sites.google.com

«Атомная энергетика: плюсы и минусы»

    Антуан де Сент Экзюпери в сказке «Маленький принц писал»: «Есть такое твердое правило: встал поутру, умылся, привел себя в порядок и сразу же приведи в порядок свою планету». Но мы, люди, часто не только не можем привести планету в порядок, а совершаем непростительные ошибки, которые приводят к катастрофам на нашей планете, планете - Земля. Возможно, такой ошибкой было начало развития ядерной энергетики, ведь именно последствия неправильного её использования или малейшие оплошности  и ошибки людей, аппаратуры очень дорого обходятся в экологическом плане для всей нашей планеты.

Вступительное слово преподавателя физики.

 Специалисты и общественность в последнее время активно обсуждают обширные планы руководства Росатома и правительства по вводу в ближайшее время  новых мощностей, постройки ряда новых ядерных электростанций в России и за её пределами.  Конечно, высказываются и опасения и тревога по поводу их безопасного функционирования, однако это заметно сократит тот дефицит энергии в нашей стране, который есть сейчас и укрепит энергетическую безопасность. Ведь в недавнем прошлом самая высокотехнологичная отрасль нашей экономики была почти уничтожена. Постройка новых АЭС и приведение в порядок старых, смягчит прогрессирующий дефицит энергии в России. Потребление электроэнергии в стране превосходит все прогнозы, нам необходимо её всё больше и больше. В настоящее время состояние российской энергетики можно оценить как крайне тяжелое. За последние 15 лет, в электроэнергетике введено генерирующих мощностей менее чем вводилось в дореформенное время только в течение одного года. Физический износ большинства энергетических объектов и магистральных газопроводов достиг критического состояния. По данным Газпрома, около 18% трубопроводов служат свыше 33 лет и фактически подлежат списанию, еще 25% построены более 20 лет тому назад. Резерв мощности в некоторых регионах снизился до уровня, не позволяющего ремонтировать и модернизировать устаревшую систему, что усугубляет проблему и естественный, вполне реальный выход из положения – это АЭС. И сегодня мы должны обсудить проблемы, связанные с использованием ядерной энергии, взвесить все «за» и «против».

Развитие атомной энергетики

    Современная цивилизация немыслима без электрической энергии. Выработка и использование электричества увеличивается с каждым годом. Производство электроэнергии – важнейший показатель, по которому судят об уровне развития страны. Россия занимает второе место в мире по производству электроэнергии. Но перед человечеством уже маячит призрак грядущего энергетического голода из-за истощения месторождений горючих ископаемых и все больших экологических потерь при получении электроэнергии.     Вырабатывается электроэнергия на электростанциях. Выделяются основные типы электростанций: ТЭС, ГЭС, АЭС.

    ТЭС строят в районах добычи топлива или в районах потребления энергии. ГЭС выгодно строить на полноводных горных и равнинных реках. АЭС построены в районах, где потребляется много энергии, а других энергоресурсов не хватает.

    Процесс получения энергии всегда связан с вредными для человека последствиями независимо от вида топлива, но степень вредности разная.

    ТЭС загрязняют воздух, шлаки станций, работающих на угле, занимают огромные территории.

    Водохранилища равнинных ГЭС заливают плодородные пойменные земли, приводят к заболачиванию территорий.

    Небезопасными оказались и АЭС.

    Примерно в середине ХХ в.  была впервые получена энергия расщепления ядер атомов тяжелых металлов — плутония и урана. Такая энергия стала называться ядерной или атомной.

   В 1954 году была построена первая в мире атомная станция – Обнинская АЭС. На сегодняшний день эта АЭС эксперементальная станция, вырабатывающая небольшое количество энергии. По мощности атомных станций Россия занимает 4-е место в мире (после США, Франции и Японии). А по выработке электроэнергии на атомных станциях 20-е место в мире.

    До 1986 г. большие надежды в решении многих экологических проблем, связанных с энергетикой, возлагались на атомные станции. Широкое применение ядерной энергетики позволяет экономить невозобновляемые топливные ресурсы и использовать их более рационально. Так, при производстве 1 трлн кВт электроэнергии, выработанного на АЭС, необходимо было бы сжечь на ТЭС 280 млн т ископаемого топлива. При этом неизбежно происходило бы интенсивное загрязнение природной среды большим количеством продуктов неполного сгорания топлива и газа. АЭС при нормальной работе практически не загрязняет окружающую среду. Кроме того, в отношении радиационной безопасности АЭС более благоприятны, чем электростанции, работающие на угле. Так, доза радиоактивного облучения за счет выбросов АЭС в 5-40 раз меньше дозы за счет выбросов ТЭС аналогичной мощности. Выработка электроэнергии на атомных станциях не сопровождается выбросами в атмосферу углекислого газа и поэтому не усугубляет проблемы, связанные с парниковым эффектом.

    Использование атомной энергии сейчас решает часть энергетических проблем. Но как оказалось вреда от использования атомной энергии больше, чем пользы. Весь технологический процесс добычи изготовления атомного горючего на каждом этапе связан с вероятностью радиоактивного заражения окружающей среды и облучения людей.

