Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Доклад: Жидкостно-жидкостная хроматография. Гель хроматография реферат


Гель-хроматография — курсовая работа

МИНИСТЕРСТВО  ОБРАЗОВАНИЯ РФ

КАЗАНСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ  УНИВЕРСИТЕТ                

Реферат

На тему:

Гель-хроматография         

Выполнила:

Студентка гр. 628111

Егорова И. В.

Проверила:

Хабибрахманова  В.Р.      

Казань 2011

Содержание 

  1. Введение 
  2. Общее описание метода
  3. Основные материалы гранул для гель-фильтрации
  4. Гели на основе целлюлозы
  5. Детекторы вещества
  6. Коллекторы фракций
  7. Применение гель-хроматографии
  8. Заключение
  9. Список литературы
                                             

Введение

С необходимостью разделения и анализа смеси веществ приходится сталкиваться не только химику, но и многим другим специалистам.

В мощном арсенале химических и физико-химических методов  разделения, анализа, исследования структуры  и свойств индивидуальных химических соединений и их сложных смесей одно из ведущих мест занимает хроматография.

Хроматография - это физико-химический метод разделения и анализа смесей газов, паров, жидкостей  или растворенных веществ и определения  физико-химических свойств индивидуальных веществ, основанный на распределении разделяемых компонентов смесей между двумя фазами: подвижной и неподвижной. Вещества, составляющие неподвижную фазу, называются сорбентами. Неподвижная фаза может быть твердой и жидкой. Подвижная фаза - это поток жидкости или газа, фильтрующийся через слой сорбента. Подвижная фаза выполняет функции растворителя и носителя анализируемой смеси веществ, переведенной в газообразное или жидкое состояние.

Различают два  вида сорбции: адсорбцию - поглощение веществ  твердой поверхностью и абсорбцию - растворение газов и жидкостей в жидких растворителях.                              

Общее описание метода 

  Метод гель-фильтрации занимает положение как бы «приемного сына» в обширной семье методов  колоночной хроматографии. В нем  используется весь набор хроматографической аппаратуры, но принципиальное отличие от всех остальных членов этого семейства состоит в том, что разделяемые при гель-фильтрации молекулы не сорбируются внутри гранул и вообще ни физически, ни химически не взаимодействуют с их материалом. Весь процесс фракционирования основывается только на соотношении размеров молекул фильтруемой смеси и пор в гранулах.

  Термин  «гранулы» появляется с самого начала и расшифровывается, как малые  частицы сферической формы, изготовленные  из пористого материала. Для понимания процесса гель-фильтрации (и всех последующих хроматографи-ческих процессов) такое определение недостаточно. Что значит «пористый материал»? Каково происхождение и характер этих пор — поверхностный или глубинный? Каков диапазон и разброс номинальных размеров пор, да и самих гранул? Является ли их материал химически инертным или он способен вступать в реакции, приводящие к его модификации? Какова степень его гидрофильности? Устойчив ли он к значительным вариациям рН и температуры среды?

  Для понимания  сути данного процесса (гель-фильтрации) нам достаточно будет представить  себе только физическую структуру гранул и характер пористости, а также  упомянуть их гидрофильность. В конце  главы мы подробнее познакомимся с различными материалами, используемыми для производства этих гранул и коснемся вопроса о возможности их химической модификации.

  Итак, представим себе великое множество длинных, тонких и прочных нитей, собранных  в одном месте, но идущих во всех возможных направлениях. В местах их случайного пересечения и сближения они прочно (химически) связаны короткими перемычками. Так, что в целом являют собой некий жесткий каркас, имеющий внешне сферическую форму, но без какой-либо замыкающей ее поверхности. Это и будет физическая модель хроматографической гранулы. Весь ее внутренний объем представляет собой совокупность множества переходящих одна в другую пространственных ячеек («пор»), размеры которых варьируют в определенных пределах около некой средней величины, обусловленной густотой нитей и числом перемычек между ними. Эти средние величины пор у разных марок гранул покрывают значительный диапазон от 5 до 300 миллимикрон. Что же касается средних наружных диаметров самих гранул, то, опять-таки для различных марок гранул, они укладываются в интервал от 10 до 300 микрон. Доступ к внутренним ячейкам гранул полностью открыт снаружи.

  Поскольку мы упомянули о гидрофильности материала  нитей и относительной малости  размеров ячеек (меньше 1 мкн), то вода (или  водные растворы) будет в них неподвижна, несмотря на то, что мимо гранул, в промежутках между ними она будет свободно протекать вдоль колонки.

  Предположим теперь, что у нас имеется колонка, заполненная подобными гранулами (кружки на рис. а). И что в эту  колонку, поверх гранул в слое небольшой высоты мы вносим препарат, содержащий смесь 3-х типов молекул: крупных, средней величины и мелких, обозначенные (там же) черными точками, соответственно, разных размеров.

  

  Подадим мысленно сверху на эту колонку ток элюента (хотя бы воды). Он будет свободно протекать между гранулами — вниз к выходу из колонки. Если крупные молекулы настолько велики, что совершенно не проникают в пределы гранул (поры для них слишком малы), то эти молекулы вместе с током элюента, без задержки будут двигаться к выходу из колонки. Предположим еще, что мелкие молекулы настолько малы, что все ячейки внутри гранул будут для них легкодоступны. Тогда (если скорость элюции не слишком велика) эти малые молекулы в результате диффузии быстро займут весь совокупный объем жидкости во внутренних ячейках гранул. Разумеется, диффузия будет идти и в обратном направлении так, что концентрация малых молекул в гранулах и в свободной жидкости между ними поначалу окажется одинаковой. Однако вскоре малые молекулы, которые окажутся вне гранул, током элюента продвинутся немного вниз по колонке. Здесь они встретят слой еще «пустых» гранул и будут диффундировать внутрь них. В то же самое время в слое, откуда эти молекулы ушли, нарушится равновесие диффузии и малые молекулы из гранул станут преимущественно выходить наружу, в элюент.

  Процессы  эти будут происходить в течение  всего хода элюции. За это время  каждая из мелких молекул успеет (и  не один раз) побывать в каких-нибудь гранулах и выйти из них. Для слоя мелких молекул в целом это будет означать большую потерю времени с точки зрения продвижения этого слоя вниз к выходу из колонки. (Напомню, что жидкость внутри гранул не течет.) В результате слой мелких молекул сильно отстанет от слоя крупных молекул.

  Для молекул среднего размера некоторые ячейки близ поверхности гранул окажутся доступными. Они туда будут «заходить». Но диффундировать глубоко внутрь гранул им, как правило, не удастся, они быстрее будут выходить наружу и равновесие диффузии будет в пользу свободной жидкости между гранулами. В силу этого обстоятельства молекулы среднего размера в целом, как слой, будут двигаться вниз по колонке быстрее, чем мелкие молекулы, но все же значительно медленнее, чем крупные, поскольку даже только на заход в ячейки гранул с поверхности будет расходоваться некоторое время...

  Колоночная  гель-фильтрация широко применяется  для решения двух основных задач:

  1. Быстрого  освобождения крупных молекул  (белков, нуклеиновых кислот и  их комплексов) от находящихся  в том же растворе солей или низкомолекулярных предшественников синтеза:

  аминокислот или нуклеозидтрифосфатов (особенно радиоактивно меченых), а также во многих других случаях очистки биополимеров от сопутствующих им мелких молекул. В этих случаях целесообразно  использовать короткие (10-20 см) колонки относительно большого диаметра (2-3 см) и заполнять их крупными гранулами с малыми порами. Объем препарата, вносимого на колонку, может составлять 20-25% от полного объема колонки. Очистка происходит быстро (примерно за 1 час). Разбавление очищенного препарата оказывается незначительным (10-20%), так как он выходит из колонки не «пиком», а протяженной «площадкой», расширение которой идет только за счет диффузии на ее переднем и заднем фронте. При работе с микроколичествами можно в качестве колонки использовать цилиндрик пластмассового шприца на 1 мл.

  Положив на дно кусочек стеклянной ваты, его плотно набивают гранулами, оставив  сверху свободные 0,1 мл для заполнения их смесью ДНК и ее предшественников в растворе буфера.

  Элюция  — центрифугированием. Под цилиндрик подставляют пробирку от микроцентрифуги и все вместе устанавливают в пробирку бакет-ротора. Выходящая из цилиндрика жидкость в объеме того же 0,1 мл содержит чистую ДНК — предшественники остаются в гранулах.

