Бериллий. Бериллий реферат қазақша


Реферат Бериллий

скачать

Реферат на тему:

План:

Введение

Бери́ллий — элемент главной подгруппы второй группы, второго периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 4. Обозначается символом Be (лат. Beryllium). Высокотоксичный элемент. Простое вещество бериллий (CAS-номер: 7440-41-7) — относительно твёрдый металл светло-серого цвета, имеет весьма высокую стоимость[2].

1. История

Воклен, Луи Никола

Открыт в 1798 г. французским химиком Луи Никола Вокленом. Большую работу по установлению состава соединений бериллия и его минералов провёл русский химик И. В. Авдеев (1818—1865). Именно он доказал, что оксид бериллия имеет состав BeO, а не Be2O3, как считалось ранее.

1.1. Происхождение названия

Название бериллия произошло от названия минерала берилла (др.-греч. βήρυλλος beryllos) (силикат бериллия и алюминия, Be3Al2Si6O18), которое восходит к названию города Белур (Веллуру) в Южной Индии, недалеко от Мадраса; с древних времён в Индии были известны месторождения изумрудов — разновидности берилла. Из-за сладкого вкуса растворимых в воде соединений бериллия элемент вначале называли «глюциний» (др.-греч. γλυκύς glykys — сладкий).

2. Нахождение в природе

Изотоп 8Be отсутствует в природе, поскольку является крайне нестабильным и имеет период полураспада 10−18 с.[3] Стабильным является 9Be. Кроме 9Be в природе встречаются радиоактивные изотопы 7Be и 10Be.

Среднее содержание бериллия в земной коре 3,8 г/т и увеличивается от ультраосновных (0,2 г/т) к кислым (5 г/т) и щелочным (70 г/т) породам. Основная масса бериллия в магматических породах связана с плагиоклазами, где бериллий замещает кремний. Однако наибольшие его концентрации характерны для некоторых тёмноцветных минералов и мусковита (десятки, реже сотни г/т). Если в щелочных породах бериллий почти полностью рассеивается, то при формировании кислых горных пород он может накапливаться в постмагматических продуктах — пегматитах и пневматолито-гидротермальных телах. В кислых пегматитах образование значительных скоплений бериллия связано с процессами альбитизации и мусковитизации. В пегматитах бериллий образует собственные минералы, но часть его (ок. 10 %) находится в изоморфной форме в породообразующих и второстепенных минералах (микроклине, альбите, кварце, слюдах, и др.). В щелочных пегматитах бериллий устанавливается в небольших количествах в составе редких минералов: эвдидимита, чкаловита, анальцима и лейкофана, где он входит в анионную группу. Постмагматические растворы выносят бериллий из магмы в виде фторсодержащих эманаций и комплексных соединений в ассоциации с вольфрамом, оловом, молибденом и литием .

Содержание бериллия в морской воде чрезвычайно низкое — 6×10−7 мг/л.[4]

Известно более 30 собственно бериллиевых минералов, но только 6 из них считаются более-менее распространёнными: берилл, хризоберилл, бертрандит, фенакит, гельвин, даналит. Промышленное значение имеет в основном берилл, в России (Республика Бурятия) разрабатывается фенакит-бертрандитовое Ермаковское месторождение.

Разновидности берилла считаются драгоценными камнями: аквамарин — голубой, зеленовато-голубой, голубовато-зеленый; изумруд — густо-зеленый, ярко-зеленый; гелиодор — желтый; известны ряд других разновидностей берилла, различающихся окраской (темно-синие, розовые, красные, бледно-голубые, бесцветные и др.). Цвет бериллу придают примеси различных элементов.

2.1. Месторождения

Месторождения бериллия присутствуют на территории Бразилии, Аргентины, Африки, Индии, в России — Бурятии, Сибири и др.[5]

3. Физические свойства

Бериллий — относительно твердый, но хрупкий металл серебристо-белого цвета. Имеет высокий модуль упругости — 300 ГПа (у сталей — 200—210 ГПа). На воздухе активно покрывается стойкой оксидной плёнкой BeO.

4. Химические свойства

Металлический бериллий относительно мало реакционноспособен при комнатной температуре. В компактном виде он не реагирует с водой и водяным паром даже при температуре красного каления и не окисляется воздухом до 600 °C. Порошок бериллия при поджигании горит ярким пламенем, при этом образуются оксид и нитрид. Галогены реагируют с бериллием при температуре выше 600 °C, а халькогены требуют еще более высокой температуры. Аммиак взаимодействует с бериллием при температуре выше 1200 °C с образованием нитрида Be3N2, а углерод дает карбид Ве2С при 1700 °C. С водородом бериллий непосредственно не реагирует.