    Ежегодно АЭС заменяют около трети «ядерного горючего» новым. Из АЭС мощностью 1300 МВт каждый год извлекают 30 т отработанного урана. Причём уровень его радиоактивности в сотни и тысячи раз выше естественного фона. Также в отработанном топливе содержится чрезвычайно токсичный плутоний. Что делать с очень опасными отходами? Вопрос не решён до сих пор. Эти отходы имеют большой период полураспада и поэтому опасны на протяжении жизни многих поколений. Остаётся очень мною и жидких радиоактивных отходов, которые подлежат переработке.

    Недавно опубликованы результаты исследования отношения россиян к строительству атомных станций в России. Согласно результатам исследования, положительно относятся к этой перспективе 66% россиян. В свою очередь, противников АЭС тоже немало — 34%. Последние полагают, что «Необходимо развивать гидроэлектростанции, а также использовать энергию солнца и ветра, а не потенциально опасную ядерную энергетику». В качестве основного довода приводится высокая вероятность возникновения техногенной катастрофы на Чернобыльской АЭС.

    Сегодня мы попытаемся рассмотреть  достоинства и недостатки атомной энергетики, основываясь на мнениях известных ученых, статистических данных и данных социологических опросов.

«Плюсы» атомной энергии

    Во многих странах доказали, что облучение перед посевом семян озимой пшеницы, картофеля, фасоли, кукурузы, сои, огурцов и томатов повышает урожайность на 10 – 30%. К тому же у растений быстрее развивались листья, приближались сроки цветения и созревания. А у томатов стимулирующая роль облучения сказывалась и во втором поколении.

     В последнее время интерес к радиационной обработке сместился в новую область: речь идёт о консервации пищевых продуктов. Венгерские специалисты создали специальные установки для облучения перед хранением картофеля, лука, шампиньонов, томатов, корнеплодов. Если в контрольных партиях потери достигали 30%, то в облучённых – лишь 10%. А в Японии для радиационной обработки картофеля построена промышленная установка, производительностью 10 тысяч тонн в год. Облучённый на ней картофель, как утверждают разработчики, может храниться в течении года при температуре до +200, позволяя отказаться от охлаждающих хранилищ. Чаще всего консервирующая роль излучения состоит в том, что оно убивает гнилостные бактерии.

    Всё это хорошо, но где гарантия, что облучённые продукты не вредны для человека? Ответ на этот вопрос дали исследования, которые проводились мо многих странах. Самые строгие и чувствительные приборы не смогли обнаружить в облучённых продуктах никаких следов остаточной радиации.

    Добрую службу несут радиоактивные элементы в геологии. Применение методов, основанных на регистрации естественной радиоактивности горных пород, позволяет геологам значительно быстрее получить информацию об элементном составе исследуемых геологических объектов. Используется способность каждого радиоактивного нуклида излучать только строго определённый, характерный, спектр гамма – излучения. Такой спектр, подобно паспорту, полностью отражает его индивидуальность. По этому спектру можно рассчитать концентрацию определённого нуклида в толще горной породы, сделать вывод о том, имеет ли эта скважина промышленное значение.

    Использование метода меченых атомов в медицине позволяет провести диагностику многих заболеваний. С помощью радиоактивного изотопа йода диагностируют заболевания щитовидной железы на ранней стадии. Раковые новообразования сначала облучают радиоактивным кобальтом, а затем уже удаляют больные ткани. Заболевания легких распознают на ранней стадии благодаря флюорографии - моментальному рентгеновскому снимку.

    В медицинской промышленности такие изделия, как хирургические перчатки, шприцы и многие другие стерилизуются с помощью радиации. Использование облученных стерильных изделий снизило опасность передачи инфекции в больницах и клиниках.

    Но количеству радиоактивного изотопа углерода в органических остатках (дерево, угли из костра, кости животных) археологи достаточно точно определяют возраст своих находок, в промышленности с помощью радиоактивных изотопов определяют качество изделия, однородность составляющих (например, в бетоне), степень механического износа трущихся и вращающихся поверхностей.

    В селекции гамма или нейтронное излучение используется для облучения семян чтобы вызвать у них мутации и вывести новый сорт.

    Ещё одно использование - ядерные взрывные технологии. К настоящему времени выполнено множество мирных ядерных взрывов, глубинное сейсмозондирование земной коры с целью поиска полезных ископаемых, интенсификация нефтяных и газовых месторождений, создание подземных ёмкостей для хранения газа и конденсата. Достоверные данные о нанесении при этом ущерба жизни и здоровью хотя бы одного человека отсутствуют. Надо помнить, что абсолютно безопасных технологий не бывает.

     В пределах России размещено 10 АЭС, которые дают примерно 12% электроэнергии. Всего на территории России действует 29 энергетических реакторов. Несколько сотен их установлено на атомных подводных лодках, снабженных ракетами с ядерными боеголовками. В России имеется 4 базы таких подводных лодок: две на Северном Ледовитом океане, две на Тихом океане. Кроме ядерного подводного флота, существует надводный флот с энергетическими реакторами, представленный ледоколами, базирующимися в Мурманске.

