Разделы: Биология
Цель: учащиеся углубляют знания о формах размножения организмов; формируются новые понятия о митозе и мейозе и их биологическом значении.
Оборудование:
План урока:
В основе передачи наследственной информации, размножения, а также роста, развития и регенерации лежит важнейший процесс – деление клеток. Молекулярная сущность деления заключена в способности ДНК к самоудвоению молекул.
Объявление темы урока. Поскольку фазы митоза и мейоза в общих чертах мы уже изучали в 9 классе, задачей общей биологии является рассмотрение этого процесса на молекулярном и биохимическом уровне. В связи с этим особое внимание мы уделим изменению хромосомных структур.
Клетка является не только единицей строения и функции у живых организмов, но также и генетической единицей. Это единица наследственности и изменчивости, проявляющихся в процессе деления клеток. Элементарным носителем наследственных свойств клетки является ген. Ген представляет собой отрезок молекулы ДНК из нескольких сотен нуклеотидов, где закодировано строение одной молекулы белка и проявление какого-то наследственного признака клетки. Молекула ДНК в комплексе с белком образует хромосому. Хромосомы ядра и локализованные в них гены являются основными носителями наследственных свойств клетки. В начале клеточного деления хромосомы укорачиваются и окрашиваются более интенсивно, так что становятся видимыми по отдельности.
В делящейся клетке хромосома имеет вид двойной палочки и состоит из двух разделенных щелью вдоль оси хромосомы половинок или хроматид. Каждая из хроматид содержит одну молекулу ДНК.
Внутреннее строение хромосом, число нитей ДНК в них меняются в жизненном цикле клетки.
Вспомним: что такое клеточный цикл? Какие этапы выделяют в клеточном цикле? Что происходит на каждом этапе?
Интерфаза включает в себя три периода.
Пресинтетический период G1 наступает сразу после деления клетки. В это время в клетке происходит синтез белков, АТФ, разных видов РНК и отдельных нуклеотидов ДНК. Клетка растет, и в ней интенсивно накапливаются различные вещества. Каждая хромосома в этот период однохроматидна, генетический материал клетки обозначается 2n 1xp 2с (n – набор хромосом, хр – число хроматид , с – количество ДНК ).
В синтетическом периоде S осуществляется редупликация молекул ДНК клетки. В результате удвоения ДНК в каждой из хромосом оказывается вдвое больше ДНК, чем было до начала S-фазы, но число хромосом не изменяется. Теперь генетический набор клетки составляет 2n 2xp 4с (диплоидный набор, хромосомы двухроматидны, количество ДНК – 4).
В третьем периоде интерфазы – постсинтетическом G2 – продолжается синтез РНК, белков и накопление клеткой энергии. По окончании интерфазы клетка увеличивается в размерах и начинается ее деление.
Деление клетки.
В природе существует 3 способа клеточного деления – амитоз, митоз мейоз.
Амитозом делятся прокариотические организмы и некоторые клетки эукариот, например, мочевого пузыря, печени человека, а также старые либо поврежденные клетки. Сначала в них делится ядрышко, затем ядро на две или несколько частей путем перетяжек и в конце деления перешнуровывается цитоплазма на две или несколько дочерних клеток. Распределение наследственного материала и цитоплазмы не равномерно.
Митоз – универсальный способ деления эукариотических клеток, при котором из диплоидной материнской клетки образуются две подобные ей дочерние клетки.
Длительность митоза 1-3 часа и в его процессе 4 фазы: профаза, метафаза, анафаза и телофаза.
Профаза. Обычно самая продолжительная фаза клеточного деления.
Увеличивается объем ядра, хромосомы спирализуются. В это время хромосома состоит из двух хроматид, соединенных между собой в области первичной перетяжки или центромеры. Затем растворяются ядрышки и ядерная оболочка – хромосомы лежат в цитоплазме клетки. Центриоли расходятся к полюсам клетки и образуют между собой нити веретена деления, а в конце профазы нити крепятся к центромерам хромосом. Генетическая информация клетки, по-прежнему, как в интерфазе (2n 2хр 4с).
Метафаза. Хромосомы располагаются строго в зоне экватора клетки, образуя метафазную пластину. На стадии метафазы хромосомы имеют самую малую длину, так как в это время они сильно спирализованы и конденсированы. Поскольку хромосомы хорошо видны подсчет и изучение хромосом обычно проходит в этот период деления. По продолжительности это самая короткая фаза митоза, так как она длится то мгновение, когда центромеры удвоенных хромосом располагаются строго по линии экватора. И уже в следующий момент начинается следующая фаза.
Анафаза. Каждая центромера расщепляется на две, и нити веретена оттягивают дочерние центромеры к противоположным полюсам. Центромеры тянут за собой отделившиеся одна от другой хроматиды. На полюса приходят по одной хроматиде из пары – это дочерние хромосомы. Количество генетической информации на каждом полюсе теперь равно (2n 1хр 2с).
Завершается митоз телофазой. Процессы, происходящие в этой фазе, обратны процессам, которые наблюдались в профазе. На полюсах происходит деспирализация дочерних хромосом, они утоньшаются и становятся слаборазличимыми. Вокруг них образуются ядерные оболочки, а затем появляются ядрышки. Одновременно с этим идет деление цитоплазмы: в животных клетках – перетяжкой, а у растений со средины клетки к периферии. После образования цитоплазматической мембраны в растительных клетках формируется целлюлозная оболочка. Образуются две дочерние клетки с диплоидным набором однохроматидных хромосом (2n 1хр 2с).
Следует отметить, что все процессы, происходящие в клетке, в том числе и митоз, находятся под генетическим контролем. Гены контролируют последовательные стадии редупликации ДНК, движение, спирализацию хромосом и т.д.