  2. Фракционирование (разделение) смеси макромолекул не очень значительно различающихся по своим размерам. Например, различных белков. Здесь следует использовать длинные (1-1,5 м) колонки, диаметром не более 1 см и загружать их объемом исходного препарата, составляющем не более 1-2% от объема колонки. Если смесь содержит 2-3 компонента, то их нередко удается разделить полностью — они выходят в виде довольно широких, но не перекрывающихся друг с другом пиков.

  Если же смесь состоит из нескольких компонентов, то на хорошее их разделение методом гель-фильтрации рассчитывать не приходится. Ведь все эти компоненты, хотя и с различной скоростью, движутся по колонке одновременно. (Другое дело истинная хроматография. Там на первый план выступает сорбция компонентов на модифицированном материале гранул и каждый из них остается сорбированным внутри гранул до тех пор, пока элюент «принудительно» не извлечет его оттуда.)

  Тем не менее, и в этом случае гель-фильтрацию можно использовать для очистки  одного из компонентов сложной смеси, если примириться с его довольно значительными потерями. С этой целью смесь, например белков, разгоняют по объему элюента так, что интересующий экспериментатора белок оказывается где-то в середине последовательности не полностью разделившихся пиков разных белков. (Для этого надо подобрать размер пор используемых гранул.) Если нужный белок поддается идентификации, например по ферментативной активности, которая ввиду мягкости способа фракционирования вполне может сохраниться, то можно отобрать узкую область элюента, прилегающую к вершине пика этого белка. Таким образом, хотя и со значительными потерями, иногда удается получить практически чистый белок.                                  

  Основные материалы гранул для гель-фильтрации 

   Именно здесь уместно познакомиться с основными материалами, из которых различные фирмы изготавливают матрицы для гель-фильтрации, поскольку те же материалы после соответствующей химической модификации используются в других видах хроматографии.

  1. Гели на основе декстрана— «сефадексы»»

  Чаще всего для построения хроматографических гранул используют длинные нити полисахаридов. В частности, нити декстрана — линейного полимера, состоящего из множества одинаковых звеньев одного из Сахаров, а именно — глюкозы.

  На рис. 55 слева показана связь между двумя соседними молекулами глюкозы. Как это уже было принято для Сахаров нуклеиновых кислот, в углах шестиугольника, обозначенных цифрами 1—5 следует подразумевать атомы углерода, а на открытых концах вертикальных черточек — атомы водорода. Связь осуществляется через атом кислорода между углеродами в позициях 1 и 6.

  

  На том  же рисунке справа показан короткий «мостик», связывающий две пересекающиеся друг с другом нити декстрана. (Заметьте, что связанные таким образом звенья глюкозы расположены симметрично.) Чем выше содержание мостиков по отношению к количеству глюкозы в нитях декстрана, тем меньше будет размер пор («ячеек»), которые они образуют.

  Иногда  в качестве материала гранул используют уже знакомый нам по электрофорезу  полиакриламидный гель (ПААГ).

  1а. «Сефакрилы».

  Это —  матрицы на основе того же декстрана, но в качестве связующих нити «мостиков» используется также знакомая нам по ПААГ связка — ЫТ^-метиленбисакриламид («Бис»).

  2. Гели на основе агарозы — «сефаррзы».

  Заметим, что максимальная концентрация агарозы, которая называлась тем, составляла 2%. А затвердевают гели агарозы при  остывании из расплавленного состояния  уже при концентрации в 0,4%. Однако они относительно мягкие. Для целей гель-фильтрации и других видов хроматографии используют жесткую, 4-х или 6-ти процентную агарозу, в виде сферических гранул. Поры при этом остаются еще весьма крупными. Иногда нити агарозы, все-таки сшивают дополнительно химическими «мостиками». Получаются еще более жесткие гранулы. Их торговое название «сефароза CL» (CL означает cross linked).

  2а. «Улътрагели типа АСА»»

  Внутри  жесткого крупнопористого каркаса  агарозы полиме-ризуют ПААГ, что позволяет варьировать меньшие размеры пор в широких пределах, сохраняя жесткость гранул агарозы.   

freepapers.ru

б)Гель-хроматография. Развитие хроматографии - реферат

Похожие главы из других работ:

Жидкостно-жидкостная хроматография

4. Распределительная хроматография на бумаге (бумажная хроматография)

Кроме обычных носителей, используемых для заполнения колонок, в распределительной хроматографии применяют специфический носитель, позволяющий обходиться вообще без колонки. Таким носителем является специальная хроматографическая бумага...

Золь-гель метод

1.2 Теоретический анализ процессов формирования кварцевых стекол золь-гель методом

В настоящее время накоплен большой теоретический и практический материал исследования процессов, проходящих при синтезе кварцевых стекол золь-гель методом [2]...

Золь-гель метод

4.1 Спектрально-люминесцентные свойства Eu- и Ce-Eu - содержащих кварцевые гель-стекол

При соактивации Sm-содержащих кварцевых гель-стекол церием образуются сложные центры...

Золь-гель метод

4.2 Спектры поглощения Eu- и Ce-Eu-содержащих кварцевых гель-стекол

На рис. 4.1 изображены спектры поглощения неактивированного, Eu и Ce-Eu-содержащих кварцевых гель-стекол в видимой и ультрафиолетовой областях. Видно...

Исследование и разработка новых сорбентов

14. ГАЗОВАЯ ХРОМАТОГРАФИЯ

Компания АНО "Синтез полимерных сорбентов" производит и продает полистирольные сорбенты Полисорб-1 и Полисорб-10 в количестве от 1 кг...

Методы получения наночастиц

3.3 Золь-гель метод

Золь-гель метод включает несколько основных технологических фаз (рис. 5.). Первоначально получают водные или органические растворы исходных веществ...

Методы разделения смесей, концентрирования и очистки веществ

10. Хроматография

Это очень эффективный метод разделения и анализа, применимый к самым разным классам веществ, но лишь при условии, что они могут находиться в газовой фазе или в жидком растворе...

Развитие хроматографии

б)Гель-хроматография

Гель-хроматография (гель-фильтрация) - метод разделения смесей веществ с различными молекулярными массами путем фильтрации анализируемого раствора через поперечно-сшитые ячеистые гели. Разделение смеси веществ происходит в том случае...

Разработка методики определения флавоноидов в лекарственном растительном сырье

1.2.4.1 Тонкослойная хроматография

Метод тонкослойной хроматографии (ТСХ) очень удобен для сравнительного анализа с использованием стандартных веществ. Пятна флавоноидов на хроматограмме зачастую могут быть обнаружены просто при облучении пластинки УФ-светом...

Тонкослойная хроматография и ее роль в контроле качества пищевых продуктов

1.4 Тонкослойная хроматография

В этом методе хроматографирование веществ происходит в тонком слое сорбента, нанесенного на твердую плоскую подложку. Разделение в этом методе в основном происходит на основе сорбции-десорбции. Использование различных сорбентов...

Тонкослойная хроматография и ее роль в контроле качества пищевых продуктов

Горизонтальная тонкослойная хроматография

...

Тонкослойная хроматография и ее роль в контроле качества пищевых продуктов

Радиальная тонкослойная хроматография.

1.4.5 Восходящая тонкослойная хроматография Этот вид хроматографии наиболее распространен и основан на том, что фронт хроматографической системы поднимается по пластинке под действием капиллярных сил, т.е...

Тонкослойная хроматография и ее роль в контроле качества пищевых продуктов

1.4.8 Радиальная тонкослойная хроматография

Радиальная тонкослойная хроматография заключается в том, что в центр пластинки наносится исследуемое вещество и туда же подается система, которая движется от центра к краю пластинки...

Хроматографический анализ

3.4. Хроматография на бумаге

По механизму разделения различают распределительную, адсорбцион-ную, осадочную и другие виды бумажной хроматографии (БХ). В распре-делительной жидкость-жидкостной хроматографии бумага, приготовлен-ная из специальных сортов хлопка...