Бериллий легко растворяется в разбавленных водных растворах кислот (соляной, серной, азотной), однако холодная концентрированная азотная кислота пассивирует металл. Реакция бериллия с водными растворами щелочей сопровождается выделением водорода и образованием гидроксобериллатов:

Be + 2NaOH(р) + 2h3O = Na2[Be(OH)4] + h3

При проведении реакции с расплавом щелочи при 400—500 °C образуются диоксобериллаты:

Be + 2NaOH(ж) = Na2BeO2 + h3

5. Получение

В виде простого вещества в XIX веке бериллий получали действием калия на безводный хлорид бериллия:

\mathrm{BeCl_2 + 2 \ K \longrightarrow \ Be + 2 \ KCl}

В настоящее время бериллий получают, восстанавливая его фторид магнием:

\mathrm{BeF_2 + \ Mg \longrightarrow \ Be + \ MgF_2},

либо электролизом расплава смеси хлоридов бериллия и натрия. Исходные соли бериллия выделяют при переработке бериллиевой руды.

6. Применение

6.1. Легирование сплавов

Бериллий в основном используют как легирующую добавку к различным сплавам. Добавка бериллия значительно повышает твёрдость и прочность сплавов, коррозионную устойчивость поверхностей изготовленных из этих сплавов изделий. В технике довольно широко распространены бериллиевые бронзы типа BeB (пружинные контакты). Добавка 0,5 % бериллия в сталь позволяет изготовить пружины, которые пружинят при красном калении.

6.2. Рентгенотехника

Бериллий слабо поглощает рентгеновское излучение, поэтому из него изготавливают окошки рентгеновских трубок (через которые излучение выходит наружу).

6.3. Ядерная энергетика

В атомных реакторах из бериллия изготовляют отражатели нейтронов, его используют как замедлитель нейтронов. В смесях с некоторыми α-радиоактивными нуклидами бериллий используют в ампульных нейтронных источниках, так как при взаимодействии ядер бериллия-9 и α-частиц возникают нейтроны: 9Ве + α → n + 12C. Оксид бериллия является наиболее теплопроводным из всех оксидов и служит высокотеплопроводным высокотемпературным изолятором, и огнеупорным материалом (тигли), а кроме того наряду с металлическим бериллием служит в атомной технике как более эффективный замедлитель и отражатель нейтронов чем чистый бериллий, кроме того оксид бериллия в смеси с окисью урана применяется в качестве очень эффективного ядерного топлива. Фторид бериллия в сплаве с фторидом лития применяется в качестве теплоносителя и растворителя солей урана, плутония, тория в высокотемпературных жидкосолевых атомных реакторах. Фторид бериллия используется в атомной технике для варки стекла, применяемого для регулирования небольших потоков нейтронов. Самый технологичный и качественный состав такого стекла -(BeF2−60 %,PuF4−4 %,AlF3−10 %, MgF2−10 %, CaF2−16 %). Этот состав наглядно показывает один из примеров применения соединений плутония в качестве конструкционного материала (частичное).

6.4. Лазерные материалы

В лазерной технике находит применение алюминат бериллия для изготовления твердотельных излучателей (стержней, пластин).

6.5. Аэрокосмическая техника

В производстве тормозов для аэрокосмической техники, тепловых экранов и систем наведения с бериллием не может конкурировать практически ни один конструкционный материал. Конструкционные материалы на основе бериллия обладают одновременно и лёгкостью, и прочностью, и стойкостью к высоким температурам. Будучи в 1,5 раза легче алюминия, эти сплавы в то же время прочнее многих специальных сталей. Налажено производство бериллидов применяемых как конструкционные материалы для двигателей и обшивки ракет и самолетов, а также в атомной технике.

6.6. Горное дело

Оксиликвит на основе бериллия — одно из мощнейших взрывчатых веществ, известных на сегодняшний день. Применяется при взрывных работах в горном деле.

6.7. Ракетное топливо

Стоит отметить высокую токсичность и высокую стоимость металлического бериллия, и в этой связи приложены значительные усилия для выявления бериллийсодержащих топлив имеющих значительно меньшую общую токсичность и стоимость. Одним из таких соединений бериллия является гидрид бериллия.