Биологическое значение митоза:
Мейоз
Образование половых клеток (гамет) происходит иначе, чем процесс размножения соматических клеток. Если бы образование гамет шло таким же путем, то после оплодотворения (слияния мужской и женской гамет) число хромосом каждый раз удваивалось бы. Однако этого не происходит. Каждому виду свойственно определенное число и свой специфический набор хромосом (кариотип).
Мейоз – это особый вид деления, когда из диплоидных (2п) соматических клеток половых органов образуются половые клетки (гаметы) у животных и растений или споры у споровых растений с гаплоидным (п) набором хромосом в этих клетках. Затем в процессе оплодотворения ядра половых клеток сливаются, и восстанавливается диплоидный набор хромосом (n+n=2n).
В непрерывном процессе мейоза идут два последовательных деления: мейоз I и мейоз II. В каждом делении те же фазы, что и в митозе, но разные по продолжительности и изменениям генетического материала. В результате мейоза I число хромосом в образовавшихся дочерних клетках уменьшается вдвое (редукционное деление), а при мейозе II гаплоидность клеток сохраняется (эквационное деление).
Профаза мейоза I – удвоенные в интерфазе гомологичные хромосомы попарно сближаются. При этом отдельные хроматиды гомологичных хромосом переплетаются, перекрещиваются между собой и могут разрываться в одинаковых местах. Во время этого контакта гомологичные хромосомы могут обмениваться соответствующими участками (генами), т.е. идет кроссинговер. Кроссинговер вызывает перекомбинацию генетического материала клетки. После этого процесса гомологичные хромосомы снова разъединяются, растворяются оболочки ядра, ядрышек и образуется веретено деления. Генетическая информация клетки в профазе составляет 2n 2хр 4с (диплоидный набор, хромосомы двухроматидные, количество молекул ДНК – 4).
Метафаза мейоза I – хромосомы располагаются в плоскости экватора. Но если в метафазе митоза гомологичные хромосомы имеют положение, независимое друг от друга, то в мейозе они лежат рядом – попарно. Генетическая информация прежняя (2n 2хр 4с).
Анафаза I – к полюсам клетки расходятся не половинки хромосом из одной хроматиды, а целые хромосомы, состоящие из двух хроматид. Значит, из каждой пары гомологичных хромосом в дочернюю клетку попадет лишь одна, но двухроматидная хромосома. Их число в новых клетках уменьшится вдвое (редукция числа хромосом). Количество генетической информации на каждом полюсе клетки становится меньше (1n 2хр 2с).
В телофазе первого деления мейоза формируются ядра, ядрышки и делится цитоплазма – образуются две дочерние клетки с гаплоидным набором хромосом, но эти хромосомы состоят из двух хроматид (1n 2хр 2с).
Вслед за первым наступает второе деление мейоза, но ему не предшествует синтез ДНК. После короткой профазы мейоза II двухроматидные хромосомы в метафазе мейоза II располагаются в плоскости экватора и крепятся к нитям веретена деления. Их генетическая информация прежняя – (1n 2хр 2с).
В анафазе мейоза II к противоположным полюсам клетки расходятся хроматиды и в телофазе мейоза II образуются четыре гаплоидные клетки с однохроматидными хромосомами (1n 1хр 1с). Таким образом, в сперматозоидах и яйцеклетках число хромосом уменьшается вдвое. Такие половые клетки образуются у половозрелых особей различных организмов. Процесс формирования гамет называют гаметогенез.
Биологическое значение мейоза:
1.Образование клеток с гаплоидным набором хромосом. При оплодотворении обеспечивается постоянный для каждого вида набор хромосом и постоянное количество ДНК.
2.Во время мейоза происходит случайное расхождение негомологичных хромосом, что приводит к большому числу возможных комбинаций хромосом в гаметах. У человека число возможных комбинаций хромосом в гаметах составляет 2n, где n – число хромосом гаплоидного набора: 223=8 388 608. Число возможных комбинаций у одной родительской пары 223 х 223
3.Происходящие в мейозе перекрест хромосом, обмен участками, а также независимое расхождение каждой пары гомологичных хромосом
определяют закономерности наследственной передачи признака от родителей потомству.
Из каждой пары двух гомологичных хромосом (материнской и отцовской), входящих в хромосомный набор диплоидных организмов, в гаплоидном наборе яйцеклетки или сперматозоида содержится только одна хромосома. При этом она может быть: 1) отцовской хромосомой; 2) материнской хромосомой; 3) отцовской с участком материнской хромосомы; 4) материнской с участком отцовской. Эти процессы приводят к эффективной рекомбинации наследственного материала в гаметах, образуемым организмом. В результате обуславливается генетическая разнородность гамет и потомства.
При объяснении учащиеся заполняют таблицу: «Сравнительная характеристика митоза и мейоза»
Типы деления | Митоз (непрямое деление) | Мейоз (редукционное деление) |
Число делений | одно деление | два деление |
Происходящие процессы | Репликация и транскрипция отсутствуют | В профазе 1 происходит конъюгация гомологичных хромосом и кроссинговер |
К полюсам клетки расходятся хроматиды | В первом делении к полюсам клетки расходятся гомологичные хромосомы | |
Число дочерних клеток | 2 | 4 |
Набор хромосом в дочерних клетках (n – набор хромосом, хр – хроматиды, с – число ДНК) | Число хромосом остается постоянным2n 1хр 2c (хромосомы однохроматидные) | Число хромосом уменьшается вдвое 1n 1хр 1c (хромосомы однохроматидные) |
Клетки, где происходит деление | Соматические клетки | Соматические клетки половых органов животных; спорообразующие клетки растений |
Значение | Обеспечивает бесполое размножение и рост живых организмов | Служит для образования половых клеток |
Закрепление изученного материала (по табл., тестовая работа).
Д/з
Литература:
Приложения.
xn--i1abbnckbmcl9fb.xn--p1ai
Тема лекции – деление клетки (митоз, мейоз и их отличиях) и индивидуальное развитие (образовании гамет и оплодотворения и краткий обзор эмбрионального развития).
