анизма и требуют коррекции гипоосмолярными растворами.

При потере ионов натрия, превосходящей потери воды (сильное потоотделение, недостаточно восполняемое потреблением воды), развивается гипоосмолярная гипогидрия. При этом быстро уменьшается объем межклеточного вещества в сравнении с объемом клетки. Этот вариант обезвоживания требует применения для коррекции гиперосмолярных (подсоленных) растворов.

При повышенном накоплении натрия в организме при гиперальдостеропизме (заболевания почек, болезнь Кона, хроническая сердечно-сосудистая недостаточность большого круга кровообращения) накапливается жидкость (гиперосмолярная гипергидрия) в межклеточном веществе и развиваются отеки.

Повышенная проницаемость мембран шоковой клетки, повышение онкотического давления в гиалоплазме поврежденных клеток ведет к преобладанию внутриклеточного набухания над неклеточным отеком. Такое набухание может привести к разрыву клеточных мембран и гибели поврежденной клетки.

Таким образом, при попытках компенсации гипогидрии или гипергидрии необходимо учитывать не только потери или избыточное накопление воды, но и осмолярность, а также степень накопления в клетке и внеклеточном веществе продуктов полураспада и промежуточного обмена органических веществ, определяющих состояние онкотического и осмотического давлений.

Введение гипоосмолярных жидкостей при гипоосмолярной гипогидрии может вызвать острое набухание клеток с разрывом их клеточных мембран (гемолиз эритроцитов). При введении гипертонических и изотонических растворов на фоне гиперосмолярной гипогидрии, нормогидрии и гипергидрии развивается отек межклеточного вещества (отек легкого, мозга).

Изменение соотношения между органическими и неорганическими кислотами и щелочами сопровождается смещением кислотно-щелочного равновесия в кислую или основную сторону. В норме межклеточное вещество и содержимое гиалоплазмы имеет слабощелочную pH и колеблется в пределах 7,2…7,4.

Под ацидозом понимают патологическое смешение кислотнощелочного равновесия в кислую сторону. Алкалоз — явление, противоположное ацидозу. Выделяют метаболический и дыхательный ацидоз, метаболический и дыхательный алкалоз.

Метаболический ацидоз обусловлен снижением содержания ионов гидрокарбоната и накоплением ионов водорода. Это встречается при увеличении содержания низкомолекулярных органических и неорганических кислот, потерях гидрокарбоната организмом.

Дыхательный ацидоз возникает при высоком содержании диоксида углерода. Развитие внутриклеточного ацидоза изменяет химизм ферментативных реакций, активирует аутолитические процессы в клетке.

Метаболический алкалоз отличается низким уровнем ионов водорода и высоким содержанием гидрокарбоната. Это явление связано со значительными потерями кислых ионов, например ионов хлора и ионов водорода при неукротимой рвоте. Метаболический алкалоз возникает и при избыточном накоплении ионов натрия, что связано с гиперфункцией коры надпочечников (минерал окортикоидов). Дыхательный алкалоз сопровождает низкий уровень диоксида углерода и высокое содержание кислорода, связанные с гипервентиляцией.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

www.activestudy.info

Дисбаланс ионов и жидкости в клетке при ее ишемическом повреждении проявляется: (3)

1) накоплением К+ 2) накоплением Na+
3) снижением содержания Cl– 4)накоплением РО4–
5) снижением содержания Н+ 6) гипергидратацией
7) накоплением НСО3– 8) накоплением ОН–

ПФ, что есть «пермиссивное действие ферментов (вариант ответа 5)»? Я не знаю. ЭГ.

Одним из последствий повреждения клетки является расстройство регуляции внутриклеточных процессов в результате нарушения: (4)

1) взаимодействия биологически активных веществ с рецепторами клеток 2) эффектов вторых посредников, образующихся в ответ на действие гормонов и нейромедиаторов
3) метаболических процессов, регулируемых циклическими нуклеотидами 4) активности клеточных ферментов
5) пермиссивного действия гормонов

Основными факторами повреждения клеточных мембран являются: (5)

1) интенсификация свободнорадикальных и липопероксидных реакций 2) выход в цитозоль лизосомных гидролаз и активация их
3) активация мембранных и внутриклеточных фосфолипаз 4) активация транспорта глюкозы в клетку
5) осмотическая гипергидратация клетки и субклеточных структур 6) адсорбция белков на цитолемме
7) детергентное действие ВЖК и гидроперекисей липидов

