изменений уровня воды в во­доёмах, непостоянстванагрузки энерго­системы, ремонта гидроагрегатов или гидротехнических сооруженийи т. п.) напор и расход воды непрерывно меняются, а кроме того, меняется расходпри регули­ровании мощности ГЭС. Различают го­дичный, недельный и суточныйциклы режима работы ГЭС.

Помаксимально используемому напо­ру ГЭС делятся на высоконапорные (более 60 м),средненапорные (от 25 до 60 м) и низконапорные (от 3 до 25 м). На равнинныхреках напоры редко пре­вышают 100 м, в горных условиях посредством плотиныможно создавать напоры до 300 м и более, а с помощью дерива­ции — до 1500 м.Классификация по напору приблизительно соответствует ти­пам применяемогоэнергетического оборудова­ния: на высоконапорных ГЭС применяют ковшовые ирадиально-осевые  турби­ны сметаллическими спиральными камера­ми; на средненапорных — поворотнолопастные ирадиально-осевые турбины с железобетонными и металлическими спираль­нымикамерами, на низконапорных — поворотнолопастные турбины в железо­бетонныхспиральных камерах, иногда горизонтальные турбины в капсулах или в открытыхкамерах. Подразделение ГЭС по используемому напору имеет при­близительный,условный характер.

<img src="/cache/referats/3575/image012.gif" align=«left» hspace=«12» v:shapes="_x0000_s1031">По схеме использования водных ре­сурсови концентрации напоров ГЭС обыч­но подразделяют на русловые, приплотинные,деривационные с напорной и без­напорной деривацией, смешанные,гидроаккумулирующие и приливные.  Врусловых и приплотинных ГЭС напор воды создаётся плотиной, пе­регораживающейреку и поднимающей уровень воды в верхнем бьефе. При этом неизбежно некотороезатопление долины реки. В случае сооружения двух плотин на том же участке рекиплощадь затопле­ния уменьшается. На равнинных реках наибольшая экономическидопустимая площадь затопления ограничивает высо­ту плотины. Русловые иприплотинныс ГЭС строят и на равнинных многоводных реках и на горных реках, вузких сжатых долинах.

Всостав сооружений русловой ГЭС, кроме плотины, входят здание ГЭС и во­досбросныесооружения (рис. 4). Состав гидротехнических сооружений зависит от вы­сотынапора и установленной мощности. У русловой ГЭС здание с размещенными в нёмгидроагрегатами служит продолже­нием плотины и вместе с ней создаёт напорныйфронт. При этом с одной сто­роны к зданию ГЭС примыкает верхний бьеф, а сдругой — нижний бьеф. Под­водящие спиральные камеры гидротурбин своими входнымисечениями заклады­ваются под уровнем верхнего бьефа, выходные же сеченияотсасывающих труб погружены под уровнем нижнего бьефа.

Всоответствии с назначением гидроузла в его состав могут входить судоходныешлюзы или судоподъёмник, рыбопро­пускные сооружения, водозаборные соо­ружениядля ирригации и водоснабже­ния. В русловых ГЭС иногда единственным сооружением,пропускающим воду, является здание ГЭС. В этих случаях по­лезно используемаявода последовательно проходит входное сечение с мусорозадер-живающимирешётками, спиральную ка-

меру, гидротурбину, отсасывающуютру­бу, а по спец. водоводам между сосед­ними турбинными камерами произво­дитсясброс паводковых расходов реки. Для русловых ГЭС характерны напоры до 30—40м  к простейшим русловым ГЭС относятсятакже ранее строившиеся сель­ские ГЭС небольшой мощности. На круп­ных равнинныхреках основное русло пере­крывается земляной плотиной, к которой примыкаетбетонная водосливная пло­тина и сооружается здание ГЭС. Такая компоновкатипична для многих отечественных ГЭС на больших равнинных реках. Волж­ская ГЭСим. 22-го съезда КПСС— наиболее крупная среди станций русло­вого типа.

Приболее высоких напорах оказывает­ся нецелесообразным передавать на зда­ние ГЭСгидростатичное давление воды. В этом случае применяется тип плотиной ГЭС, укоторой напорный фронт на всём протяжении перекрывается плотиной, а здание ГЭСрасполагается за пло­тиной, примыкает к нижнему бьефу (рис. 5). В составгидравлической трассы меж­ду верхним и нижним бьефом ГЭС тако­го типа входятглубинный водоприёмник с мусорозадерживающей решёткой, тур­бинный водовод,спиральная камера, гидротурбина, отсасывающая труба. В качестве дополнит,сооружений в состав узла могут входить судоходные сооруже­ния и рыбоходы, атакже дополнительные водо­сбросы Примером подобного типа станций на многоводнойреке служит Братская ГЭС на реке Ангара.

Кначалу Великой Отечеств, войны 1941—45 было введено в эксплуатацию 37 ГЭС общеймощностью более 1500 Мвт. Во время войны было приостановлено на­чатоестроительство ряда ГЭС общей мощ­ностью около 1000 Мвт (1 млн. квт). В 60-х гг.наметилась тенденция к сни­жению доли ГЭС в общем мировом производстве электроэнергиии всё большему использованию ГЭС для покрытия пико­вых нагрузок. К 1970 всемиГЭС мира производилось около 1000 млрд. квт-ч электроэнергии в год, причёмначиная с 1960 доля ГЭС в мировом производстве сни­жалась в среднем за годпримерно на 0,7%. Особенно быстро снижается доля ГЭС в общем производствеэлектроэнергии в ранее традиционно считавшихся «гидроэнер­гетическими» странах(Швейцария, Ав­стрия, Финляндия, Япония, Канада, от­части Франция), т. к. ихэкономический гидроэнергетический потенциал практи­чески исчерпан.

Несмотряна снижение доли ГЭС в общей выработке, абсолютные значения производстваэлектроэнергии и мощности ГЭС непрерывно растут вследствие строитель­ства новыхкрупных электростанций. В 1969 в мире насчитывалось свыше 50 дей­ствующих истроящихся ГЭС единичной мощностью 1000 Мвт и выше, причём 16 из них — натерритории бывшего Советского Союза.

Важнейшаяособенность гидроэнергетических ресурсов по сравнению стопливно-энергетическими ресурсами — их непрерывная возобновляемость. Отсутствиепотребности в топливе для ГЭС определяет низ­кую себестоимость вырабатываемойна ГЭС электроэнергии. Поэтому сооруже­нию ГЭС, несмотря на значительные,удельные капиталовложения на 1 квт установлен­ной мощности и продолжительныесроки строи­тельства, придавалось и придаётся боль­шое значение, особенно когдаэто связано с размещением электроёмких производств.

Атомные электростанции.

атомная электростанция (АЭС), электростанция, в которойатомная (ядер­ная) энергия преобразуется в элект­рическую. Генератором энергиина АЭС является атомный реактор. Тепло, которое выделя­ется в реакторе врезультате цепной реакции деления ядер некоторых тяжёлых элементов, затем также, как и на обыч­ных тепловых электростанциях (ТЭС), преобразуется вэлектроэнергию, В отли­чие от ТЭС, работающих на органическом топливе, АЭСработает на ядерном горю­чем (в основе 233U, 235U, 239Pu) Приделении 1 г изотопов урана или плутония высво­бождается 22 500 квт • ч, чтоэквивалентно энергии, содержащейся в 2800 кг услов­ного топлива. Установлено,что мировые энергетические ресурсы ядерного горючего (уран, плутоний идр.)  существенно превышают энергоресурсыприродных запасов органического, топлива (нефть, уголь, природный газ и др.).Это открывает широкие перспективы для удовлетворе­ния быстро растущихпотребностей в топ­ливе. Кроме того, необходимо учиты­вать всё увеличивающийсяобъём потреб­ления угля и нефти для технологических целей мировой химическойпромышленности, которая становится серьёзным конкурентом тепло­выхэлектростанций. Несмотря на откры­тие новых месторождений органического топ­ливаи совершенствование способов его добычи, в мире наблюдается тенденция котносительному, увеличению его стоимости. Это создаёт наиболее тяжёлые условиядля стран, имеющих ограниченные запасы топлива органического происхождения.Очевидна необходимость быстрейшего развития атомной энергетики, края ужезанимает заметное место в энергетическом балансе ряда промышленных стран мира.

Перваяв мире АЭС опытно-промышленного на­значения (рис. 1) мощностью 5 Мвт былапущена в СССР 27 июня 1954 г. в г. Обнинске. До этого энергия атомного ядраиспользовалась  в военных це­лях. Пускпервой АЭС ознаменовал от­крытие нового направления в энергети­ке, получившегопризнание на 1-й Международной научно-технической конференции по мирномуиспользованию атомной энер­гии (август 1955, Женева).

<img src="/cache/referats/3575/image014.gif" align=«left» hspace=«12» v:shapes="_x0000_s1032">В 1958 была введена вэксплуатацию 1-я очередь Сибирской АЭС мощностью 100 Мвт (полная проектнаямощность 600 Мвт). В том же году развернулось строительство Белоярской АЭС, а26 апреля 1964 генератор 1-й очереди (блок мощностью 100 Мвт) выдал ток вСвердловскую энергосистему, 2-й блок мощностью 200 Мвт сдан в эксплуата­цию воктябре 1967. Отличительная особенность Белоярской АЭС — перегрев пара (дополучения нужных параметров) непосредственно в ядерном реакторе, что позволилоприменить на ней обычные современные турбины почти без всяких переделок.

 Принципиальная схема АЭС с ядерным реактором,имеющим водяное охлаждение, приведена на рис. 2. Тепло, выделяется в активнойзоне реактора, теплоносителем  вбираетсяводой (теплоносителем) 1-г контура, которая прокачивается  через реактор циркуляционным насосом  г Нагретая вода из реактора поступав втеплообменник (парогенератор) 3, где передаёт тепло, полученное в реакторе воде2-го контура. Вода 2-го контура испаряется в парогенераторе, и образуется парпоступает в турбину 4.

Наиболеечасто на АЭС применяют 4 типа реакторов на тепловых нейтронах 1) водо-водяные собычной водой в качестве замедлителя и теплоносителя; 2) графито-водные сводяным теплоносителем и графитовым замедлителем; 3) тяжеловодные с водянымтеплоносителем и тяжёлой водой в качестве замедлителя 4) графито-газовые сгазовым теплоноси­телем и графитовым замедлителем.

Выборпреимущественно применяемого типа реактора определяется главным образом на­копленнымопытом    в             реактороносителе а также наличиемнеобходимого промышленного оборудования, сырьевых запасов и т. л. В Россиистроят главным образом графито-водные и водо-водяные реакторы. На АЭС СШАнаибольшее распространение получили водо-водяные реакторы. Графито-газо­выереакторы применяются в Англии. В атомной энергетике Канады преобла­дают АЭС стяжеловодными реакторами.

<img src="/cache/referats/3575/image016.gif" align=«left» hspace=«12» v:shapes="_x0000_s1033">В зависимости от вида иагрегатного со­стояния теплоносителя создается тот или иной термодинамическийцикл АЭС. Выбор верх­ней температурной границы термодинамического циклаопределяется максимально допусти­мой темп-рой оболочек тепловыделяющихэлементов (ТВЭЛ), содержащих ядерное го­рючее, допустимой темп-рой собственноядер­ного горючего, а также свойствами теплоноси­теля, принятого для данноготипа реактора. На АЭС. тепловой реактор которой охлаждает­ся водой, обычнопользуются низкотемпера­турными паровыми циклами. Реакторы с газовымтеплоносителем позволяют применять относительно более экономичные циклыводяного пара с повышенными начальными дав­лением и темп-рой. Тепловая схемаАЭС в этих двух случаях выполняется 2-контурной: в 1-м контуре циркулируеттеплоноситель, 2-й контур — пароводяной. При реакторах  с кипящим водяным или высокотемпературнымгазовым теплоносителем возможна одно­контурная тепловая  АЭС. В кипящих реак­торах вода кипит вактивной зоне, полученная пароводяная смесь сепарируется, и насыщенный парнаправляется или непосредственно в турбину, или предварительно возвращается вактивную зону для перегрева.

 (рис. 3). В высокотемпературныхграфито-газовых реакторах возможно применение обычного газотурбинного цикла.Реактор в этом случае выполняет  ролькамеры сго­рания.

Приработе реактора концентрация де­лящихся изотопов в ядерном топливе постепенноуменьшается, и топливо  выгорает. Поэтомусо временем их заме­няют свежими. Ядерное горючее пере­загружают с помощьюмеханизмов и при­способлений с дистанционным управлением. Отработавшее топливопереносят в бас­сейн выдержки, а затем направляют на переработку.

Креактору и обслуживающим его си­стемам относятся: собственно реактор сбиологической защитой, теплообменни­ки, насосы или газодувные установки,осуществляющие циркуляцию теплоноси­теля; трубопроводы и арматура циркуляцииконтура; устройства для перезагруз­ки ядерного горючего; системы спец.вентиляции, аварийного расхолаживания и др.