Клетка в своей жизни проходит разные состояния: фазу роста и фазы подготовки к делению и деления. Клеточный цикл – переход от деления к синтезу веществ, составляющих клетку, а затем опять к делению – можно представить на схеме в виде цикла, в котором выделяют несколько фаз.
После деления клетка вступает в фазу синтеза белков и роста, эту фазу называют G1. Часть клеток из этой фазы переходит в фазу G0, эти клетки функционируют и потом погибают без деления (например, эритроциты). Но большинство клеток, накопив необходимые вещества и восстановив свой размер, а иногда и без изменения размеров после предыдущего деления, начинают подготовку к следующему делению. Эта фаза называется фаза S – фаза синтеза ДНК, затем, когда хромосомы удвоились, клетка переходит в фазу G2 – фазу подготовки в митозу. Затем происходит митоз (деление клетки), и цикл повторяется заново. Фазы G1, G2, S вместе называются интерфазой (т.е. фазой между делениями клетки).
Жизнь клетки и переход от одной фазы клеточного цикла к другой регулируется изменением концентраций белков циклинов , как это показано на рисунке.
При подготовке к делению происходит репликация ДНК, на каждой хромосоме синтезируется ее копия. Пока эти хромосомы после удвоения не расходятся, каждая хромосома в этой паре называется хроматидой. После репликации ДНК конденсируется, хромосомы приобретают более компактную укладку, и в таком состоянии их можно увидеть в световом микроскопе. Между делениями эти хромосомы не столь конденсированы и в большей степени расплетены. Понятно, что в конденсированном состоянии им трудно функционировать. Хромосома имеет вид в виде буквы Х только во время одной из стадий митоза. Раньше считалось, что между делениями клетки хромосомная ДНК ( хроматин ) находится в полностью расплетенном состоянии, но сейчас выясняется, что структура хромосом достаточно сложная и степень деконденсации хроматина между делениями не очень велика.
Процесс деления, при котором исходно диплоидная клетка дает две дочерние, также диплоидные, клетки, называется митозом. Имеющиеся в клетке хромосомы удваиваются, выстраиваются в клетке, образуя митотическую пластинку, к ним прикреплены нити веретена деления, которые растягиваются к полюсам клетки и клетка делится, образуя две копии исходного набора.
При образовании гамет, т.е. половых клеток – сперматозоидов и яйцеклеток – происходит деление клетки, называемое мейозом. Исходная клетка имеет диплоидный набор хромосом, которые затем удваиваются. Но, если при митозе в каждой хромосоме хроматиды просто расходятся, то при мейозе хромосома (состоящая из двух хроматид) тесно переплетается своими частями с другой, гомологичной ей хромосомой (также состоящей из двух хроматид), и происходит кроссинговер - обмен гомологичными участками хромосом. Затем уже новые хромосомы с перемешанными «мамиными» и «папиными» генами расходятся и образуются клетки с диплоидным набором хромосом, но состав этих хромосом уже отличается от исходного, в них произошла рекомбинация . Завершается первое деление мейоза, и второе деление мейоза происходит без синтеза ДНК, поэтому при этом делении количество ДНК уменьшается вдвое. Из исходных клеток с диплоидным набором хромосом возникают гаметы с гаплоидным набором. Из одной диплоидной клетки образуются четыре гаплоидных клетки. Фазы деления клетки, которые следуют за интерфазой, называются профаза, метафаза, анафаза, телофаза и после деления опять интерфаза.
При мейозе фазы называется также, но указывается к какому делению мейоза она относится. Кроссинговер – обмен частями между гомологичными хромосомами – происходит в профазе первого деления мейоза (профаза I), которая включает следующие этапы: лептотена, зиготена, пахитена, диплотена, диакинез. Процессы, происходящие при этом в клетке, подробно описаны в учебнике Макеева, и их следует знать.
Гаметогенез подразделяется на сперматогенез (процесс образования сперматозоидов у самцов) и оогенез (процесс образования яйцеклетки). По тому, что происходит с ДНК, эти процессы практически не отличаются: одна исходная диплоидная клетка дает четыре гаплоидные. Однако, по тому, что происходит с цитоплазмой, эти процессы кардинально различаются.
В яйцеклетке накапливаются питательные вещества, необходимые в дальнейшем для развития зародыша, поэтому яйцеклетка – это очень крупная клетка, и когда она делится, цель – сохранить питательные вещества для будущего зародыша, поэтому деление цитоплазмы несимметрично. Для того чтобы сохранить все запасы цитоплазмы и при этом избавиться от ненужного генетического материала, от цитоплазмы отделяются полярные тельца, которые содержат очень мало цитоплазмы, но позволяют поделить хромосомный набор. Полярные тельца отделяются при первом и втором делении мейоза (подробнее о том, что происходит с полярными тельцами растений – в Макееве)
Исходная клетка, из которой в последствии образуется зрелая яйцеклетка, называется ооцитом первого порядка. После деления из него образуется ооцит второго порядка и первое полярное тельце. Затем происходит второе деление мейоза, в результате образуется гаплоидный оотид и второе полярное тельце. Первое полярное тельце за это время тоже успевает поделиться, таким образом всего получается три гаплоидных полярных тельца. В оотиде происходят некоторые процессы созревания и он превращается в яйцеклетку. Она содержащая почти всю цитоплазму исходного ооцита, но гаплоидный набор хромосом. Эти хромосомы уже прошли рекомбинацию, т.е. если исходно клетки содержат одну хромосому от мамы, одну от папы, то в зрелой яйцеклетке в каждой хромосоме чередуются куски, полученные от одного и второго родителя.