Просмотр содержимого документа ««Атомная энергетика: плюсы и минусы» »

Тема: «Атомная энергетика: плюсы и минусы» Разработала: Пелеганчук Е. В. преподаватель физики и математики

Тема:

«Атомная энергетика:

плюсы и минусы»

Разработала:

Пелеганчук Е. В. преподаватель физики и математики

Антуан де Сент Экзюпери в сказке «Маленький принц писал»: «Есть такое твердое правило: встал поутру, умылся, привел себя в порядок и сразу же приведи в порядок свою планету».

Антуан де Сент Экзюпери в сказке «Маленький принц писал»: «Есть такое твердое правило: встал поутру, умылся, привел себя в порядок и сразу же приведи в порядок свою планету».

Современная цивилизация нуждается в огромном количестве энергии

Современная цивилизация нуждается в огромном количестве энергии

Теплоэлектростанция - ТЭС

Теплоэлектростанция - ТЭС

Гидроэлектростанция - ГЭС

Гидроэлектростанция - ГЭС

Атомная электростанция - АЭС

Атомная электростанция - АЭС

Атомная электростанция - АЭС

Атомная электростанция - АЭС

В 1911 г. Эрнест Резерфорд предложил новую модель атома, основанную на результатах экспериментов в которых измерялось рассеяние альфа частиц при прохождении через золотую фольгу. Согласно модели Резерфорда, положительный заряд и основная масса атома сосредоточена в ядре, вокруг которого движутся электроны.

В 1911 г. Эрнест Резерфорд предложил новую модель атома, основанную на результатах экспериментов в которых измерялось рассеяние альфа частиц при прохождении через золотую фольгу. Согласно модели Резерфорда, положительный заряд и основная масса атома сосредоточена в ядре, вокруг которого движутся электроны.

Ядерная реакция – это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры ядра и выделением вторичных частиц или γ-квантов .

Ядерная реакция – это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры ядра и выделением вторичных частиц или γ-квантов .

Эти частицы, называемые нуклонами, удерживаются в ядрах короткодействующими силами притяжения, возникающими за счет обменов π - мезонами, частицами меньшей массы.

Эти частицы, называемые нуклонами, удерживаются в ядрах короткодействующими силами притяжения, возникающими за счет обменов π - мезонами, частицами меньшей массы.

Схема неуправляемой цепной ядерной реакции деления урана

Схема неуправляемой цепной ядерной реакции деления урана

Перенос тепла можно представить в виде простой схемы: 1. Реактор 2. Теплообменник, парогенератор 3. Паротурбинная установка 4. Генератор 5. Конденсатор 6. Насос

Перенос тепла можно представить в виде простой схемы:

1. Реактор

2. Теплообменник,

парогенератор

3. Паротурбинная

установка

4. Генератор

5. Конденсатор

6. Насос

Уран-графитовый реактор

Уран-графитовый реактор

Поврежденный 4 реактор

Поврежденный 4 реактор

Молодой город - Припять навсегда превратился в серого заброшенного призрака. Он зияет черными разбитыми глазницами окон и тишина, мертвая тишина брошенной прошлой жизни…

Молодой город - Припять навсегда превратился в серого заброшенного призрака. Он зияет черными разбитыми глазницами окон и тишина, мертвая тишина брошенной прошлой жизни…

Припять

Припять

Школы

Школы

Детские парки

Детские парки

Больницы

Больницы

Детские сады

Детские сады

Магазины

Магазины

Бассейн

Бассейн

Гостиницы

Гостиницы

Застыли стройки

Застыли стройки

Брошенные дома

Брошенные дома

Любой приехавший, сверяет свои передвижения с дозиметром

Любой приехавший, сверяет свои передвижения с дозиметром

… дома без людей, с пустыми глазницами окон,выросшими из асфальта деревьями и напоминаниями о прошлой счастливой жизни…

… дома без людей, с пустыми глазницами окон,выросшими из асфальта деревьями и напоминаниями о прошлой счастливой жизни…

Жители Припяти, окрестных деревень и поселков выселены, но остались некоторые старики, не пожелавшие переезжать, как жительницы села Иллинцы.

Жители Припяти, окрестных деревень и поселков выселены, но остались некоторые старики, не пожелавшие переезжать, как жительницы села Иллинцы.

Ядерный взрыв

Ядерный взрыв

Схема загрязнения окружающей среды радиоактивными отходами при аварии на АЭС

Схема загрязнения окружающей среды радиоактивными отходами при аварии на АЭС

Пожарники, потушившие пожар на 4-м блоке и погибшие от лучевой болезни ТИШУРА Владимир Иванович 15.12.1959 - 10.05.1986 КИБЕНОК Виктор Николаевич   Остались жена и сын 17.02.1963 - 11.05.1986 ПРАВИК Владимир Павлович ИГНАТЕНКО Василь Иванович 13.06.1962 - 11.05.1986   Осталась жена   Остались жена и дочь ВАЩУК Николай Васильевич 13.03.1961 - 13.05.1986   Осталась жена 05.06.1959 - 14.05.1986 ТИТЕНОК Николай Иванович   Осталась жена и два сына 05.12.1962 - 16.05.1986   Осталась жена и сын