6.8. Огнеупорные материалы

Оксид бериллия 99,9 %(изделие)

Оксид бериллия применяется в качестве очень важного огнеупорного материала в специальных случаях. Считается одним из лучших огнеупорных материалов.

7. Биологическая роль и физиологическое действие

В живых организмах бериллий не несёт какой-либо значимой биологической функции. Однако бериллий может замещать магний в некоторых ферментах, что приводит к нарушению их работы. Ежедневное поступление бериллия в организм человека с пищей составляет около 0,01 мг.

Skull and crossbones.svg

Бериллий — ядовит: Летучие (и растворимые) соединения бериллия, в том числе и пыль, содержащая соединения бериллия, высокотоксичны. Для воздуха ПДК в пересчёте на бериллий составляет 0,001 мг/м³. Бериллий обладает ярко выраженным аллергическим и канцерогенным действием. Вдыхание атмосферного воздуха содержащего бериллий приводит к тяжёлому заболеванию органов дыхания — бериллиозу.

Примечания

  1. Редкол.:Кнунянц И. Л. (гл. ред.) Химическая энциклопедия: в 5 т. — Москва: Советская энциклопедия, 1988. — Т. 1. — С. 280. — 623 с. — 100 000 экз.
  2. Бериллий. Цены мирового рынка - www.infogeo.ru/metalls/worldprice/?act=show&okp=199300
  3. Бериллий - www.krugosvet.ru/enc/nauka_i_tehnika/himiya/BERILLI.html — Кругосвет
  4. J.P. Riley and Skirrow G. Chemical Oceanography V. I, 1965
  5. Популярная библиотека химических элементов. Бериллий. Книги. Наука и техника - n-t.ru/ri/ps/pb004.htm

wreferat.baza-referat.ru

Реферат: Бериллий

Бериллий

Бериллий (лат. Beryllium), Ве, химический элемент II группы периодической системы, атомный номер 4, атомная масса 9,01218; относится к щелочноземельным металлам.

Химический символ элемента Be читается «бериллий». В природе встречается только один стабильный нуклид 9Be. Электронная конфигурация атома бериллия 1s22s2. Атомный радиус 0,113 нм, радиус иона Ве2+ — 0,034 нм. В соединениях проявляет только степень окисления +2 (валентность II). Энергии последовательной ионизации атома Ве равны 9,3227 и 18,211 эВ. Значение электроотрицательности по Полингу 1,57. В свободном виде — серебристо-серый легкий металл.

Свойства: металлический бериллий характеризуется высокой хрупкостью. Температура плавления 1278°C, температура кипения около 2470°C, плотность 1,816 кг/м3. До температуры 1277°C устойчив a-Ве (гексагональная решетка типа магния (Mg), параметры а = 0,22855 нм, с = 0,35833 нм), при температурах, предшествующих плавлению металла (1277-1288°C) — b-Ве с кубической решеткой.

Химические свойства бериллия во многом похожи на свойства магния (Mg) и, особенно, алюминия (Al). Близость свойств бериллия и алюминия объясняется почти одинаковым отношением заряда катиона к его радиусу для ионов Be2+ и Al3+.

На воздухе бериллий, как и алюминий, покрыт оксидной пленкой, придающей бериллию матовый цвет. Наличие оксидной пленки предохраняет металл от дальнейшего разрушения и обусловливает его невысокую химическую активность при комнатной температуре.

При нагревании бериллий сгорает на воздухе с образованием оксида BeO, реагирует с серой и азотом. С галогенами бериллий реагирует при обычной температуре или при слабом нагревании, например:

Be + Cl2 = ВеСl2

Все эти реакции сопровождаются выделением большого количества теплоты, так как прочность кристаллических решеток возникающих соединений (BeO, BeS, Be3N2, ВеСl2 и др.) довольно велика.

Благодаря образованию на поверхности прочной пленки оксида бериллий не реагирует с водой, хотя находится в ряду стандартных потенциалов значительно левее водорода. Как и алюминий, бериллий реагирует с кислотами и растворами щелочей:

Be + 2HCl = BeCl2 + h3,

Be + 2NaOH + 2h3O = Na2[Be(OH)4] + h3.

Гидроксид бериллия Be(OH)2 — полимерное соединение, нерастворимое в воде. Оно проявляет амфотерные свойства:

Be(OH)2 + 2КOH = К2[Be(OH)4],

Be(OH)2 + 2HСl = BeСl2 + 2h3O.