Хроматография, как метод разделения и анализа

3.1 Газовая хроматография

Газовая хроматография является одним из видов хроматографии, представляющей собой физико-химическое разделение компонентов подвижной фазы (газа, раствора) при ее движении вдоль другой неподвижной фазы (жидкости или твердого тела)...

him.bobrodobro.ru

5. Гель-хроматография. Жидкостно-жидкостная хроматография - курсовая работа

Похожие главы из других работ:

Жидкостно-жидкостная хроматография

4. Распределительная хроматография на бумаге (бумажная хроматография)

Кроме обычных носителей, используемых для заполнения колонок, в распределительной хроматографии применяют специфический носитель, позволяющий обходиться вообще без колонки. Таким носителем является специальная хроматографическая бумага...

Золь-гель метод

1.2 Теоретический анализ процессов формирования кварцевых стекол золь-гель методом

В настоящее время накоплен большой теоретический и практический материал исследования процессов, проходящих при синтезе кварцевых стекол золь-гель методом [2]...

Золь-гель метод

4.1 Спектрально-люминесцентные свойства Eu- и Ce-Eu - содержащих кварцевые гель-стекол

При соактивации Sm-содержащих кварцевых гель-стекол церием образуются сложные центры...

Золь-гель метод

4.2 Спектры поглощения Eu- и Ce-Eu-содержащих кварцевых гель-стекол

На рис. 4.1 изображены спектры поглощения неактивированного, Eu и Ce-Eu-содержащих кварцевых гель-стекол в видимой и ультрафиолетовой областях. Видно...

Исследование и разработка новых сорбентов

14. ГАЗОВАЯ ХРОМАТОГРАФИЯ

Компания АНО "Синтез полимерных сорбентов" производит и продает полистирольные сорбенты Полисорб-1 и Полисорб-10 в количестве от 1 кг...

Методы получения наночастиц

3.3 Золь-гель метод

Золь-гель метод включает несколько основных технологических фаз (рис. 5.). Первоначально получают водные или органические растворы исходных веществ...

Методы разделения смесей, концентрирования и очистки веществ

10. Хроматография

Это очень эффективный метод разделения и анализа, применимый к самым разным классам веществ, но лишь при условии, что они могут находиться в газовой фазе или в жидком растворе...

Развитие хроматографии

б)Гель-хроматография

Гель-хроматография (гель-фильтрация) - метод разделения смесей веществ с различными молекулярными массами путем фильтрации анализируемого раствора через поперечно-сшитые ячеистые гели. Разделение смеси веществ происходит в том случае...

Разработка методики определения флавоноидов в лекарственном растительном сырье

1.2.4.1 Тонкослойная хроматография

Метод тонкослойной хроматографии (ТСХ) очень удобен для сравнительного анализа с использованием стандартных веществ. Пятна флавоноидов на хроматограмме зачастую могут быть обнаружены просто при облучении пластинки УФ-светом...

Тонкослойная хроматография и ее роль в контроле качества пищевых продуктов

1.4 Тонкослойная хроматография

В этом методе хроматографирование веществ происходит в тонком слое сорбента, нанесенного на твердую плоскую подложку. Разделение в этом методе в основном происходит на основе сорбции-десорбции. Использование различных сорбентов...

Тонкослойная хроматография и ее роль в контроле качества пищевых продуктов

Горизонтальная тонкослойная хроматография

...

Тонкослойная хроматография и ее роль в контроле качества пищевых продуктов

Радиальная тонкослойная хроматография.

1.4.5 Восходящая тонкослойная хроматография Этот вид хроматографии наиболее распространен и основан на том, что фронт хроматографической системы поднимается по пластинке под действием капиллярных сил, т.е...

Тонкослойная хроматография и ее роль в контроле качества пищевых продуктов

1.4.8 Радиальная тонкослойная хроматография

Радиальная тонкослойная хроматография заключается в том, что в центр пластинки наносится исследуемое вещество и туда же подается система, которая движется от центра к краю пластинки...

Хроматографический анализ

3.4. Хроматография на бумаге

По механизму разделения различают распределительную, адсорбцион-ную, осадочную и другие виды бумажной хроматографии (БХ). В распре-делительной жидкость-жидкостной хроматографии бумага, приготовлен-ная из специальных сортов хлопка...

Хроматография, как метод разделения и анализа

3.1 Газовая хроматография

Газовая хроматография является одним из видов хроматографии, представляющей собой физико-химическое разделение компонентов подвижной фазы (газа, раствора) при ее движении вдоль другой неподвижной фазы (жидкости или твердого тела)...

him.bobrodobro.ru

Курсовая работа - Жидкостно-жидкостная хроматография

Федеральное агентство по образованию

ГОУ ВПО «Челябинский государственный университет»

Химический факультет

Кафедра физической и аналитической химии

Курсовая работа по аналитической химии

Тема: «Жидкостно-жидкостная хроматография»

Челябинск

2010

Содержание

Введение

1. Специфика метода жидкостно-жидкостная хроматография

2. Аппаратура для жидкостной хроматографии

3. Колоночный вариант

4. Распределительная хроматография на бумаге (бумажная хроматография)

5. Гель-хроматография

6. Высокоэффективная жидкостная хроматография

7. Применение

Список литературы

хроматография сорбционный химический распределительный

Введение

Хроматография — это физико-химический метод разделения и анализа смесей газов, паров, жидкостей или растворенных веществ сорбционными методами в динамических условиях.

Метод основан на различном распределении веществ между двумя несмешивающимися фазами — подвижно и не подвижной. Подвижной фазой может быть жидкость или газ, неподвижной фазой – твердое вещество, которое называют носителем. При движении подвижной фазы вдоль неподвижной, компоненты смеси сорбируются на неподвижной фазе. Каждый компонент сорбируется в соответствии со сродством к материалу неподвижной фазы (вследствие адсорбции или других механизмов). Поэтому неподвижную фазу называют также сорбентом. Захваченные сорбентом молекулы могут перейти в подвижную фазу и продвигаться с ней дальше, затем снова сорбироваться. Таким образом, хроматографию можно определить как процесс, основанный на многократном повторении актов сорбции и десорбции вещества при перемещении его в потоке подвижной фазы вдоль неподвижного сорбента. Чем сильнее сродство компонента к неподвижной фазе, тем сильнее он сорбируется и дольше задерживается на сорбенте; тем медленнее его продвижение вместе с подвижной фазой. Поскольку компоненты смеси обладают разным сродством к сорбенту, при перемещении смеси вдоль сорбента произойдет разделение: одни компоненты задержаться в начале пути, другие продвинуться дальше. В хроматографическом процессе сочетаются термодинамический (установление равновесия между фазами) и кинетический (движение компонентов с разной скоростью) аспекты. В зависимости от агрегатного состояния фаз, механизма взаимодействия и оформления различают основные виды хроматографии, которые приведены в таблице:

Неподвижная фаза Подвижная фаза
газообразная жидкая
Твердая Газовая адсорбционная хроматография Жидкостная адсорбционная, ионообменная, тонкослойная, осадочная хроматография
Жидкая Газожидкостная распределительная хроматография, капиллярная Жидкостная распределительная, высокоэффективная жидкостная, гельхроматография

Рассмотрим более подробно хроматографию в системе жидкость-жидкость.

1. Специфика метода жидкостно-жидкостной хроматографии

Жидкостно-жидкостная хроматография (ЖЖХ) по сути, близка к газожидкостной хроматографии. На твердый носитель также наносится пленка жидкой фазы и через колонку, наполненную таким сорбентом, пропускают жидкий раствор. Жидкость, нанесенную на носитель, называют неподвижной жидкой фазой, а растворитель, передвигающийся через носитель, — подвижной жидкой фазой. ЖЖХ может проводиться в колонке (колоночный вариант) и на бумаге (бумажная хроматография, или хроматография на бумаге).[2]

2. Аппаратура для жидкостной хроматографии

В современной жидкостной хроматографии используют приборы различной степени сложности — от наиболее простых систем, до хроматографов высокого класса, снабженных различными дополнительными устройствами.

На рис.1. представлена блок-схема жидкостного хроматографа, содержащая минимально необходимый набор составных частей, в том или ином виде, присутствующих в любой хроматографической системе.

Рис. 1 Блок-схема жидкостного хроматографа: 2 – насос предназначен для создания постоянного потока растворителя. Его конструкция определяется, прежде всего, рабочим давлением в системе. Для работы в диапазоне 10-500 МПа используются насосы плунжерного (шприцевого), либо пистонного типов. Недостатком первых является необходимость периодических остановок для заполнения элюентом, а вторых — большая сложность конструкции и, как следствие, высокая цена. Для простых систем с невысокими рабочими давлениями 1-5 МПа с успехом применяют недорогие перистальтические насосы, но так как при этом трудно добиться постоянства давления и скорости потока, их использование ограничено препаративными задачами.

