МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГОПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«Рязанский государственный университет имени С.А. Есенина»
РГУ имени С.А. Есенина
«Генная инженерия, её основные методы»
Реферат
Учебный предмет: Биотехнологии
Работу выполнила:
Баконина Марина Владимировна
Специальность – 050102 Биология
ЕГФ 5 курс, ОЗО
Проверил:
__________________ доц. Сазонов В.Ф.
Рязань 2014 г.
Содержание работы:
Введение
I. Генная инженерия
II. Методы генной инженерии
III. Основные механизмы генной инженерии
IV. Достижения генной инженерии
V. Преимущества и недостатки генной инженерии
VI. Интересные факты генной инженерии
Заключение
Список используемой литературы
Введение
Одним из разделов молекулярной генетики и молекулярной биологии, который нашел наибольшее практическое приложение, является генная инженерия. Родившись в начале 70-х годов, она добилась сегодня больших успехов. Методы генной инженерии преобразуют клетки бактерий, дрожжей и млекопитающих в «фабрики» для масштабного производства любого белка. Это дает возможность детально анализировать структуру и функции белков и использовать их в качестве лекарственных средств.
Я считаю, что мой реферат актуален для нашего времени ведь по заверениям ученых демографов, в ближайшие двадцать лет население земного шара удвоится, прокормить такое количество людей будет просто невозможно. Следовательно, уже сейчас пора подумать о том, как с наименьшими потерями поднять урожайность сельхозугодий вдвое. Поскольку для обычной селекции срок в два десятилетия крайне мал, то остается механическая модификация генетического кода растений. Можно, например, добавить ген устойчивости к насекомым-вредителям или сделать растение более плодовитым. Это основной довод трансгенетиков.
Главная цель реферата - рассмотрение темы: «Генная инженерия, её основные методы».
Основные задачи реферата:
I. Генная инженерия
Генная инженерия - это сумма методов, позволяющих переносить гены из одного организма в другой, или - это технология направленного конструирования новых биологических объектов.
Генная инженерия не является наукой – это только набор инструментов, использующий современные достижения клеточной и молекулярной биологии, генетики, микробиологии и вирусологии.
Работы по изменению существующих органических форм стали возможны только после того, как в 1953 году была расшифрована молекула ДНК. Человек наконец понял сущность гена, его значение для белков, прочитал код геномов живых организмов и естественно не стал останавливаться на достигнутом. В душах людей возникло сильное желание «творить» животный и растительный мир планеты по своему усмотрению.
С поразительной настойчивостью и упорством человек стал добиваться поставленной цели и к концу первого десятилетия XXI века достиг очень многого. Он научился выделять ген из организма и синтезировать его в лабораторных условиях; освоил технологии видоизменения гена для придания ему нужной структуры; нашёл способы введения в ядро клетки преобразованного гена и присоединения его к существующим генетическим образованиям.
II. Методы генной инженерии
1. Гибридологический анализ - основной метод генетики. Он основан на использовании системы скрещивания в ряде поколений для определения характера наследования признаков и свойств.
2. Генеалогический метод заключается в использовании родословных. Для изучения закономерностей наследования признаков, в том числе наследственных болезней. Этот метод в первую очередь принимается при изучении наследственности человека и медленно плодящихся животных.
3. Цитогенетический метод служит для изучения строения хромосом, их репликации и функционирования, хромосомных перестроек и изменчивости числа хромосом. С помощью цитогенетики выявляют разные болезни и аномалии, связанные с нарушением в строении хромосом и изменение их числа.
4. Популяционно - статический метод применяется при обработке результатов скрещиваний, изучения связи между признаками, анализе генетической структуры популяций и т.д.
5. Иммуногенетический метод включают серологические методы, иммуноэлектрофорез и др., кот используют для изучения групп крови, белков и ферментов сыворотки крови тканей. С его помощью можно установить иммунологическую несовместимость, выявить иммунодефициты и т.д.
6. Онтогенетический метод используют для анализа действия и проявление генов в онтогенезе при различных условиях среды. Для изучения явлений наследственности и изменчивости используют биохимический, физиологический и другие методы.
Технология рекомбинантных ДНК использует следующие методы:
1. специфическое расщепление ДНК рестрицирующими нуклеазами, ускоряющее выделение и манипуляции с отдельными генами;
2. быстрое секвенирование всех нуклеотидов очищенном фрагменте ДНК, что позволяет определить границы гена и аминокислотную последовательность, кодируемую им;
3. конструирование рекомбинантной ДНК;
4. гибридизация нуклеиновых кислот, позволяющая выявлять специфические последовательности РНК или ДНК с большей точностью и чувствительностью;
5. клонирование ДНК: амплификация in vitro с помощью цепной полимеразной реакции или введение фрагмента ДНК в бактериальную клетку, которая после такой трансформации воспроизводит этот фрагмент в миллионах копий;
6. введение рекомбинантной ДНК в клетки или организмы.
III. Основные механизмы генной инженерии
(Технология рекомбинантной ДНК)
Суть генной инженерии сводится к следующему: биологи, зная, какой ген за что отвечает, выделяют его из ДНК одного организма и встраивают в ДНК другого. В результате можно заставить клетку синтезировать новые белки, что придает организму новые свойства.
Мы знаем, что обмен генетической информацией происходит и в природе, но только между особями одного вида. Случаи же скрещивания особей разных видов (например, собаки и волка) являются исключением.
Перенос генов от родителей к потомкам внутри одного вида называется вертикальным. Так как возникающие при этом особи, как правило, очень похожи на родителей, в природе генетический аппарат обладает высокой точностью и обеспечивает постоянство каждого вида.
Всё это стало возможно благодаря ферментам – образованиям на основе белка, отвечающим за организацию работы клетки. В частности можно назвать такие ферменты, как рестриктазы. Одна из их функций – защита клетки от инородных генов. Чужая ДНК разрезается этим надёжным стражем на отдельные части, причём существует множество различных рестриктаз, каждая из которых наносит удар в строго определённом месте.
Подобрав набор таких ферментов, можно без труда расчленять молекулу на требуемые участки. Затем необходимо их соединить, но уже по новому. Тут помогает природное свойство генетического материала воссоединяться друг с другом. Помощь в этом оказывают также ферменты лигазы, задача которых заключается именно в соединении двух молекул с образованием новой химической связи.
Непохожий ни на что гибрид создан. Представляет он собой молекулу ДНК, несущую новую генетическую информации. Такое образование в генной инженерии называют вектором. Его главная задача – передача новой программы воспроизводства намеченному для этой цели живому организму. Но ведь последний может её проигнорировать, отторгнуть и руководствоваться только родными генетическими программами.