Взависимости от конструктивного ис­полнения реакторы имеют отличит, осо­бенности:в корпусных реакторах топливо и замедлитель расположены внутри корпу­са,несущего полное давление теплоно­сителя; в канальных реакторах топливо,охлаждаемые теплоносителем, устанавли­ваются в спец. трубах-каналах, пронизы­вающихзамедлитель,  заключённый в тонкостенныйкожух. Такие реакторы применяются в России (Сибирская, Белоярская АЭС и др.),

Дляпредохранения персонала АЭС от радиационного облучения реактор окружаютбиологической защитой, основным материалом для которой служат бетон, вода,серпантиновый песок. Оборудование реакторного контура должно быть полностьюгерме­тичным. Предусматривается система конт­роля мест возможной утечкитеплоноси­теля, принимают меры, чтобы появление не плотностей и разрывов контуране приводило к радиоактивным выбросам и загрязнению помещений АЭС и окружаю­щейместности. Оборудование реакторно­го контура обычно устанавливают  в герметичных боксах, которые отделены отостальных помещений АЭС биологической защитой и при работе реактора не обслу­живаются,Радиоактивный воздух и не­большое количество паров теплоносителя, обусловленноеналичием протечек из контура, удаляют из необслуживаемых помещений АЭС спец.системой вентиляции, в которой для исключения возможно­сти загрязнения атмосферыпредусмот­рены очистные фильтры и газгольдеры выдержки. За выполнением правилра­диационной безопасности персоналом АЭС сле­дит служба дозиметрическогоконтроля.

Приавариях в системе охлаждения реактора для исключения перегрева и нарушения   герметичности   оболочек ТВЭЛов предусматривают быстрое (втечение несколько секунд) глушение ядер­ной реакции; аварийная система расхо­лаживанияимеет автономные источники питания.

Наличие  биологической защиты, систем спец. вентиляциии аварийного расхо­лаживания и службы дозиметрического контро­ля позволяетполностью обезопасить обслуживающий персонал АЭС от вред­ных воздействийрадиоактивного облу­чения.

Оборудованиемашинного зала АЭС аналогично оборудованию машинного зала ТЭС. Отличит, особенность боль­шинства   АЭС — использование   пара сравнительно низких параметров, на­сыщенногоили слабо перегретого.

При этом для исключенияэрозионного повреждения лопаток последних ступеней турбины частицами влаги,содержащейся в пару, в турбине устанавливают сепари­рующие устройства. Иногданеобходимо применение выносных сепараторов  и промежуточных  перегревателейпара. В связи с тем что теплоноситель и со­держащиеся в нём примеси при прохож­дениичерез активную зону реактора активируются, конструктивное решение оборудованиямашинного зала и системы охлаждения конденсатора турбины од­ноконтурных АЭСдолжно полностью исключать возможность утечки теплоно­сителя. На двухконтурныхАЭС с высо­кими параметрами пара подобные требо­вания к оборудованию машинногозала не предъявляются.

Вчисло специфичных требований к компоновке оборудования  АЭС входят: минимально возможнаяпротяжённость коммуникаций, связанных с радиоак­тивными средами, повышеннаяжёст­кость фундаментов и несущих конст­рукций реактора, надёжная организа­ция вентиляциипомещений. показан раз­рез главного корпуса Белоярской АЭС с канальнымграфито-водным реакто­ром. В реакторном зале размещены: реактор с биологическойзащитой, запасные ТВЭЛы и аппаратура контроля. АЭС скомпонована по блочномупринципу реактор—турбина. В машинном зале рас­положены турбогенераторы иобслужи­вающие их системы. Между машинным II реакторным залами размещенывспомогательные оборудование и системы управле­ния станцией.

ЭкономичностьАЭС определяется её основным  техническимпоказателями: единичная мощность реактора, энергонапря­жённость активной зоны, глубина вы­горания ядерногогорючего, коэффецента ис­пользования установленной мощности АЭС за год. С ростом мощности АЭС удельныекапиталовложения в псе (стои­мость установленного кет) снижаются более резко,чем это имеет место для ТЭС. В этом главная причина стремле­ния к сооружениюкрупных АЭС с большой единичной мощностью блоков. Для экономики АЭС характерно,что доля топливной составляющей в себестоимости вырабатываемой электроэнергии30 — 40% (на ТЭС 60—70%). Поэтому круп­ные АЭС наиболее распространены в    промышленно развитых    районах с огра­ниченными  запасами   обычного топлива, а АЭС небольшой мощности —в трудно­доступных или отдалённых районах, напр.  АЭС в  пос. Билибино (Якутия)  с электрической  мощностью типового блока 12 Мет. Часть тепловой мощности реактора этой АЭС (29Мет) расходуется на теплоснабжение. Наряду с выработ­кой электроэнергии  АЭС используются также для опреснения морскойводы. Так,   Шевченковская АЭС(Казахстан) электрической мощностью 150 Мвт рассчи­тана на опреснение (методомдистилля­ции) за сутки до 150 000 т воды из Кас­пийского м.

Вбольшинстве промышленно развитых стран (Россия, США, Англия, Фран­ция, Канада,ФРГ, Япония, ГДР и др.)  мощность действующихи строящихся АЭС к 1980  доведена додесятков Гвт. По данным Международного атомного агентства ООН, опубликован­нымв 1967, установленная мощность всех АЭС в мире к 1980 достигла 300 Гвт.

  На 3-й Международной научно-техническойконференции по мирному использова­нию атомной энергии (1964, Женева) былоотмечено, что широкое освоение ядерной энергии стало ключевой пробле­мой длябольшинства стран. Состояв­шаяся в Москве в августе 1968 7-я Мироваяэнергетическим конференция (МИРЭК-УП) подтвердила актуальность проблем выбо­ранаправления развития ядерной энер­гетики на следующем этапе (условно1980—2000), когда АЭС станет одним из оси. производителей электроэнергии.

Из 1 кг урана можно получитьстолько же теплоты, сколь­ко при сжигании примерно 3000 т каменного угля.

За годы, прошедшие современи пуска в эксплуатацию пер­вой АЭС, было создано несколько конструкцийядерных реак­торов, на основе которых началось широкое развитие атомнойэнергетики в нашей стране.

Персонал 9 российских АЭСсоставляет 40.6 тыс. человек или 4% от общего числа населения занятого вэнергетике. 11.8% или 119.6 млрд. Квч. всей электроэнергии, произведенной вРоссии выработано на АЭС. Только на АЭС рост производства электроэнергиисохранился: в 2000 году планируется произвести 118% от объема 1999 года.

АЭС, являющиеся наиболеесовременным видом электростанций имеют ряд существенных преимуществ переддругими видами электростанций: при нормальных условиях функционирования ониобсолютно не загрязняют окружающую среду, не требуют привязки к источнику сырьяи соответственно могут быть размещены практически везде, новые энергоблокиимеют мощность практичеки равную мощности средней ГЭС, однако коэффициэнтиспользования установленной мощности на АЭС (80%) значительно превышает этот показательу ГЭС или ТЭС.  Об экономичности иэффективности атомных электростанций может говорить тот факт, что  из 1 кг урана можно получить столько жетеплоты, сколь­ко при сжигании примерно 3000 т каменного угля.

  Значительных недостатков АЭС при нормальныхусловиях функционирования практически не имеют. Однако нельзя не заметитьопасность АЭС при возможных форс-мажорных обстоятельствах: землетрясениях,ураганах, и т. п. — здесь старые модели энергоблоков представляют потенциальнуюопасность радиационного заражения территорий из-за неконтролируемого перегревареактора.

Заключение.

Учитывая  результаты существующих прогнозов поистощению к середине – концу следующего столе­тия запасов нефти, природногогаза и других традиционных энергоресурсов, а также сокращение потребления угля(которо­го, по расчетам, должно хватить на300лет) из-за вредных выбро­сов в атмосферу, а также употребления ядерноготоплива, которого при условии интенсивного развития реакторов-раз­множителейхватит не менее чем на1000 лет можносчитать, что на данном этапе развития науки и техники тепловые, атомные игидроэлектрические источники будут еще долгое время преобладать над остальнымиисточника

www.ronl.ru

Реферат - Нетрадиционные источники энергии

Реферат ученицы 10 класса школы при Посольстве РФ в Великобритании

Баженовой Ксении

г. Лондон, 2000 г.

Введение

Энерговооруженность общества – основа его научно-технического прогресса, база развития производительных сил. Её соответствие общественным потребностям – важнейший фактор экономического роста. Развивающееся мировое хозяйство требует постоянного наращивания энерговооруженности производства. Она должна быть надежна и с расчетом на отдаленную перспективу. Энергетический кризис 1973-1974 гг. в капиталистических странах продемонстрировал, что этого трудно теперь достичь, основываясь лишь на традиционных источниках энергии (нефти, угле, газе). Необходимо не только изменить структуру их потребления, но и шире внедрять нетрадиционные, альтернативные источники энергии. К ним относят солнечную, геотермальную и ветровую энергию, а также энергию биомассы, океана и пр. Относят к ним обычно и атомную энергию. Однако на нынешнем этапе развития атомном энергетики это представляется условным.

В отличие от ископаемых топлив нетрадиционные формы энергии не ограничены геологически накопленными запасами. Это означает, что их использование и потребление не ведет к неизбежному исчерпанию запасов.

Основной фактор при оценке целесообразности использования нетрадиционных возобновляемых источников энергии – стоимость производимой энергии в сравнении со стоимостью энергии, получаемой при использовании традиционных источников. Особое значение приобретают нетрадиционные источники для удовлетворения локальных потребителей энергии.

Рассмотренные в работе новые схемы преобразования энергии можно объединить единым терминов «экоэнергетика», под которым подразумеваются любые методы получения чистой энергии, не вызывающие загрязнения окружающей среды.

Солнечная энергия

Всего за три дня Солнце посылает на Землю столько энергии, сколько её содержится во всех разведанных запасах ископаемых топлив, а за 1 сек. – 170 млрд. Дж. Большую часть этой энергии рассеивает или поглощает атмосфера, особенно облака, и только треть её достигает земной поверхности. Вся энергия, испускаемая Солнцем, больше той её части, которую получает Земля, в 5 млрд. раз. Но даже такая «ничтожная» величина в 1600 раз больше энергии, которую дают все остальные источники, вместе взятые. Солнечная энергия, падающая на поверхность одного озера, эквивалентна мощности крупной электростанции.

Солнечная энергия — наиболее грандиозный, дешевый, но и, пожалуй, наименее используемый человеком источник энергии.

В последнее время интерес к проблеме использования солнечной энергии резко возрос. Потенциальные возможности энергетики, основанные на использовании непосредственного солнечного излучения, чрезвычайно велики.

Использование всего лишь 0,0125% энергии Солнца могло бы обеспечить все сегодняшние потребности мировой энергетики, а использование 0,5% полностью покрыть потребности на перспективу. К сожалению, вряд ли когда-нибудь эти громадные потенциальные ресурсы удастся реализовать в больших масштабах. Только очень небольшая часть этой энергии может быть практически использована. Едва ли не главная причина подобной ситуации – слабая плотность солнечной энергии. Простой расчет показывает, что если снимаемая с 1 м 2 освещенной солнцем поверхности мощность в среднем составляет 160 Вт, то для генерирования 100 тыс. кВт нужно снимать энергию с площади в 1,6 км 2. Ни один из известных в настоящее время способов преобразования энергии не может обеспечить экономическую эффективность такой трансформации.

Выше говорилось о средних величинах. Доказано, что в высоких широтах плотность солнечной энергии составляет 80 – 130 Вт/м2, в умеренном поясе – 130 – 210, а в пустынях тропического пояса 210 – 250 Вт /м 2. Это означает, что наиболее благоприятные условия для использования солнечной энергии существуют в развивающихся странах Африки, Южной Америки, в Японии, Израиле, Австралии, в отдельных районах США (Флорида, Калифорния). В СНГ в районах, благоприятных для этого, живет примерно 130 млн. человек, в том числе 60 млн. в сельской местности.

Однако даже при наилучших атмосферных условиях (южные широты, чистое небо) плотность потока солнечного излучения составляет не более 250 Вт /м 2. Поэтому, чтобы коллекторы солнечного излучения «собирали» за год энергию, необходимую для удовлетворения всех потребностей человечества, нужно разместить их на территории 130 000 км 2. Необходимость использовать коллекторы огромных размеров, кроме того, влечет за собой значительные материальные затраты, Простейший коллектор солнечного излучения представляет собой зачерненный металлический (как правило, алюминиевый) лист, внутри которого располагаются трубы с циркулирующей в ней жидкостью. Нагретая за счет солнечной энергии, поглощенной коллектором, жидкость поступает для непосредственного использования. Согласно расчетам изготовление коллекторов солнечного излучения площадью 1 км 2, требует примерно 10000 тонн алюминия. Доказанные же на сегодня мировые запасы этого металла оцениваются в 1170000 000 тонн.

Из вышеизложенного ясно, что существуют разные факторы, ограничивающие мощность солнечной энергетики.

Солнечная энергетика относится к наиболее материалоёмким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение потребности в материалах, а, следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки. Пока ещё электрическая энергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. Ученые надеются, что эксперименты, которые они проводят на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы.