3 — инжектор обеспечивает ввод пробы смеси разделяемых компонентов в колонку с достаточно высокой воспроизводимостью. Простые системы ввода пробы — «stop-flow» требуют остановки насоса и, поэтому, менее удобны, чем петлевые дозаторы, разработанные фирмой Reodyne.

4 — колонки для ВЭЖХ представляют собой толстостенные трубки из нержавеющей стали, способные выдержать высокое давление. Большую роль играет плотность и равномерность набивки колонки сорбентом. Для жидкостной хроматографии низкого давления с успехом используют толстостенные стеклянные колонки.

5 – термостат обеспечивает постоянноство температуры.

6 – детекторы для жидкостной хроматографии имеют проточную кювету, в которой происходит непрерывное измерение какого-либо свойства протекающего элюента

7 — регистрирующая система в простейшем случае состоит из дифференциального усилителя и самописца. Желательно также наличие интегратора, позволяющего рассчитывать относительные площади получаемых пиков. В сложных хроматографических системах используется блок интерфейса, соединяющий хроматограф с персональным компьютером (8), который осуществляет не только сбор и обработку информации, но и управляет прибором. [11]

3. Колоночный вариант

Разделение смеси веществ в жидкостно-жидкостной хроматографии основываются на различии коэффициентов распределения вещества между несмешивающимися растворителями. Коэффициент распределения вещества равен:

Кп, н =сп /сн

где сп и сн — концентрация вещества в подвижной и неподвижной фазах.

Для членов одного гомологического ряда установлены некоторые закономерности в величинах Кп.н. Известна, например, зависимость Кп.н в данном гомологическом ряду от числа атомов углерода.

Поиск несмешивающихся фаз, обеспечивающих разделение, обычно производится эмпирически на основе экспериментальных данных. Широкое применение в жидкостно-жидкостной хроматографии получили тройные системы, состоящие из двух несмешивающихся растворителей и третьего, растворимого в обеих фазах. Такие системы позволяют получать набор несмешивающихся фаз различной селективности. В качестве примера можно привести систему из несмешивающихся между собой гептана и воды, в которую введен этанол, растворяющийся в обоих растворителях.

Хотя в качестве подвижной и неподвижной фаз выбираются растворители, не смешивающиеся между собой, все же во многих системах наблюдается некоторая взаимная растворимость. Чтобы предотвратить процессы взаимного растворения жидкостей в ходе хроматографирования, подвижную жидкую фазу предварительно насыщают неподвижной. Для сохранения неизменного состава фаз применяют также метод химического закрепления неподвижной фазы на сорбенте. При этом используют взаимодействие растворителя с группами ОН- на поверхности носителя. Адсорбенты с закрепленной на их поверхности жидкой фазой выпускаются промышленностью.

Эффективность колонки связана с вязкостью, коэффициентом диффузии и другими физическими свойствами жидкостей. С уменьшением вязкости подвижной фазы сокращается продолжительность анализа, но с увеличением вязкости несколько возрастает эффективность. В практике обычно используют маловязкие растворители, так как возрастание эффективности колонок при увеличении вязкости не очень велико.

Носитель неподвижной фазы должен обладать достаточно развитой поверхностью, быть химически инертным, прочно удерживать на своей поверхности жидкую фазу и не растворяться в применяемых растворителях. В качестве носителей используют вещества различной химической природы: гидрофильные носители — силикагель, целлюлоза и др. и гидрофобные — фторопласт, тефлон и другие полимеры. [2]

Рис 3. Вид хроматограммы в зависимости от эффективности и селективности хроматографической системы:

а — нормальная селективность, пониженная эффективность;

б — нормальная эффективность и селективность;

в — повышенная селективность, нормальная эффективность. [12]

4. Распределительная хроматография на бумаге (бумажная хроматография)

Кроме обычных носителей, используемых для заполнения колонок, в распределительной хроматографии применяют специфический носитель, позволяющий обходиться вообще без колонки. Таким носителем является специальная хроматографическая бумага, а методика, основанная на ее применении, получила название распределительной хроматографии на бумаге или распределительной бумажной хроматографии. Во многом она сходна с хроматографией в тонком слое (ТСХ). Бумажную хроматографию, как и хроматографию вообще, можно разделить на:

· Распределительную

· Адсорбционную

· Ионообменную

· Препаративную

· Аналитическую.

В распределительной бумажной хроматографии можно выделить:

· нормальную

· обращённо-фазную хроматографию. [2]

По технике выполнения различают следующие виды бумажной хроматографии:

· Одномерную

· Двумерную (хроматографирование производят дважды во взаимно противоположных направлениях: после обработки пробы одним растворителем хроматограмму поворачивают на 90° и хроматографируют вторично уже другим растворителем)

· Круговую

· Электрофоретическую[2]

Рис 4.I – линия старта;

II – линия фронта;

1 – длина пятна;

2 – отрезок от линии старта до пятна;

3 – отрезок от линии старта до центра пятна — ;

4 – отрезок от линии старта до линии фронта — .

Важной характеристикой в бумажной распределительной хроматографии, так же как и в ТСХ, является Rf =x/Xf, где х — смещение зоны компонента; хf — смещение фронта растворителя. Методика определения Rfв бумажной хроматографии не отличается от соответствующей методики в ТСХ, основанной на измерениях в соответствии с рис. 1. В начальный момент времени хроматографируемая проба наносится на начальную (стартовую) линию бумажной полоски и подвергается действию подвижной фазы (растворителя). Если компоненты окрашены, через некоторое время на хроматограмме можно будет видеть отдельные цветные пятна. Первый компонент будет иметь Rf1 =x1 /xf, второй —Rf2 =X2 /Xf и т. д.[2]

При идеальных условиях коэффициент Rfопределяется только природой вещества, параметрами бумаги и свойствами растворителей, но не зависит от концентрации вещества и присутствия других компонентов. В действительности коэффициент Rfв некоторой степени оказался зависящим от этих факторов и техники эксперимента. [2]

Хроматографическая бумага должна быть химически чистой, нейтральной, инертной по отношению к компонентам раствора и подвижному растворителю и быть однородной по плотности. Имеют значение также такие свойства, как структура молекул целлюлозы в бумаге, набухаемость, ориентация волокна и другие, влияющие на скорость движения растворителя и на иные характеристики процесса. [2]

В атмосфере водяных паров бумага поглощает значительное количество влаги (до 20...25 % своей массы), поэтому, когда неподвижной жидкой фазой является вода, никакого дополнительного увлажнения бумаги не делают. При выборе в качестве неподвижной фазы некоторых органических веществ, гидрофильную бумагу превращают в гидрофобную, пропитывая ее растворами различных гидрофобных веществ (парафина, растительного масла и др.).[2]

В выбранных растворителях компоненты пробы должны иметь разную растворимость, иначе разделения вообще не произойдет. В растворителе, являющемся подвижной фазой, растворимость каждого компонента должна быть меньшей, чем в растворителе неподвижной фазы, но все же составлять вполне заметное значение. Это ограничение связано с тем, что если растворимость вещества будет очень велика, вещество будет двигаться вместе с фронтом растворителя, а если растворимость будет очень мала, вещество останется на начальной линии.[2]

Для разделения водорастворимых веществ в качестве подвижной фазы обычно берут органический растворитель, а в качестве неподвижной — воду. Если вещество растворимо в органических растворителях, вода используется уже в качестве подвижной фазы, а органический растворитель является неподвижной фазой. Это так называемый метод обращенных фаз.[2]

К растворителям обычно предъявляются следующие требования:

· растворители подвижной и неподвижной фаз не должны смешиваться

· состав растворителя в процессе хроматографирования не должен изменяться

· растворители должны легко удаляться с бумаги

· быть недефицитными и безвредными для человека.[2]

Индивидуальные растворители в распределительной хроматографии используют относительно редко. Чаще для этой цели употребляют смеси веществ, например бутилового или амилового спирта с метиловым или этиловым, насыщенные водные растворы фенола, крезола и др., смеси бутилового спирта с уксусной кислотой, аммиаком и т. д. Применение различных смесей растворителей позволяет плавно изменять Rf и тем самым создавать наиболее благоприятные условия разделения.[2]