Такое невозможно, благодаря явлению, которое носит название трансформация у бактерий и трансфекция у человека и животных. Суть его заключается в том, что если клетка организма поглотила свободную молекулу ДНК из окружающей среды, то она всегда встраивает её в геном. Это влечёт за собой появление у такой клетки новых наследственных признаков, запрограммированных в поглощённую ДНК.
Поэтому, чтобы новая генетическая программа начала работать, необходимо только одно, – чтобы она оказалась в нужной клетке. Это сделать не просто, так как такое сложное образование, как клетка, имеет множество защитных механизмов, препятствующих проникновению в неё чужеродных объектов.
Любые преграды можно обойти. Для начала маленькие – к примеру, введение чужеродных генов в бактерии. Здесь, в качестве вектора, вполне можно использовать плазмиду – кольцевую молекула ДНК малых размеров, располагающуюся в клетках вне хромосом и несущую дополнительные половые признаки. Бактерии постоянно обмениваются плазмидами, поэтому не составляет никакого труда перепрограммировать указанную молекулу и направить в клетку.
Значительно более трудно ввести готовый ген в наследственный аппарат клеток растений и животных. Здесь на помощь приходят вирусы – генетические элементы, одетые в белковую оболочку и способные переходить из одной клетки в другую. Для такой работы прекрасно подходят молекулы ДНК вирусов – фаги. Их «переделывают» под нужные параметры и включают в генетический аппарат животного или растительного организма.
Всё, дело сделано. Внедрённый генетический код начинает работать. Иногда бывают сбои, если часть генов новой ДНК окажутся «молчащими». Таких много в каждом организме. У одних живых существ они прекрасно функционируют, у других же не проявляют себя никак.
Накладки и недоработки учитываются и тщательно анализируются. Непрерывно идут работы, изучающие различные комбинации генов: удаление части их из молекулы или наоборот – добавление составляющих, совсем не свойственных данному живому организму.
Горизонтальный перенос генов у прокариот – это не просто лабораторный результат генной инженерии, а распространенное природное явление.
Установлены три основных механизма латерального переноса: трансформация, коньюгация и трансдукция.
1. Трансформация – это нормальная физиологическая функция обмена генетическим материалом у некоторых бактерий.
2. Конъюгация имеет наименьшее число ограничений для межвидового обмена генетической информацией, но предполагает тесный физический контакт между микроорганизмами, легче всего достижимый в биопленках.
3. Трансдукция (от лат. transductio – перемещение) – это перенос генетического материала из одной клетки в другую с помощью некоторых вирусов (бактериофагов), что приводит к изменению наследственных свойств клетки реципиента.
К наиболее опасным заболеваниям, вызываемым вирусами у животных и человека, относят бешенство, оспу, грипп, полиомиелит, СПИД, гепатит и др. Вирусы обладают вирулентность – это степень болезнетворного действия микроба. Ее можно рассматривать как способность адаптироваться к организму хозяина и преодолевать его защитные механизмы.
IV. Достижения генной инженерии
В наши дни успехи и достижения видны невооружённым глазом. Если рассмотреть такую сферу человеческой деятельности, как сельское хозяйство, то здесь генная инженерия добилась самых впечатляющих результатов.
С начала 80-х годов получено множество геномодифицированных сортов зерновых культур. На конец первого десятилетия XXI века ими засеяно 120 млн. га. земельных угодий по всему миру. Отмечен высочайший уровень урожайности, его потрясающая устойчивость к неблагоприятным климатическим условиям и полное отсутствие паразитов, пожирающих необходимые для людей злаки.
Выведены невиданные раньше сорта картофеля, кукурузы, сои, риса, рапса, огурцов.
Генная инженерия может скрещивать помидоры с картошкой, огурцы с луком, виноград с арбузами – возможности здесь просто потрясающие. Размеры и аппетитный свежий вид полученного продукта могут приятно удивить любого.
Скоро слова инсектициды, акарициды, пестициды будут надёжно забыты, так как внедрённые в растительную клетку овоща, фрукта или зерновой культуры молекулы ДНК, определённых видов бактерий, уничтожат и колорадского жука, и хлопковую совку, и листовёртку, и многих-многих других вредителей сельскохозяйственных угодий.
Животноводство также находится в зоне интересов генной инженерии. Исследования по созданию трансгенных овец, свиней, коров, кроликов, уток, гусей, кур считаются в наши дни приоритетными. Здесь большое внимание уделяется именно животным, которые вполне могли бы синтезировать различные лекарственные препараты: инсулин, гормоны, интерферон, аминокислоты.
Значительный прогресс достигнут в практической области создания новых продуктов для медицинской промышленности и лечения болезней человека. В настоящее время фармацевтическая промышленность завоевала лидирующие позиции в мире, что нашло отражение не только в объёмах промышленного производства, но и в финансовых средствах, вкладываемых в эту промышленность.
В настоящее время кишечная палочка (E. coli) стала поставщиком таких важных гормонов как инсулин и соматотропин.
Ранее инсулин получали из клеток поджелудочной железы животных, поэтому стоимость его была очень высока. Для получения 100г кристаллического инсулина требуется 800-1000кг поджелудочной железы, а одна железа коровы весит 200-250грамм. Это делало инсулин дорогим и труднодоступным для широкого круга диабетиков.
Компания "Genentec" в 1980 году разработала технологию производства соматотропина с помощью бактерий. В 1982 году гормон роста человека был получен в культуре E. coli и животных клеток в институте Пастера во Франции, а с 1984 года начато промышленное производство инсулина и в СССР.
V. Преимущества и недостатки генной инженерии
Преимущества генной инженерии:
А) С помощью генной инженерии можно увеличить в генетически измененной продукции содержание полезных веществ и витаминов по сравнению с «чистыми» сортами. Например, можно «вставить» витамин А в рис, с тем чтобы выращивать его в регионах, где люди испытывают его нехватку.
Б) Можно существенно расширить ареалы посева сельхозпродуктов, приспособив их к экстремальным условиям, таким, как засуха и холод.
В) Путем генетической модификации растений можно существенно уменьшить интенсивность обработки полей пестицидами и гербицидами. Ярким примером здесь является уже состоявшееся внедрение в геном кукурузы гена земляной бактерии Bacillus thuringiensis, уже снабжающего растение собственной защитой, так называемым Bt-токсином, и делающего по замыслу генетиков дополнительную обработку бессмысленной.
Г) Генетически измененным продуктам могут быть приданы лечебные свойства. Ученым уже удалось создать банан с содержанием анальгина и салат, вырабатывающий вакцину против гепатита B.
Д) Еда из генетически измененных растений может быть дешевле и вкуснее.
Е) Модифицированные виды помогут решить и некоторые экологические проблемы. Конструируются растения, эффективно поглощающие цинк, кобальт, кадмий, никель и прочие металлы из загрязненных промышленными отходами почв.
Ё) Генная инженерия позволит улучшить качество жизни, очень вероятно - существенно продлить её; есть надежда найти гены, ответственные за старение организма и реконструировать их.