В большинстве соединений бериллий проявляет координационное число 4. Например, в структуре твердого BeCl2 имеются цепочки с мостиковыми атомами хлора.

За счет образования прочных тетраэдрических анионов многие соединения бериллия вступают в реакции с солями других металлов:

BeF2 + 2KF = K2[BeF4]

С водородом (H) бериллий непосредственно не взаимодействует. Гидрид бериллия Beh3 — полимерное вещество, его получают реакцией.

BeCl2 + 2LiH = Beh3 + 2LiCl,проводимой в эфирном растворе.

Действием на гидроксид бериллия Be(OH)2 растворами карбоновых кислот или при упаривании растворов их бериллиевых солей получают оксисоли бериллия, например, оксиацетат Be4O(Ch4COO)6. Эти соединения содержат тетраэдрическую группировку Be4O, по шести ребрам этого тетраэдра располагаются ацетатные группы. Такие соединения играют большую роль в процессах очистки бериллия, так как они не растворяются в воде, но хорошо растворяются в органических растворителях и легко возгоняются в вакууме.

История открытия: бериллий был открыт в 1798 году Л. Вокленом в виде берилловой земли (оксида ВеО), когда этот французский химик выяснял общие особенности химического состава драгоценных камней берилла (от греческого beryllos — берилл) и изумруда. Металлический бериллий был получен в 1828 г. Ф. Велером в Германии и независимо от него А. Бюсси во Франции. Однако из-за примесей его не удавалось сплавить. Лишь в 1898 г. французский химик П. Лебо, подвергнув электролизу двойной фторид калия и бериллия, получил достаточно чистые металлические кристаллы бериллия. Интересно, что из-за сладкого вкуса растворимых в воде соединений бериллия элемент вначале называли «глюциний» (от греческого glykys — сладкий).

Нахождение в природе: бериллий относится к редким элементам, его содержание в земной коре 2,6·10–4 % по массе. В морской воде содержится до 6·10–7 мг/л бериллия.

Основные природные минералы, содержащие бериллий: берилл Be3Al2(SiO3)6, фенакит Be2SiO4, бертрандит Be4Si2O8·h3O и гельвин (Mn,Fe,Zn)4[BeSiO4]3S. Окрашенные примесями катионов других металлов прозрачные разновидности берилла — драгоценные камни, например, зеленый изумруд, голубой аквамарин, гелиодер, воробьевит и другие. В настоящее время их научились синтезировать искусственно.

Получение соединений бериллия и металлического бериллия: извлечение бериллия из его природных минералов (в основном берилла) включает в себя несколько стадий, при этом особенно важно отделить бериллий от сходного по свойствам и сопутствующего бериллию в минералах алюминия (Al). Можно, например, сплавить берилл с гексафторосиликатом натрия Na2SiF6:

Be3Al2(SiO3)6 + 12Na2SiF6 = 6Na2SiO3 + 2Na3AlF6 + 3Na2[BeF4] + 12SiF4.

В результате сплавления образуются криолит Na3AlF6 — плохо растворимое в воде соединение, а также растворимый в воде фторобериллат натрия (Na) Na2[BeF4]. Его далее выщелачивают водой. Для более глубокой очистки бериллия от алюминия (Al) применяют обработку полученного раствора карбонатом аммония (Nh5)2CO3. При этом алюминий оседает в виде гидроксида Al(OH)3, а бериллий остается в  растворе в виде растворимого комплекса (Nh5)2[Be(CO3)2]. Этот комплекс затем разлагают до оксида бериллия ВеО при прокаливании:

(Nh5)2[Be(CO3)2] = BeO + 2CO2 + 2Nh4 + h3O.

Другой метод очистки бериллия от алюминия основан на том, что оксиацетат бериллия Be4O(Ch4COO)6, в отличие от оксиацатата алюминия [Al3O(Ch4COO)]+Ch4COO–, имеет молекулярное строение и легко возгоняется при нагревании.

Известен также способ переработки берилла, в котором сначала берилл обрабатывают концентрированной серной кислотой при температуре 300°C, а затем спек выщелачивают водой. Сульфаты алюминия (Al) и бериллия при этом переходят в раствор. После добавления к раствору сульфата калия (K) K2SO4 удается осадить алюминий (Al) из раствора в виде алюмокалиевых квасцов KAl(SO4)2·12h3O. Дальнейшую очистку бериллия от алюминия проводят так же, как и в предыдущем методе.