В бумажной хроматографии вещества различаются по их относительному положению на бумаге после того, как растворитель пройдёт определённое расстояние. Небольшое количество раствора смеси (10-20мкл), которую нужно разделить, наносят в отмеченную точку на бумаге и высушивают. Полученное пятно называют стартовым. Затем бумагу помещают в герметичную камеру и один её конец погружают в растворитель, который является подвижной фазой. Под действием капиллярных сил растворитель движется по бумаге, растворяя и увлекая за собой компоненты образца. До начала движения образец должен полностью раствориться, поэтому скорость растворения компонентов в подвижной фазе является одним из факторов, определяющих эффективность разделения. После того, как растворитель пройдёт определённое расстояние, лист вынимают и сушат.Пятна на хроматограммах могут быть обнаружены по цвету, флуоресценции, с помощью химических реакций, для чего бумагу опрыскивают или погружают в различные реагенты, или же по радиоактивности. Идентификацию проводят обычно путём сравнения с образцами с известными величинами Rf или после элюирования, которое сводится к вырезанию зоны, содержащей пятно, и последующему промыванию её соответствующим растворителем. [5]

5. Гель-хроматография

Гель-фильтрация (синоним гель-хроматография) — метод разделения смеси веществ с различными молекулярными массами путем фильтрации через различные так называемые ячеистые гели. [7]

Неподвижной фазой в гель-хроматографии является растворитель, находящийся в порах геля, а подвижной – сам растворитель, т.е и подвижную и неподвижную фазы составляет одно и тоже вещество или одна и та же смесь вещества. Гель готовят на основе, например, декстрана, полиакриламида или других природных и синтетических соединений.

В отличии от других хроматографических методов, использующих различия в химических свойствах разделяемых веществ, проявляющихся при их распределении между стационарной и подвижной фазами, разделение основано на ситовом эффекте, характерном для гелей с определенным радиусом пор. Растворитель (подвижная фаза) заполняет как внешний объем между зернами геля, так и внутренний объем пор. Объем растворителя между зернами геля – Vм называют промежуточным, транспортным или мертвым объемом, а внутренний объем пор – Vп рассматривается как объект стационарной фазы. Когда в колонку вводят пробу, содержащую несколько типов ионов или молекул с разными размерами, то они стремятся из подвижной фазы проникнуть внутрь пор. Такое проникновение обусловлено энтропийным распределением, поскольку концентрация молекул разделяемых веществ в наружном растворе оказывается выше, чем в поровом пространстве. Но оно становится возможным только в том случае, если размеры ионов или молекул меньше диаметра пор. [3]

Рис 5 Общий вид градуировочной кривой в гель-хроматографии:

1 – область исключения, где все молекулы имеют размер больше m2 ;

2 – область проникновения или разделения, где размеры молекул лежат в интервале от m1 и m2 ;

3 — область, где происходит полное проникновение молекул с размерами менее m1. [3]

В процессе гель-хроматографирования могут быть отделены крупные молекулы, которые гелем не сорбируются, так как их размеры превышают размеры пор, от мелких, которые проникают в поры, а затем могут быть элюированы. Проводятся и более тонкие разделения, так как размеры пор можно регулировать, изменяя, например, состав растворителя и, как следствие, набухаемость геля. Гель-хроматография может быть выполнена вколоночном варианте и в тонкослойном.

Применяемые на практике гели обычно подразделяют на мягкие, полужесткие и жесткие. Мягкими гелями являются высокомолекулярные органические соединения с незначительным числом поперечных связей. Фактор емкости, равный отношению объема растворителя внутри геля к его объему вне геля, у них равен 3. При набухании они значительно увеличиваютсобственный объем. Это сефадексы или декстрановые гели, агарочные гели, крахмал и др. Они применяются для разделения смесей низкомолекулярных веществ, часто в тонкослойном варианте. Хроматографирование на мягкихгелях называют гель — фильтрацией.

Полужесткие гели получают путем полимеризации. Большое распространение получили стирогели — продукты сополимеризации стирола и дивинилбензола с большим числом поперечных связей. Фактор емкости полужестких гелей лежит в пределах 0,8...1,2, их объем при набухании увеличивается не очень значительно (в 1,2...1,8 раза ). Хроматографирование на полужестких гелях называют гель-проникающей хроматографией.

К жестким гелям относят силикагели и часто пористые стекла, хотя они и не являются гелями. Жесткие гели имеют небольшой фактор емкости (0,8...1,1) и фиксированный размер пор. Эти материалы используют в гель-хроматографии при высоком давлении.

Растворители гель-хроматографии должны растворять все компоненты смеси, смачивать поверхность геля и не адсорбироваться на ней.

Практическое применение гель-хроматографии связано, главным образом, с разделением смеси высокомолекулярных соединений, хотя нередко они используются для разделения и низкомолекулярных, так как разделение этим методом возможно при комнатной температуре. [2]

6. Высокоэффективная жидкостная хроматография (ВЖКХ)

Высокоэффективная жидкостная хроматография – наиболее эффективный метод анализа органических проб сложного состава. Процесс анализа пробы делится на 2 этапа:

· разделение пробы на составляющие компоненты;

· детектирование и измерение содержания каждого компонента.

Задача разделения решается при помощи хроматографической колонки, которая представляет собой трубку, заполненную сорбентом. При проведении анализа через хроматографическую колонку подают жидкость (элюент) определенного состава с постоянной скоростью. В этот поток вводятточно отмеренную дозу пробы.

Компоненты пробы, введенной в хроматографическую колонку, из-за их разного сродства к сорбенту колонки двигаются по ней с различными скоростями и достигают детектора последовательно в разные моменты времени.

Таким образом, хроматографическая колонка отвечает за селективность и эффективность разделения компонентов. Подбирая различные типы колонок можно управлять степенью разделения анализируемых веществ. Идентификация соединений осуществляется по их времени удерживания. Количественное определение каждого из компонентов рассчитывают, исходя из величины аналитического сигнала, измеренного с помощью детектора, подключенного к выходу хроматографической колонки.

При анализе соединений с низкими ПДК (биогенные амины, полиароматические углеводороды, гормоны, токсины) из-за трудоемкости подготовки реальных проб особенно важной характеристикой становится чувствительность и селективность метода. Применение флуориметрического детектора позволяет не только снизить пределы обнаружения, но и селективно выделить анализируемые вещества на фоне матричных и сопутствующих компонентов пробы.

Метод ВЭЖХ применяется в санитарно-гигиенических исследованиях, экологии, медицине, фармацевтике, нефтехимии, криминалистике, для контроля качества и сертификации продукции.

В качестве блока подачи элюента используется насос «Питон» шприцевого типа, который имеет следующие особенности:

· отсутствие пульсаций давления при подаче растворителя;

· большой диапазон объемных скоростей потока;

· большой объем камеры насоса;

· расширяемость (возможность сочетать несколько блоков для создания градиентной системы).

В хроматографической системе могут использоваться различные типы детекторов, например, «Флюорат-02-2М» (спектральная селекция осуществляется фильтрами) или «Флюорат-02 Панорама» (спектральная селекция осуществляется монохроматорами). [8]

7. Применение

Жидкостная хроматография важнейший физико-химический метод исследования в химии, биологии, биохимии, медицине, биотехнологии. Ее используют для анализа, разделения, очистки и выделения аминокислот, пептидов, белков, ферментов, вирусов, нуклеотидов, нуклеиновых кислот, углеводов, липидов, гормонов и т. д.; изучения процессов метаболизма в живых организмах лекарственных препаратов; диагностики в медицине; анализа продуктов химического и нефтехимического синтеза, полупродуктов, красителей, топлив, смазок, нефтей, сточных вод; изучения изотерм сорбции из раствора, кинетики и селективности хим. процессов.