При сперматогенезе цитоплазма исходного сперматоцита первого порядка делится (первое деление мейоза) поровну между клетками, давая сперматоциты второго порядка. Второе деление мейоза приводит к образованию гаплоидных сперматоцитов второго порядка. Затем происходит созревание без деления клетки, большая часть цитоплазмы отбрасывается, и получаются сперматозоиды, содержащие гаплоидный набор хромосом очень мало цитоплазмы. Ниже представлена фотография сперматозоида человека и схема его строения.
Сперматозоиды животных имеют одинаковое принципиальное строение, но могут отличаться формой и размером. Сперматозоид имеет головку, в которую плотно упакована ДНК. Головка сперматозоида окружена очень тонким слоем цитоплазмы. На ее переднем конце находится структура, называемая акросомой. Эта структура содержит ферменты, позволяющие сперматозоиду проникнуть через оболочку яйцеклетки. Сперматозоид имеет хвостик. Часть хвостика, прилегающая к головке ("шейка"), окружена митохондриями. Они необходимы, чтобы обеспечить биение хвостика и движение сперматозоида в желательном ему направлении. На сперматозоиде имеется для выбора направления движения хеморецепторы, сходные с обонятельными клетками.
Созревание спермиев происходит в семенных канальцах тестикул. При превращении исходной клетки, сперматогония, в сперматоцит, сперматиды и зрелый сперматозоид происходит перемещение клетки от базальной мембраны семенного канатика к его полости. После созревания сперматозоиды отделяются, попадая в просвет семенных канальцев, и готовы к движению в поисках яйцеклетки и оплодотворению. Процесс созревания длится примерно три месяца. У млекопитающих у особей мужского пола процесс созревания сперматозоидов – сперматогенез – начинается с возраста половой зрелости и продолжается затем до глубокой старости.
Существенно отличается процесс созревания яйцеклетки – оогенез. Во время эмбрионального развития млекопитающих возникает большое количество яйцеклеток, и к рождению самки в ее яичниках уже находится порядка 200-300 тысяч яйцеклеток, остановившихся на первой стадии деления мейоза. В период полового созревания яйцеклетки начинают реагировать на половые гормоны, Регулярные циклические изменения гормонов впоследствии вызывают созревание яйцеклетки, обычно одной, иногда двух или больше. Когда для лечения бесплодия женщине делают инъекции половых гормонов, чтобы индуцировать созревание яйцеклеток, избыток этих гормонов может привести к созреванию нескольких яйцеклеток, и как следствие этого – многоплодной беременности. Яйцеклетка созревает в пузырьке, называемом фолликулом.
За всю жизнь у женщин современных индустриализованных стран созревает всего 400-500 яйцеклеток, у женщин традиционной культуры – в племенах охотников-собирателей – менее 200 штук. Это связано с различиями в традиции деторождения: у европейских женщин рождается в среднем 1-2 ребенка, которых она кормит в среднем 3 -5 месяцев, (а известно, что лактация тормозит восстановление месячных циклов после родов), то есть у нее больший период времени остается для созревания яйцеклеток и прохождения менструальных циклов; в это же самое время у бушменов женщины рожают в среднем по 5 детей, они не делают абортов, в отличие от западных женщин, и они кормят грудью по 3-4 года, при этом овуляция тормозится, поэтому месячных циклов у них в 2 раза меньше, чем у западных женщин. Большее количество овуляторных циклов ведет к повышению риска заболевания репродуктивных органов у женщин, так как каждая овуляция связана с делением клеток, а чем больше делений – тем больше может возникнуть мутаций, ведущих к появлению злокачественных образований.
Месячные циклы у женщины регулируются изменением концентрации гормонов (верхний график на рисунке). Под действием гормонов один из покоящихся фолликулов (пузырьков) с яйцеклеткой начинает развиваться. Через несколько дней фолликул лопается и из него выходит зрелая яйцеклетка. Этот процесс называется овуляцией. Слизистая оболочка матки (эндометрий) при этом разрастается, готовясь принять оплодотворенную яйцеклетку. Если беременность не наступает, происходит дегенерация и отторжение верхнего слоя эндометрия, сопровождающееся кровотечением. Во время овуляции у женщины происходит повышение так называемой базальной температуры (то есть температуры, измеряемой ректально и вагинально сразу после пробуждения) на несколько десятых градуса (нижний график на рисунке), потом она может упасть или остаться слегка повышенной до начала менструации. У каждой женщины колебания базальной температуры индивидуальны, но более или менее постоянны при установившемся месячном цикле. Таким образом по изменению температуры можно примерно судить, когда происходит овуляция.
Ошибки при определении сроков овуляции по базальной температуре могут возникать из-за не связанных с месячным циклом изменений температуры (например, при гриппе или другом заболевании, дающем подъем температуры) или из-за сбоев цикла, которые могут возникнуть у женщины при перемене климата, стрессе или под влиянием других факторов. Пример изменения температуры в одном месячном цикле представлен на рисунке:
Яйцеклетка после выхода из фолликула сохраняет жизнеспособность примерно 24-48 часов. Спермии же после попадания в половые пути женщины жизнеспособны до 2-3 суток, далее они могут быть подвижны, но не способны к оплодотворению. Поэтому оплодотворение возможно в течение 2-3 дней до и 1-2 дней после овуляции. В остальное время зачатие произойти не может. Но на самом деле скачок температуры происходит не точно при овуляции, а при изменении концентрации гормонов, овуляцию вызывающих, поэтому точность определения дня овуляции по температурному графику составляет примерно 2 дня. Поэтому оплодотворение может произойти в 3+2=5 дней до овуляции и 2+2=4 дня после овуляции дней цикла. Осторожные люди прибавляют еще по 1-2 дня с каждой стороны. Остальные дни считаются "безопасными". Хотелось бы отметить, что цикл подчиняется эмоциональной регуляции, например, во время войны из-за тяжелой жизни, недоедания у женщин прекращались менструации, это явление называется "аменорея военного времени". Однако описаны случаи, когда муж приезжал домой с фронта на 2 дня, за эти 2 дня у женщины происходила овуляция независимо от фазы цикла, и впоследствии рождался ребенок. О том, что физиологические процессы достаточно сильно могут регулироваться нервной системой, показывает процесс родов у обезьян. У человека первые роды длятся примерно 24 часа, а у обезьян всего несколько часов, причем начинаются они обычно во время, когда стадо находится на стоянке. То есть к утру, когда стадо собирается отправляться в путь, мама готова путешествовать дальше с новорожденным. Если по каким-то причинам процесс родов к утру не завершился, а стадо уже готово идти дальше, то роды останавливаются, так как стадные животные не должны отставать от своих сородичей, и уже потом при новой остановке, роды возобновляются.