Пожарники, потушившие пожар на 4-м блоке и погибшие от лучевой болезни

ТИШУРА

Владимир Иванович

15.12.1959 - 10.05.1986

КИБЕНОК

Виктор Николаевич

  Остались жена и сын

17.02.1963 - 11.05.1986

ПРАВИК

Владимир Павлович

ИГНАТЕНКО

Василь Иванович

13.06.1962 - 11.05.1986

  Осталась жена

  Остались жена и дочь

ВАЩУК

Николай Васильевич

13.03.1961 - 13.05.1986

  Осталась жена

05.06.1959 - 14.05.1986

ТИТЕНОК

Николай Иванович

  Осталась жена и два сына

05.12.1962 - 16.05.1986

  Осталась жена и сын

Памятник погибшим пожарным

Памятник погибшим пожарным

Полезные применения ядерной энергии Флюрография Томография

Полезные применения ядерной энергии

Флюрография Томография

Благодарим за внимание!

Благодарим за внимание!

kopilkaurokov.ru

Плюсы и минусы атомной энергетики

Атомная энергетика является весьма популярным источником энергии, преподносится в качестве эффективной альтернативы традиционным источникам электроэнергии. Однако, ядерная катастрофа в Японии заставила пересмотреть стратегии ядерной энергетики во всем мире. Вот сравнение плюсов и минусов использования энергии, получаемой от расщепления атома. Различия в ядерной StanceWhile США продолжает оставаться крупнейшим поставщиком и отечественных производителей АЭС с 65 действующих АЭС и еще в процессе становления, Европы - Германии приняло решение закрыть все ядерные реакторы к 2020 году. С недавних ядерной катастрофы Фукусима Дайичи в перспективе и истории, связанные ядерных опасностей во всем мире бушевала дискуссия о целесообразности инвестиций в альтернативную энергетику стоит рисков. Атомные электростанции, получающие энергию от контролируемой ядерной реакции деления. Значительно мощная альтернатива, по сравнению с традиционными видами топлива, атомная энергия является самым мощным источником энергии человеком. Энергию получают из ископаемых видов топлива путем окисления - изменение уровня энергии электронов вне ядра. С другой стороны, атомная энергетика получает питание от деления - изменения в энергетических уровней нуклонов в атомном ядре. Огромная энергия лежит взаперти там и ядерное деление-это один из способов врезки в него.

Плюсы и минусы атомной энергии Каждый мощный источник энергии обнаружен человек по цене. Ядерная энергетика имеет свою долю рисков и опасностей. Плюсы и минусы использования ядерной энергии, необходимо поставить перед нашими политиками в правительстве. Вот объективный анализ преимуществ и вредных факторов, связанных с ядерной энергетикой.

Плюсы Феноменальный Выход Энергии Энергия, добываемая из делящихся материалов, таких как Уран-235, составляет сто тысяч раз больше энергии, получаемой при сгорании одинаковое количество угля. Это делает его весьма эффективным источником энергии. Потенциал производства электроэнергии из этих растений в миллион раз выше, чем ископаемое топливо объектов. Этого избытка энергии, выведенных из небольшого количества делящегося материала является основным обоснованием принятия ядерной энергетики.