Повреждение клетки, обусловленное нарушением её энергетического обеспечения, может возникнуть при: (5)

1) нарушении окислительного фосфорилирования в митохондриях 2) подавлении гликолиза
3) снижении активности адениннуклеотидтрансферазы и КФК 4) снижении активности Na+,K+‑АТФаз ïëàçìàòè÷åñêîé ìåìáðàíû
5) уменьшении содержания креатинфосфата 6) ïîäàâëåíèè ãëèêîãåíîëèçà
7) снижении активности Ca2+Mg2+‑АТФазы саркоплазматического ретикулума

Апоптоз отличается от некроза тем, что он: (5)

1) возникает при выраженном повреждении клеточных мембран, включая плазматическую 2) обеспечивает удаление «лишних» клеток в физиологических условиях
3) инициирует воспаление 4) сопровождается «сморщиванием» клеток
5) реализуется с участием лизосомальных ферментов 6) реализуетсяс участием каспаз цитозоля
7) генетически запрограммирован 8) может возникать при дефиците гормональных факторов

От патогенного действия свободных радикалов клетку защищают: (4)

1) токоферолы 2) двухвалентные ионы железа
3) СОД 4) сульфатаза
5) пероксидазы 6) глюкуронидаза
7) витамин А

Детергентное действие на клеточные мембраны оказывают: (3)

1) неэстерифицированные жирные кислоты 2) лизофосфолипиды
3) КТ 4) лактат
5) жёлчные кислоты 6) аминокислоты
7) гликоген

Чрезмерная активация свободнорадикальных и перекисных реакций вызывает: (5)

1) конформационные изменения липопротеидных комплексов мембран клетки 2) инактивацию сульфгидрильных групп белков
3) активацию фосфолипаз 4) подавление процессов окислительного фосфорилирования
5) уменьшение активности Na+‑Ca2+–трансмембранного обменного механизма 6) активацию функции мембраносвязанных рецепторов

К ферментам антимутационной системы клетки относят: (3)

1) рестриктаза 2) гистаминаза
3) гиалуронидаза 4) ДНК‑полимераза
5) креатинфосфаткиназа 6) ДНК‑лигаза

Неспецифическими проявлениями повреждения клетки являются: (6)

1) денатурация белка 2) усиление перекисного окисления липидов
3) ацидоз 4) набухание клетки
5) накопление плазменных белков в клетке 6) делеция одной из хромосом
7) гемолиз 8) нарушение аксонного транспорта
9) лабилизация мембран лизосом

Обратимое ишемическое повреждение клетки характеризуется: (6)

1) умеренным накоплением в ней Na+ 2) умеренным снижением в ней содержания К+
3) набуханием клетки 4) распадом полисом на моносомы
5) накоплением в ней плазменных белков 6) повышением в ней уровня АТФ
7) повышением в ней уровня креатина 8) выходом лизосомальных ферментов в цитозоль

К адаптивным механизмам, активирующимся при повреждении клетки, относят: (6)

1) активацию гликолиза 2) активацию переносчиков глюкозы
3) активацию Na+,K+‑АТФазы при увеличении внутриклеточного Na+ 4) активацию факторов антиоксидантной системы
5) увеличение транспорта Са2+ в клетку 6) высвобождение ферментов из лизосом
7) активацию ДНК‑полимераз и лигаз 8) снижение функциональной активности клетки

Клеточными органеллами, которые, как правило, в первую очередь и в наибольшей мере реагируют на повреждение являются: (2)

1) эндоплазматический ретикулум 2) рибосомы
3) лизосомы 4) комплекс Гольджи
5) митохондрии

К интенсивной пролиферации при репарации повреждённых тканей способны: (3)

1) гепатоциты 2) покровный эпителий
3) кардиомиоциты 4) скелетные мышечные волокна
5) нейроны 6) клетки рыхлой волокнистой соединительной ткани

Антиоксидантными ферментами клеток являются: (4)

1) СОД 2) гиалуронидаза
3) фенилаланиндекарбоксилаза 4) глутатионпероксидаза II
5) каталаза 6) фосфолипаза А2
7) адениннуклеотидтрансфераза 8) глутатионредуктаза

Неферментными факторами антиоксидантной защиты клеток являются: (4)

1) двухвалентные ионы железа 2) глюкуронидаза
3) витамин А 4) витамин С
5) витамин Е 6) глутатион

Причинами гипергидратации клетки при ее повреждении являются: (4)