Но, тем не менее, станции-преобразователи солнечной энергии строят, и они работают.

Солнечную радиацию при помощи гелиоустановок преобразуют в тепловую или электрическую энергию, удобную для практического применения. В южных районах нашей страны созданы десятки солнечных установок и систем. Они осуществляют горячее водоснабжение, отопление и кондиционирование воздуха жилых и общественных зданий, животноводческих ферм и теплиц, сушку сельскохозяйственной продукции, термообработку строительных конструкций, подъем и опреснение минерализованной воды и др.

С 1988 года на Керченском полуострове работает Крымская солнечная электростанция. Она невелика – мощность всего 5 МВт. Она работает без каких-либо выбросов в окружающую среду, что особо важно в курортной зоне, и без использования органического топлива. Работая 2000 часов в год, станция вырабатывает 6 млн. кВт электроэнергии.

С начала 50-х годов в нашей стране космические летательные аппараты используют в качестве основного источника энергопитания солнечные батареи, которые непосредственно преобразуют энергию солнечной радиации в электрическую. Они являются практически незаменимым источником электрического тока в ракетах, спутниках и автоматических межпланетных станциях.

Освоение космического пространства позволяет разрабатывать проекты солнечно-космических электростанций для энергоснабжения Земли. Эти станции, в отличие от земных, не только смогут получать более плотный поток теплового солнечного излучения, но и не зависят от погодных условий и смены дня и ночи. Ведь в космосе Солнце сияет с неизменной интенсивностью.

Продолжается изучение возможностей более широкого использования гелиоустановок: «солнечные» крыши на домах для энерго- и теплоснабжения, «солнечные» крыши на автомобилях для подзарядки аккумуляторов, «солнечные» фермы в сельских районах и т.д.

Ученые и энергетики продолжают вести работу по поиску новых более дешевых возможностей использования солнечной энергии. Возникают новые идеи, новые проекты.

Энергия ветра

Человек использует энергию ветра с незапамятных времен. Но его парусники, тысячелетиями бороздившие просторы океанов, и ветряные мельницы использовали лишь ничтожную долю из тех 2,7 трлн. кВт энергии, которыми обладают ветры, дующие на Земле. Полагают, что технически возможно освоение 40 млрд. кВт, но даже это более чем в 10 раз превышает гидроэнергетический потенциал планеты.

Почему же столь обильный доступный и экологически чистый источник энергии так слабо используется? В наши дни двигатели, использующие ветер, покрывают всего одну тысячную мировых потребностей в энергии.

Ветровой энергетический потенциал Земли в 1989 году был оценен в 300 млрд. кВт * ч в год. Но для технического освоения из этого количества пригодно только 1,5%. Главное препятствие для него – рассеянность и непостоянство ветровой энергии. Непостоянство ветра требует сооружения аккумуляторов энергии, что значительно удорожает себестоимость электроэнергии. Из-за рассеянности при сооружении равных по мощности солнечных и ветровых электростанций для последних требуется в пять раз больше площади (впрочем, эти земли можно одновременно использовать и для сельскохозяйственных нужд). Но на Земле есть и такие районы, где ветры дуют с достаточным постоянством и силой. (Ветер, дующий со скоростью 5-8 м/сек., называется умеренным, 14-20 м/сек. – сильный, 20-25 м/сек. – штормовым, а свыше 30 м/сек. – ураганным). Примерами подобных районов могут служить побережья Северного, Балтийского, арктических морей.

Новейшие исследования направлены преимущественно на получение электрической энергии из энергии ветра. Стремление освоить производство ветроэнергетических машин привело к появлению на свет множества таких агрегатов. Некоторые из них достигают десятков метров в высоту, и, как полагают, со временем они могли бы образовать настоящую электрическую сеть. Малые ветроэлектрические агрегаты предназначены для снабжения электроэнергией отдельных домов.

Сооружаются ветроэлектрические станции преимущественно постоянного тока. Ветряное колесо приводит в движение динамо-машину – генератор электрического тока, который одновременно заряжает параллельно соединенные аккумуляторы.

Сегодня ветроэлектрические агрегаты надежно снабжают током нефтяников; они успешно работают в труднодоступных районах, на дальних островах, в Арктике, на тысячах сельскохозяйственных ферм, где нет поблизости крупных населенных пунктов и электростанций общего пользования.

Основное направление использования энергии ветра – получение электроэнергии для автономных потребителей, а также механической энергии для подъема воды в засушливых районах, на пастбищах, осушения болот и др. В местностях, имеющих подходящие ветровые режимы, ветроустановки в комплекте с аккумуляторами можно применять для питания автоматических метеостанций, сигнальных устройств, аппаратуры радиосвязи, катодной защиты от коррозии магистральных трубопроводов и др.

По оценкам специалистов, энергию ветра можно эффективно использовать там, где без существенного хозяйственного ущерба допустимы кратковременные перерывы в подаче энергии. Использование же ветроустановок с аккумулированием энергии позволяет применять их для снабжения энергией практически любых потребителей.

Мощные ветровые установки стоят обычно в районах с постоянно дующими ветрами (на морских побережьях, в мелководных прибрежных зонах и т.д.) Такие установки уже используют в России, США, Канаде, Франции и других странах.

Широкому применению ветроэлектрических агрегатов в обычных условиях пока препятствует их высокая себестоимость. Вряд ли требуется говорить, что за ветер платить не нужно, однако машины, нужные для того, чтобы запрячь его в работу, обходятся слишком дорого.

При использовании ветра возникает серьезная проблема: избыток энергии в ветреную погоду и недостаток её в периоды безветрия. Как же накапливать и сохранить впрок энергию ветра? Простейший способ состоит в том, что ветряное колесо движет насос, который накапливает воду в расположенный выше резервуар, а потом вода, стекая из него, приводит в действие водяную турбину и генератор постоянного или переменного тока. Существуют и другие способы и проекты: от обычных, хотя и маломощных аккумуляторных батарей до раскручивания гигантских маховиков или нагнетания сжатого воздуха в подземные пещеры и вплоть до производства водорода в качестве топлива. Особенно перспективным представляется последний способ. Электрический ток от ветроагрегата разлагает воду на кислород и водород, Водород можно хранить в сжиженном виде и сжигать в топках тепловых электростанций по мере надобности.

Геотермальная энергия

Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Память человечества хранит предания о катастрофических извержениях вулканов, унесших миллионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже сравнительно небольшого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится – нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это — проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов.

Энергетика земли (геотермальная энергетика) базируется на использовании природной теплоты Земли. Недра Земли таят в себе колоссальный, практически неисчерпаемый источник энергии. Ежегодное излучение внутреннего тепла на нашей планете составляет 2,8 * 1014 млрд. кВт * час. Оно постоянно компенсируется радиоактивным распадом некоторых изотопов в земной коре.

Источники геотермальной энергии могут быть двух типов. Первый тип – это подземные бассейны естественных теплоносителей – горячей воды (гидротермальные источники), или пара (паротермальные источники), или пароводяной смеси. По существу, это непосредственно готовые к использованию «подземные котлы», откуда воду или пар можно добыть с помощью обычных буровых скважин. Второй тип – это тепло горячих горных пород. Закачивая в такие горизонты воду, можно также получить пар или перегретую воду для дальнейшего использования в энергетических целях.

Но в обоих вариантах использования главный недостаток заключается, пожалуй, в очень слабой концентрации геотермальной энергии. Впрочем, в местах образования своеобразных геотермических аномалий, где горячие источники или породы подходят сравнительно близко к поверхности и где при погружении вглубь на каждые 100 м температура повышается на 30-40°С, концентрации геотермальной энергии могут создавать условия и для хозяйственного её использования. В зависимости от температуры воды, пара или пароводяной смеси геотермальные источники подразделяются на низко- и среднетемпературные (с температурой до 130 – 150° С) и высокотемпературные (свыше 150°). От температуры во многом зависит характер их использования.

Можно утверждать, что геотермальная энергия имеет четыре выгодных отличительных черты.

Во-первых, её запасы практически неисчерпаемы. По оценкам конца 70-х годов до глубины 10 км они составляют такую величину, которая в 3,5 тысячи раз превышает запасы традиционных видов минерального топлива.

Во-вторых, геотермальная энергия довольно широко распространена. Концентрация её связана в основном с поясами активной сейсмической и вулканической деятельности, которые занимают 1/10 площади Земли. В пределах этих поясов можно выделить отдельные наиболее перспективные «геотермальные районы», примерами которых могут служить Калифорния в США, Новая Зеландия, Япония, Исландия, Камчатка, Северный Кавказ в России. Только в бывшем СССР к началу 90-х годов было открыто около 50 подземных бассейнов горячей воды и пара.

В-третьих, использование геотермальной энергии не требует больших издержек, т.к. в данном случае речь идет об уже «готовых к употреблению», созданных самой природой источниках энергии.

Наконец, в-четвертых, геотермальная энергия в экологическом отношении совершенно безвредна и не загрязняет окружающую среду.

Человек издавна использует энергию внутреннего тепла Земли (вспомним хотя бы знаменитые Римские бани), но её коммерческое использование началось только в 20-х годах нашего века со строительством первых геоЭС в Италии, а затем и в других странах. К началу 80-х годов в мире действовало около 20 таких станций общей мощностью 1,5 млн. кВт. Самая крупная из них – станция Гейзерс в США (500 тыс. кВт).

Геотермальную энергию используют для выработки электроэнергии, обогрева жилья, теплиц и т.п. В качестве теплоносителя используют сухой пар, перегретую воду или какой-либо теплоноситель с низкой температурой кипения (аммиак, фреон и т.п.).

Энергия Мирового океана

Резкое увеличение цен на топливо, трудности с его получением, истощение топливных ресурсов – все эти видимые признаки энергетического кризиса вызывали в последние годы во многих странах значительный интерес к новым источникам энергии, в том числе к энергии Мирового океана.

Известно, что запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности (361 млн. кв. км) занимают моря и океаны: акватория Тихого океана составляет 180 млн. кв. км, Атлантического – 93 млн. кв. км, Индийского – 75 млн. кв. км. Так, тепловая энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 градусов, имеет величину порядка 1026 Дж. Кинетическая энергия океанских течений оценивается величиной порядка 1018 Дж. Однако пока что люди умеют использовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной.

Энергия океана давно привлекает к себе внимание человека. В середине 80-х годов уже действовали первые промышленные установки, а также велись разработки по следующим основным направлениям: использование энергии приливов, прибоя, волн, разности температур воды поверхностных и глубинных слоев океана, течений и т.д.

Веками люди размышляли над причиной морских приливов и отливов. Сегодня мы достоверно знаем, что могучее природное явление – ритмичное движение морских вод вызывают силы притяжения Луны и Солнца. Приливные волны таят в себе огромный энергетический потенциал – 3 млрд. кВт.

Растет интерес специалистов к приливным колебаниям уровня океана у побережий материков. Энергию приливов на протяжении веков человек использовал для приведения в действие мельниц и лесопилок. Но с появлением парового двигателя она была предана забвению до середины 60-х годов, когда были пущены первые ПЭС во Франции и СССР.

Приливная энергия постоянна. Благодаря этому, количество вырабатываемой на приливных электростанциях (ПЭС) электроэнергии всегда может быть заранее известно, в отличие от обычных ГЭС, на которых количество получаемой энергии зависит от режима реки, связанного не только с климатическими особенностями территории, по которой она протекает, но и с погодными условиями.

Тем не менее ученые считают, что технически возможно и экономически выгодно использовать лишь очень небольшую часть приливного потенциала Мирового океана – по некоторым оценкам только 2%.При определении технических возможностей большую роль играют такие факторы, как характер береговой линии, форма и рельеф дна, глубина воды, морские течения и ветер. Опыт показывает, что для эффективной работы ПЭС высота приливной волны должна быть не менее 5 м. Чаще всего такие условия возникают в мелких и узких заливах или устьях рек, впадающих в моря и океаны. Но подобных мест на всём земном шаре не так уж много: по разным источникам 25, 30 или 40.

При оценке экономических выгод строительства ПЭС также нужно учитывать, что наибольшие амплитуды приливов-отливов характерны для окраинных морей умеренного пояса. Многие из этих побережий расположены в необжитых местах, на большом удалении от главных районов расселения и экономической активности, следовательно, и потребления электроэнергии. Нужно учитывать также и то, что рентабельность ПЭС резко возрастает по мере увеличения их мощности до 3-5 и тем более 10-15 млн. кВт. Но сооружение таких станций-гигантов, к тому же в отдаленных районах, требует особенно больших затрат, не говоря уже и о сложнейших технических проблемах.

Считается, что наибольшими запасами приливной энергии обладает Атлантический океан. В его северо-западной части, на границе США и Канады, находится залив Фанди, представляющий собой внутреннюю суженную часть более открытого залива Мен. Длина его 300 км при ширине 90 км, глубина у входа более 200 м. Этот залив знаменит самыми высокими в мире приливами, достигающими 18 м. Очень высоки приливы и у берегов Канадского арктического архипелага. Например, у побережья Баффиновой земли они поднимаются на 15,6 м. В северо-восточной части Атлантики примерно такие же приливы наблюдаются в проливе Ла-Манш у берегов Франции, в Бристольском заливе и Ирландском море у берегов Англии и Ирландии.