Недостатки генной инженерии:
В настоящее время генная инженерия технически несовершенна, так как она не в состоянии управлять процессом встраивания нового гена. Выведение генетически модифицированных видов растений и животных представляет определенную опасность, обусловленную непредсказуемостью их развития и поведения в естественной среде.
Экологические риски: 1) появление супервредителей; 2) нарушение природного баланса; 3) выход трансгенов из-под контроля.
Медицинские риски: 1) Повышенная аллергеноопасность; 2) Возможная токсичность и опасность для здоровья; 3) Устойчивость к действиям антибиотиков; 4) могут возникнуть новые и опасные вирусы.
Социально - экономических причин по которым генетически измененные растения считаются опасными:
1. они представляют угрозу для выживания миллионов мелких фермеров.
2. Они сосредоточат контроль над мировыми пищевыми ресурсами в руках небольшой группы людей. Всего десять компаний могут контролировать 85% глобального агрохимического рынка.
3. Они лишат западных потребителей свободы выбора в приобретении продуктов.
VI. Интересные факты генной инженерии
1. Факт. В 2005 году на биотехнологические продукцию и услуги в области ветеринарии в США планировалось потратить более 5 млрд. долларов. По данным Департамента сельского хозяйства США (USDA), на различные виды биотехнологической продукции для животных выдано 105 лицензий. Это – ветеринарные вакцины, биопрепараты и средства диагностики.
2. Факт. Первые живые существа, полученные с помощью генной инженерии – декоративные рыбки GloFish – появились на рынке в январе 2004 года. В них вживили ген морского анемона, и если наблюдать за этими рыбками в темноте, они флюоресцируют ярким красным светом.
3. Факт. Домашние животные, такие, как собаки и кошки, получают немало пользы от произведенных с помощью биотехнологии вакцин и диагностических наборов.
4. Факт. Проведенные исследования показали, что животные - клоны едят, пьют и ведут себя абсолютно также, как и обычные животные.
5. Факт. Успешно были клонированы, по крайней мере, три вида исчезающих животных: европейский муфлон и дикие быки гаур и бантенг. Клонированного бантенга вы можете увидеть в зоопарке города Сан-Диего, Калифорния.
6. Факт. В 1984 году в одной из американских клиник пациенту вживили сердце бабуина, которое проработало в течение 20 дней. Сегодня врачи регулярно используют сердечные клапаны свиней для пересадки их человеку, а также пересаживают кожу этих животных людям, пострадавшим от ожогов. Несколько групп исследователей в разных странах работают над созданием генетически модифицированных свиней, органы которых при пересадке человеку не будут отторгаться его иммунной системой.
7. Факт. Животные, выращенные с помощью биотехнологии, если и отличаются от обычных животных, то в лучшую сторону: клонирование и генная инженерия – это всего лишь еще один инструмент для выведения новых пород, а этим люди тысячи лет занимались неосознанно и около ста лет – на основе данных генетики. Ученые и технический персонал заботятся об экспериментальных животных куда лучше, чем фермер – о своем стаде обычных животных.
8. Факт. Несколько групп ученых в разных странах исследовали мясо и молоко клонированных животных по сотне показателей и не нашли отличий от мяса и молока животных, зачатых обычным путем.
9. Факт. Действительно, при клонировании или получении генетически модифицированных животных многие эмбрионы оказываются нежизнеспособными, а смертность при родах – выше, чем при обычном разведении животных.
10. Факт. В целом состояние здоровья клонов и традиционных животных не отличаются – это доказали десятилетние исследования, проведенные в том числе Национальной академией наук США.
11. Факт. За животными - клонами и за животными, которых используют в генной инженерии, ухаживают, как показывают наблюдения ветеринаров, с особой заботой.
12. Факт. В действительности Долли прожила даже дольше, чем обычно живут овцы, и умерла в преклонном возрасте из-за развития артрита. Смерть наступила из-за обычной старости, и это никак не связанно с тем, что она была клонирована.
Заключение
Под генной (генетической) инженерией подразумевают целый комплекс технологий, методов, процессов, посредством которых получают рекомбинантные (созданные благодаря биотехнологии на основе ДНК) РНК и ДНК, а также гены из клеток организмов, осуществляют различные
В 70-е годы XX века создана техника выделения гена из ДНК, а также методика размножения нужного гена. В результате этого возникла генная инженерия. Внедрение в живой организм чужеродной генетической информации и приемы, заставляющие организм эту информацию реализовывать, составляют одно из самых перспективных направлений в развитии биотехнологии. С помощью современных биотехнологий удалось получить ряд лекарств (интерферон, инсулин сыворотка против гипотита и др.) Объектом биотехнологии выступает сегодня не только отдельный ген, но и клетка в целом.
Генная инженерия позволила создать точную копию конкретного организма - клона. Клонированные органы - это спасение для людей, попавших в автомобильные аварии или иные катастрофы, а также нуждающихся в радикальной помощи из - за каких - либо заболеваний. Клонирование может дать возможность бездетным людям иметь своих собственных детей, поможет людям, страдающим тяжелыми генетическими заболеваниями. Более скромная, но не менее важная задача клонирования - регуляция пола сельскохозяйственных животных, а также клонирование в них человеческих генов "терапевтических белков", которые используются для лечения людей, например гемофиликов, у которых мутировал ген, кодирующий белок, участвующий в процессе свертывания крови.
За короткий срок генная инженерия оказала огромное влияние на развитие молекулярно-генетических методов и позволила существенно продвинуться по пути познания строения и функционирования генетического аппарата, а также генная инженерия обратили внимание человечества на необходимость общественного контроля за всем, что происходит в науке.
Вывод:
Судя по тому, каких успехов добилась генная инженерия за сравнительно небольшой период времени – это не вызывает никакого сомнения. Наоборот, возникает непреклонная убеждённость, что в ближайшие двадцать лет мир изменится до неузнаваемости. Уже сейчас созданы совершеннейшие сложнейшие технологии, кардинально преобразующие жизнь человеческой цивилизации. Гордость, восхищение, восторг – только такими синонимами можно выразить всю гамму чувств.
Список использованной литературы:
1. Бекиш О. - Я.Л. Медицинская биология. - Мн.: Ураджай, 2000. - с.114-119.
2. Горелов. Концепции современного естествознания. - Москва, 2007
3. Жигалов Ю.И. Концепции современного естествознания - М.: Гелиос АРВ, 2002.
4. Заяц Р.С. Основы медицинской генетики. - Мн.: Высшая школа, 1998. - с. 60-65.
5. Мутовин Г.Р. Основы клинической генетики. - М.: Высшая школа, 1997. - с. 83-84.
6. Биология и медицина [Электронный ресурс] // Методы генной инженерии, [сайт]. URL: http:// medbiol.ru›medbiol/biology_sk/00032f3b.htm (дата обращения: 14.10.2014).