В химии высокомолекулярных соединений и в производстве полимеров с помощью жидкостной хроматографии анализируют качество мономеров, изучают молекулярно-массовое распределение и распределение по типам функциональности олигомеров и полимеров, что необходимо для контроля продукции. Жидкостную хроматографию используют также в парфюмерии, пищевой промышленности, для анализа загрязнений окружающей среды, в криминалистике. [9]

Заключение

Начало ХХ века ознаменовалось открытием хроматографического метода анализа, обогатившего и объединившего различные области науки, без которых немыслим научный прогресс XXI века. Внедрение хроматографических методов, и в первую очередь жидкостной хроматографии, в медицину позволило решить многие жизненно важные проблемы: исследование степени чистоты и стабильности лекарственных средств, препаративное выделение индивидуальных гормональных препаратов (например, инсулина, интерферона), количественное определение в биологических объектах нейромедиаторов: адреналина, норадреналина. С наличием этих веществ в живом организме связывают способность к запоминанию, обучению, приобретению каких-либо навыков. Идентификация методами ВЭЖХ стероидов, аминокислот, аминов и других соединений оказалась крайне важной при диагностике некоторых наследственных заболеваний: инфаркта миокарда, диабета, различных заболеваний нервной системы. Одной из актуальных задач клинической медицины для экспресс-диагностики является проведение так называемого профильного анализа компонентов биологического объекта, осуществляемого методами жидкостной хроматографии, что позволяет не проводить идентификацию каждого пика, а сопоставлять профили хроматограмм для заключения о норме или патологии. Обработка огромного массива информации осуществляется только с использованием ЭВМ (метод получил название «метод распознавания образов»).[10]

Список литературы

1. Васильев В. П. Аналитическая химия, В 2 кн. Кн. 2 Физико-химические методы анализа: Учеб. для студ. вузов, обучающихся по химико-технол. спец. – 4-е изд., стереотип. – М.: Дрофа, 2004 – 384 с.

2. Москвин Л.Н., Царицына Л.Г. Методы разделения и концентрирования в аналитической химии. – Л.: Химия, 1991. – 256 с.

3. bibliofond.ru/view.aspx?id=43468

4. ru.wikipedia.org/wiki/Бумажная_хроматография

5. referats.qip.ru/referats/preview/93743/6

6. www.curemed.ru/medarticle/articles/12186.htm

7. www.lumex.ru/method.php?id=16

8. www.xumuk.ru/encyklopedia/1544.html

9. www.pereplet.ru/obrazovanie/stsoros/1110.html

10. www.chem.msu.su/rus/teaching/oil/spezprakt-chr.html

11. www.prochrom.ru/ru/?idp=110

www.ronl.ru

Доклад - Жидкостно-жидкостная хроматография - Химия

Федеральное агентство по образованию

ГОУ ВПО «Челябинский государственный университет»

Химический факультет

Кафедра физической и аналитической химии

Курсовая работа по аналитической химии

Тема: «Жидкостно-жидкостная хроматография»

Челябинск

2010

Содержание

Введение

1. Специфика метода жидкостно-жидкостная хроматография

2. Аппаратура для жидкостной хроматографии

3. Колоночный вариант

4. Распределительная хроматография на бумаге (бумажная хроматография)

5. Гель-хроматография

6. Высокоэффективная жидкостная хроматография

7. Применение

Список литературы

хроматография сорбционный химический распределительный

Введение

Хроматография — это физико-химический метод разделения и анализа смесей газов, паров, жидкостей или растворенных веществ сорбционными методами в динамических условиях.

Метод основан на различном распределении веществ между двумя несмешивающимися фазами — подвижно и не подвижной. Подвижной фазой может быть жидкость или газ, неподвижной фазой – твердое вещество, которое называют носителем. При движении подвижной фазы вдоль неподвижной, компоненты смеси сорбируются на неподвижной фазе. Каждый компонент сорбируется в соответствии со сродством к материалу неподвижной фазы (вследствие адсорбции или других механизмов). Поэтому неподвижную фазу называют также сорбентом. Захваченные сорбентом молекулы могут перейти в подвижную фазу и продвигаться с ней дальше, затем снова сорбироваться. Таким образом, хроматографию можно определить как процесс, основанный на многократном повторении актов сорбции и десорбции вещества при перемещении его в потоке подвижной фазы вдоль неподвижного сорбента. Чем сильнее сродство компонента к неподвижной фазе, тем сильнее он сорбируется и дольше задерживается на сорбенте; тем медленнее его продвижение вместе с подвижной фазой. Поскольку компоненты смеси обладают разным сродством к сорбенту, при перемещении смеси вдоль сорбента произойдет разделение: одни компоненты задержаться в начале пути, другие продвинуться дальше. В хроматографическом процессе сочетаются термодинамический (установление равновесия между фазами) и кинетический (движение компонентов с разной скоростью) аспекты. В зависимости от агрегатного состояния фаз, механизма взаимодействия и оформления различают основные виды хроматографии, которые приведены в таблице:

Неподвижная фаза Подвижная фаза
газообразная жидкая
Твердая Газовая адсорбционная хроматография Жидкостная адсорбционная, ионообменная, тонкослойная, осадочная хроматография
Жидкая Газожидкостная распределительная хроматография, капиллярная Жидкостная распределительная, высокоэффективная жидкостная, гельхроматография

Рассмотрим более подробно хроматографию в системе жидкость-жидкость.

1. Специфика метода жидкостно-жидкостной хроматографии

Жидкостно-жидкостная хроматография (ЖЖХ) по сути, близка к газожидкостной хроматографии. На твердый носитель также наносится пленка жидкой фазы и через колонку, наполненную таким сорбентом, пропускают жидкий раствор. Жидкость, нанесенную на носитель, называют неподвижной жидкой фазой, а растворитель, передвигающийся через носитель, — подвижной жидкой фазой. ЖЖХ может проводиться в колонке (колоночный вариант) и на бумаге (бумажная хроматография, или хроматография на бумаге).[2]

2. Аппаратура для жидкостной хроматографии

В современной жидкостной хроматографии используют приборы различной степени сложности — от наиболее простых систем, до хроматографов высокого класса, снабженных различными дополнительными устройствами.

На рис.1. представлена блок-схема жидкостного хроматографа, содержащая минимально необходимый набор составных частей, в том или ином виде, присутствующих в любой хроматографической системе.

Рис. 1 Блок-схема жидкостного хроматографа: 2 – насос предназначен для создания постоянного потока растворителя. Его конструкция определяется, прежде всего, рабочим давлением в системе. Для работы в диапазоне 10-500 МПа используются насосы плунжерного (шприцевого), либо пистонного типов. Недостатком первых является необходимость периодических остановок для заполнения элюентом, а вторых — большая сложность конструкции и, как следствие, высокая цена. Для простых систем с невысокими рабочими давлениями 1-5 МПа с успехом применяют недорогие перистальтические насосы, но так как при этом трудно добиться постоянства давления и скорости потока, их использование ограничено препаративными задачами.

3 — инжектор обеспечивает ввод пробы смеси разделяемых компонентов в колонку с достаточно высокой воспроизводимостью. Простые системы ввода пробы — «stop-flow» требуют остановки насоса и, поэтому, менее удобны, чем петлевые дозаторы, разработанные фирмой Reodyne.

4 — колонки для ВЭЖХ представляют собой толстостенные трубки из нержавеющей стали, способные выдержать высокое давление. Большую роль играет плотность и равномерность набивки колонки сорбентом. Для жидкостной хроматографии низкого давления с успехом используют толстостенные стеклянные колонки.

5 – термостат обеспечивает постоянноство температуры.

6 – детекторы для жидкостной хроматографии имеют проточную кювету, в которой происходит непрерывное измерение какого-либо свойства протекающего элюента

7 — регистрирующая система в простейшем случае состоит из дифференциального усилителя и самописца. Желательно также наличие интегратора, позволяющего рассчитывать относительные площади получаемых пиков. В сложных хроматографических системах используется блок интерфейса, соединяющий хроматограф с персональным компьютером (8), который осуществляет не только сбор и обработку информации, но и управляет прибором. [11]

3. Колоночный вариант

Разделение смеси веществ в жидкостно-жидкостной хроматографии основываются на различии коэффициентов распределения вещества между несмешивающимися растворителями. Коэффициент распределения вещества равен:

Кп, н =сп /сн

где сп и сн — концентрация вещества в подвижной и неподвижной фазах.

Для членов одного гомологического ряда установлены некоторые закономерности в величинах Кп.н. Известна, например, зависимость Кп.н в данном гомологическом ряду от числа атомов углерода.

Поиск несмешивающихся фаз, обеспечивающих разделение, обычно производится эмпирически на основе экспериментальных данных. Широкое применение в жидкостно-жидкостной хроматографии получили тройные системы, состоящие из двух несмешивающихся растворителей и третьего, растворимого в обеих фазах. Такие системы позволяют получать набор несмешивающихся фаз различной селективности. В качестве примера можно привести систему из несмешивающихся между собой гептана и воды, в которую введен этанол, растворяющийся в обоих растворителях.