Процесс проникновения сперматозоидов в яйцеклетку называется оплодотворением. Яйцеклетка окружена несколькими оболочками, структура которых такова, что только сперматозоид собственного вида может попасть в яйцеклетку. После оплодотворения оболочки яйцеклетки меняются и другие сперматозоиды уже не могут в нее проникнуть.
У некоторых видов внутрь яйцеклетки могут проникнуть несколько сперматозоидов, но все равно в слиянии ядер участвует только один из них. При оплодотворении в яйцеклетку проникает только ядро сперматозоида, хвостик же вместе митохондриями отбрасывается, и в клетку не попадает. Поэтому митохондриальную ДНК все животные наследуют только от матери. Оплодотворенное яйцо называют зиготой (от греч. зиготос – соединенный вместе).
После оплодотворения происходит деление клетки, восстановившей диплоидный набор хромосом. первое и несколько последующих делений яйцеклетки происходят без увеличения размера клеток, поэтому процесс называется дроблением яйцеклетки.
Эмбрион (греч. "зародыш") - ранняя стадия развития живого организма от начала дробления яйцеклетки до выхода из яйца или из материнского организма (в акушерстве, в отличие от эмбриологии, термин эмбрион используют только для первых 8 недель развития, после 8-й недели называют плодом).
Эмбриогенез (эмбриональное развитие) является частью онтогенеза (индивидуального развития) – развития организма от образования зиготы до его смерти. Эмбриогенез - это процесс, в котором презумптивные зачатки занимают свои дефинитивные места.
Из школьного вы помните, что при развитии эмбриона ланцетника образуется бластула (полый клеточный шарик), из которой получается двуслойная гаструла путем инвагинации (впячивания) одной стороны бластулы внутрь.
У млекопитающих процесс происходит несколько иным образом. Дробление яйцеклетки у них приводит к образованию комочка клеток, называемого морулой. Морула подразделяется на внутреннюю часть, из которой потом развивается сам зародыш, и наружную часть, образующую полый пузырек, называемый трофобластом. Дальнейшее развитие приводит к формированию трехслойного зародыша, состоящего из внутреннего слоя – энтодермы, внешнего слоя – эктодермы, и третьего слоя между ними – мезодермы. Из каждого слоя впоследствии образуются определенные ткани и органы.
На фотографии ниже изображен червь нематода Caenorhabditis elegans (произносится как "ценорабдитис элеганс"), ближайший родственник аскариды, который интересен тем, что имеет строго фиксированное число клеток. Это дает возможность установить происхождение каждой из клеток, какая клетка из какой получилась. На рисунке показана схема происхождения разных клеток в эмбриональном развитии C.elegans.
Во время развития зародыша происходит дифференциация и перемещение его клеток с образованием тканей и органов. Рассмотрим на примере мухи-дрозофилы этот процесс. В развитии мухи происходит последовательная смена форм, значительно отличающихся друг от друга: яйцо, личинка, куколка и имаго (взрослая особь). Такое развитие называется развитием с метаморфозом (метаморфоз – греч. "изменение формы").
Цитоплазма яйцеклетки не гомогенна, в ней асимметрично распределены различные биологически активные компоненты.
У эмбриона уже определены оси тела, число и ориентация сегментов тела, из которых затем развиваются части тела взрослой мухи. Эти процесс контролируются различными наборами генов, которые называются морфогены. Они кодируют белки, которые регулируют экспрессию других генов, отвечающих за формирование органов.
Градиент концентрации белков-морфогенов определяет передне-заднюю и дорсо-вентральную (спино-брюшную) оси тела. У дрозофилы в определении дорсо-вентральной оси тела участвуют 12, главный из них ген dorsal. Белок Dorsal сконцентрирован в цитоплазме на той стороне эмбриона, которая станет спинной, и проникает в ядро клеток на брюшной стороне, активируя группы генов, продукты которых необходимы для определения осей тела.
Детерминация передне-задней оси тела контролируется другими генами. Один из них называется bicoid, его мРНК сконцентрирована в цитоплазме передней части яйца (фиксирована своим 3'-концом). В результате при трансляции возникает градиент концентрации белка Bicoid от переднего к заднему концу яйца. Градиент поддерживается продолжительным периодом синтеза белка и его коротким временем жизни. Bicoid, так же как и Dorsal, морфоген, он активирует гены, которые необходимы для развития головы и грудных структур. Его экспрессия ингибируется продуктом гена nanos, сконцентрированного на заднем конце эмбриона.
На следующем этапе включаются гены сегментации. Они контролируют дифференциацию эмбриона на индивидуальные сегменты. После оплодотворения транскрибируется около 25 генов сегментации, их экспрессия регулируется градиентами белков Bicoid и Nanos.
После сегментации и установления ориентации сегментов активируются так называемые геомеозисные гены. Различные их наборы активируются специфическими соотношениями концентраций белков, упоминавшихся выше.
Продукты гомеозисных генов активируют другие гены, которые определяют сегмент-специфичные особенности. Глаза в норме возникают только на головном сегменте, а ноги – только на грудных сегментах.