7. Генная инженерия [Электронный ресурс] // Интересные факты, [сайт]. URL: http:// biochemi.ru›chems-466-1.html (дата обращения: 14.10.2014).
8. Генная инженерия [Электронный ресурс] // Основные механизмы генной инженерии Технология рекомбинантной ДНК, [сайт]. URL: http://galaxy797.net›htech/nano/6/12.htm (дата обращения: 15.10.2014).
nsportal.ru
Генная инженерия — это метод биотехнологии, который занимается исследованиями по перестройке генотипов. Генотип является не просто механической суммой генов, а сложной, сложившейся в процессе эволюции организмов системой. Генная инженерия позволяет путем операций в пробирке переносить генетическую информацию из одного организма в другой. Перенос генов дает возможность преодолевать межвидовые барьеры и передавать отдельные наследственные признаки одних организмов другим. Носителями материальных основ генов служат хромосомы, в состав которых входят ДНК и белки. Но гены образования не химические, а функциональные. С функциональной точки зрения ДНК состоит из множества блоков, хранящих определенный объем информации — генов. В основе действия гена лежит его способность посредством РНК определять синтез белков. В молекуле ДНК как бы записана информация, определяющая химическую структуру белковых молекул. Ген — участок молекулы ДНК, в котором находится информация о первичной структуре какого-либо одного белка (один ген — один белок). Поскольку в организмах присутствуют десятки тысяч белков, существуют и десятки тысяч генов. Совокупность всех генов клетки составляет ее геном. Все клетки организма содержат одинаковый набор генов, но в каждой из них реализуется различная часть хранимой информации. Поэтому, например, нервные клетки и по структурно-функциональным, и по биологическим особенностям отличаются от клеток печени. Перестройка генотипов при выполнении задач генной инженерии представляет собой качественные изменения генов, не связанные с видимыми в микроскопе изменениями строения хромосом. Изменения генов связаны с преобразованием химической структуры ДНК. Информация о структуре белка, записанная в виде последовательности нуклеотидов, реализуется в виде последовательности аминокислот в синтезируемой молекуле белка. Изменение последовательности нуклеотидов в хромосомной ДНК, выпадение одних и включение других нуклеотидов меняют состав образующихся на ДНК молекулы РНК, а это, в свою очередь, обусловливает новую последовательность аминокислот при синтезе. В результате в клетке начинает синтезироваться новый белок, что приводит к появлению у организма новых свойств. Сущность методов генной инженерии заключается в том, что в генотип организма встраиваются или исключаются из него отдельные гены или группы генов. В результате встраивания в генотип ранее отсутствующего гена можно заставить клетку синтезировать белки, которые ранее она не синтезировала. Наиболее распространенным методом генной инженерии является метод получения рекомбинантных, т. е. содержащих чужеродный ген, плазмид. Плазмиды представляют собой кольцевые двухцепочные молекулы ДНК, состоящие из нескольких тысяч пар нуклеотидов. Этот процесс состоит из нескольких этапов:· Рестрикция — разрезание ДНК на фрагменты. · Лигирование — фрагмент с нужным геном включают в плазмиды и сшивают их. · Трансформация — введение рекомбинантных плазмид в бактериальные клетки. Трансформированные бактерии при этом приобретают определенные свойства. Каждая из трансформированных бактерий размножается и образует колонию из многих тысяч потомков — клон. · Скрининг — отбор среди клонов трансформированных бактерий тех, которые содержат плазмиды, несущие нужный ген. Весь этот процесс называется клонированием. С помощью клонирования можно получить более миллиона копий любого фрагмента ДНК человека или другого организма. Если клонированный фрагмент кодирует белок, то экспериментально можно изучить механизм, регулирующий транскрипцию этого гена, а также наработать этот белок в нужном количестве. Кроме того, клонированный фрагмент ДНК одного организма можно ввести в клетки другого организма. Этим можно добиться, например, высоких и устойчивых урожаев благодаря введенному гену, обеспечивающему устойчивость к ряду болезней. Если ввести в генотип почвенных бактерий гены других бактерий, обладающих способностью связывать атмосферный азот, то почвенные бактерии смогут переводить этот азот в связанный азот почвы. Введя в генотип бактерии кишечной палочки ген из генотипа человека, контролирующий синтез инсулина, ученые добились получения инсулина посредством такой кишечной палочки. При дальнейшем развитии науки станет возможным введение в зародыш человека недостающих генов, что позволит избежать генетических болезней. Эксперименты по клонированию животных ведутся давно. Достаточно убрать из яйцеклетки ядро, имплантировать в нее ядро другой клетки, взятой из эмбриональной ткани, и вырастить ее — либо в пробирке, либо в чреве приемной матери. Знаменитая клонированная овечка была создана нетрадиционным путем. Ядро из клетки вымени 6-летней взрослой овцы одной породы пересадили в безъядерное яйцо овцы другой породы. Развивающийся зародыш поместили в овцу третей породы. Так как родившаяся овечка получила все гены от первой овцы — донора, то является ее точной генетической копией. Этот эксперимент открывает массу новых возможностей для клонирования элитных пород вместо многолетней селекции. Ученые Техасского университета смогли продлить жизнь нескольких типов человеческих клеток. Обычно клетка умирает, пережив около 7 – 10 процессов деления, а они добились результатов, в 10 раз превышающих обычные показатели. Старение, по мнению ученых, происходит из-за того, что клетки при каждом делении теряют теломеры — молекулярные структуры, которые располагаются на концах всех хромосом. Ученые имплантировали в клетки открытый ими ген, отвечающий за выработку теломеразы, сделав их тем самым бессмертными. Возможно, это будущий путь к бессмертию. Еще с 80-х годов появились программы по изучению генома человека. В процессе выполнения этих программ уже прочитано около 5 тысяч генов (полный геном человека содержит 50 – 100 тысяч). Обнаружен ряд новых генов человека. Генная инженерия приобретает все большее значение в генотерапии, потому что многие болезни заложены на генетическом уровне. Именно в геноме заложена предрасположенность ко многим болезням или стойкость к ним. Многие ученые считают, что в XXI веке будет функционировать геномная медицина и генная инженерия.
генетическая инженерия реферат
селекция реферат
достижения генной инженерии
биотехнология реферат
Следующая > |
www.medportal.gomel.by
Введение
В своей работе я раскрываю тему генной инженерии. Возможности, открываемые генетической инженерией перед человечеством, как в области фундаментальной науки, так и во многих других областях, весьма велики и нередко даже революционны.
Так, она позволяет осуществлять индустриальное массовое производство нужных белков, значительно облегчает технологические процессы для получения продуктов ферментации — энзимов и аминокислот, в будущем может применяться для улучшения растений и животных, а также для лечения наследственных болезней человека.