Хотя в качестве подвижной и неподвижной фаз выбираются растворители, не смешивающиеся между собой, все же во многих системах наблюдается некоторая взаимная растворимость. Чтобы предотвратить процессы взаимного растворения жидкостей в ходе хроматографирования, подвижную жидкую фазу предварительно насыщают неподвижной. Для сохранения неизменного состава фаз применяют также метод химического закрепления неподвижной фазы на сорбенте. При этом используют взаимодействие растворителя с группами ОН- на поверхности носителя. Адсорбенты с закрепленной на их поверхности жидкой фазой выпускаются промышленностью.

Эффективность колонки связана с вязкостью, коэффициентом диффузии и другими физическими свойствами жидкостей. С уменьшением вязкости подвижной фазы сокращается продолжительность анализа, но с увеличением вязкости несколько возрастает эффективность. В практике обычно используют маловязкие растворители, так как возрастание эффективности колонок при увеличении вязкости не очень велико.

Носитель неподвижной фазы должен обладать достаточно развитой поверхностью, быть химически инертным, прочно удерживать на своей поверхности жидкую фазу и не растворяться в применяемых растворителях. В качестве носителей используют вещества различной химической природы: гидрофильные носители — силикагель, целлюлоза и др. и гидрофобные — фторопласт, тефлон и другие полимеры. [2]

Рис 3. Вид хроматограммы в зависимости от эффективности и селективности хроматографической системы:

а — нормальная селективность, пониженная эффективность;

б — нормальная эффективность и селективность;

в — повышенная селективность, нормальная эффективность. [12]

4. Распределительная хроматография на бумаге (бумажная хроматография)

Кроме обычных носителей, используемых для заполнения колонок, в распределительной хроматографии применяют специфический носитель, позволяющий обходиться вообще без колонки. Таким носителем является специальная хроматографическая бумага, а методика, основанная на ее применении, получила название распределительной хроматографии на бумаге или распределительной бумажной хроматографии. Во многом она сходна с хроматографией в тонком слое (ТСХ). Бумажную хроматографию, как и хроматографию вообще, можно разделить на:

· Распределительную

· Адсорбционную

· Ионообменную

· Препаративную

· Аналитическую.

В распределительной бумажной хроматографии можно выделить:

· нормальную

· обращённо-фазную хроматографию. [2]

По технике выполнения различают следующие виды бумажной хроматографии:

· Одномерную

· Двумерную (хроматографирование производят дважды во взаимно противоположных направлениях: после обработки пробы одним растворителем хроматограмму поворачивают на 90° и хроматографируют вторично уже другим растворителем)

· Круговую

· Электрофоретическую[2]

Рис 4.I – линия старта;

II – линия фронта;

1 – длина пятна;

2 – отрезок от линии старта до пятна;

3 – отрезок от линии старта до центра пятна — ;

4 – отрезок от линии старта до линии фронта — .

Важной характеристикой в бумажной распределительной хроматографии, так же как и в ТСХ, является Rf =x/Xf, где х — смещение зоны компонента; хf — смещение фронта растворителя. Методика определения Rfв бумажной хроматографии не отличается от соответствующей методики в ТСХ, основанной на измерениях в соответствии с рис. 1. В начальный момент времени хроматографируемая проба наносится на начальную (стартовую) линию бумажной полоски и подвергается действию подвижной фазы (растворителя). Если компоненты окрашены, через некоторое время на хроматограмме можно будет видеть отдельные цветные пятна. Первый компонент будет иметь Rf1 =x1 /xf, второй —Rf2 =X2 /Xf и т. д.[2]

При идеальных условиях коэффициент Rfопределяется только природой вещества, параметрами бумаги и свойствами растворителей, но не зависит от концентрации вещества и присутствия других компонентов. В действительности коэффициент Rfв некоторой степени оказался зависящим от этих факторов и техники эксперимента. [2]

Хроматографическая бумага должна быть химически чистой, нейтральной, инертной по отношению к компонентам раствора и подвижному растворителю и быть однородной по плотности. Имеют значение также такие свойства, как структура молекул целлюлозы в бумаге, набухаемость, ориентация волокна и другие, влияющие на скорость движения растворителя и на иные характеристики процесса. [2]

В атмосфере водяных паров бумага поглощает значительное количество влаги (до 20...25 % своей массы), поэтому, когда неподвижной жидкой фазой является вода, никакого дополнительного увлажнения бумаги не делают. При выборе в качестве неподвижной фазы некоторых органических веществ, гидрофильную бумагу превращают в гидрофобную, пропитывая ее растворами различных гидрофобных веществ (парафина, растительного масла и др.).[2]

В выбранных растворителях компоненты пробы должны иметь разную растворимость, иначе разделения вообще не произойдет. В растворителе, являющемся подвижной фазой, растворимость каждого компонента должна быть меньшей, чем в растворителе неподвижной фазы, но все же составлять вполне заметное значение. Это ограничение связано с тем, что если растворимость вещества будет очень велика, вещество будет двигаться вместе с фронтом растворителя, а если растворимость будет очень мала, вещество останется на начальной линии.[2]

Для разделения водорастворимых веществ в качестве подвижной фазы обычно берут органический растворитель, а в качестве неподвижной — воду. Если вещество растворимо в органических растворителях, вода используется уже в качестве подвижной фазы, а органический растворитель является неподвижной фазой. Это так называемый метод обращенных фаз.[2]

К растворителям обычно предъявляются следующие требования:

· растворители подвижной и неподвижной фаз не должны смешиваться

· состав растворителя в процессе хроматографирования не должен изменяться

· растворители должны легко удаляться с бумаги

· быть недефицитными и безвредными для человека.[2]

Индивидуальные растворители в распределительной хроматографии используют относительно редко. Чаще для этой цели употребляют смеси веществ, например бутилового или амилового спирта с метиловым или этиловым, насыщенные водные растворы фенола, крезола и др., смеси бутилового спирта с уксусной кислотой, аммиаком и т. д. Применение различных смесей растворителей позволяет плавно изменять Rf и тем самым создавать наиболее благоприятные условия разделения.[2]

В бумажной хроматографии вещества различаются по их относительному положению на бумаге после того, как растворитель пройдёт определённое расстояние. Небольшое количество раствора смеси (10-20мкл), которую нужно разделить, наносят в отмеченную точку на бумаге и высушивают. Полученное пятно называют стартовым. Затем бумагу помещают в герметичную камеру и один её конец погружают в растворитель, который является подвижной фазой. Под действием капиллярных сил растворитель движется по бумаге, растворяя и увлекая за собой компоненты образца. До начала движения образец должен полностью раствориться, поэтому скорость растворения компонентов в подвижной фазе является одним из факторов, определяющих эффективность разделения. После того, как растворитель пройдёт определённое расстояние, лист вынимают и сушат.Пятна на хроматограммах могут быть обнаружены по цвету, флуоресценции, с помощью химических реакций, для чего бумагу опрыскивают или погружают в различные реагенты, или же по радиоактивности. Идентификацию проводят обычно путём сравнения с образцами с известными величинами Rf или после элюирования, которое сводится к вырезанию зоны, содержащей пятно, и последующему промыванию её соответствующим растворителем. [5]

5. Гель-хроматография

Гель-фильтрация (синоним гель-хроматография) — метод разделения смеси веществ с различными молекулярными массами путем фильтрации через различные так называемые ячеистые гели. [7]

Неподвижной фазой в гель-хроматографии является растворитель, находящийся в порах геля, а подвижной – сам растворитель, т.е и подвижную и неподвижную фазы составляет одно и тоже вещество или одна и та же смесь вещества. Гель готовят на основе, например, декстрана, полиакриламида или других природных и синтетических соединений.