Гомеозисные гены кодируют регуляторные белки, связывающиеся с ДНК. Каждый из них содержит кластер нуклеотидов, называемый гомеобоксом, которые сходен во всех гомеотических генах. Он содержит 180 нуклеотидов и кодирует 60 аминокислот, функционирующих как ДНК-связывающий домен.
У дрозофилы имеется два основных кластера гомеотических генов: комплекс Antennapedia (5 генов у дрозофилы) который определяет развитие головы и передних торакальных сегментов, и комплекс Bithorax (3 гена) который контролирует развитие задних торакальных и брюшных сегментов. Порядок расположения генов тот же, что и сегментов, в которых они экспрессируются.
Впервые мутации гомеозисных генов были идентифицированы в 1894 году, когда Уильям Бэтсон заметил, что у растений иногда части цветка появляются на неправильных местах. Гомеозисные гены как бы определяют адрес клетки в конкретном сегменте, сообщая клеткам, в каком районе они находятся. Когда они мутируют, клетки получают "ложный адрес" и ведут себя так, будто они находятся в другом месте эмбриона
Нарушения в работе гомеозисных генов (вызванные мутациями или внешними воздействиями) нарушают формирование структур тела и могут привести, например, к образованию глаз на лапках у мухи, или к тому, что вместо антенн на голову у нее вырастут ноги (как это показано на рисунке). У человека найдены мутации в гомеозисных генах, приводящие к недоразвитию зубов, например, и к другим, более тяжелым нарушениям.
После того, как были открыты и изучены геомео-гены дрозофилы, сходные гены были найдены у всех других животных от нематоды до человека. У млекопитающих они называются Hox генами (гомеобокс-содержащими генами) и также кодируют белки, регулирующие транскрипции и определяющие структуры тела и их положение в передне-заднем направлении.
Таким образом, в эмбриональном развитии исходный градиент белков и мРНК в яйцеклетке стимулирует локальную экспрессию генов эмбриона, которая ведет дальнейшей дифференциации генной экспрессии и определяет судьбу клеток развивающегося эмбриона. Процесс, в котором формируются конечности, ткани и органы, называется морфогенезом, и определяется последовательностью переключения экспрессии групп генов, однако эти гены пока не столь детально изучены.
В процессе эмбриогенеза осуществление записанной в генах программы развития происходит в конкретных условиях среды. Взаимодействие генов и среды можно описать на следующей модели. Эмбриональное развитие можно сравнить с шариком, катящимся по наклонной поверхности с разными желобками. Такое представление эмбрионального развития, названное эпигенетическим ландшафтом, был предложен Кондратом Уоддингтоном.
Самый глубокий желобок (соответствующий наиболее вероятному пути) определяет нормальное развитие организма. Но у основного желобка есть много разветвлений, менее глубоких, соответствующих патологии, аномальному развитию организма, по ним шарик покатится с меньшей долей вероятности. Мутации меняют соотношение вероятностей разных путей (на рисунке – меняется глубина желобков), и увеличивают вероятность развития по "неправильному" патологическому пути. Однако в части случаев воздействие среды (лечение) может скомпенсировать дефект и вернуть организм на нормальный путь развития. Например, фенилкетонурия – наследственная болезнь, которую можно лечить. Суть болезни заключается в том, что у больных отсутствует фермент фенилаланингидроксилаза, превращающий аминокислоту фенилаланин в другую аминокислоту, тирозин. При блокировании нормальных путей катаболизма фенилаланина его превращение идет другими путями, обычно играющими второстепенную роль. Фенилаланин превращается в кетокислоту фенилпируват (фенилпировиноградная кислота) и другие продукты. Избыточные количества фенилпирувата легко определить по анализу мочи, и такой анализ проводится всем новорожденным в нашей стране. Одним из симптомов этой болезни является развитие умственной отсталости, которое во взрослом состоянии уже необратимо. Лечить болезнь можно в детстве специальной диетой, при которой в организме не из чего будет вырабатывать пировиноградную кислоту. Частота заболевания около 1:10 000 новорожденных, и чем раньше начато лечение – тем лучше результаты. Именно поэтому проводится тотальная диагностика новорожденных. Интересно то, что если ребенок перестает придерживаться лечебной диеты, то болезнь опять станет прогрессировать. Поэтому диету надо соблюдать до остановки физиологического роста, примерно до 20 лет, когда токсичное воздействие будет менее опасным. Больные фенилкетонурией при беременности обязательно должны соблюдать диету, так как иначе плод будет отравлен из-за нарушения обмена веществ у матери.
Таким образом, при лечении, то есть полезном воздействии внешней среды, можно вернуть развитие организма в нормальное русло. Но действие окружающей среды может быть и вредным, то есть у организма под действием внешней среды возникают отклонения развития при совершенно нормальных генах. Для примера рассмотрим один случай. В 60-х годах в Германии было сильно разрекламировано новое снотворное под названием талидомид. Среди принимавших новое лекарство были беременные женщины. Спустя некоторое время было замечено, что в стране стало рождаться много детей с патологией конечностей. У них отсутствовали длинные кости конечностей, то есть прямо от основания тела начинались кисти или ступни.
Раньше такое заболевание встречалась один раз на несколько тысяч новорожденных, и вдруг такой всплеск. Начали проводиться исследования, и выяснилось, что причина в новом лекарстве. Как оказалось, талидомид имеет большое сродство к гуанину. Взаимодействуя с ДНК, он может приводить к функциональным нарушениям. Промотор гена, отвечающего за рост и развитие длинных конечностей, содержит большое количество гуанина, таким образом, талидомид нарушает работу этих генов, и зачатки костей длинных конечностей так и не начинают развиваться. Многие из этих детей не выжили, часть из тех, кто выжил, ведут жизнь инвалидов, но есть среди них люди, которые, несмотря на инвалидность, реализовали свои возможности.
После талидомидной трагедии все новые лекарства проверяют на тератогенную (вызывающую нарушения развития плода) активность, и для каждого препарата указано, можно ли его принимать беременным. Однако следует учитывать, что во время беременности, особенно на ранних этапах, женщина не должна принимать лекарства, не посоветовавшись с врачом, из-за возможных вредных воздействий на плод.