Таким образом, генная инженерия, будучи одними из магистральных направлений научно-технического прогресса, активно способствует ускорению решения многих задач, таких, как продовольственная, сельскохозяйственная, энергетическая, экологическая.
Но особенно большие возможности генная инженерия открывает перед медициной и фармацевтикой, поскольку применение генной инженерии может привести к коренным преобразованиям медицины.
Многие болезни, для которых в настоящее время не существует адекватных методов диагностики и лечения (раковые, сердечнососудистые, вирусные и паразитные инфекции, нервные и умственные расстройства), с помощью генной инженерии и биотехнологии станут доступны и диагностике, и лечению.
1. Сущность генетической инженерии.
1.1. История генной инженерии.
Генная инженерия появилась благодаря работам многих исследователей в разных отраслях биохимии и молекулярной генетики.
На протяжении многих лет главным классом макромолекул считали белки. Существовало даже предположение, что гены имеют белковую природу.
Лишь в 1944 году Эйвери, Мак Леод и Мак Карти показали, что носителем наследственной информации является ДНК.
С этого времени начинается интенсивное изучение нуклеиновых кислот. Спустя десятилетие, в 1953 году Дж. Уотсон и Ф. Крик создали двуспиральную модель ДНК. Именно этот год принято считать годом рождения молекулярной биологии.
На рубеже 50-60-х годов были выяснены свойства генетического кода, а к концу 60-х годов его универсальность была подтверждена экспериментально.
Шло интенсивное развитие молекулярной генетики, объектами которой стали кишечная палочка (E. Coli), ее вирусы и плазмиды.
Были разработаны методы выделения высокоочищенных препаратов неповрежденных молекул ДНК, плазмид и вирусов.
ДНК вирусов и плазмид вводили в клетки в биологически активной форме, обеспечивая ее репликацию и экспрессию соответствующих генов.
В 70-х годах был открыт ряд ферментов, катализирующих реакции превращения ДНК. Особая роль в развитии методов генной инженерии принадлежит рестриктазам и ДНК-лигазам.
Историю развития генетической инженерии можно условно разделить на три этапа:
Первый этап связан с доказательством принципиальной возможности получения рекомбинантных молекул ДНК in vitro. Эти работы касаются получения гибридов между различными плазмидами. Была доказана возможность создания рекомбинантных молекул с использованием исходных молекул ДНК из различных видов и штаммов бактерий, их жизнеспособность, стабильность и функционирование.
Второй этап связан с началом работ по получению рекомбинантных молекул ДНК между хромосомными генами прокариот и различными плазмидами, доказательством их стабильности и жизнеспособности.
Третий этап — начало работ по включению в векторные молекулы ДНК (ДНК, используемые для переноса генов и способные встраиваться в генетический аппарат клетки-реципиента) генов эукариот, главным образом, животных.
Формально датой рождения генетической инженерии следует считать 1972 год, когда в Стенфордском университете П. Берг и С. Коэн с сотрудниками создали первую рекомбинантную ДНК, содержавшую фрагменты ДНК вируса SV40, бактериофага и E. coli.
1.2. Понятие о генной инженерии
Одним из разделов молекулярной генетики и молекулярной биологии, который нашел наибольшее практическое приложение, является генная инженерия.
Генная инженерия – это сумма методов, позволяющих переносить гены из одного организма в другой, или – это технология направленного конструирования новых биологических объектов.
Родившись в начале 70-х годов, она добилась сегодня больших успехов. Методы генной инженерии преобразуют клетки бактерий, дрожжей и млекопитающих в «фабрики» для масштабного производства любого белка.
Это дает возможность детально анализировать структуру и функции белков и использовать их в качестве лекарственных средств.
В настоящее время кишечная палочка (E. coli) стала поставщиком таких важных гормонов как инсулин и соматотропин.
Ранее инсулин получали из клеток поджелудочной железы животных, поэтому стоимость его была очень высока. Для получения 100г кристаллического инсулина требуется 800-1000кг поджелудочной железы, а одна железа коровы весит 200-250грамм. Это делало инсулин дорогим и труднодоступным для широкого круга диабетиков.
Инсулин состоит из двух полипептидных цепей А и В длиной 20 и 30 аминокислот. При соединении их дисульфидными связями образуется нативный двухцепочечный инсулин.
Было показано, что он не содержит белков E. coli, эндотоксинов и других примесей, не дает побочных эффектов, как инсулин животных, а по биологической активности от него не отличается.
Соматотропин — гормон роста человека, секретируемый гипофизом. Недостаток этого гормона приводит к гипофизарной карликовости. Если вводить соматотропин в дозах 10 мг на 1 кг веса три раза в неделю, то за год ребенок, страдающий от его недостатка, может подрасти на 6 см.
Ранее его получали из трупного материала, из одного трупа: 4 — 6 мг соматотропина в пересчете на конечный фармацевтический препарат. Таким образом, доступные количества гормона были ограничены, кроме того, гормон, получаемый этим способом, был неоднороден и мог содержать медленно развивающиеся вирусы.
Компания «Genentec» в 1980 году разработала технологию производства соматотропина с помощью бактерий, который был лишен перечисленных недостатков. В 1982 году гормон роста человека был получен в культуре E. coli и животных клеток в институте Пастера во Франции, а с 1984 года начато промышленное производство инсулина и в СССР.
1.3. Цели и задачи генной инженерии
Цель прикладной генетической инженерии заключается в конструировании таких рекомбинантных молекул ДНК, которые при внедрении в генетический аппарат придавали бы организму свойства, полезные для человека.
На технологии рекомбинантных ДНК основано получение высокоспецифичных ДНК-зондов, с помощью которых изучают экспрессию генов в тканях, локализацию генов в хромосомах, выявляют гены, обладающие родственными функциями (например, у человека и курицы). ДНК-зонды также используются в диагностике различных заболеваний.
Технология рекомбинантных ДНК сделала возможным нетрадиционный подход «белок-ген», получивший название «обратная генетика». При таком подходе из клетки выделяют белок, клонируют ген этого белка, модифицируют его, создавая мутантный ген, кодирующий измененную форму белка. Полученный ген вводят в клетку. Таким способом можно исправлять дефектные гены и лечить наследственные заболевания.
Если гибридную ДНК ввести в оплодотворенное яйцеклетку, могут быть получены трансгенные организмы, передающие мутантный ген потомками.
Генетическая трансформация животных позволяет установить роль отдельных генов и их белковых продуктов как в регуляции активности других генов, так и при различных патологических процессах.