Наконец, известен и такой способ переработки берилла. Исходный минерал сначала сплавляют с поташем K2CO3. При этом образуются бериллат K2BeO2 и алюминат калия KAlO2:

Be3Al2(SiO3)6 + 10K2CO3 = 3K2BeO2 + 2KAlO2 + 6K2SiO3 + 10CO2

После выщелачивания водой полученный раствор подкисляют серной кислотой. В результате в осадок выпадает кремниевая кислота. Из фильтрата далее осаждают алюмокалиевые квасцы, после чего в растворе из катионов остаются только ионы Ве2+.

Из полученного тем или иным способом оксида бериллия ВеО затем получают фторид, из которого магнийтермическим методом восстанавливают металлический бериллий:

BeF2 + Mg = MgF2 + Be.

Металлический бериллий можно приготовить также электролизом расплава смеси BeCl2 и NaCl при температурах около 300°C. Раньше бериллий получали электролизом расплава фторобериллата бария Ba[BeF4]:

Ba[BeF4] = BaF2 + Be + F2.

Применение: бериллий в основном используют как легирующую добавку к различным сплавам. Добавка бериллия значительно повышает твердость и прочность сплавов, коррозионную устойчивость поверхностей изготовленных из этих сплавов изделий. Бериллий слабо поглощает рентгеновское излучение, поэтому из него изготавливают окошки рентгеновских трубок (через которые излучение выходит наружу). В атомных реакторах из бериллия изготовляют отражатели нейтронов, его используют как замедлитель нейтронов. В смесях с некоторыми a-радиоактивными нуклидами бериллий используют в ампульных нейтронных источниках, так как при взаимодействии ядер бериллия-9 и a-частиц возникают нейтроны: 9Ве(a, n)12C.

Физиологическое действие: в живых организмах бериллий, по-видимому, не несет никакой биологической функции. Его содержание в организме среднего человека (масса тела 70 кг) составляет 0,036 мг, ежедневное поступление с пищей — около 0,01 мг. Летучие и растворимые соединения бериллия, а также пыль, содержащая бериллий и его соединения, очень токсичны. Бериллий замещает в ферментах магний и обладает ярко выраженным аллергическим и канцерогенным действием. Его присутствие в атмосферном воздухе приводит к тяжелому заболеванию органов дыхания — бериллиозу. Следует отметить, что эти заболевания могут возникнуть через 10-15 лет после прекращения контакта с бериллием. Для воздуха ПДК в пересчете на бериллий составляет 0,001 мг/м3.

 

www.referatmix.ru

Реферат Бериллий-8

скачать

Реферат на тему:

План:

Введение

Бери́ллий — элемент главной подгруппы второй группы, второго периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 4. Обозначается символом Be (лат. Beryllium). Высокотоксичный элемент. Простое вещество бериллий (CAS-номер: 7440-41-7) — относительно твёрдый металл светло-серого цвета, имеет весьма высокую стоимость[2].

1. История

Воклен, Луи Никола

Открыт в 1798 г. французским химиком Луи Никола Вокленом. Большую работу по установлению состава соединений бериллия и его минералов провёл русский химик И. В. Авдеев (1818—1865). Именно он доказал, что оксид бериллия имеет состав BeO, а не Be2O3, как считалось ранее.

1.1. Происхождение названия

Название бериллия произошло от названия минерала берилла (др.-греч. βήρυλλος beryllos) (силикат бериллия и алюминия, Be3Al2Si6O18), которое восходит к названию города Белур (Веллуру) в Южной Индии, недалеко от Мадраса; с древних времён в Индии были известны месторождения изумрудов — разновидности берилла. Из-за сладкого вкуса растворимых в воде соединений бериллия элемент вначале называли «глюциний» (др.-греч. γλυκύς glykys — сладкий).

2. Нахождение в природе

Изотоп 8Be отсутствует в природе, поскольку является крайне нестабильным и имеет период полураспада 10−18 с.[3] Стабильным является 9Be. Кроме 9Be в природе встречаются радиоактивные изотопы 7Be и 10Be.