Велики также запасы приливной энергии в Тихом океане. В его северо-западной части особенно выделяется Охотское море, где в Тугурском и Пенжинском заливах высота приливной волны составляет 9-13 м. Значительные приливы наблюдаются и у побережий Китая и Корейского полуострова. На восточном побережье Тихого океана благоприятные условия для использования приливной энергии имеются у берегов Канады, Чилийского архипелага на юге Чили, в узком и длинном Калифорнийском заливе Мексики.

В пределах Северного Ледовитого океана по запасам приливной энергии выделяются Белое море, в Мезенской губе которого приливы имеют высоту до 10 м, и Баренцево море у берегов Кольского полуострова (до 7 м). В Индийском океане запасы такой энергии значительно меньше. В качестве перспективных для строительства ПЭС здесь обычно называются залив Кач Аравийского моря (Индия) и северо-западное побережье Австралии.

Несмотря на такие, казалось бы весьма благоприятные, природные предпосылки, строительство ПЭС пока имеет довольно ограниченные масштабы. По существу реально можно говорить лишь о более или менее крупной промышленной ПЭС «Ранс» во Франции, об опытной Кислогубской ПЭС на Кольском полуострове(Россия) и канадско-американской ПЭС в заливе Фанди.

При сооружении ПЭС необходимо всесторонне оценивать их экологическое воздействие на окружающую среду. Оно довольно велико. В районах сооружения крупных ПЭС существенно изменяется высота приливов, нарушается водный баланс в акватории станции, что может серьёзно сказаться на рыбном хозяйстве, разведении устриц, мидий и пр.

К числу энергетических ресурсов Мирового океана относят также энергию волн и температурного градиента. Энергия ветровых волн суммарно оценивается в 2,7 млрд. кВт в год. Опыты показали, что ее следует использовать не у берега, куда волны приходят ослабленными, а в открытом море или в прибрежной зоне шельфа. В некоторых шельфовых акваториях волновая энергия достигает значительной концентрации: в США и Японии – около 40 кВт на метр волнового фронта, а на западном побережье Великобритании – даже 80 кВт на 1 метр. Использование этой энергии, хотя и в местных масштабах, уже начато в Великобритании и Японии. Британские острова имеют очень длинную береговую линию, во многих местах море остается бурным в течение длительного времени. По оценкам ученых, за счет энергии морских волн в английских территориальных водах можно было бы получить мощность до 120 ГВт, что вдвое превышает мощность всех электростанций, принадлежащих Британскому центральному электроэнергетическому управлению.

Впервые идею использования энергии разности температур поверхностных и глубинных слоев воды Мирового океана предложил французский ученый д'Арсонвиль в 1881 году, но первые разработки начались лишь в 1973 году. Энергию разности температур различных слоев Мирового океана оценивают в 20-40 трлн. кВт. Из них практически могут быть использованы лишь 4 трлн. кВт.

Принцип действия этих станций заключается в следующем: теплую морскую воду (24-32° С) направляют в теплообменник, где жидкий аммиак или фреон превращаются в пар, который вращает турбину, а затем поступает в следующий теплообменник для охлаждения и конденсации водой с температурой 5-6 °С, поступающей с глубины 200-500 метров. Получаемую электроэнергию передают на берег по подводному кабелю, но ее можно использовать и на месте (для обеспечения добычи минерального сырья со дна или его выделения из морской воды). Достоинство подобных установок – возможность их доставки в любой район Мирового океана. К тому же, разность температур различных слоев океанической воды – более стабильный источник энергии, чем, скажем, ветер, Солнце, морские волны или прибой. Первая такая установка была пущена в 1981 году на острове Науру. Единственный недостаток таких станций – их географическая привязанность к тропическим широтам. Для практического использования температурного градиента наиболее пригодны те районы Мирового океана, которые расположены между 20° с.ш. и 29° ю.ш., где температура воды у поверхности океана достигает, как правило, 27-28° С, а на глубине 1 километр имеет всего 4-5° С.

В океане, который составляет 72% поверхности планеты, потенциально имеются различные виды энергии – энергия волн и приливов; энергия химических связей газов, солей и других минералов; энергия течений, спокойно и нескончаемо движущихся в различных частях океана; энергия температурного градиента и др., и их можно преобразовывать в стандартные виды топлива. Такие количества энергии, многообразие её форм гарантируют, что в будущем человечество не будет испытывать в ней недостатка.

Океан наполнен внеземной энергией, которая поступает в него из космоса. Она доступна и безопасна, и не затрагивает окружающую среду, неиссякаема и свободна. Из космоса поступает энергия Солнца. Она нагревает воздух, образуя ветры, вызывающие волны. Она нагревает океан, который накапливает тепловую энергию. Она приводит в движение течения, которые в тоже время меняют свое направление под воздействие вращения Земли. Из космоса же поступает энергия солнечного и лунного притяжения. Она является движущей силой системой Земля-Луна и вызывают приливы и отливы. Океан – это не плоское, безжизненное водное пространство, а огромная кладовая беспокойной энергии.

Энергия биомассы

Понятие «биомасса» относят к веществам растительного или животного происхождения, а также отходам, получаемым в результате их переработки. В энергетических целях энергию биомассы используют двояко: путем непосредственного сжигания или путем переработки в топливо (спирт или биогаз). Есть два основных направления получения топлива из биомассы: с помощью термохимических процессов или путем биотехнологической переработки. Опыт показывает, что наиболее перспективна биотехнологическая переработка органического вещества. В середине 80-х годов в разных странах действовали промышленные установки по производству топлива из биомассы. Наиболее широкое распространение получило производство спирта.

Одно из наиболее перспективных направлений энергетического использования биомассы – производство из неё биогаза, состоящего на 50-80% из метана и на 20-50% из углекислоты. Его теплотворная способность – 5-6 тыс. ккал/м3.

Наиболее эффективно производство биогаза из навоза. Из одной тонны его можно получить 10-12 куб. м метана. А, например, переработка 100 млн. тонн такого отхода полеводства, как солома злаковых культур, может дать около 20 млрд. куб. м метана. В хлопкосеющих районах ежегодно остается 8-9 млн. тонн стеблей хлопчатника, из которых можно получить до 2 млрд. куб. м метана. Для тех же целей возможна утилизация ботвы культурных растений, трав и др.

Биогаз можно конвертировать в тепловую и электрическую энергию, использовать в двигателях внутреннего сгорания для получения синтезгаза и искусственного бензина.

Производство биогаза из органических отходов дает возможность решать одновременно три задачи: энергетическую, агрохимическую (получение удобрений типа нитрофоски) и экологическую.

Установки по производству биогаза размещают, как правило, в районе крупных городов, центров переработки сельскохозяйственного сырья.

Заключение

Неоспоримая роль энергии в поддержании и дальнейшем развитии цивилизации. В современном обществе трудно найти хотя бы одну область человеческой деятельности, которая не требовала бы, прямо или косвенно, большей энергии, чем могут дать мускулы человека.

Потребление энергии – важный показатель жизненного уровня. В те времена, когда человек добывал пищу, собирая лесные плоды и охотясь на животных, ему требовалось в сутки около 8 МДж энергии. После овладения огнем эта величина возросла до 16 МДж; в примитивном сельскохозяйственном обществе она составляла 50 МДж, а в более развитом – 100 МДж.

За время существования нашей цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные. И не потому, что старый источник бал исчерпан.

Сейчас, в начале 21-го века, начинается новый значительный этап земной энергетики. Появилась энергетика «щадящая», построенная так, чтобы человек не рубил сук, на котором он сидит, заботился об охране уже сильно поврежденной биосферы.

На пути широкого внедрения альтернативных источников энергии стоят трудно разрешимые экономические и социальные проблемы. Прежде всего это высокая капиталоемкость, вызванная необходимостью создания новой техники и технологии. Во-вторых, высокая материалоемкость: создание мощных ПЭС требует, к примеру, огромных количеств металла, бетона и т.д, В-третьих, под некоторые станции требуется значительное отчуждение земли или морской акватории. Кроме того, развитие использования альтернативных источников энергии сдерживается также нехваткой специалистов. Решение этих проблем требует комплексного подхода на национальном и международном уровне, что позволит ускорить их реализацию.

Список литературы

Аугусто Голдин. Океаны энергии. – Пер. с англ. Оксфорд-пресс.1983 г.

Гончар В.И. Нетрадиционные возобновляемые источники энергии в Энергетической программе СССР – География в школе. 4/90 – М.: Педагогика, 1990 г.

Кондаков А.М. Альтернативные источники энергии – География в школе. 4/88 – М.: Педагогика. 1988 г.

Кононов Ю.Д. Энергетика и экономика. Проблемы перехода к новым источникам энергии. – М.: Наука, 1981.

Максаковский В.П. Географическая карта мира. Часть первая. — М.: 1996 г.

Максаковский В.П. Географическая карта мира. Часть третья. — М.: 1996 г.

Энергетические ресурсы мира. Под редакцией Непорожнего П.С., Попкова В.И. — М.: Энергоатомиздат. 1995 г.

www.ronl.ru

Реферат - Альтернативные источники энергии 10

Новосибирский Государственный Технический Университет

                                                                                              Факультет гуманитарного образования                                                                                                Кафедра социологии Реферат на тему:«Альтернативные источники энергии»

Выполнил: студент ФГО

       Гр. СЛ-02 Хромов. А.Ю Проверил: Дьяченко Г. И.

Новосибирск 2010

ВСТУПЛЕНИЕ

На пороге ХХI века человек все чаще и чаще стал задумываться о том, что станет основой его существования в новой эре. Энергия была и остается главной составляющей жизни человека. Она дает возможность создавать различные материалы, является одним из главных факторов при разработке новых технологий. Попросту говоря, без освоения различных видов энергии человек не способен полноценно существовать. Homo Sapiens прошел путь от первого костра до атомных электростанций, освоил добычу основных традиционных энергетических ресурсов — угля, нефти и газа, научился использовать энергию рек, освоил “мирный атом”, но все активнее обсуждаются вопросы использования новых нетрадиционных, альтернативных видов энергии.

По оценкам специалистов, мировые ресурсы угля составляют 15, а по неофициальным данным 30 триллионов тонн, нефти — 300 миллиардов тонн, газа — 220 триллионов кубометров. Разведанные запасы угля составляют 1685 миллиардов тонн, нефти — 137 миллиардов тонн, газа — 142 триллионов кубометров. Почему же наблюдается тенденция к освоению альтернативных видов энергии, при таких, казалось бы, внушительных цифрах, при том, что в последние годы в шельфовых зонах морей открыты огромные запасы нефти и газа?

Есть несколько ответов на этот вопрос. Во-первых, непрерывный рост промышленности, как основного потребителя энергетической отрасли. Существует точка зрения, что при нынешней ситуации запасов угля хватит примерно на 270 лет, нефти на 35-40 лет, газа на 50 лет. Во-вторых, необходимость значительных финансовых затрат на разведку новых месторождений, так как часто эти работы связаны с организацией глубокого бурения (в частности, в морских условиях) и другими сложными и наукоемкими технологиями. И, в третьих, экологические проблемы, связанные с добычей энергетических ресурсов. Склады нефтепродуктов и окружающие их территории подчас напоминают “города мертвых”, а кадры кинохроники о плавающих в нефтяной пленке морских птицах и животных тревожат не только Greenpeace.

Не менее важной причиной необходимости освоения альтернативных источников энергии является проблема глобального потепления. Суть ее заключается в том, что двуокись углерода (СО2), высвобождаемая при сжигании угля, нефти и бензина в процессе получения тепла, электроэнергии и  обеспечения работы транспортных средств, поглощает тепловое излучение поверхности нашей планеты, нагретой Солнцем и создает так называемый парниковый эффект*.

В настоящее время выдвигаются множество различных идей и предложений по использованию всевозможных возобновляемых видов энергии. Разработка некоторых проектов еще только начинается. Так, существуют предложения по использованию энергии разложения атомных частиц, искусственных смерчей и даже энергии молнии. Проводятся эксперименты по использованию “биоэнергетики”, например, энергии парного молока для обогрева коровников.

Но существуют и “традиционные” виды альтернативной энергии. Это энергия Солнца и ветра, энергия морских волн, приливов и отливов. Есть проекты преобразования в электроэнергию газа, выделяющегося на мусорных свалках, а также из навоза на звероводческих фермах. Основным видом “бесплатной” неиссякаемой энергии по справедливости считается Солнце. В Солнце сосредоточено 99, 886% всей массы солнечной системы. Солнце ежесекундно излучает энергию в тысячи миллиардов раз большую, чем при ядерном взрыве 1 кг U235 .

СОЛНЦЕ

Солнце — неисчерпаемый источник энергии — ежесекундно дает Земле 80 триллионов киловатт, то есть в несколько тысяч раз больше, чем все электростанции мира. Нужно только уметь пользоваться им. Например, Тибет — самая близкая к Солнцу часть нашей планеты — по праву считает солнечную энергию своим богатством. На сегодня в Тибетском автономном районе Китая построено уже более пятидесяти тысяч гелиопечей. Солнечной энергией отапливаются жилые помещения площадью 150 тысяч квадратных метров, созданы гелиотеплицы общей площадью миллион квадратных метров.