Полученное тепло может быть использовано для питания множество применений, начиная от электростанций, подводных лодок, авианосцев и космических аппаратов. Например, недавно запустили марсоход - Curiosity-это атомные (это ядерный энергетический механизм не основан на делении, а получает тепло от естественного радиоактивного распада плутония). Десять авианосца класса "Нимиц" на вооружении ВМС США все работает на две ядерных реактора A4W, обеспечивая выходную мощность 190 МВт. Средняя Выходная мощность любой атомной электростанции в США 12. 2 млрд киловатт-часов (кВтч). Совокупная мощность всех 104 в настоящее время функциональные ядерные реакторы США достиг 790 млрд. кВт-ч, что способствует 19% В общем объеме Общероссийского производства электроэнергии в 2011. Короче, перфоратора по атомной энергии-это просто несравнимое с тем, что поставленный уголь и другие традиционные энергоносители, который является достаточной причиной, чтобы поощрять его использование. Низкий Уровень Выбросов Ядерного деления ведет к снижению выбросов парниковых газов, оставляя незначительный "углеродный след", по сравнению с другими традиционными источниками. Исследование, проведенное в Национальном университете Сингапура, Бенджамина к. Sovacool показали средние выбросы углерода в течение всего жизненного цикла АЭС до 66 граммов углекислого газа на киловатт-час (г CO2). Это очень низкий, по сравнению с уровнем выбросов в угольных электростанций (960 г CO2) и природного газа питание растений (на 443 г CO2). Хотя реальный процесс ядерного деления является практически экологически чистым, чем выше значение рассчитывается от выбросов, которые происходят во вспомогательных видов деятельности, как добыча урана, обогащение и транспортировка. Так что по сравнению с традиционными источниками энергии, ядерного деления, конечно, чище. На все более сознательные мировой арене изменения климата, эта добродетель ядерной энергетики помогли найти верующих. Еще значения выбросов выше, по сравнению с солнечными фотоэлементов и ветром приведенные в действие заводы. Энергетической Безопасности Атомная энергетика является сравнительно надежным источником энергии, не зависит от забастовок и перебоев по всему миру, как мало требуется времени, и это хорошо распределяются по всему миру. Его численность составляет 40 раз, что серебра в земной коре. Это самый распространенный 51-й элемент в земной коре. Крупнейших производителей урана в мире: Казахстан, Россия, Канада, Намибия, Узбекистан, Китай, США, Нигерии, Аргентины и Украины. Поэтому один из положительных аспектов ядерной энергетики - обеспечение энергетической безопасности и независимости, что он предлагает от обычных источников энергии. Минусы Ядерных кризисов и стихийных бедствий Ядерный взрыв является результатом активной зоны перегрева, из-за отказа системы охлаждения. В результате температура ядра может резко возрасти, в результате чего в буквальном вытапливание оборудования. Это может привести к катастрофическим последствиям, избавить мир от высокой дозы радиации. Три инцидента-майл-Айленд (1979) в Пенсильвании, Чернобыльская катастрофа (1986 год) и Фукусима daiichi катастрофы (2011) являются одними из самых серьезных инцидентов в истории, которая свидетельствует повсеместная угроза того, что ядерные реакторы не представляют, когда их механизмы безопасности были нарушены. Существует риск таких катастроф, происходящих и уничтожая все на своем пути. Эрго проектирования и эксплуатации ядерных реакторов является одной из важнейших задач, как ядерную катастрофу, которая может иметь последствия, как утечка радиации, которая придется долго, начиная воздействие на окружающую среду на долгие годы. Радиоактивного Облучения Опасность радиоактивного облучения при разработке месторождений и добыче урана и других радиоактивных руд, маячит в развивающихся, так и развитых стран. Радиоактивных обломков и мусора, оставшихся после добычи, при неправильной утилизации, могут привести к ряду заболеваний, таких как рак и мутации. Как только радиоактивные изотопы с высокой ионизирующей радиации введите пищевого цикла, это может повлиять на всю экосистему, флору и фауну. Проблемы Радиоактивных Отходов Безопасная утилизация радиоактивных отходов является серьезной проблемой. Деление материала как Уран оставляет побочных продуктов, которые сами по себе радиоактивен и крайне вредным для окружающей среды. Радиоактивность не может быть отключен и, следовательно, нет никакого способа, но для безопасного хранения радиоактивных отходов (пока он не исчерпает свой период полураспада и превращается в нерадиоактивный продуктов). Существует широко распространенное споры по поводу выбора места для хранения радиоактивных. Многие методы захоронения радиоактивных отходов были предложены в том числе геологического захоронения, переработки и трансмутации. А некоторые уже в стадии реализации на глобальном уровне, проблема по-прежнему остается во многом нерешенной. Высокая Начальная Стоимость Строительства Хотя расходы на эксплуатацию АЭС существенно меньше, чем электростанций на органическом топливе на основе первоначального строительства и затраты на установку высоки. Самым высоким требованиям безопасности наряду с содержанием радиоактивных сточных добавить дополнительные расходы. Для развивающихся стран, первоначальные затраты на установку могут быть очень крутым, хотя будущий выигрыш в плане выхода энергии высокого. Катализатором распространения ядерного оружия Часто программы ядерного реактора-размножителя являются дымовой завесой для разработки ядерного оружия. Нет никакой гарантии, что делящегося ядерного топлива, поставляемого в страну, не будут использоваться для производства оружия массового уничтожения, как атомные и водородные бомбы. Если эта технология попадет в чужие руки, это может означать катастрофу для всего мира. Так что есть значительный риск в деле использования технологии. Термоядерной Энергетики Синтез (процесс генерации энергии за счет слияния ядер дейтерия) была более крепким орешком, по сравнению с деления, так как требует высоких начальных затрат энергии. Проблема высокой энергии удержания плазмы является основным камнем преткновения в его развитии. Это слишком рано говорить о плюсах и минусах ядерного синтеза, так как технология все еще находится в зачаточном состоянии и контролируемую термоядерную реакцию-это еще журавль в небе.. Лично я считаю, что атомная энергетика должна быть вариант, но не единственный, мы опираемся на будущее. Следует помнить, что атомная энергия не является возобновляемым ресурсом. Как сырой нефти, источников уранового топлива будет исчерпан один день. Так что атомная энергетика не может быть воспринято как окончательное решение энергетической проблемы, но временное и неизбежное в лучшем случае. Тем не менее, он заслуживает позиции в спектре энергетических решений становится доступным технологиям. Долгосрочное решение заключается в разработке технологий на основе возобновляемых источников энергии, таких как ветровая, приливная и солнечная энергия.