1) увеличение активности Na+,K+‑АТФазы 2) уменьшение внеклеточной [Na+]
3) увеличение внутриклеточного содержания липидов 4) увеличение проницаемости плазматической мембраны
5) подавление окислительного фосфорилирования 6) активация гликолиза
7) увеличение тока К+ внутрь клетки 8) увеличение внутриклеточной [Na+]

О повреждении клетки свидетельствуют: (4)

1) прижизненное окрашивание трипановым синим и другими красителями 2) активация синтеза белка
3) чрезмерная активация перекисного окисления липидов 4) выход лактатдегидрогеназы в окружающую среду
5) уменьшение МП на 3–5% 6) повышение внутриклеточной концентрации Na+

Ишемическому повреждению клетки способствуют: (4)

1) повышение функциональной активности клетки 2) снижение функциональной активности клетки
3) высокая зависимость энергетического обеспечения клетки от окислительного фосфорилирования 4) высокая зависимость энергетического обеспечения клетки от гликолиза
5) стимуляция инсулином облегченной диффузии глюкозы 6) снижение температуры клетки
7) снижение внутриклеточного содержания восстановленного глутатиона 8) снижение содержания в клетке гликогена

Основными механизмами повреждения клеточных мембран являются: (4)

1) значительная интенсификация СПОЛ 2) выход лизосомальных гидролаз в цитозоль
3) активация мембранных трансфераз 4) активация транспорта глюкозы в клетку
5) осмотическая гипергидратация клетки и субклеточных структур 6) адсорбция белков на цитолемме
7) детергентное действие ВЖК и лизофосфатидов 8) внутриклеточный ацидоз

22. Увеличение содержания Ca2+ в клетке сопровождается: (4)

1) активацией фосфолипазы А2 2) инактивацией фосфолипазы С
3) активацией СПОЛ 4) гиперполяризацией цитоплазматической мембраны
5) увеличением содержания свободного кальмодулина 6) увеличением выхода К+ из клетки
7) гипергидратацией клетки

Амфифильные соединения в высоких концентрациях: (3)

1) активируют гликолиз 2) агрегируют липопротеиды в мицеллы, которые внедряются в мембраны клеток
3) встраиваются в гидрофильный слой мембран в виде мономеров 4) повышают упорядоченность структуры мембраны
5) разрушают липидный бислой мембраны клетки 6) образуют неселективные высокопроницаемые каналы в мембране

24. Повышение содержания Са2+ в цитозоле клетки при ишемии обусловлено: (3)



infopedia.su

II. Общие механизмы повреждения клеток

На уровне клетки повреждающие факторы “включают” несколько патогенетических звеньев. К их числу относят:

1. Нарушение энергетического обеспечения процессов, протекающих в клетках, часто является инициальным и ведущим механизмом их альтерации. Энергоснабжение может расстраиваться на этапах синтеза АТФ, транспорта, а также утилизации его энергии.

Синтез АТФ может быть нарушен в результате дефицита кислорода и/или субстратов метаболизма, снижения активности ферментов тканевого дыхания и гликолиза, повреждения и разрушения митохондрий, в которых осуществляются реакции цикла Кребса и перенос электронов к молекулярному кислороду, сопряженный с фосфорилированием АДФ.

Известно, что доставка энергии АТФ от мест ее синтеза – из митохондрий и гиалоплазмы – к эффекторным структурам (миофибриллам, мембранным ионным “насосам” и др.) осуществляется с помощью ферментных систем: АДФ – АТФ – транслоказы (адениннуклеотидтрансферазы) и креатинфосфокиназы (КФК). Адениннуклеотидтрансфераза обеспечивает транспорт энергии макроэргической фосфатной связи АТФ из матрикса митохондрий через их внутреннюю мембрану, а КФК переносит ее далее на креатин с образованием креатинфосфата, который поступает в цитозоль. Креатинфосфокиназа эффекторных клеточных структур транспортиует фосфатную группу креатинфосфата на АДФ с образованием АТФ, который и используется в процессе жизнедеятельности клетки. Ферментные системы транспорта энергии могут быть повреждены различными патогенными агентами, в связи с чем даже на фоне высокого общего содержания АТФ в клетке может развиваться его дефицит в энергорасходующих структурах.

Нарушение энергообеспечения клеток и расстройства их жизнедеятельности может развиваться и в условиях достаточной продукции и нормального транспорта энергии АТФ. Это может быть результатом повреждения ферментных механизмов утилизации энергии, главным образом за счет снижения активности АТФазы (АТФазы актомиозина, К+ - Na+ - зависимой АТФазы плазмолеммы, Mg2+ - зависимой АТФазы “кальциевой помпы” саркоплазматического ретикулума и др.).