Хотя солнечная энергия и бесплатна, получение электричества из нее не всегда достаточно дешево. Поэтому специалисты непрерывно стремятся усовершенствовать солнечные элементы (см. рис.№1) и сделать их эффективнее. Новый рекорд в этом отношении принадлежит Центру прогрессивных технологий компании “Боинг”. Созданный там солнечный элемент преобразует в электроэнергию 37 процентов попавшего на него солнечного света.

Это достижение стало возможным, с одной стороны, благодаря использованию двухслойной конструкции. Верхний слой — из арсенида галлия. Он поглощает излучение видимой части спектра. Нижний слой — из антимонида галлия и предназначен улавливать инфракрасное излучение, которое обычно теряется. С другой стороны, высокая эффективность достигается благодаря специальному покрытию, преломляющему свет и фокусирующему его на активные области солнечной ячейки.

В Японии ученые работают над совершенствованием фотогальванических элементов на кремниевой основе. Если толщину солнечного элемента существующего стандарта уменьшить в 100 раз, то такие тонкопленочные элементы потребуют гораздо меньше сырья, что обеспечит их высокую эффективность и экономичность. Кроме того, их малый вес и исключительная прозрачность  позволят легко устанавливать их на фасадах зданий и даже на окнах, для обеспечения электроэнергией жилых домов. Однако поскольку интенсивность солнечного света не всегда и не везде  одинакова, то даже при установке множества солнечных батарей, зданию потребуется дополнительный источник электричества. Одним из возможных решений этого вопроса является использование  солнечных элементов в комплексе с двухсторонним топливным элементом. В дневное время, когда работают солнечные элементы, избыточную электроэнергию можно пропускать через водородный топливный элемент (см. гл. ВОДОРОД) и таким образом получать водород из воды. Ночью же топливный элемент сможет использовать этот водород для производства электроэнергии.

Компактная передвижная электростанция сконструирована германским инженером Хербертом Бойерманом. При собственном весе 500 кг она имеет мощность 4 КВт, иначе говоря, способна полностью обеспечить электротоком достаточной мощности загородное жилье. Это довольно хитроумный агрегат, где энергию вырабатывают сразу два устройства — ветрогенератор нового типа и комплект солнечных панелей. Первый оснащен тремя полусферами, которые (в отличие от обычного ветрового колеса) вращаются при малейшем движении воздуха, второй — автоматикой, аккуратно ориентирующей солярные элементы на светило. Добытая энергия накапливается в аккумуляторном блоке, а тот стабильно снабжает током потребителей.

Глядя вперед, в те времена, когда штат Калифорния будет нуждаться в удобных станциях для подзарядки электробатарей, “Южно-калифорнийская компания Эдисон” планирует начать испытание специальной автостанции для машин, работающих на солнечной энергии, которая в конечном счете должна стать обычной заправочной станцией со множеством парковочных мест и различными магазинами. Солнечные панели на крыше станции, расположенной в городе Даймонд-Баре, обеспечат энергию для зарядки электромобилей в течение всего рабочего дня даже зимой. А излишек, получаемый от этих панелей, будет использоваться для нужд самой автостанции. Уже в 1981г. через пролив Ла-Манш совершил перелёт первый в мире самолёт двигателем, работающим от солнечных батарей. Чтобы совершить перелёт на расстояние 262 км, ему потребовалось 5,5 часа (см. рис. №2). А по прогнозам учёных конца прошлого века, ожидалось, что к 2000 году на дорогах Калифорнии появится около 200000 электромобилей. Возможно, и нам стоит подумать об использовании солнечной энергии в широких масштабах. В частности, в Крыму с его “солнцеобильностью”.

ВОДОРОД

Эти и многие другие современные разработки   начинают вырисовывать контуры будущего мира, в котором, несмотря на продолжающийся рост потребления энергии, получаемой преимущественно путем сжигания природного топлива, уровень содержания углекислого газа в атмосфере реально начнет снижаться.

Ускорить этот процесс смогли бы и автомобили марки NECAR4, разрабатываемые в одной из лабораторий под Штутгартом. Этот экспериментальный автомобиль, разрабатываемый совместно компаниями   Ford, Daimler-Chrysler и  Canada's Ballard Power Systems, работает на водороде, запасов которого в природе более чем достаточно. Водород, в отличие от ископаемых видов топлива, не содержит атомов углерода и поэтому не образует  двуокиси углерода (СО2). Однако водород также может загрязнять окружающую среду, так как при его сгорании происходит перегруппировка молекул воздуха, при которой образуется окись азота и озон. Но NECAR4 не сжигает водород. На автомобиле установлен бортовой топливный элемент, разработанный фирмой Ballard, который обеспечивает постепенное соединение водорода с кислородом при умеренной температуре. В результате на выходе получается  обыкновенная вода (h3O) и электроэнергия.

Топливные элементы были изобретены еще в начале XIX века. В 60-е годы прошлого века НАСА использовало их для получения чистой энергии в космосе. Но только в прошедшем десятилетии удалось создать топливные элементы таких размеров, которые позволили бы устанавливать их в легковых автомобилях. NECAR4 создан на базе малолитражного автомобиля Mercedes-Benz, типа «седан» класса А. Этот автомобиль вмещает пять человек плюс багаж, развивает скорость до 145 км/час и может пройти без заправки  450 километров. По словам   Фердинанда Паника, руководителя проекта компании Diamler Chrysler, «значение топливного элемента соизмеримо разве что со значением микросхемы для развития вычислительной техники”.

Результаты не заставят себя ждать. Первые  полевые испытания автомобилей с топливным элементом пройдут уже в этом году в Калифорнии. К 2004 году Diamler Chrysler, Ford, а также  General Motors, Toyota и другие компании, предполагают начать поставку автомобилей с топливным элементом на потребительский рынок.

Проблема, связанная с массовым серийным производством компактных топливных элементов для легковых и грузовых автомобилей, еще до конца не решена, однако уже сейчас можно было бы начать производство крупногабаритных элементов, обеспечивающих работу промышленных предприятий и электростанций.

Теоретически, водород можно было бы получать из воды, используя для этого энергию солнца или ветра. Однако, даже при самых оптимистических прогнозах, связанных с  совершенствованием таких технологий, затраты на производство электроэнергии, необходимой для разделения молекул воды на молекулы водорода и кислорода в настоящее время чрезвычайно велики. Поэтому первые установки для крупномасштабного производства водорода будут, по всей видимости,  вырабатывать его из  традиционных видов   топлива.

Такую технологию можно было бы, например, успешно применять в Китае, где стремительный рост производства и огромные природные запасы угля угрожают вызвать катастрофическое загрязнение атмосферы углекислым газом в течение следующего столетия.

Основной проблемой, связанной с производством водорода по старым технологиям, является то, что при этом образуется двуокись углерода, которую нельзя выбрасывать в атмосферу. Существует, однако, альтернативный метод – закачивать углекислый газ под землю. В Норвегии, например, энергетическая компания Norsk Hydro строит электростанцию, которая будет работать на водороде, получаемом из природного газа. Образующаяся при этом двуокись углерода будет закачиваться обратно в одно из месторождений нефти, расположенных на континентальном шельфе. С помощью такой технологии можно не только решить проблему загрязнения воздуха углекислым газом, но и повысить давление в месторождении, что значительно облегчит выкачивание из него оставшихся запасов нефти. Другим не менее эффективным способом борьбы с загрязнением атмосферы является закачивание двуокиси углерода в подземный водоносный слой, которое уже в настоящее время успешно применяется в Европе и  США.ВЕТЕР

На первый взгляд ветер кажется одним из самых доступных и возобновляемых источников энергии. В отличие от Солнца он может “работать” зимой и летом, днем и ночью, на севере и на юге. Но ветер — это очень рассеянный энергоресурс. Природа не создала “месторождения” ветров и не пустила их, подобно рекам, по руслам. Ветровая энергия практически всегда “размазана” по огромным территориям. Основные параметры ветра — скорость и направление — меняются подчас очень быстро и непредсказуемо, что делает его менее “надежным”, чем Солнце. Таким образом, встают две проблемы, которые необходимо решить для полноценного использования энергии ветра. Во-первых, это возможность “ловить” кинетическую энергию ветра с максимальной площади. Во-вторых, еще важнее добиться равномерности, постоянства ветрового потока. Вторая проблема пока решается с трудом. Существуют интересные разработки по созданию принципиально новых механизмов для преобразования энергии ветра в электрическую. Одна из таких установок (патент РФ № 1783144) порождает искусственный сверхураган внутри себя при скорости ветра в 5 м/с!

Ветровые двигатели не загрязняют окружающую среду, но они очень громоздкие и шумные. Чтобы производить с их помощью много электроэнергии, необходимы огромные пространства земли. Лучше всего они работают там, где дуют сильные ветры. И тем не менее всего одна электростанция, работающая на ископаемом топливе, может заменить по количеству полученной энергии тысячи ветряных турбин (см. рис. №3;8).

МОРЕ

В последнее время в некоторых странах снова обратили внимание на те проекты, которые были отвергнуты ранее как малоперспективные. Так, в частности, в 1982 г. британское правительство отменило государственное финансирование тех электростанций, которые используют энергию моря: часть таких исследований прекратилась, часть продолжалась при явно недостаточных ассигнованиях от Европейской комиссии и некоторых промышленных фирм и компаний. Причиной отказа в государственной поддержке называлась недостаточная эффективность способов получения “морского” электричества по сравнению с другими его источниками, в частности — атомными.

В мае 1988 г. в этой технической политике произошел переворот. Министерство торговли и промышленности Великобритании прислушалось к мнению своего главного советника по энергетике Т. Торпа, который сообщил, что три из шести имеющихся в стране экспериментальных установок усовершенствованы и ныне стоимость 1 КВт/ч на них составляет менее 6 пенсов, а это ниже минимального уровня конкурентоспособности на открытом рынке. Цена “морской” электроэнергии с 1987 г. снизилась вдесятеро.

Волны. Наиболее совершенен проект “Кивающая утка” (см. рис. №4), предложенный конструктором С. Солтером. Поплавки, покачиваемые волнами, дают энергию стоимостью всего 2,6 пенса за 1 КВт\ч, что лишь незначительно выше стоимости электроэнергии, которая вырабатывается новейшими электростанциями, сжигающими газ (в Британии это — 2,5 пенса), и заметно ниже, чем дают АЭС (около 4,5 пенса за 1 КВт\ч).

Следует заметить, что использование источников альтернативных, возобновляемых видов энергии может достаточно эффективно снизить процент выбросов в атмосферу вредных веществ, то есть в какой-то степени решить одну из важных экологических проблем. Энергия моря может с полным основанием быть причисленной к таким источникам.

Приливы. Первая большая электростанция, работающая на энергии приливов, была построена в 1968г. в устье реки Ранс (Франция). Электростанция работает следующим образом. Когда начинается отлив, заслонки в дамбе закрывают, поддерживая высокий уровень воды за плотиной. При разнице уровней в 3 м. заслонки открывают, и вода устремляется в море, вращая лопатки 24-х больших турбин, а вместе с ними и роторы электрогенераторов. Когда опять начинается прилив, вода через открытые заслонки проходит за плотину, и цикл повторяется (см. рис. №5).РЕКИ

Примерно 1/5 часть энергии, потребляемой во всём мире, вырабатывают на ГЭС. Её получают, преобразуя энергию падающей воды в энергию вращения турбин, которая в свою очередь вращает генератор, вырабатывающий электричество. Гидростанции бывают очень мощными. Так, станция Итапу на реке Парана на границе между Бразилией и Парагваем развивает мощность до13 000 млн.Квт.

Энергия малых рек также в ряде случаев может стать источником электроэнергии. Возможно, для использования этого источника необходимы специфические условия (например, речки с сильным течением), но в ряде мест его, где обычное электроснабжение невыгодно, установка мини-ГЭС могла бы решить множество локальных проблем. Бесплотинные ГЭС для речек и речушек уже существуют. Этот двухметровый агрегат есть не что иное, как бесплотинная ГЭС мощностью в 0,5 КВт. В комплекте с аккумулятором она обеспечит энергией крестьянское хозяйство или геологическую экспедицию, отгонное пастбище или небольшую мастерскую… Была бы поблизости речушка!

Роторная установка диаметром 300 мм и весом всего 60 кг выводится на стремнину, притапливается на придонную “лыжу” и тросами закрепляется с двух берегов. Остальное — дело техники: мультипликатор вращает автомобильный генератор постоянного тока напряжением 14 вольт, и энергия аккумулируется.

Опытный образец бесплотинной мини-ГЭС успешно зарекомендовал себя на речках Горного Алтая.

ЗЕМЛЯ

Тепло от горячих горных пород в земной коре тоже может генерировать электричество (см. рис. №6). Через пробуренные в горной породе скважины вниз накачивается холодная вода, а в вверх поднимается образованный из воды пар, который вращает турбину. Такой вид энергии называется геотермальной энергией. Она используется, например, в Новой Зеландии и Исландии.