Похожие статьи

Преимущества и недостатки атомной энергетикиЯдерный синтез в звездах

Комментарии

Алина - 23.04.2018 14:31:05эмм, отвратительно. Как будто скопировано с гуг переводчика

hggg.ru

плюсы и минусы исследовательская работа по физике

Муниципальное казённое общеобразовательное учреждение

Климщинская средняя школа

Атомная энергетика: плюсы и минусы

исследовательская работа по физике

Автор: Серков Вадим,

обучающийся 10 класса

Руководитель: Голубцова Ирина

Викторовна, учитель физики

Климщина

2016

Оглавление

I.Введение.........................................................................................................3

II.Основная часть

  1. Атомная энергетика……………………………………………………4
1.1.Получение атомной энергии………………………………………4

1.2. История развития атомной энергетики…………………………..7

1.3.Экономическое значение энергетики……………………………10

1.4. Объёмы производства атомной электроэнергии . ………..……12

1.5.Плюсы атомной энергетики……………………………………...14

1.6.Минусы атомной энергетики…………………………………….15

2.Результаты социологического опроса…………………………………19

III.Заключение……………………………………………………………..22

IV.Список использованной литературы………………………………….24

Введение

26 апреля исполняется 30 лет со дня катастрофы на Чернобыльской АЭС.

В небо взлетело и рассеялось огромное количество радиоактивных веществ. Люди в Чернобыле подверглись облучению в 90 раз большему, чем при падении бомбы на Хиросиму. По подсчетам Российской академии наук, чернобыльская катастрофа обернулась гибелью 60 тысяч человек в России и 140 тысяч в Беларуси и Украине.30 лет – большой срок для человека, но не для человечества. Эта трагедия заставила людей задуматься: «Атомная энергия-это добро или зло?»

Я тоже попытался найти ответ на этот вопрос, чтобы в дальнейшем помочь разобраться в нём моим сверстникам. Цель исследования: выявить отношение людей к атомной энергетике. Задачи:

-изучение процессов получения атомной энергии

-изучение истории развития атомной энергетики

-изучение значения атомной энергетики

-выявление проблем атомной энергетики

-разработка диагностического материала по проблеме исследования

-проведение соц.опроса среди людей разного возраста

-анализ результатов соц.опросаПредмет исследования: отношение человека к вопросам атомной энергетики

1.Атомная энергетика

1.1.Получение атомной энергии

Атомная энергетика (ядерная энергетика) — это отрасль энергетики, занимающаяся производством электрической и тепловой энергии путём преобразования ядерной энергии.

Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер плутония-239 или урана-235. Ядра делятся при попадании в них нейтрона, при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией. В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в тепло.

Топливный цикл

Атомная энергетика основана на использовании ядерного топлива, совокупность промышленных процессов которого составляют топливный ядерный цикл. Хотя существуют различные типы топливных циклов, зависящие как от типа реактора, так и от характеристик конечной стадия цикла, в целом у него существуют общие этапы.

  1. Добыча урановой руды.
  2. Измельчение урановой руды
  3. Отделение диоксида урана, т. н. жёлтого хека, от отходов, тоже радиоактивных, идущих в отвал.
  4. Преобразование диоксида урана в газообразный гексафторид урана.
  5. Обогащение урана — процесс повышения концентрации урана-235, производится на специальных заводах по разделению изотопов.
  6. Обратное превращение гексафторида урана в диоксид урана в виде топливных таблеток.
  7. Изготовление из таблеток тепловыделяющих элементов (сокр. твэл), которые в скомпанованном виде вводятся в активную зону ядерного реактора АЭС.
  8. Извлечение отработанного топлива.
  9. Охлаждение отработанного топлива.
  10. Захоронение отработанного топлива в специальном хранилище.
В ходе эксплуатации в процессах технического обслуживания удаляются образующиеся низкорадиоактивные отходы. С окончанием срока службы производится вывод из эксплуатации самого реактора, демонтаж сопровождается дезактивацией и удалением в отходы деталей реактора.

Ядерный реактор

Ядерный реактор — устройство, предназначенное для организации управляемой самоподдерживающейся цепной реакции деления, которая всегда сопровождается выделением энергии.

Первый ядерный реактор построен и запущен в декабре 1942 года в США под руководством Э. Ферми. Первым реактором, построенным за пределами США, стал ZEEP, запущенный в Канаде 5 сентября 1945 года. В Европе первым ядерным реактором стала установка Ф-1, заработавшая 25 декабря 1946 года в Москве под руководством И. В. Курчатова. К 1978 году в мире работало уже около сотни ядерных реакторов различных типов.

Существуют разные типы реакторов, основные отличия в них обусловлены используемым топливом и теплоносителем, применяемым для поддержания нужной температуры активной зоны, и замедлителем, используемым для снижения скорости нейтронов, которые выделяются в результате распада ядер, для поддержания нужной скорости цепной реакции.

  1. Наиболее распространенным типом является легководный реактор, использующий в качестве топлива обогащённый уран, в нём в качестве и теплоносителя, и замедлителя используется обычная или «легкая» вода. У него есть две основные разновидности:
    1. кипящий реактор, где пар, вращающий турбины, образуется непосредственно в активной зоне.
    2. водо-водяной энергетический реактор, где пар образуется в контуре, связанном с активной зоной теплообменниками и парогенераторами.
  2. Газоохлаждаемый ядерный реактор с графитовым замедлителем получил широкое распространения благодаря возможности эффективно вырабатывать оружейный плутоний и возможности использовать необогащённый уран.
  3. В тяжеловодном реакторе в качестве и теплоносителя, и замедлителя используется тяжелая вода, а топливом является необогащённый уран, используется в основном в Канаде, имеющей собственные месторождения урановых руд.