Среднее содержание бериллия в земной коре 3,8 г/т и увеличивается от ультраосновных (0,2 г/т) к кислым (5 г/т) и щелочным (70 г/т) породам. Основная масса бериллия в магматических породах связана с плагиоклазами, где бериллий замещает кремний. Однако наибольшие его концентрации характерны для некоторых тёмноцветных минералов и мусковита (десятки, реже сотни г/т). Если в щелочных породах бериллий почти полностью рассеивается, то при формировании кислых горных пород он может накапливаться в постмагматических продуктах — пегматитах и пневматолито-гидротермальных телах. В кислых пегматитах образование значительных скоплений бериллия связано с процессами альбитизации и мусковитизации. В пегматитах бериллий образует собственные минералы, но часть его (ок. 10 %) находится в изоморфной форме в породообразующих и второстепенных минералах (микроклине, альбите, кварце, слюдах, и др.). В щелочных пегматитах бериллий устанавливается в небольших количествах в составе редких минералов: эвдидимита, чкаловита, анальцима и лейкофана, где он входит в анионную группу. Постмагматические растворы выносят бериллий из магмы в виде фторсодержащих эманаций и комплексных соединений в ассоциации с вольфрамом, оловом, молибденом и литием .

Содержание бериллия в морской воде чрезвычайно низкое — 6×10−7 мг/л.[4]

Известно более 30 собственно бериллиевых минералов, но только 6 из них считаются более-менее распространёнными: берилл, хризоберилл, бертрандит, фенакит, гельвин, даналит. Промышленное значение имеет в основном берилл, в России (Республика Бурятия) разрабатывается фенакит-бертрандитовое Ермаковское месторождение.

Разновидности берилла считаются драгоценными камнями: аквамарин — голубой, зеленовато-голубой, голубовато-зеленый; изумруд — густо-зеленый, ярко-зеленый; гелиодор — желтый; известны ряд других разновидностей берилла, различающихся окраской (темно-синие, розовые, красные, бледно-голубые, бесцветные и др.). Цвет бериллу придают примеси различных элементов.

2.1. Месторождения

Месторождения бериллия присутствуют на территории Бразилии, Аргентины, Африки, Индии, в России — Бурятии, Сибири и др.[5]

3. Физические свойства

Бериллий — относительно твердый, но хрупкий металл серебристо-белого цвета. Имеет высокий модуль упругости — 300 ГПа (у сталей — 200—210 ГПа). На воздухе активно покрывается стойкой оксидной плёнкой BeO.

4. Химические свойства

Металлический бериллий относительно мало реакционноспособен при комнатной температуре. В компактном виде он не реагирует с водой и водяным паром даже при температуре красного каления и не окисляется воздухом до 600 °C. Порошок бериллия при поджигании горит ярким пламенем, при этом образуются оксид и нитрид. Галогены реагируют с бериллием при температуре выше 600 °C, а халькогены требуют еще более высокой температуры. Аммиак взаимодействует с бериллием при температуре выше 1200 °C с образованием нитрида Be3N2, а углерод дает карбид Ве2С при 1700 °C. С водородом бериллий непосредственно не реагирует.

Бериллий легко растворяется в разбавленных водных растворах кислот (соляной, серной, азотной), однако холодная концентрированная азотная кислота пассивирует металл. Реакция бериллия с водными растворами щелочей сопровождается выделением водорода и образованием гидроксобериллатов:

Be + 2NaOH(р) + 2h3O = Na2[Be(OH)4] + h3

При проведении реакции с расплавом щелочи при 400—500 °C образуются диоксобериллаты:

Be + 2NaOH(ж) = Na2BeO2 + h3

5. Получение

В виде простого вещества в XIX веке бериллий получали действием калия на безводный хлорид бериллия:

\mathrm{BeCl_2 + 2 \ K \longrightarrow \ Be + 2 \ KCl}

В настоящее время бериллий получают, восстанавливая его фторид магнием:

\mathrm{BeF_2 + \ Mg \longrightarrow \ Be + \ MgF_2},

либо электролизом расплава смеси хлоридов бериллия и натрия. Исходные соли бериллия выделяют при переработке бериллиевой руды.

6. Применение

6.1. Легирование сплавов

Бериллий в основном используют как легирующую добавку к различным сплавам. Добавка бериллия значительно повышает твёрдость и прочность сплавов, коррозионную устойчивость поверхностей изготовленных из этих сплавов изделий. В технике довольно широко распространены бериллиевые бронзы типа BeB (пружинные контакты). Добавка 0,5 % бериллия в сталь позволяет изготовить пружины, которые пружинят при красном калении.