В отличии от других хроматографических методов, использующих различия в химических свойствах разделяемых веществ, проявляющихся при их распределении между стационарной и подвижной фазами, разделение основано на ситовом эффекте, характерном для гелей с определенным радиусом пор. Растворитель (подвижная фаза) заполняет как внешний объем между зернами геля, так и внутренний объем пор. Объем растворителя между зернами геля – Vм называют промежуточным, транспортным или мертвым объемом, а внутренний объем пор – Vп рассматривается как объект стационарной фазы. Когда в колонку вводят пробу, содержащую несколько типов ионов или молекул с разными размерами, то они стремятся из подвижной фазы проникнуть внутрь пор. Такое проникновение обусловлено энтропийным распределением, поскольку концентрация молекул разделяемых веществ в наружном растворе оказывается выше, чем в поровом пространстве. Но оно становится возможным только в том случае, если размеры ионов или молекул меньше диаметра пор. [3]

Рис 5 Общий вид градуировочной кривой в гель-хроматографии:

1 – область исключения, где все молекулы имеют размер больше m2 ;

2 – область проникновения или разделения, где размеры молекул лежат в интервале от m1 и m2 ;

3 — область, где происходит полное проникновение молекул с размерами менее m1. [3]

В процессе гель-хроматографирования могут быть отделены крупные молекулы, которые гелем не сорбируются, так как их размеры превышают размеры пор, от мелких, которые проникают в поры, а затем могут быть элюированы. Проводятся и более тонкие разделения, так как размеры пор можно регулировать, изменяя, например, состав растворителя и, как следствие, набухаемость геля. Гель-хроматография может быть выполнена вколоночном варианте и в тонкослойном.

Применяемые на практике гели обычно подразделяют на мягкие, полужесткие и жесткие. Мягкими гелями являются высокомолекулярные органические соединения с незначительным числом поперечных связей. Фактор емкости, равный отношению объема растворителя внутри геля к его объему вне геля, у них равен 3. При набухании они значительно увеличиваютсобственный объем. Это сефадексы или декстрановые гели, агарочные гели, крахмал и др. Они применяются для разделения смесей низкомолекулярных веществ, часто в тонкослойном варианте. Хроматографирование на мягкихгелях называют гель — фильтрацией.

Полужесткие гели получают путем полимеризации. Большое распространение получили стирогели — продукты сополимеризации стирола и дивинилбензола с большим числом поперечных связей. Фактор емкости полужестких гелей лежит в пределах 0,8...1,2, их объем при набухании увеличивается не очень значительно (в 1,2...1,8 раза ). Хроматографирование на полужестких гелях называют гель-проникающей хроматографией.

К жестким гелям относят силикагели и часто пористые стекла, хотя они и не являются гелями. Жесткие гели имеют небольшой фактор емкости (0,8...1,1) и фиксированный размер пор. Эти материалы используют в гель-хроматографии при высоком давлении.

Растворители гель-хроматографии должны растворять все компоненты смеси, смачивать поверхность геля и не адсорбироваться на ней.

Практическое применение гель-хроматографии связано, главным образом, с разделением смеси высокомолекулярных соединений, хотя нередко они используются для разделения и низкомолекулярных, так как разделение этим методом возможно при комнатной температуре. [2]

6. Высокоэффективная жидкостная хроматография (ВЖКХ)

Высокоэффективная жидкостная хроматография – наиболее эффективный метод анализа органических проб сложного состава. Процесс анализа пробы делится на 2 этапа:

· разделение пробы на составляющие компоненты;

· детектирование и измерение содержания каждого компонента.

Задача разделения решается при помощи хроматографической колонки, которая представляет собой трубку, заполненную сорбентом. При проведении анализа через хроматографическую колонку подают жидкость (элюент) определенного состава с постоянной скоростью. В этот поток вводятточно отмеренную дозу пробы.

Компоненты пробы, введенной в хроматографическую колонку, из-за их разного сродства к сорбенту колонки двигаются по ней с различными скоростями и достигают детектора последовательно в разные моменты времени.

Таким образом, хроматографическая колонка отвечает за селективность и эффективность разделения компонентов. Подбирая различные типы колонок можно управлять степенью разделения анализируемых веществ. Идентификация соединений осуществляется по их времени удерживания. Количественное определение каждого из компонентов рассчитывают, исходя из величины аналитического сигнала, измеренного с помощью детектора, подключенного к выходу хроматографической колонки.

При анализе соединений с низкими ПДК (биогенные амины, полиароматические углеводороды, гормоны, токсины) из-за трудоемкости подготовки реальных проб особенно важной характеристикой становится чувствительность и селективность метода. Применение флуориметрического детектора позволяет не только снизить пределы обнаружения, но и селективно выделить анализируемые вещества на фоне матричных и сопутствующих компонентов пробы.

Метод ВЭЖХ применяется в санитарно-гигиенических исследованиях, экологии, медицине, фармацевтике, нефтехимии, криминалистике, для контроля качества и сертификации продукции.

В качестве блока подачи элюента используется насос «Питон» шприцевого типа, который имеет следующие особенности:

· отсутствие пульсаций давления при подаче растворителя;

· большой диапазон объемных скоростей потока;

· большой объем камеры насоса;

· расширяемость (возможность сочетать несколько блоков для создания градиентной системы).

В хроматографической системе могут использоваться различные типы детекторов, например, «Флюорат-02-2М» (спектральная селекция осуществляется фильтрами) или «Флюорат-02 Панорама» (спектральная селекция осуществляется монохроматорами). [8]

7. Применение

Жидкостная хроматография важнейший физико-химический метод исследования в химии, биологии, биохимии, медицине, биотехнологии. Ее используют для анализа, разделения, очистки и выделения аминокислот, пептидов, белков, ферментов, вирусов, нуклеотидов, нуклеиновых кислот, углеводов, липидов, гормонов и т. д.; изучения процессов метаболизма в живых организмах лекарственных препаратов; диагностики в медицине; анализа продуктов химического и нефтехимического синтеза, полупродуктов, красителей, топлив, смазок, нефтей, сточных вод; изучения изотерм сорбции из раствора, кинетики и селективности хим. процессов.

В химии высокомолекулярных соединений и в производстве полимеров с помощью жидкостной хроматографии анализируют качество мономеров, изучают молекулярно-массовое распределение и распределение по типам функциональности олигомеров и полимеров, что необходимо для контроля продукции. Жидкостную хроматографию используют также в парфюмерии, пищевой промышленности, для анализа загрязнений окружающей среды, в криминалистике. [9]

Заключение

Начало ХХ века ознаменовалось открытием хроматографического метода анализа, обогатившего и объединившего различные области науки, без которых немыслим научный прогресс XXI века. Внедрение хроматографических методов, и в первую очередь жидкостной хроматографии, в медицину позволило решить многие жизненно важные проблемы: исследование степени чистоты и стабильности лекарственных средств, препаративное выделение индивидуальных гормональных препаратов (например, инсулина, интерферона), количественное определение в биологических объектах нейромедиаторов: адреналина, норадреналина. С наличием этих веществ в живом организме связывают способность к запоминанию, обучению, приобретению каких-либо навыков. Идентификация методами ВЭЖХ стероидов, аминокислот, аминов и других соединений оказалась крайне важной при диагностике некоторых наследственных заболеваний: инфаркта миокарда, диабета, различных заболеваний нервной системы. Одной из актуальных задач клинической медицины для экспресс-диагностики является проведение так называемого профильного анализа компонентов биологического объекта, осуществляемого методами жидкостной хроматографии, что позволяет не проводить идентификацию каждого пика, а сопоставлять профили хроматограмм для заключения о норме или патологии. Обработка огромного массива информации осуществляется только с использованием ЭВМ (метод получил название «метод распознавания образов»).[10]

Список литературы

1. Васильев В. П. Аналитическая химия, В 2 кн. Кн. 2 Физико-химические методы анализа: Учеб. для студ. вузов, обучающихся по химико-технол. спец. – 4-е изд., стереотип. – М.: Дрофа, 2004 – 384 с.

2. Москвин Л.Н., Царицына Л.Г. Методы разделения и концентрирования в аналитической химии. – Л.: Химия, 1991. – 256 с.

3. bibliofond.ru/view.aspx?id=43468

4. ru.wikipedia.org/wiki/Бумажная_хроматография

5. referats.qip.ru/referats/preview/93743/6

6. www.curemed.ru/medarticle/articles/12186.htm

7. www.lumex.ru/method.php?id=16

8. www.xumuk.ru/encyklopedia/1544.html

9. www.pereplet.ru/obrazovanie/stsoros/1110.html

10. www.chem.msu.su/rus/teaching/oil/spezprakt-chr.html

11. www.prochrom.ru/ru/?idp=110

www.ronl.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.