1.2.История развития атомной энергетики

Впервые цепная реакция ядерного распада была осуществлена 2 декабря 1942 году в Чикагском университете с использованием урана в качестве топлива и графита в качестве замедлителя. Первая электроэнергия из энергии ядерного распада была получена 20 декабря 1951 года в Национальной лаборатории Айдахо с помощью реактора на быстрых нейтронах EBR-I (Experimental Breeder Reactor-I). Произведённая мощность составляла около 100 кВт.

9 мая 1954 года на ядерном реакторе в г. Обнинск была достигнута устойчивая цепная ядерная реакция. Реактор мощностью 5 МВт работал на обогащённом уране с графитом в качестве замедлителя, для охлаждения использовалась вода с обычным изотопным составом. 26 июня в 17:30 энергия, выработанная здесь, стала поступать в потребительскую электросеть .

А́томная электроста́нция  (АЭС) -  ядерная установка для производства энергии в заданных режимах и условиях применения, располагающаяся в пределах определённой проектом территории, на которой для осуществления этой цели используются ядерный реактор (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений с необходимыми работниками (персоналом), предназначенная для производства электрической энергии).

Атомная транспортная энергетика

Атомоход (атомное судно) — общее название судов с ядерной энергетической установкой, обеспечивающей ход судна. Различают атомоходы гражданские (атомные ледоколы, транспортные суда) и военные (авианосцы, подводные лодки, крейсеры, тяжёлыефрегаты).

Военные корабли США — атомные крейсера «Бейнбридж» и«Лонг Бич», и первый в мире авианосец «Энтерпрайз», самое длинное в мире военное судно, в 1964 году во время рекордного кругосветного путешествия, в течение которого они преодолели 49,190 км за 65 дней без дозаправки.

В декабре 1954 года в США вошла в строй первая атомная подводная лодка «Наутилус».

Российский атомный ледокол«Ямал» 1994 г.

В 1958 начала выдавать электроэнергию первая очередь второй советской АЭС — Сибирской, мощностью 100 Мвт. В 1959 году в СССР спущено на воду первое в мире невоенное атомное судно — ледокол «Ленин».

Атомная энергетика, как новое направление в энергетике, получила признание на проходившей в Женеве в августе 1955 года 1-й Международной научно-технической конференции по мирному использованию атомной энергии, положившей начало международному сотрудничеству в области мирного использования ядерной энергии.

В начале 1970-х годов существовали видимые предпосылки для развития ядерной энергетики. Потребность в электроэнергии росла, гидроэнергетические ресурсы большинства развитых стран были практически полностью задействованы, соответственно росли цены на основные виды топлива.

В 1975 году в Смоленской области (г.Десногорск) было начато строительство атомной электростанции, которая была введена в эксплуатацию в 1982 году.

В промышленной эксплуатации на САЭС находится три энергоблока с уран-графитовыми канальными реакторами РБМК-1000. Электрическая мощность каждого энергоблока — 1 ГВт, тепловая 3,2 ГВт. Энергоблоки с реакторами РБМК-1000 одноконтурные. Связь с Единой энергетической системой России осуществляется шестью линиями электропередачи напряжением 330 кВ (Рославль-1, 2), 500 кВ (Калуга, Михайлов), 750 кВ (Ново-Брянская, Белорусская).

1.3.Экономическое значение атомной энергетики

Доля атомной энергетики в общем производстве электроэнергии в различных странах.

В 2014 году ядерная энергия обеспечивала 2,6 % всей потребляемой человечеством энергии. Ядерный сектор энергетики наиболее значителен в промышленно развитых странах, где недостаточно природных энергоресурсов во Франции, Украине, Бельгии, Финляндии, Швеции, Болгарии, Швейцарии и Японии. Эти страны производят от 20 до 74 % (во Франции) электроэнергии на АЭС.

В 2013 году мировое производство ядерной энергии выросло впервые с 2010 года — по сравнению с 2012 годом произошёл рост на 0,5 % — до 6,55 млрд МВт ч (562,9 млн тонн нефтяного эквивалента). Наибольшее потребление энергии атомных станций в 2013 году составило в США — 187,9 млн тонн нефтяного эквивалента. В России потребление составило 39,1 млн тонн нефтяного эквивалента, в Китае — 25 млн тонн нефтяного эквивалента, в Индии — 7,5 млн тонн.

Согласно отчёту Международного агентства по атомной энергии (МАГАТЭ), на 2013 год насчитывалось436 действующих ядерных энергетических, то есть производящих утилизируемую электрическую и/или тепловую энергию, реакторов в 31 стране мира (кроме энергетических, существуют также исследовательские и некоторые другие).

Примерно половина мирового производства электроэнергии на АЭС приходится на две страны — США и Францию. США на АЭС производят только 1/8 своей электроэнергии, однако это составляет около 20 % мирового производства.