ОТХОДЫ

Одним из наиболее необычных видов использования отходов человеческой деятельности является получение электроэнергии из мусора. Проблема городских свалок стала одной из наиболее актуальных проблем современных мегаполисов. Но, оказывается, их можно еще использовать для производства электроэнергии. Во всяком случае именно так поступили в США, в штате Пенсильвания. Когда построенная для сжигания мусора и одновременной выработки электроэнергии для 15000 домов печь стала получать недостаточно топлива, было решено восполнить его мусором с уже закрытых свалок. Вырабатываемая из мусора энергия приносит округу около $ 4000 прибыли еженедельно. Но главное- объем закрытых свалок сократился на 78%.

Разлагаясь на свалках, мусор выделяет газ, 50-55 % которого приходится на метан, а 45-50% — на углекислый газ и около одного процента — на другие соединения. Если раньше выделяемый газ просто отравлял воздух, то теперь в США его начинают использовать в качестве горючего в двигателях внутреннего сгорания с целью выработки электроэнергии. Только в мае 1993 года 114 электростанций, работающих на газе от свалок, произвели 344 мегаджоуля электроэнергии. Самая крупная из них, в городе Уиттиер, производит за год 50 мегаджоулей. Станция мощностью 12 мегаватт способна удовлетворить потребность в электроэнергии жителей 20 тысяч домов. По подсчетам специалистов, газа на свалках США хватит для работы небольших станций на 30-50 лет. Не стоит ли и нам задуматься над проблемой вторичного использования мусора? При наличии эффективной технологии мы могли бы сократить количество мусорных “курганов”, а заодно значительно пополнить и восполнить запасы энергии, благо “дефицита сырья” для ее производства не предвидит

НАВОЗ

Казалось бы, что может быть неприятнее навоза? Много проблем связано с загрязнением водоемов отходами звероводческих хозяйств. Большие количества органического вещества, попадающие в водоемы, способствуют их загрязнению.

Известно, что теплоцентрали — активные загрязнители окружающей среды, свинофермы и коровники — тоже. Однако из этих двух зол можно составить нечто хорошее. Именно это произошло в английском городе Пиделхинтоне, где разработана технология переработки навоза свиней в электроэнергию. Отходы идут по трубопроводу на электростанцию, где в специальном реакторе подвергаются биологической переработке. Образующийся газ используется для получения электроэнергии, а переработанные бактериями отходы — для удобрения. Перерабатывая 70 тонн навоза ежедневно, можно получить 40 КВт/ч.ЭКОЛОГИЧЕСКИЕ  ДЕРЕВНИ

Кроме замены традиционных источников энергии альтернативными, существуют проекты по созданию экологически чистых и сбалансированных городов и деревень будущего. Основой для их создания будут служить применение экономичных материалов, а также оптимальный режим использования энергии, который смогут поддерживать с помощью компьютерных программ.

Хранителем домашнего очага и незримым существом в доме, по старинным поверьям, служит теплый домовой. Техническую помощь ему в скандинавских странах, в первую очередь в Швеции, оказывает теперь программно управляемая бытовая теплоцентраль “Аквае 47 ОД”. Разработанная шведской фирмой “Электро стандард”, эта установка довольствуется скромным местом, скажем, площадью кухни.

Тепловые насосы и узел нагрева воды вмонтированы в нее еще на заводе-изготовителе. Принцип экономного вторичного обогрева таков: из использованного воздуха ванной комнаты, кухни и подсобок тепловая энергия возвращается в систему отопления традиционного типа и утилизируется водогрейным котлом. Дополнительные калории от внешних источников газа или жидкого топлива отбираются на эти цели лишь по мере необходимости. Особые клапаны в наружных стенах, снабженные противопылевым фильтром и входящие в комплект установки, обеспечивают подвод чистого воздуха и равномерную безвытяжную смену его в доме. Это достижение компьютерной теплотехники предназначено прежде всего для односемейных домов, например, для загородных коттеджей; оно сокращает наполовину обычный расход энергии.

В испанском поселке Сант-Джосеп на острове Ивиса сооружается первая в мире экологическая деревня будущего, где поселятся четыреста человек. В проекте участвуют специалисты из всех стран Европы. Чтобы оптимально использовать солнечный свет, “умные” дома сами станут регулировать внутреннюю температуру. Это позволяет как новая технология, так и сами материалы — каркас из алюминия и поликарбоната с огромными застекленными поверхностями, где циркулирует прозрачная жидкость. Получится своеобразный щит, впускающий солнечный свет, но удерживающий тепло. Температура зимой и летом будет одинаковая — 20-22 градуса. Избыток энергии поступит в термический теплонакопитель. Электроэнергию там станут вырабатывать также ветряные мельницы и солнечные батареи, избыток ее опять же сберегут огромные аккумуляторы. Биоочистная установка превратит органические отходы — мусор и сточные воды, в метан, преобразуемый затем в электричество. Структура здания гарантирует сохранность свыше 85 процентов энергии. На гигантской биоферме будут выращивать скот, рыбу, а так же овощи, фрукты и злаки.

Возможно, такие проекты пока невозможно реализовать в значительных масштабах. До серийного производства “умных” экологически чистых домов еще далеко, но уже сейчас реализация некоторых проектов (постройка мини-ГЭС, солнечных, ветровых, мусорных электростанции) вполне реальна

ЗАКЛЮЧЕНИЕ

В обозримом будущем природное топливо по-прежнему будет важным источником энергии. Однако природные ресурсы ограничены, и в конце концов человечество будет вынуждено перейти на использование энергии ветра и Солнца, о чем с незапамятных времен мечтают защитники окружающей среды.

Теоретически, каждое предприятие, здание, жилой дом и автомобиль может иметь свой собственный экологически чистый, возобновляемый источник энергии, что позволит человечеству обходиться без нефтяных скважин, угольных шахт, электростанций, линий электропередачи и избавиться, таким образом, от всех негативных последствий их использования. Однако на данный момент перед человечеством  стоит более неотложная задача: остановить перегревание планеты и сделать это как можно быстрее. Благодаря автомобилям с топливными элементами, более совершенным ветровым турбинам и солнечным элементам, и другим описанным в данном реферате проектам, внедрение которых уже становится реальностью, угроза глобального потепления кажется теперь не столь устрашающей, какой она представлялась еще несколько лет назад.

www.ronl.ru

Реферат - Тема: нетрадиционные источники энергии

МОУ КАМЕНСКАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА

Тема:

НЕТРАДИЦИОННЫЕ ИСТОЧНИКИ ЭНЕРГИИ .

Выполнила: ученица 8 класса Переверзева Ольга

Руководитель:

Петрухина Нина Степановна

учитель физики

Содержание:

Раздел: стр.

1. Введение 1

2.Солнечная энергия 2

3.Энергия океана 5

4.Энергия ветра 6

5.Энергия морских течений 7

6.Энергия приливов и отливов 8

7.Геотермальная энергия 9

8.Биотопливо 11

9.Заключение 15

Введение. В глубокой древности человечество начало с бережного использования возобновляемых источников энергии, но постепенно перешло к безрассудному использованию невозобновимых источников. Вся история доказывает, что с ростом уровня жизни увеличивается количество необходимой человеку энергии. Любая деятельность, независимо от её природы, предполагает использование энергии. Нынешняя человеческая деятельность на земле является доказательством того, что люди использовали и используют много энергии. Человек слишком слаб физически, чтобы собственными силами достичь тех результатов, которых достигло человечество в результате своей деятельности. Однако кроме физической силы у людей есть и другие способности. Главная из них – способность мыслить и осуществлять свои замыслы. На протяжении всей истории результатом этого были различные способы использования других энергоисточников, помимо мускульной энергии, для достижения с их помощью желаемых результатов. В настоящее время ежегодно расходуемая всеми странами энергия составляет 0,1% в отношении возможных для использования запасов угля, природного газа и нефти, вместе взятых.

Но ведь потребление всех видов энергетических ресурсов быстро растёт. Что же будет дальше? На наш взгляд, проблемы, связанные с энергообеспечением, очень актуальны в наше время. Они не могут не интересовать любого здравомыслящего человека и требуют изучения и решения.

Существуют разные прогнозы, касающиеся будущего наших ресурсов. Разрабатывая такие прогнозы, надо исходить, с одной стороны, из оценки перспектив роста населения и производства соответственно потребности общества, а с другой – из наличия запасов каждого ресурса. Однако прогнозировать современную тенденцию роста населения и производства далеко в будущее было бы рискованно. Кроме того, научно — технический прогресс, несомненно, будет продолжаться в направлении поисков более экономных, ресурсосберегающих технологий, что позволит постепенно сокращать потребность во многих природных источниках производства.

Исходя из сказанного, следует ожидать, по крайне мере, в ближайшие десятилетия, дальнейший рост потребностей в самых разнообразных энергетических ресурсах. При оценке их запасов важно различать две большие группы ресурсов – невозобновимые и возобновимые. Первые практически не восполняют, и их количество неуклонно уменьшается по мере использования. Сюда относятся минеральные и земляные ресурсы. Возобновимые ресурсы либо способны к самовоспроизведению (биологические), либо непрерывно поступают к Земле извне (солнечная энергия), либо, находятся в непрерывном круговороте, могут использоваться повторно(вода). Возобновляемые ресурсы — природные ресурсы, запасы которых или восстанавливаются быстрее, чем используются, или не зависят от того, используются они или нет.

Разумеется возобновимые ресурсы, как и невозобновимые, не бесконечны, но их возобновляемая часть может постоянно использоваться.

Если обратиться к главным типам мировых природных ресурсов, то в самом общем мы получаем следующую картину. Основным видом энергоресурсов является пока ещё минеральное топливо – нефть, газ, уголь. Эти источники энергии невозобновимы и при нынешнее темпах роста их добычи они могут быть, по мнению учёных, исчерпаны через 80-140 лет.

В данном проекте в качестве источников энергии рассмотрены нетрадиционные: энергия солнца, энергия ветра, геотермальная энергия, энергия приливов и отливов, энергия морских течений, энергия океана и использование биологического топлива.

Солнечная энергия — будущее Земли

Солнце является первичным и основным источником энергии для нашей планеты. Оно греет всю Землю, приводит в движение реки и сообщает силу ветру. Под его лучами вырастает 1 квадриллион тонн растений, питающих, в свою очередь, 10 триллионов тонн животных и бактерий. Благодаря тому же Солнцу на 3емле накоплены запасы углеводородов, то есть нефти, угля, торфа и пр., которые мы сейчас активно сжигаем. Для того чтобы сегодня человечество смогло удовлетворить свои потребности в энергоресурсах, требуется в год около 10 миллиардов тонн условного топлива. (Теплота сгорания условного топлива — 7 000 ккал/кг). Разведанных мировых запасов угля человечеству хватит на 200 лет, нефти и природного газа – на 36 лет, ядерного топлива – на 40 лет. Солнечная энергия – это наименьшее количество загрязнения для планеты и наиболее неистощимый из всех известных источников энергии. Человечество только начинает выявлять и использовать ее потенциал. Уже используются солнечные батареи и введены в эксплуатацию гелиоэлектростанции, а это значит найден способ преобразования тепловое и световое излучение солнца, падающее на Землю, в механическую или электрическую энергию. Всего за три дня Солнце посылает на Землю столько энергии, сколько её содержится во всех разведанных запасах ископаемых топлива, а за 1с – 170млрд Дж. Большую часть этой энергии рассеивается или поглощает атмосфера, особенно облака, и только треть её достигает земной поверхности. Вся энергия, испускаемая Солнцем, больше той её части, которую получает Земля, в 5000млн.раз. Но даже такая «ничтожная» величина в 1600 раз больше энергии, которую дают все остальные источники, вместе взятые. Солнечная энергия, падающая на поверхность одного озера, эквивалентна мощности крупной электростанции. Сегодняшние солнечные системы уже рентабельны, надежны и просты в эксплуатации. Их использование набирает популярность в развитых странах. Для преобразования солнечной энергии в электрическую в промышленных масштабах сейчас в основном используют способ, предложенный, согласно легенде, еще в III веке до н. э. знаменитым ученым Архимедом. Правда, солнечный свет он применял тогда вовсе не с целью получения дешевой энергии, а для обороны родных Сиракуз, атакованных с моря галерами римского полководца Марцелла. Вот что написано в истории: «Когда римские корабли находились на расстоянии полета стрелы, Архимед стал действовать шестиугольным зеркалом, составленным из небольших четырехугольных зеркал, которые можно было двигать при помощи шарниров и металлических планок. Он установил это зеркало так, чтобы оно пересекалось в середине зимней и летней солнечными линиями, и поэтому принятые этим зеркалом солнечные лучи, отражаясь, создавали жар, который обращал суда римлян в пепел, хотя они находились на расстоянии полета стрелы». Именно на этом принципе основана работа современных гелиоэлектростанций. Установленные на значительной, до нескольких тысяч квадратных метров, территории зеркала-гелиостаты, поворачивающиеся вслед за Солнцем, направляют лучи солнечного света на емкость с теплоприемником, в качестве которого обычно выступает вода.