Нарушение процессов энергообеспечения, в свою очередь, может стать одним из факторов расстройств функции мембранного аппарата клеток, их ферментных систем, баланса ионов и жидкости, а также механизмов регуляции клетки.

2. Повреждение мембран и ферментов играет существенную роль в расстройстве жизнедеятельности клетки, а также переходе обратимых изменений в ней в необратимые. Это обусловлено тем, сто основные свойства клетки в существенной мере зависит от состояния ее мембран и связанных с ними или свободных энзимов.

а). Одним из важнейших механизмов повреждения мембран и ферментов является интенсификация свободнорадикальных реакций (СРР) и ПСОЛ. Эти реакции протекают в клетках и в норме, являясь необходимым звеном таких жизненноважных процессов, как транспорт электронов в цепи дыхательных ферментов, синтез простагландинов и лейкотриенов, пролиферация и созревание клеток, фагоцитоз, метаболизм катехоламинов и др. ПСОЛ участвует в процессах регуляции липидного состава биомембран и активности ферментов. Последнее является результатом как прямого действия продуктов липопероксидных реакций на энзимы, так и опосредованного – через изменение состояния мембран, с которыми ассоциированы многие ферменты.

Интенсивность ПСОЛ регулируются соотношением факторов, активирующих (прооксиданты) и подавляющих (антиоксиданты) этот процесс. К числу наиболее активных прооксидантов относятся легко окисляющиеся соединения, индуцирующие свободные радикалы, в частности, нафтохиноны, витамины А и Д, восстановителя – НАДФН2, НАДН2, липоевая кислота, продукты метаболизма простагландинов и катехоламинов.

Процесс ПСОЛ условно можно разделить на три этапа: 1) кислордной иницикации (“кислородный” этап), 2) образования свободных радикалов органических и неорганических агентов (“свободнорадикальный” этап), 3) продукции перекисей липидов (“перекисный” этап). Инициальным звеном свободнорадикальных перекисных реакций при повреждении клетки является, как правило, образование в процессе оксигеназных реакций так называемых активных форм кислорода: супероксидного радикала кислорода (О2-.), гидроксильного радикала (ОН.), перекиси водорода (Н2О2), которые взаимодействуют с компонентами структур клеток, главным образом с липидами, белками и нуклеиновыми кислотами. В результате образуются активные радикалы, в частности, липидов, а также их перекиси. При этом может приобрести цепной “лавинообразный” характер.

Однако это происходит не всегда. В клетках протекают процессы и действуют факторы, которые ограничивают или даже прекращают свободнорадикальные и перекисные реакции, т.е. оказывают антиоксидантный эффект. Одним из таких процессов является взаимодействие радикалов и гидроперекисей липидов между собой, что ведет к образованию “нерадикальных” соединений. Ведущую роль в системе антиоксидантной защите клеток играют механизмы ферментной, а также не ферментной природы.

Исследование последних лет показали, что чрезмерная активация свободнорадикальных и перекисных реакция является одним из главных факторов повреждения мембран и ферментов клеток. Ведущее значение при этом имеют следующие процессы: 1) изменение физико-химических свойств липидов мембран, что обусловливает нарушение конформации их липопротеидных комплексов и в связи с этим снижение активности белков и ферментных систем, обеспечивающих рецепцию гуморальных воздействий, трансмембранный перенос ионов и молекул, структурную целостность мембран; 2) изменение физико-химических свойств белковых мицелл, выполняющих структурную и ферментные функции в клетке; 3) образование структурных дефектов в мембране – т.н. простейших каналов (кластеров) вследствие внедрения в них продуктов ПСОЛ. Указанные процессы, в сою очередь, обуславливают нарушение важных для жизнедеятельности клеток процессов – возбудимости, генерации и проведения неравного импульса, обмена веществ, восприятия и реализации регулирующих воздействий, межклеточного взаимодействия и др.

б). Активация гидролаз (лизосомальных, мембраносвязанных и свободных).