Технология рекомбинантных ДНК использует следующие методы:
·специфическое расщепление ДНК рестрицирующими нуклеазами, ускоряющее выделение и манипуляции с отдельными генами;
·быстрое секвенирование всех нуклеотидов очищенном фрагменте ДНК, что позволяет определить границы гена и аминокислотную последовательность, кодируемую им;
·конструирование рекомбинантной ДНК;
·гибридизация нуклеиновых кислот, позволяющая выявлять специфические последовательности РНК или ДНК с большей точностью и чувствительностью;
·клонирование ДНК: амплификация in vitro с помощью цепной полимеразной реакции или введение фрагмента ДНК в бактериальную клетку, которая после такой трансформации воспроизводит этот фрагмент в миллионах копий;
·введение рекомбинантной ДНК в клетки или организмы.
2. Этапы создания организмов с генетически измененной программой.
2.1. Выделение генов, содержащих необходимую информацию.
Получение генов возможно несколькими путями: выделением из ДНК, химико-ферментным синтезом и ферментным синтезом.
Выделение генов из ДНК проводят с помощью рестриктаз, катализирующих расщепление ДНК на участках, имеющих определенные нуклеотидные последовательности (4–7 нуклеотидных пар). Расщепление можно проводить по середине узнаваемого участка нуклеотидных пар; при этом обе нити ДНК «разрезаются» на одном уровне. Образующиеся фрагменты ДНК имеют так называемые «тупые» концы. Возможно расщепление ДНК со сдвигом, при этом одна из нитей выступает на несколько нуклеотидов. Образуемые при этом «липкие» концы в силу своей комплементарности вступают во взаимодействие. Нуклеотидную последовательность с липкими концами можно присоединить к вектору (предварительно обработанному той же рестриктазой), Превратить в кольцевую в результате сшивания лигазами взаимно комплиментарных концов. Метод имеет существенные недостатки, так как достаточно трудно подобрать действие ферментов для строгого вычленения нужного гена. Вместе с геном захватываются «лишние» нуклеотиды или, наоборот, ферменты отрезают часть гена, превращая его в функционально неполноценный.
Химико-ферментный синтез применяют в том случае, если известна первичная структура белка или пептида, синтез которого кодирует ген. Необходимо полное знание нуклеотидной последовательности гена. Этот метод позволяет точно воссоздать нужную последовательность нуклеотидов, а также вводить в гены участки узнавания рестриктаз, регуляторных последовательностей и пр. Метод состоит из химического синтеза одно цепочечных фрагментов ДНК (олигонуклеотидов) за счет поэтапного образования эфирных связей между нуклеотидами, обычно 8–16-звенных. В настоящее время существуют «генные машины», которые под контролем микропроцессора очень быстро синтезируют специфические короткие последовательности одноцепочечной ДНК
Нужная последовательность оснований вводится на клавишный пульт управления. Микропроцессор открывает клапаны, через которые с помощью насоса в синтезирующую колонку последовательно поступают нукеотиды, а также необходимые реагенты и растворители. Колонка наполена бусинками кремния, на которых собираются молекулы ДНК. В данном устройстве возможен синтез цепей длиной до 40 нуклеотидов со скростью 1 нуклеотид за 30 минут. Полученные олигонуклеотиды с помощью ДНК-лигазы сшиваются между собой с образованием двуцепочечного нуклеотида. С помощью данного метода были получены гены А- и В-цепей инсулина, проинсулина, соматостатина и др.
Ферментный синтез гена на основе выделенной матричной РНК(мРНК) является в настоящее время наиболее распространенным методом. Сначала из клеток выделяют матричные РНК, среди которых присуттвует мРНК, кодируемая геном, который требуется выделить. Затем в одобранных условиях на выделенной из клетки мРНК, как на матрице, с помощью обратной транскриптазы (ревертазы) синтезируется нить ДНК, комплиментарная мРНК (кДНК). Полученная комплиментарная ДНК (кДНК) служит матрицей для синтеза второй нити ДНК с использованием ДНК-полимеразы или ревертазы. Затравкой при этом служит олигонуклеотид, комплиментарный 3’-концу мРНК; новая цепь ДНК образуется из дезоксинуклеозидтрифосфатов в присутствии ионов магния.
Метод с большим успехом применен для получения в 1979 г. гена гормона роста человека (соматотропина). Полученный тем или иным способом ген содержит информацию о структуре белка, но сам не может ее реализовать. Поэтому нужны дополнительные механизмы для управления действием гена. Перенос генетической информации в клетку реципиента осуществляется в составе вектора. Вектор – это, как правило, кольцевая молекула ДНК, способная к самостоятельной репликации. Ген вместе с вектором образует рекомбинантную ДНК.
2.2. Подбор векторов (вирусы, плазмиды), способных к самостоятельной репликации в клетке реципиента.
Под понятием «вектор» понимается молекула нуклеиновой кислоты, способная после введения в клетку к автономному существованию за счет наличия в ней сигналов репликации и транскрипции.
Векторные молекулы должны обладать следующими свойствами:
1) способностью автономно реплицироваться в клстке-реципиенте, то есть быть самостоятельным репликоном;
2) содержать один или несколько маркерных генов, благодаря экспрессии которых у клетки-реципиента появляются новые признаки, позволяющие отличить трансформированные клетки от исходных;
3) содержать по одному или, самое большее, по два участка (сайта) для различных рестриктаз в разных районах (в том числе в составе маркерных генов), но не в области, ответственной за их репликацию.
В зависимости от целей эксперимента векторы можно условно разделить на две группы: 1) используемые для клонирования и амплификации нужного гена; 2) специализированные, применяемые для экспрессии встроенных чужеродных генов. Вторая группа векторов объединяет векторы, призванные обеспечить синтез белковых продуктов клонированных генов. Векторы для экспрессии содержат последовательности ДНК, которые необходимы для транскрипции клонированных копий генов и трансляции их мРНК в штаммах клеток.
В качестве прокариотических векторов используются плазмиды, бактериофаги; в качестве эукариотических векторов применяют вирусы животных и растений, векторы на основе 2 мкм дрожжей и митохондрий и ряд искусственно сконструированных векторов, способных реплицироваться как в бактериальных, так и в эукариотических клетках (челночные векторы).
Плазмиды — это внехромосомные генетические элементы про- и эукариот, которые автономно реплицируются в клетках. Большинство плазмидных векторов получено на основе природных плазмид ColE1, pMB1 и p15A.
Бактериальные плазмиды делят на два класса. Одни плазмиды (например, хорошо изученный фактор F, определяющий пол у E.coli) сами способны переходить из клетки в клетку, другие такой способностью не обладают. По ряду причин, и прежде всего для предотвращения неконтролируемого распространения потенциально опасного генетического материала, подавляющее большинство бактериальных плазмидных векторов создано на базе плазмид второго класса. Многие природные плазмиды уже содержат гены, определяющие устойчивость клеток к антибиотикам (продукты этих генов — ферменты, модифицирующие или расщепляющие антибиотические вещества). Кроме того, в эти плазмиды при конструировании векторов вводятся дополнительные гены, определяющие устойчивость к другим антибиотикам.