Дальше все происходит так же, как на обычных ТЭС: вода нагревается, закипает, превращается в пар, пар крутит турбину, турбина передает вращение на ротор генератора, а тот вырабатывает электричество.

В мире сейчас действуют несколько гибридных солнечно-тепловых электростанций общей мощностью более 600 МВт. Днем они работают от Солнца, а ночью, чтобы вода не остывала и электричество не кончалось, — от газа. Температура пара в установках достигает 370 градусов Цельсия, а давление — 100 атмосфер. Устройства, использующие энергию солнца, разработаны для отопления, освещения и вентиляции зданий, небоскрёбов, опреснения воды, производства электроэнергии. Такие устройства используются в различных технологических процессах. Появились транспортные средства с «солнечным приводом»: моторные лодки и яхты, солнцелеты и дирижабли с солнечными панелями.

Солнцемобили, вчера сравниваемые с забавным автоаттракционом, сегодня пересекают страны и континенты со скоростью, почти не уступающей обычному автомобилю. С 1988 года на Керченском полуострове работает Крымская солнечная электростанция, мощность которой 5МВт, на острове Сицилия – мощностью 1МВт, на юге Испании – мощностью 0,5Мвт. Заложено начало авиации на солнечных батареях.В настоящее время продолжительность полета беспилотных летательных аппаратов ограничена в основном запасом энергии. Такие аппараты могут летать очень продолжительное время и выполнять задачи по мониторингу окружающей среды, а также выступать в роли радиоретрансляторов в течение недель или даже месяцев без использования топлива и без загрязнения воздушной среды. Подобные аппараты успешно могут выполнять роль «псевдоспутников», они расположены ближе к поверхности земли, более подвижны и стоят гораздо меньше, чем настоящие спутники. Перед конструкторами все еще стоит множество проблем. КПД солнечных элементов пока еще не слишком высок, всего около 20%… В ночное время и даже днем аппарат должен иметь запасы энергии на борту. Если самолет летит выше облаков на небольшой высоте вокруг экватора, он не может всегда находиться в зоне, освещенной Солнцем, потому что Земля вращается быстрее, чем может лететь самолет с электродвигателем, поэтому аппарат, рассчитанный на круглосуточный полет, должен быть гибридным».

Телевизор, работающий от солнечной энергии

Компания Sharp представила на недавно проходившей выставке телевизор, работающий от солнечной батареи. Энергии солнечной панели оказалось вполне достаточно для просмотра телепередач на 52-дюймовом экране со светодиодной подсветкой.

ТЕПЛОВАЯ ЭНЕРГИЯ ОКЕАНА.

Известно, что запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности (361 млн.кв.м) занимают моря и океаны. Кинетическая энергия океанских течений примерно равна 1018 Дж. Энергоресурсы океана представляют большую ценность как возобновляемые и практически неисчерпаемые источники энергии. Океаны, помимо механической энергии волн и приливов, содержат также потенциальную энергию в виде тепла. Преобразование солнечного излучения в электроэнергию происходит за счет разности температур верхнего и нижнего слоев. Как известно, Солнце нагревает лишь верхние слои воды морей и океанов, причем, нагретая вода не опускается вниз, так как ее плотность меньше, чем у холодной. В тропических морях верхний слой воды, толщина которого не превышает нескольких метров, нагревается до 25-300° С, в то время как температура воды на глубине в 1 км не превышает 50° С. Получаемый в результате разности температур естественный тепловой градиент и создает запасы энергии. Причем, существенное количество ее можно получить при условии, когда температура между теплым поверхностным и холодным глубоководным слоями воды отличается, примерно, на 200°С значит тепловая энергоустановка, плывущая под водой могла бы производить энергию. Установка мини-ОТЕС (преобразование тепловой энергии океан в элекрическую) смонтирована на барже. Под ее днищем помещен длинный трубопровод для забора холодной воды. Трубопроводом служит полиэтиленовая труба длиной 700 м с внутренним диаметром 50 см. Трубопровод прикреплен к днищу судна с помощью особого затвора, позволяющего в случаи необходимости ого быстрое отсоединение. Полиэтиленовая труба одновременно используется и для заякоривания системы труба–судно. Оригинальность подобного решения не вызывает сомнений, поскольку якорные постановки для разрабатываемых ныне более мощных систем ОТЕС являются весьма серьезной проблемой. Новые станции ОТЕС на мощность во много десятков и сотен мегаватт проектируются без судна. Это – одна грандиозная труба, в верхней части которой находится круглый машинный зал, где размещены все необходимые устройства для преобразования анергии. Верхний конец трубопровода холодной воды расположится в океане на глубине 25–50 м. Машинный зал проектируется вокруг трубы на глубине около 100 м. Там будут установлены турбоагрегаты. Труба-монстр, уходящая почти на километр в холодную глубину океана, а в ее верхней части что-то вроде маленького островка. Представляется, что некоторые из предлагавшихся океанских энергетических установок могут быть реализованы, и стать рентабельными уже в настоящее время.

Энергия ветра

Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергетики всех рек планеты. Климатические условия позволяют развивать ветроэнергетику на огромной территории – от наших западных границ до берегов Енисея. Богаты энергией ветра северные районы страны вдоль побережья Северного Ледовитого океана. Считается, что общий ветровой энергопотенциал Земли равен 1200ГВт.

Энергия ветра представляет собой самый быстрорастущий во всем мире источник электричества. Энергия ветра производится массивными трехлопастными ветротурбинами, устанавливаемыми на самом верху высоких башен и работающими подобно вентиляторам, но в обратном порядке. Вместо того чтобы использовать электричество для получения ветра, турбины используют ветер для получения электричества.

Ветровые установки являются одним из самых перспективных и одновременно экологически чистых способов выработки электроэнергии, с КПД около 59%. Вместе с тем, энергия ветра относится к числу возобновляемых источников энергии. В общих чертах, устройство ветровой электростанции выглядит следующим образом. Ветер вращает лопасти, а лопасти крутят вал, который соединен с набором зубчатых колес, приводящих в действие электрогенератор. Самая трудная проблема состоит в том, чтобы обеспечить одинаковое число оборотов пропеллера при разной силе ветра. Для этого угол наклона лопастей по отношению к ветру регулируется за счет поворота их вокруг продольной оси: при сильном ветре этот угол острее, воздушный поток свободнее обтекает лопасти и отдает им меньшую часть своей энергии. Помимо регулирования лопастей весь генератор автоматически поворачивается на мачте против ветра. Избыток энергии в ветреную погоду и недостаток её в периоды безветрия реализуется за счет запасов воды в верхнем резервуаре, которая набирается в ветреную погоду и стекает в безветренную погоду. Крупные турбины для электроснабжения могут вырабатывать от 750 киловатт (киловатт = 1 000 ватт) до 1,5 мегаватт (мегаватт = 1 миллиону ватт) электроэнергии. В жилых домах, на телекоммуникационных станциях и в водяных насосах в качестве источника энергии применяются небольшие одиночные ветротурбины мощностью менее 100 киловатт. Это, прежде всего, характерно для отдаленных районов, в которых отсутствует энергосистемы общего пользования. В ветровых установках группы турбин связаны вместе с целью выработки электроэнергии для энергосистем общего пользования. Электричество подается потребителям посредством линий передач и распределительных линий. Такие станции работают труднодоступных районах, на дальних островах, в Арктике, на тысячах населенных пунктах, где нет поблизости электростанций.

За последние 10 лет глобальное производство энергии ветра увеличился в 10 раз — с 3,5 гигаватт (гигаватт = 1 миллиарду ватт). Этого достаточно для того, чтобы обслуживать более 1,6 миллиона домохозяйств.

Энергия морских течений.

Неисчерпаемые запасы кинетической энергии морских течений, накопленные в океанах и морях, можно превращать в механическую и электрическую энергию с помощью генераторов, погруженных в воду..

Преимуществами нового генератора, получившего название «Анаконда», являются простота и относительная дешевизна изготовления. Генератор «Анаконда», представляет собой длинную и тонкую резиновую трубку диаметром 0,25 м или 0,5 м, герметично закупоренную с обоих концов, внутри которой находится вода. К одному концу трубки прикрепляется якорь, удерживающий ее под водой, а второй ориентируется навстречу набегающим волнам. Морские волны, деформируя один конец резиновой трубки, генерируют внутри нее волны, которые приводят в движение турбину, установленную на другом конце устройства. По сравнению с другими установками, использующимися для получения электроэнергии из энергии волн, генератор «Анаконда» обладает меньшим весом, более прост в изготовлении и требует меньше затрат на техническое обслуживание.Ученые планируют изготовить «Анаконду» длиной 200 метров и 7 метров в диаметре, которая будет погружаться на глубину 40-100 метров. Расчеты показывают, что мощность такой установки будет составлять приблизительно 1 МВт.

Энергия приливов и отливов.

Веками люди размышляли над причиной морских приливов и отливов. Сегодня мы знаем, что могучее природное явление – ритмическое движение морских вод – вызывают силы притяжения Луны и Солнца. В середине 80-х годов уже действовали первые промышленные установки, а также велись разработки по следующим основным направлениям: использование энергии приливов, прибоя, волн, разности температур воды поверхностных и глубинных слоев океана, течений и т.д. Приливные волны таят в себе огромный энергетический потенциал — 3 млрд. кВт. Идея использования энергии приливов появилась у наших предков добрую тысячу лет назад. Правда, строили они тогда не ПЭС, а приливные мельницы. Одна из таких мельниц, упоминаемая еще в документах 1086 года, сохранилась в местечке Илинг, на юге Англии. В России первая приливная мельница появилась на Беломорье в XVII веке. В ХХ веке ученые задумались над использованием потенциала приливов в электроэнергетике. Достоинства приливной энергии неоспоримы. Приливные станции можно строить в труднодоступных местах в прибрежной зоне, они не загрязняют атмосферу вредными выбросами в отличие от тепловых станций, не затапливают земель в отличие от гидроэлектростанций и не представляют потенциальной опасности в отличие от атомных станций. Приливная электростанция (ПЭС) — электростанция, преобразующая энергию морских приливов в электрическую. ПЭС использует перепад уровней «полной» и «малой» воды во время прилива и отлива. Перекрыв плотиной, залив или устье впадающей в море (океан) реки (образовав водоём, называют бассейном ПЭС), можно при достаточно высокой амплитуде прилива (> 4м ) создать напор, достаточный для вращения гидротурбин и соединённых с ними гидрогенераторов, размещенных в теле плотины. При одном бассейне и правильном полусуточном цикле приливов ПЭС может вырабатывать электроэнергию непрерывно в течение 4--5 ч с перерывами соответственно 2--1 ч четырежды за сутки (такая ПЭС называется однобассейновой двустороннего действия). Мы знаем, что приливы и отливы обусловлены цикличностью, а значит выработка энергии получается пульсирующей в течение полумесячного периода. Даже использование резервных бассейнов не исключает этой пульсации. Поэтому используют совместную работу ПЭС в одной энергосистеме с мощными тепловыми (в т. ч. и атомными) электростанциями. Энергия, вырабатываемая ПЭС, может быть использована для участия в покрытии пиков нагрузки энергосистемы, а входящие в эту же систему ГЭС, имеющие водохранилища сезонного регулирования, могут компенсировать внутримесячные колебания энергии приливов. На ПЭС устанавливают специальные гидроагрегаты, которые используются с генераторном (прямым и обратным) и насосном (прямым и обратным). В часы, когда малая нагрузка энергосистемы совпадает по времени с «малой» или «полной» водой в море, гидроагрегаты ПЭС либо отключены, либо работают в насосном режиме ( подкачивают воду в бассейн выше уровня прилива или откачивают ниже уровня отлива) и таким образом аккумулируют энергию до того момента, когда в энергосистеме наступит пик нагрузки. В случае если прилив или отлив совпадает по времени с максимумом нагрузки энергосистемы, ПЭС работает в генераторном режиме. В 1968 г. на побережье Баренцева моря в Кислой губе сооружена первая в нашей стране опытно-промышленная ПЭС, которая работает до настоящего времени. В здании электростанции размещено 2 гидроагрегата мощностью 400 кВт. Основоположниками этого проекта были советские ученые Лев Бернштейн и Игорь Усачев. В отличие от гидроэнергии рек, средняя величина приливной энергии мало меняется от сезона к сезону, что позволяет приливным электростанциям более равномерно обеспечивать энергией промышленные предприятия. Пока энергия приливных электростанций обходится дороже энергии тепловых электростанций. Запасы приливной энергии планеты значительно превосходят полную величину гидроэнергии рек, значит можно полагать, что приливная энергия будет играть заметную роль в дальнейшем прогрессе человеческого общества… Ее запасы могут обеспечить до 15 % современного энергопотребления. Эти плотины экологически безопасны, т.к. биологически проницаемы, пропуск рыбы через ПЭС происходит практически беспрепятственно