В норме состав и состояние мембран и ферментов модифицируется не только свободнорадикальными и липоперексидными процессами, но также мембраносвязанными, свободными (солюбилизированными) и лизосомальными ферментами: липазами, фосфолипазами, протеазами. Под влиянием патогенных факторов их активность или содержание в гиалоплазме клетки может повыситься ( в частности, вследствие развития ацидоза, способствующего увеличению выхода ферментов из лизосом и их последующей активации). В связи с этим интенсивному гидролизу подвергаются глицерофосфолипиды и белки мембран, а также ферменты клеток. Это сопровождается значительным повышением проницаемости мембран и снижением кинетических свойств ферментов.

в). Внедрение амфифильных соединений в липидную фазу мембран.

В результате действия гидролаз (главным образом липаз и фосфолипаз) в клетке накапливаются свободные жирные кислоты и лизофосфолипиды, в частности, глицерофосфолипиды: фосфотидилхолины, фосфатидилэтаноламины, фосфатидилсерины. Они получили название амфифильных соединений в связи со способностью проникать и фиксироваться в обеих – как в гидрофобной, так и в гидрофильных средах мембран клеток (амфи – означает “оба”, “два”). При сравнительно небольшом уровне в клетке амфифильных соединений они, внедряясь в биомембраны изменяют нормальную последовательность глицерофосфолипидов, нарушают структуру липопротеидных комплексов, увеличивают пронацаемость, а также меняют конфигурацию мембран в связи с “клинообразной” формой липидных мицелл. Накопление в большом количестве амфифилов сопровождается массированным внедрением их в мембраны, что так же, как и избыток гидроперекисей липидов, ведет к формированию кластеров и микроразрывов в них. Повреждение мембран и ферментов клеток является одной из главных причин существенного расстройства жизнедеятельности клеток и нередко приводит к их гибели.

3. Дисбаланс ионов и жидкости в клетке. Как правило, нарушение трансмембранного распределения, а также внутриклеточного содержания и соотношения различных ионов развивается вслед за или одновременно с расстройствами энергетического обеспечения и сочетается с признаками повреждения мембран и ферментов клеток. В результате этого существенно изменяется проницаемость мембран для многих ионов. В наибольшей мере это относится к калию, натрию, кальцию, магнию, хлору, то есть ионам, которые принимают участие в таких жизненноважных процессах, как возбуждение, его проведение, электромеханическое сопряжение и др.

а). Изменение трансмембранного соотношения ионов. Как правило, дисбаланс ионов проявляется накоплением в клетке натрия и потерей калия.

Следствием дисбаланса является изменение мембранного потенциала покоя и действия, а также нарушение проведения импульса возбуждения. Эти изменения имеют важное значение, поскольку они нередко являются одним из важных признаков наличия и характера повреждения клеток. Примером могут служить изменения электрокардиограммы при повреждении клеток миокарда, электроэнфецалограммы при нарушении структуры и функций нейронов головного мозга.

б). Гипер- и дегидратацияклеток.

Нарушения внутриклеточного содержания ионов обусловливают изменение объема клеток вследствие дисбаланса жидкости. Он проявляется либо гипергадратацией (уменьшением содержания жидкости) клетки. Так, например, повышение содержания ионов натрия и кальция в поврежденных клетках сопровождается увеличением в них осмотического давления. В результате этого в клетках накапливается вода. Клетки при этом набухают, объем их увеличивается, что сопровождается увеличением растяжением и нередко микроразрывами цитолеммы и мембран органелл. Напротив, дегидратация клеток (например, при некоторых инфекционных заболеваниях, обусловливающих потерю воды) характеризуется выходом из них жидкости и растворенных в ней белков ( в том числе ферментов), а также других органических и неорганических водорастворимых соединений. Внутриклеточная дегидратация нередко сочетается со сморщиванием ядра, распадом митохондрий и других органелл.

4. Одним из существенных механизмов расстройства жизнедеятельности клетки является повреждение генетической программы и /или механизмов ее реализации. Основными процессами, ведущими к изменению генетической информации клетки, являются мутации, депрессия патогенных генов ( например, онкогенов), подавление активности жизненноважных генов ( например, регулирующих синтез ферментов) или внедрение в геном фрагмента чужеродной ДНК ( например, ДНК онкогенного вируса, аномального участка ДНК другой клетки).

Помимо изменений в генетической программе, важным механизмом расстройства жизнедеятельности клеток является нарушение реализации этой программы, главным образом, в процессе клеточного деления при митозе или мейозе.

5. Важным механизмом повреждения клеток является расстройство регуляции внутриклеточных процессов. Это может быть результатом нарушений, развивающихся на одном или нескольких уровнях регуляторных механизмов:

studfiles.net


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.