На рис. 1 показан один из самых распространенных плазмидных векторов E.coli — pBR322. Он сконструирован на базе детально изученной плазмиды E.coli — колициногенного фактора ColE1 — и содержит ориджин репликации этой плазмиды. Особенность плазмиды ColE1 (и pBR322 соответственно) состоит в том, что в присутствии ингибитора синтеза белка антибиотика хлорамфеникола (опосредованно ингибирующего репликацию хозяйской хромосомы) ее число в E.coli возрастает от 20-50 до 1000 молекул на клетку, что позволяет получать большие количества клонируемого гена. При конструировании вектора pBR322 из исходных плазмид был делегирован целый ряд «лишних» сайтов для рестриктаз.
В настоящее время наряду с множеством удобных векторных систем для E.coli сконструированы плазмидные векторы для ряда других грамотрицательных бактерий (в том числе таких промышленно важных, как Pseudomonas, Rhizobium и Azotobacter), грамположительных бактерий (Bacillus), низших грибов (дрожжи) и растений.
Плазмидные векторы удобны для клонирования относительно небольших фрагментов (до 10 тыс. пар оснований) геномов небольших размеров. Если же требуется получить клонотеку (или библиотеку) генов высших растений и животных, общая длина генома которых достигает огромных размеров, то обычные плазмидные векторы для этих целей непригодны. Проблему создания библиотек генов для высших эукариот удалось решить с использованием в качестве клонирующих векторов производных бактериофага l.
Среди фаговых векторов наиболее удобные системы были созданы на базе геномов бактериофагов l и М13 E.coli. ДНК этих фагов содержит протяженные области, которые можно делегировать или заменить на чужеродную ДНК, не затрагивая их способности реплицироваться в клетках E.coli. При конструировании семейства векторов на базе ДНК l фага из нее сначала (путем делений коротких участков ДНК) были удалены многие сайты рестрикции из области, не существенной для репликации ДНК, и оставлены такие сайты в области, предназначенной для встраивания чужеродной ДНК. В эту же область часто встраивают маркерные гены, позволяющие отличить рекомбинантную ДНК от исходного вектора. Такие векторы широко используются для получения «библиотек генов». Размеры замещаемого фрагмента фаговой ДНК и соответственно встраиваемого участка чужеродной ДНК ограничены 15-17 тыс. нуклеотидных остатков, так как рекомбинантный фаго — вый геном, который на 10% больше или на 75% меньше генома дикого l фага, уже не может быть упакован в фаговые частицы.
Рисунок 1. Детальная рестрикционная карта плазмиды pBR322.
Таких ограничений теоретически не существует для векторов, сконструированных на базе нитчатого бактериофага М13. Описаны случаи, когда в геном этого фага была встроена чужеродная ДНК длиной около 40 тыс. нуклеотидных остатков. Известно, однако, что фаг М13 становится нестабильным, когда длина чужеродной ДНК превышает 5 тыс. нуклеотидных остатков. Фактически же векторы, полученные из ДНК фага М13, используются главным образом для секвенирования и мутагенеза генов, и размеры встраиваемых в них фрагментов намного меньше.
Эти векторы конструируются из реплекативной (двутяжевой) формы ДНК фага М13, в которую встроены «полилинкерные» участки (пример такой конструкции показан на рис. 5). В фаговую частицу ДНК включается в виде однотяжевой молекулы. Таким образом, этот вектор позволяет получать клонированный ген или его фрагмент как в двутяжевой, так и в однотяжевой форме. Однотяжевые формы рекомбинантных ДНК широко используются в настоящее время при определении нуклеотидной последовательности ДНК методом Сэнгера и для олигодезоксинуклеотид-направленного мутагенеза генов.
Перенос чужеродных генов в клетки животных осуществляется с помощью векторов, полученных из ДНК ряда хорошо изученных вирусов животных — SV40, некоторых аденовирусов, вируса папиломы быка, вируса оспы и так далее. Конструирование этих векторов проводится по стандартной схеме: удаление «лишних» сайтов для рестриктаз, введение маркерных генов в области ДНК, не существенные для ее репликации (например, гена тимидин-киназы (tk) из HSV (вируса герпеса)), введение регуляторных районов, повышающих уровень экспрессии генов.
Удобными оказались так называемые «челночные векторы», способные реплицироваться как в клетках животных, так и в клетках бактерий. Их получают, сшивая друг с другом большие сегменты векторов животных и бактерий (например, SV40 и pBR322) так, чтобы районы, ответственные за репликацию ДНК, остались незатронутыми. Это позволяет проводить основные операции по конструированию вектора в бактериальной клетке (что технически намного проще), а затем полученную рекомбинантную ДНК использовать для клонирования генов в животной клетке.
Рисунок 2. Рестрикционная карта вектора М13 mp8.
2.3. Получение рекомбинантной ДНК.
Суть конструирования рекомбинантных ДНК заключается во встраивании фрагментов ДНК, среди которых находится интересующий нас участок ДНК, в так называемые векторные молекулы ДНК (или просто векторы) — плазмидные или вирусные ДНК, которые могут быть перенесены в клетки про- или эукариот и там автономно репли-цироваться. На следующем этапе проводится отбор тех клеток, которые несут в себе рекомбинантные ДНК (с помощью маркерных признаков, которыми обладает сам вектор), и затем индивидуальных клонов с интересующим нас сегментом ДНК (используя признаки или пробы, специфичные для данного гена или участка ДНК).
При решении ряда научных и биотехнологических задач конструирование рекомбинантных ДНК требует также создания систем, в которых обеспечивается максимальная экспрессия клонируемого гена.
Существует три основных способа встраивания чужеродной ДНК в векторные молекулы. В первом случае 3'-концы фрагментов ДНК, среди которых находится интересующий нас участок ДНК (ген или его сегмент, регуляторный район), с помощью фермента терминальной нуклеотидилтрансферазы наращиваются гомополинуклеотидной последовательностью (например, поли (Т)). 3'-концы линейной формы векторной ДНК тем же способом наращиваются комплементарной ей гомополинуклеотидной последовательностью (то есть поли (А)). Это позволяет соединить две молекулы ДНК путем комплементарного спаривания искусственно полученных «липких» концов.
Во втором случае «липкие» концы создаются с помощью расщепления молекул ДНК (как векторной, так и содержащей интересующий нас фрагмент) одной из эндонуклеаз рестрикции (рестриктаз). Рестриктазы характеризуются исключительно высокой специфичностью. Они «узнают» в ДНК последовательность из нескольких нуклеотидных остатков и расщепляют в них строго определенные межнуклеотидные связи. Поэтому даже в ДНК больших размеров рестриктазы вносят ограниченное число разрывов.
Третий способ представляет собой комбинацию двух первых, когда липкие концы ДНК, образованные рестриктазой, удлиняются синтетическими последовательностями (рис. 3).