Геотермальная энергия

Говоря просто геотермальная энергия — это энергия внутренних областей Земли. Извержение вулканов наглядно свидетельствует об огромном жаре внутри планеты Ученые оценивают температуру ядра Земли в тысячи градусов Цельсия Эта температура постепенно снижается от горячего внутреннего ядра где как полагают металлы и породы могут существовать только в расплавленном состоянии до поверхности Земли. Геотермальные ресурсы огромны. Истоки их освоения уходят еще в глубокую древность. Тепло Земли уже сейчас вносит вклад в современную энергетику, но он не соответствует ни экономической и экологической эффективности, ни ресурсам, пригодным для освоения имеющимися техническими средствами. Геотермальные энергоресурсы делятся на гидротермальные конвективные системы (подземные бассейны пара и горячей воды, которые образуют гейзеры и сернистые грязевые озёра), горячие сухие системы вулканического происхождения и системы с высоким тепловым потоком. Геотермальная энергия может быть использована двумя основными способами —для выработки электроэнергии и для обогрева домов, учреждений и промышленных предприятии Для какой из этих целей она будет использоваться зависит от формы в которой она поступает в наше распоряжение. Иногда вода вырывается из-под земли в виде чистого «сухого пара» т е пара без примеси водяных капелек. Этот сухой пар может быть непосредственно использован для вращения турбины и выработки электроэнергии. Конденсационную воду можно возвращать в землю и при ее достаточно хорошем качестве—сбрасывать в ближний водоем.В других местах, где имеется смесь воды с паром (влажный пар), этот пар отделяют и затем используют для вращения турбин. В районах, отличающихся газотермальной активностью для отопления используются парогеотермальные источники. В России геотермальные источники экономически расположены невыгодно. Камчатка, Сахалин и Курильские острова отличаются слабой инфраструктурой, высокой сейсмичностью, малонаселенностью, сложным рельефом местности. Общие запасы этого вида энергии в России оцениваются в 2000 МВт. В настоящее время в России действует Паужетская ГеоТЭС на Камчатке мощностью 11 МВт. Сведений о продолжительности жизни геотермальных источников мало, и поэтому, хотя геотермальная энергия производится при малых затратах, проекты, рассчитанные на долгую перспективу, неизвестны. Основное направление развития геотермальной энергетики — отбор теплоты не только термальных вод, но и водовмещающих горных пород путем закачки отработанной воды в пласты, преобразование глубинной теплоты в электрическую энергию. Такое использование глубинной теплоты обеспечит экологическую безопасность технологии ее использования.Геотермальные воды с наиболее высокой температурой и пар используют для получения электроэнергии. Энергия, полученная таким способом, дешевле, чем энергия тепловых, атомных и гидроэлектростанций. Наличие больших запасов геотермальной энергии в земной коре дает надежду на то, что у этой отрасли энергетики большое будущее.На Камчатке уже работают две геотермальные электростанции. А также такие электростанции построены в районе Махачкалы и Южно-Курильска. Недостатком всех имеющихся геотермальных электростанций является то, что располагать их возможно только там, где есть горячие источники. Ученые выдвинули идею бурения скважин на глубину в 4-6 километров, для того чтобы в одну скважину закачивать холодную воду, а из другой получать разогретый пар. Температура в глубине скважин будет достигать 150-200°C. Полученный пар можно использовать для получения электроэнергии или отопления. Благодаря изобретению советского инженера Александра Калины, наряду с традиционными геотермальными электростанциями появились электростанции использующие «цикл Калины». Их особенностью является то, что горячая вода из земных недр передает свою энергию другой жидкости. Такая схема называется бинарной или двухконтурной. В качестве второй жидкости используют двухкомпонентную водно-аммиачную смесь. Свойства этой смеси позволяют оптимизировать перенос тепла при ее испарении и конденсации. Поэтому «цикл Калины» оказался эффективней других бинарных схем. КПД таких электростанций гораздо выше по сравнению с традиционными геотермальными электростанциями и это несомненно большой прогресс. Дальнейшее развитие этой отрасли энергетики обеспечит экономический рост страны, даст возможность отказаться от использования не возобновляемых источников энергии и улучшить экологическую обстановку. На Кубани планируется построить сеть геотермальных станций. Принцип работы станции заключается в подаче насосами воды (t=1000? С) с глубины 2,5 тыс. м в центральный тепловой пункт (ЦТП), расположенный в центре поселка. Подаваемая вода нагревает воду для отопления и горячего водоснабжения, затем закачивается обратно в скважину на ту же глубину, где она снова нагревается и становится пригодной для дальнейшего использования. Мощность ЦТП 5 МВт, в перспективе 10 МВт. Летом подогрев воды обеспечит солнечная водонагревательная установка, работающая на солнечных батареях будет восстанавливаться. Рядом со станцией планируется развивать сопутствующие производства: рыбные хозяйства, тепличные комплексы, бальнеолечение.

Биотопливо

Биото́пливо — это топливо из биологического сырья, получаемое, как правило, в результате переработки стеблей сахарного тростника или семян рапса, кукурузы, сои. Существуют также проекты разной степени проработанности, направленные на получение биотоплива из целлюлозы и различного типа органических отходов, но эти технологии находятся в ранней стадии разработки или коммерциализации. Различается жидкое биотопливо (для двигателей внутреннего сгорания, например, этанол, метанол, биодизель), твёрдое биотопливо (дрова, солома) и газообразное (биогаз, водород).

Энергия биомассы -Для производства электрической и тепловой энергии в лесоперерабатывающей промышленности широко используется биомасса — энергоносители растительного происхождения, образуемые в процессе фотосинтеза. Если производство биомассы соизмеримо с ее сжиганием, содержание углекислого газа в атмосфере остается неизменным. Наиболее оптимальный способ использования биомассы — ее газификация с последующим срабатыванием в газовых турбинах. Предварительные расчеты показывают, что турбогенераторы, работающие на продуктах газификации биомассы, могут успешно конкурировать с традиционными тепловыми, ядерными и гидравлическими энергоустановками. Наиболее перспективными областями применения таких турбогенераторов уже в ближайшем будущем могут стать отрасли экономики, в которых скапливаются большие объемы биомассы (в частности, сахарные и винокуренные заводы, перерабатывающие сахарный тростник). Ежегодный объем органических отходов (биомассы) в СНГ составляет 500 млн. т. Их переработка потенциально позволяет получить до 150 млн.т условного топлива в год: за счет производства биогаза (120 млрд. м3 ) — 100-110 млн. т, этанола — 30-40 млн. т. Окупаемость современных технологий производства биогаза из отходов по оценкам специалистов составляет от 3 до 5 лет. За счет использования биогаза к 2000 г. можно получить годовую экономию органического топлива 6 млн. т, а к 2010 г. в 3 раза больше. Для этого необходимо создать высокоэффективные штампы анаэробных микроорганизмов, специальные виды энергетической биомассы, технологии, эффективное оборудование. Специалисты научно-исследовательского центра “АКМАС” во Владивостоке (Россия) разработали метод получения биотоплива из морской воды. Сейчас все говорят о биотопливе, как об экологически чистом продукте. В Европа его делают из рапса, из пшеницы, в Америке — из кукурузы, в Юго-Восточной Азии — из риса. Но все это продукты питания, цены на которые будут расти, так же, как и на углеводороды. Например, в Приморье собираются к форуму АТЭС построить завод по производству биотоплива из сои, который будет перерабатывать 40 тыс. т сои в год.

-Биотоплива второго поколения. Биотоплива второго поколения — различные топлива, полученные различными методами разложение химических соединений при нагревании биомассы, или другие топлива, отличные от метанола, этанола, биодизеля. Этот способ позволяет превратить биомассу в жидкость, которую легче и дешевле транспортировать, хранить и использовать. Из жидкости можно произвести автомобильное топливо, или топливо для электростанций.

-Биотоплива третьего поколения

С 1978 года по 1996 года исследовал водоросли с высоким содержанием масла. Проблема заключается в агроклиматичекских условиях не всегда пригодных для выращивания водорослей. Например, водоросли любят высокую температуру, для их производства хорошо подходит пустынный климат, но требуется некая температурная регуляция при ночных перепадах

температур. Кроме выращивания водорослей в открытых прудах из можно культивировать в биореакторах, которые могут работать на основе ТЭЦ, а значит не требуется жаркий климат. На основе переработки водорослей получают газообразное топливо.

Преимущества применения нетрадиционных источников энергии:

-отсутствие топливной составляющей

-недорогое строительство

-возможность создания рабочих мест

-дешевая эксплуатация

-устойчиво работают в энергосистемах как в базе так и в пике графика нагрузок при гарантированной постоянной месячной выработке электроэнергии

-не загрязняют атмосферу вредными выбросами в отличие от тепловых станций

-не затапливают земель в отличие от гидроэлектростанций — не представляют потенциальной опасности в отличие от атомных станций — не оказывают вредного воздействия на человека

-нет вредных выбросов (в отличие от ТЭС) — нет радиационной опасности (в отличие от АЭС) экологическая безопасность.

-исключен выброс вредных газов, золы, радиоактивных и тепловых отходов, добыча, транспортировка, переработка, сжигание и захоронение топлива, предотвращение сжигания кислорода воздуха, затопление территорий, угроза волны прорыва

Недостатки применения нетрадиционных источников энергии:

-агроклиматическая зависимость и изменчивость по времени

-дополнительные затраты на одновременное использование других источников энергии

-малая мощность

Недостатки использования биотоплива топлива:

— развитие биотопливной индустрии вынуждает сельхозпроизводителей сокращать посевные площади под продовольственными культурами и перераспределять их в пользу топливных.

— производство и использование биотоплива приводит к выбросу в атмосферу гораздо большего количества парниковых газов, чем сжигание нефти, газа или угля.

Основными доводами в пользу использования биотоплива являются следующие:

-высокая продуктивность;

-в производстве не используются ни плодородные почвы, ни пресная вода;

-процесс не конкурирует с сельскохозяйственным производством;

-создание новых рабочих мест;

-улучшить оборот земельных ресурсов в развивающихся странах;

Заключение.

За время существования нашей цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные. И не потому, что старый источник был исчерпан.

Солнце светило и обогревало человека всегда: и тем не менее однажды люди приручили огонь, начали жечь древесину.

Затем древесина уступила место каменному углю. Запасы древесины казались безграничными, но паровые машины требовали более калорийного «корма».

Но и это был лишь этап. Уголь вскоре уступает свое лидерство на энергетическом рынке нефти.

И вот новый виток: в наши дни ведущими видами топлива пока остаются нефть и газ. Но за каждым новым кубометром газа или тонной нефти нужно идти все дальше на север или восток, зарываться все глубже в землю. Немудрено, что нефть и газ будут с каждым годом стоить нам все дороже.

Замена? Нужен новый лидер энергетики. Им, несомненно, станут ядерные источники.

Запасы урана, если, скажем, сравнивать их с запасами угля, вроде бы не столь уж и велики. Но зато на единицу веса он содержит в себе энергии в миллионы раз больше, чем уголь.

А итог таков: при получении электроэнергии на АЭС нужно затратить, считается, в сто тысяч раз меньше средств и труда, чем при извлечении энергии из угля. И ядерное горючее приходит на смену нефти и углю… Всегда было так: следующий источник энергии был и более мощным. То была, если можно так выразиться, «воинствующая» линия энергетики.

В погоне за избытком энергии человек все глубже погружался в стихийный мир природных явлений и до какой-то поры не очень задумывался о последствиях своих дел и поступков.

Но времена изменились. Сейчас, в конце 20 века, начинается новый, значительный этап земной энергетики. Появилась энергетика «щадящая». Построенная так, чтобы человек не рубил сук, на котором он сидит. Заботился об охране уже сильно поврежденной биосферы. Стали интенсивней использовать источники энергии не слишком большой мощности, но зато с высоким КПД, экологически чистые, удобные в обращении.

Яркий пример тому — быстрый старт электрохимической энергетики, которую позднее, видимо, дополнит энергетика солнечная.

Поэтому энергохимия, водородная энергетика, космические электростанции, энергия ветра и воды лишь наиболее яркие штрихи, того будущего, который пишется на наших глазах и который можно назвать Завтрашним Днем Энергетики.

Лабиринты энергетики. Таинственные переходы, узкие, извилистые тропки. Полные загадок, препятствий, неожиданных озарений, воплей печали и поражений, и радости побед.

Рассказ об энергии может быть бесконечен, неисчислимы альтернативные формы ее использования при условии, что мы должны разработать для этого эффективные и экономичные методы. Не так важно, каково ваше мнение о нуждах энергетики, об источниках энергии, ее качестве, и себестоимости. Нам, по-видимому, следует лишь согласиться с тем, что сказал ученый мудрец, имя которого осталось неизвестным: «Нет простых решений, есть только разумный выбор».

Библиография:

1. Бернштейн Л. Б. « Приливные электростанции в современной энергетике» Москва «Энергия» 2003г.

2. Евгений ХРУСТАЛЁВ «Энергия мирового океана» Энергетика и промышленность России, газета: № 6 (22) июнь 2002 года;

3. В.Володин, П.Хазановский «Энергия, век двадцать первый»

4. А.Голдин «Океаны энергии».

5. Л.С. Юдасин «Энергетика: проблемы и надежды».

www.ronl.ru


Смотрите также