6.2. Рентгенотехника

Бериллий слабо поглощает рентгеновское излучение, поэтому из него изготавливают окошки рентгеновских трубок (через которые излучение выходит наружу).

6.3. Ядерная энергетика

В атомных реакторах из бериллия изготовляют отражатели нейтронов, его используют как замедлитель нейтронов. В смесях с некоторыми α-радиоактивными нуклидами бериллий используют в ампульных нейтронных источниках, так как при взаимодействии ядер бериллия-9 и α-частиц возникают нейтроны: 9Ве + α → n + 12C. Оксид бериллия является наиболее теплопроводным из всех оксидов и служит высокотеплопроводным высокотемпературным изолятором, и огнеупорным материалом (тигли), а кроме того наряду с металлическим бериллием служит в атомной технике как более эффективный замедлитель и отражатель нейтронов чем чистый бериллий, кроме того оксид бериллия в смеси с окисью урана применяется в качестве очень эффективного ядерного топлива. Фторид бериллия в сплаве с фторидом лития применяется в качестве теплоносителя и растворителя солей урана, плутония, тория в высокотемпературных жидкосолевых атомных реакторах. Фторид бериллия используется в атомной технике для варки стекла, применяемого для регулирования небольших потоков нейтронов. Самый технологичный и качественный состав такого стекла -(BeF2−60 %,PuF4−4 %,AlF3−10 %, MgF2−10 %, CaF2−16 %). Этот состав наглядно показывает один из примеров применения соединений плутония в качестве конструкционного материала (частичное).

6.4. Лазерные материалы

В лазерной технике находит применение алюминат бериллия для изготовления твердотельных излучателей (стержней, пластин).

6.5. Аэрокосмическая техника

В производстве тормозов для аэрокосмической техники, тепловых экранов и систем наведения с бериллием не может конкурировать практически ни один конструкционный материал. Конструкционные материалы на основе бериллия обладают одновременно и лёгкостью, и прочностью, и стойкостью к высоким температурам. Будучи в 1,5 раза легче алюминия, эти сплавы в то же время прочнее многих специальных сталей. Налажено производство бериллидов применяемых как конструкционные материалы для двигателей и обшивки ракет и самолетов, а также в атомной технике.

6.6. Горное дело

Оксиликвит на основе бериллия — одно из мощнейших взрывчатых веществ, известных на сегодняшний день. Применяется при взрывных работах в горном деле.

6.7. Ракетное топливо

Стоит отметить высокую токсичность и высокую стоимость металлического бериллия, и в этой связи приложены значительные усилия для выявления бериллийсодержащих топлив имеющих значительно меньшую общую токсичность и стоимость. Одним из таких соединений бериллия является гидрид бериллия.

6.8. Огнеупорные материалы

Оксид бериллия 99,9 %(изделие)

Оксид бериллия применяется в качестве очень важного огнеупорного материала в специальных случаях. Считается одним из лучших огнеупорных материалов.

7. Биологическая роль и физиологическое действие

В живых организмах бериллий не несёт какой-либо значимой биологической функции. Однако бериллий может замещать магний в некоторых ферментах, что приводит к нарушению их работы. Ежедневное поступление бериллия в организм человека с пищей составляет около 0,01 мг.

Skull and crossbones.svg

Бериллий — ядовит: Летучие (и растворимые) соединения бериллия, в том числе и пыль, содержащая соединения бериллия, высокотоксичны. Для воздуха ПДК в пересчёте на бериллий составляет 0,001 мг/м³. Бериллий обладает ярко выраженным аллергическим и канцерогенным действием. Вдыхание атмосферного воздуха содержащего бериллий приводит к тяжёлому заболеванию органов дыхания — бериллиозу.

Примечания

  1. Редкол.:Кнунянц И. Л. (гл. ред.) Химическая энциклопедия: в 5 т. — Москва: Советская энциклопедия, 1988. — Т. 1. — С. 280. — 623 с. — 100 000 экз.
  2. Бериллий. Цены мирового рынка - www.infogeo.ru/metalls/worldprice/?act=show&okp=199300
  3. Бериллий - www.krugosvet.ru/enc/nauka_i_tehnika/himiya/BERILLI.html — Кругосвет
  4. J.P. Riley and Skirrow G. Chemical Oceanography V. I, 1965
  5. Популярная библиотека химических элементов. Бериллий. Книги. Наука и техника - n-t.ru/ri/ps/pb004.htm

wreferat.baza-referat.ru


Смотрите также