В настоящее время уровень тяжелых врожденных уродств составляет 1-2%, из них около трети по генетическим причинам, около трети – из-за воздействий среды, и для трети причина неизвестна. Подбирая условия среды, соответствующие индивидуальным особенностям организма, можно скомпенсировать часть врожденных дефектов.
Взаимодействие генов и среды в процессе индивидуального развития можно сравнить с игрой в карты: хороший игрок может выиграть и с плохими картами.
bio.fizteh.ru
Все клетки нашего тела образуются из одной исходной клетки (зиготы) благодаря многочисленным делениям. Ученые выяснили, что количество таких делений ограничено. Удивительная точность воспроизведения клеток обеспечивается механизмами, отлаженными за миллиарды лет эволюции. Если в системе клеточного деления происходит сбой, то организм становится нежизнеспособным. Из этого урока вы узнаете, как происходит размножение клеток. Посмотрев урок, вы сможете самостоятельно изучить тему «Деление клетки. Митоз», познакомитесь с механизмом деления клетки. Узнаете, как протекает процесс деления клетки (кариогенез и цитогенез), который носит название «митоз», какие фазы он включает и какую роль играет в размножении и жизнедеятельности организмов.
Тема: Клеточный уровень
Урок: Деление клетки. Митоз
Тема урока: «Деление клетки. Митоз».
Американский биолог, лауреат нобелевской премии Г. Дж. Миллер писал: «Каждую секунду в нашем теле сотни миллионов неодушевленных, но очень дисциплинированных маленьких балерин сходятся, расходятся, выстраиваются в ряд и разбегаются в разные стороны, словно танцоры на балу, исполняющие сложные па старинного танца. Этот древнейший на Земле танец — Танец Жизни. В таких танцах клетки тела пополняют свои ряды, и мы растем и существуем».
Один из основных признаков живого — самовоспроизведение – определяется на клеточном уровне. Во время митотического деления из одной родительской клетки образуются две дочерние, что обеспечивает непрерывность жизни и передачи наследственной информации.
Жизнь клетки от начала одного деления до следующего деления называется клеточным циклом (рис. 1).
Промежуток между делениями клеток называется интерфаза.
Рис. 1. Клеточный цикл (против часовой стрелки – сверху вниз) (Источник)
Деление клетки эукариот можно разделить на два этапа. Сначала происходит деление ядра (кариогенез), а затем деление цитоплазмы (цитогенез).
Рис. 2. Соотношение интерфазы и митоза в жизни клетки (Источник)
Интерфаза
Интерфаза была открыта в 19 веке, когда ученые изучали морфологию клеток. Прибором для изучения клетки был световой микроскоп, а наиболее явные изменения в строении клеток происходили во время деления. Состояние клетки между двумя делениями получило название «интерфаза» – промежуточная фаза.
Самые важные процессы в жизни клетки (такие как транскрипция, трансляция и репликация) происходят именно во время интерфазы.
Клетка затрачивает на деление от 1 до 3 часов, а интерфаза может продолжаться от 20 минут до нескольких дней.
Интерфаза (на рис. 3 - I) состоит из нескольких промежуточных фаз:
Рис. 3. Фазы клеточного цикла (Источник)
G1-фаза (фаза начального роста – пресинтетическая): происходит транскрипция, трансляция и синтез белков;
S-фаза (синтетическая фаза): происходит репликация ДНК;
G2-фаза (постсинтетическая фаза): происходит подготовка клетки к митотическому делению.
У дифференцированных клеток, которые более не делятся, отсутствует фаза G2, и они могут находиться в состоянии покоя в фазе G0.
Перед началом деления ядра хроматин (который, собственно, и содержит наследственную информацию) конденсируется и преобразуется в хромосомы, которые видны в виде нитей. Отсюда и название клеточного деления: «митоз», что в переводе означает «нить».
Митоз — непрямое деление клетки, при котором из одной исходной клетки образуются две дочерние клетки с таким же набором хромосом, как и у материнской.
Этот процесс обеспечивает увеличение клеток, рост и регенерацию организмов.
У одноклеточных организмов митоз обеспечивает бесполое размножение.
Процесс деления путем митоза проходит в 4 фазы, в ходе которых копии наследственной информации (сестринские хромосомы) равномерно распределяются между клетками (рис. 2).
Профаза. Хромосомы спирализируются. Каждая хромосома состоит из двух хроматид. Растворяется ядерная оболочка, делятся и расходятся к полюсам центриоли. Начинает формироваться веретено деления - система белковых нитей, состоящих из микротрубочек, часть из которых прикрепляется к хромосомам, часть тянется от центриоли к другой. | |
Метафаза. Хромосомы располагаются в плоскости экватора клетки. | |
Анафаза. Хроматиды, из которых состоят хромосомы, расходятся к полюсам клетки, становятся новыми хромосомами. | |
Телофаза. Начинается деспирализация хромосом. Формирование ядерной оболочки, клеточной перегородки, образование двух дочерних клеток. |
Рис. 4. Фазы митоза: профаза, метафаза, анафаза, телофаза (Источник)
Первая фаза митоза — профаза. Перед началом деления во время синтетического периода интерфазы происходит удвоение количества носителей наследственной информации – транскрипция ДНК.
Затем ДНК соединяется с белками-гистонами и максимально спирализуется, образуя хромосомы. Каждая хромосома состоит из двух сестринских хроматид, объединенных центромерой (см. видео). Хроматиды являются достаточно точными копиями друг друга – генетический материал (ДНК) хроматид копируется во время синтетического периода интерфазы.
Количество ДНК в клетки обозначают 4с: после репликации в синтетическом периоде интерфазы оно становится в два раза больше, чем количество хромосом, которое обозначается 2n.