Концы фрагментов ДНК можно превратить в «липкие», наращивая их двутяжевыми олигонуклеотидами («линкерами»), в состав которых входит участок узнавания рестрикта-
Рисунок 3. Схема конструирования рекомбинантной ДНК с помощью рестриктаз PstI и поли(G)- поли(С)-линкера.
зой. Обработка такого фрагмента данной рестриктазой делает его пригодным для встраивания в векторную молекулу ДНК, расщепленную той же рестриктаэой. Часто в качестве «линкера» применяются полинуклеотидные фрагменты, которые содержат специфические участки сразу для нескольких рестриктаз (их называют «полилинкерами»).
После встраивания чужеродной ДНК в вектор их ковалентное сшивание осуществляется ДНК-лигазой. Если же размер бреши в рекомбинированной молекуле превышает одну фосфодиэфирную связь, она застраивается in vitro с помощью ДНК-полимеразы или in vivo с помощью репарирующих систем клетки.
2.4. Введение рекомбинантной ДНК в клетку – реципиент
Перенос рекомбинантных ДНК осуществляется путем трансформации или конъюгации. Трансформация – это процесс изменения генетических свойств клетки в результате проникновения в нее чужеродной ДНК. Впервые она была обнаружена у пневмококков Ф. Гиффитом, который показал, что некоторые клетки невирулентных штаммов бактерий при заражении ими мышей совместно с вирулентными штаммами приобретают патогенные свойства. В дальнейшем трансформация была продемонстрирована и изучена у различных видов бактерий. Установлено, что к трансформации способны лишь некоторые, так называемые «компетентные», клетки (способные включать чужеродную ДНК и синтезирующие особый трансформирующий белок). Компетентность клетки определяется также факторами внешней среды. Этому может способствовать обработка клеток полиэтиленгликолем или хлоридом кальция. После проникновения в клетку одна из нитей рекомбиантной ДНК деградирует, а другая за счет рекомбинации с гомологичным участком реципиентной ДНК может включиться в хромосому или внехромосомную единицу. Трансформация является наиболее универсальным способом передачи генетической информации и имеет наибольшее значение для генетических технологий.
Конъюгация – один из способов обмена генетического материала, при котором происходит однонаправленный перенос генетической информации от донора к реципиенту. Этот перенос находится под контролем особых конъюгативных плазмид (фактор фертильности). Перенос информации от донорской клетки в реципиентную осуществляется через специальные половые ворсинки (пили). Возможна передача информации и с помощью неконъюгативных плазмид при участии плазмид-помощниц.Передача всего набора генов вируса или фага, приводящая к развитию в клетке фаговых частиц, называется трансфекцией. Методика применительно к бактериальным клеткам включает получение сферопластов, очистку инкубационной среды от нуклеаз и добавление очищенной фаговой ДНК (присутствие протаминсульфата повышает эффективность трансфекции). Методика применима к животным и растительным клеткам с участием специальных челночных вирусных векторов.
3. Применение генно-инженерных технологий в медицине.
В применении к человеку генная инженерия могла бы применяться для лечения наследственных болезней. Однако, технически, есть существенная разница между лечением самого пациента и изменением генома его потомков.
Задача изменения генома взрослого человека несколько сложнее, чем выведение новых генно-инженерных пород животных, поскольку в данном случае требуется изменить геном многочисленных клеток уже сформировавшегося организма, а не одной лишь яйцеклетки-зародыша. Для этого предлагается использовать вирусные частицы в качестве вектора. Вирусные частицы способны проникать в значительный процент клеток взрослого человека, встраивая в них свою наследственную информацию; возможно контролируемое размножение вирусных частиц в организме. При этом для уменьшения побочных эффектов учёные стараются избегать внедрения генно-инженерных ДНК в клетки половых органов, тем самым избегая воздействия на будущих потомков пациента. Также стоит отметить значительную критику этой технологии в СМИ: разработка генно-инженерных вирусов воспринимается многими как угроза для всего человечества.
С помощью генотерапии в будущем возможно изменение генома человека. В настоящее время эффективные методы изменения генома человека находятся на стадии разработки и испытаний на приматах. Долгое время генетическая инженерия обезьян сталкивалась с серьёзными трудностями, однако в 2009 году эксперименты увенчались успехом: в журнале Nature появилась публикация об успешном применении генно-инженерных вирусных векторов для исцеления взрослого самца обезьяны от дальтонизма. В этом же году дал потомство первый генетически модифицированный примат (выращенный из модифицированной яйцеклетки) — игрунка обыкновенная.
Хотя и в небольшом масштабе, генная инженерия уже используется для того, чтобы дать шанс забеременеть женщинам с некоторыми разновидностями бесплодия/ Для этого используют яйцеклетки здоровой женщины. Ребёнок в результате наследует генотип от одного отца и двух матерей.
Однако возможность внесения более значительных изменений в геном человека сталкивается с рядом серьёзных этических проблем.
Заключение
В результате интенсивного развития методов генетической инженерии получены клоны множества генов рибосомальной, транспортной и 5S РНК, гистонов, глобина мыши, кролика, человека, коллагена, овальбумина, инсулина человека и др. пептидных гормонов, интерферона человека и прочее.
Это позволило создавать штаммы бактерий, производящих многие биологически активные вещества, используемые в медицине, сельском хозяйстве и микробиологической промышленности.
На основе генетической инженерии возникла отрасль фармацевтической промышленности, названная «индустрией ДНК». Это одна из современных ветвей биотехнологии.
Для лечебного применения допущен инсулин человека (хумулин), полученный посредством рекДНК. Кроме того, на основе многочисленных мутантов по отдельным генам, получаемых при их изучении, созданы высокоэффективные тест-системы для выявления генетической активности факторов среды, в том числе для выявления канцерогенных соединений.
ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА:
1) Бекиш О.-Я.Л. Медицинская биология. – Мн.: Ураджай, 2000. – с.114-119.
2) Мутовин Г.Р. Основы клинической генетики. – М.: Высшая школа, 1997. – с. 83-84.
3) Заяц Р.С. Основы медицинской генетики. – Мн.: Высшая школа, 1998. – с. 60-65.
4) biotechnolog.ru
План:
Введение.
1.Сущность генетической инженерии.
1.1. История генной инженерии
1.2. Понятие о генной инженерии
1.3. Цели и задачи генной инженерии
2. Этапы создания организмов с генетически измененной программой.
2.1. Выделение генов (естественных или синтезированных), содержащих необходимую информацию.
2.2. Подбор векторов (вирусы, плазмиды), способных к самостоятельной репликации в клетке реципиента.
2.3. Получение рекомбинантной ДНК .
2.4. Введение рекомбинантной ДНК в клетку — реципиент.
3.Применение генно-инженерных технологий в медицине.
Заключение.
www.ronl.ru