В профазе разрушается ядерная оболочка и ядрышки. Центриоли расходятся к полюсам клетки и начинают при помощи микротрубочек формировать веретено деления. В конце профазы ядерная оболочка полностью исчезает.
Вторая фаза митоза – метафаза. В метафазе хромосомы присоединяются центромерами к нитям веретена деления, отходящим от центриолей (см. видео). Микротрубочки начинают выравниваться по длине, в результате чего хромосомы выстраиваются в центральной части клетки – на её экваторе. Когда центромеры располагаются на равном расстоянии от полюсов, их движение прекращается.
В световой микроскоп можно увидеть метафазную пластинку, которая образована хромосомами, расположенными на экваторе клетки. Метафаза и следующая за ней анафаза обеспечивают равномерное распределение наследственной информации сестринских хроматид между клетками.
Следующая фаза митоза — анафаза. Она самая короткая. Центромеры хромосом делятся, и каждая из освободившихся сестринских хроматид становится самостоятельной хромосомой.
Нити веретена деления разводят сестринские хроматиды к полюсам клетки.
В результате анафазы у полюсов собирается такое же количество хромосом, как и было в исходной клетке. Количество ДНК у полюсов клетки становится равно 2C, а количество хромосом (сестринских хроматид) – 2n.
Заключительная стадия митоза — телофаза. Вокруг хромосом (сестринских хроматид), собранных у полюсов клетки, начинает формироваться ядерная оболочка. В клетке у полюсов возникает два ядра.
Происходят процессы, обратные профазе: ДНК и белки хромосом начинают деконденсироваться, и хромосомы перестают быть видны в световой микроскоп, образуются ядерные оболочки, формируются ядрышки, в которых начинается транскрипция, исчезают нити веретена деления.
Окончание телофазы преимущественно совпадает с разделением тела материнской клетки — цитокинезом.
Далее происходит разделение клетки: между новыми ядрами, расположенными у полюсов клетки, равномерно распределяются органоиды, формируется перегородка клеточной мембраны (плазмалеммы).
Цитокинез
Распределение цитоплазмы в растительных и животных клетках происходит по-разному. В растительных клетках на месте метафазной пластинки образуется клеточная стенка, которая делит клетку на две дочерние. В этом участвует веретено деления с образованием специальной структуры — фрагмопласта. Животные клетки делятся с образованием перетяжки.
В результате митоза образуются две клетки, которые генетически идентичны исходной, хотя каждая из них содержит только одну копию наследственной информации материнской клетки. Копирование наследственной информации происходит во время синтетического периода интерфазы.
Иногда деление цитоплазмы не происходит, образуются двух- или многоядерные клетки.
Весь процесс митотического деления занимает от нескольких минут до нескольких часов, в зависимости от видовых особенностей живых организмов.
Биологическое значение митоза заключается в сохранении постоянного числа хромосом и генетической стабильности организмов.
Кроме митоза, существуют и другие типы деления.
Практически у всех эукариотических клеток встречается так называемое прямое деление — амитоз.
Во время амитоза не происходит образование веретена деления и хромосом. Распределение генетического материала происходит случайным образом.
Путем амитоза, как правило, делятся клетки, которые завершают свой жизненный цикл. Например, эпителиальные клетки кожи или фолликулярные клетки яичников. Также амитоз встречается в патологических процессах, например, воспалениях или злокачественных опухолях.
Нарушение митоза
Правильное протекание митоза может нарушаться под действием внешних факторов. Например, под действием рентгеновского излучения хромосомы могут разрываться. Затем они восстанавливаются с помощью специальных ферментов. Однако, могут происходить ошибки. Такие вещества как спирты и эфиры, могут нарушать движение хромосом к полюсам клетки, что влечет к неравномерному распределению хромосом. В этих случаях клетка обычно погибает.
Есть вещества, которые влияют на веретено деления, но не влияют на распределение хромосом. В результате ядро не делится, а ядерная оболочка объединит вместе все хромосомы, которые должны были распределиться между новыми клетками. Образуются клетки с удвоенным набором хромосом. Такие организмы с удвоенным или утроенным набором хромосом называются полиплоидами. Метод получения полиплоидов широко используется в селекции для создания устойчивых сортов растений.
На уроке речь шла о делении клетки путем митоза. В результате митоза образуются, как правило, две клетки, идентичные по количеству и качеству генетического материала материнской клетке.
Домашнее задание
1. Что такое клеточный цикл? Какие фазы его составляют?
2. Какой процесс называется митозом?
3. Что происходит с клеткой во время митоза?
4. Опишите каждую фазу митоза. Каков биологический смысл митотического деления?
5. Обсудите с родными и друзьями значение митоза и его связь с ростом и развитием многоклеточных организмов, здоровьем и продолжительностью жизни человека.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
1. Побиологии.рф (Источник).
2. ГлавСправ (Источник).
3. Научно-Образовательный портал "Вся Биология" (Источник).
4. YouTube (Источник).
5. Трифонов Е.В. Пневмапсихосоматология человека. Русско-англо-русская энциклопедия (Источник).
6. Cайт учителя химии и биологии (Источник).
7. Википедия (Источник).
Список литературы
1. Мамонтов С.Г., Захаров В.Б., Агафонова И.Б., Сонин Н.И. Биология. Общие закономерности. – М.: Дрофа, 2009.
2. Пасечник В.В., Каменский А.А., Криксунов Е.А. Биология. Введение в общую биологию и экологию. Учебник для 9 класса. 3-е изд., стереотип. – М.: Дрофа, 2002.
3. Пономарева И.Н., Корнилова О.А., Чернова Н.М. Основы общей биологии. 9 класс: Учебник для учащихся 9 класса общеобразовательных учреждений/ Под ред. проф. И.Н. Пономаревой. – 2-е изд. перераб. – М.: Вентана-Граф, 2005.
mirror.vsibiri.info