Абсолютным лидером по использованию ядерной энергии являлась Литва. Единственная Игналинская АЭС, расположенная на её территории, вырабатывала электрической энергии больше, чем потребляла вся республика (например, в 2003 году в Литве всего было выработано 19,2 млрд кВт⋅ч, из них — 15,5 Игналинской АЭС). Обладая её избытком (а в Литве есть и другие электростанции), «лишнюю» энергию отправляли на экспорт.Однако, под давлением ЕС (из-за сомнений в её безопасности — ИАЭС использовала энергоблоки того же типа, что и Чернобыльская АЭС), с 1 января 2010 года Игналинская АЭС была окончательно закрыта (предпринимались попытки добиться продолжения эксплуатации станции и после 2009 года, но они не увенчались успехом), сейчас решается вопрос о строительстве на той же площадке АЭС современного типа.

1.4.Объёмы производства атомной электроэнергии по странам

Страны с атомными электростанциями.

     Эксплуатируются АЭС, строятся новые энергоблоки.     Эксплуатируются АЭС, планируется строительство новых энергоблоков.     Нет АЭС, станции строятся.     Нет АЭС, планируется строительство новых энергоблоков.     Эксплуатируются АЭС, строительство новых энергоблоков пока не планируется.     Эксплуатируются АЭС, рассматривается сокращение их количества.     Гражданская ядерная энергетика запрещена законом.     Нет АЭС.

На 2014 год суммарно АЭС мира выработали 2,410 тВт⋅ч энергии, что составило 10,8 % всемирной генерации электричества.

Мировыми лидерами в производстве ядерной электроэнергии на 2014 год являются:

Половина всемирной выработки электроэнергии на АЭС приходится на США и Францию.

1.5.Плюсы атомной энергетики

Современная цивилизация немыслима без электрической энергии. Выработка и использование электричества увеличивается с каждым годом, но перед человечеством уже маячит призрак грядущего энергетического голода из-за истощения месторождений горючих ископаемых и все больших экологических потерь при получении электроэнергии.  Энергия, выделяющаяся в ядерных реакциях, в миллионы раз выше, чем та, которую дают обычные химические реакции (например, реакция горения), так что теплотворная способность ядерного топлива оказывается неизмеримо большей, чем обычного топлива. Использовать ядерное топливо для выработки электроэнергии - чрезвычайно заманчивая идея.

Преимущества атомных электростанций (АЭС) перед тепловыми (ТЭЦ) и гидроэлектростанциями (ГЭС) очевидны: нет отходов, газовых выбросов, нет необходимости вести огромные объемы строительства, возводить плотины и хоронить плодородные земли на дне водохранилищ. Пожалуй, более экологичны, чем АЭС, только электростанции, использующие энергию солнечного излучения или ветра.  Но и ветряки, и гелиостанции пока маломощны и не могут обеспечить потребности людей в дешевой электроэнергии , а эта потребность все быстрее растет.  И все же целесообразность строительства и эксплуатации АЭС часто ставят под сомнение из-за вредного воздействия радиоактивных веществ на окружающую среду и человека.

1.6.Минусы атомной энергетики

Атомная энергетика остаётся предметом острых дебатов. Сторонники и противники ядерной энергетики резко расходятся в оценках её безопасности, надёжности и экономической эффективности. Опасность связана с проблемами утилизации отходов, авариями ,приводящими к экологическим катастрофам,

а также с возможностью использовать повреждение этих объектов (наряду с другими: ГЭС, химзаводами и т. п.) обычным оружием или в результате теракта — как оружие массового поражения. «Двойное применение» предприятий ядерной энергетики, возможная утечка (как санкционированная, так и преступная) ядерного топлива из сферы производства электроэнергии и его использовании для производства ядерного оружия служит постоянным источником общественной озабоченности, политических интриг и поводов к военным акциям .

Тепловое загрязнение

Одной из проблем атомной энергетики является тепловое загрязнение. По мнению некоторых специалистов, атомные электростанции, «в расчете на единицу производимой электроэнергии», выделяют в окружающую среду больше тепла, чем сопоставимые по мощности ТЭС. В качестве примера можно привести проект строительства в бассейне Рейна нескольких атомных и теплоэлектростанций. Расчеты показали, что, в случае запуска всех запланированных объектов, температура в ряде рек поднялась бы до 45°С, уничтожив в них всякую жизнь.

Атом выходит из-под контроля

Аварии на объектах атомной энергетики - самый больной вопрос эксплуатации АЭС.

26 апреля 1986 года на четвертом блоке Чернобыльской АЭС произошла авария, которая привела к разрушению активной зоны реактора и части здания, в котором он был расположен. Государственная комиссия провела расследование причин взрыва, и пришла к выводу: авария произошла во время эксперимента, к проведению которого персонал АЭС был не подготовлен. Включение оператором аварийной защиты реактора привело к взрыву… Сейчас заключение госкомиссии подвергается сомнению, многие независимые эксперты усматривают в нем предвзятость и даже элементы фальсификации. Видимо, никто и никогда не узнает, почему реактор перешел в непредсказуемое состояние, при котором аварийная защита перестала гарантировать остановку ядерной реакции, и что именно заставило оператора нажать злополучную "красную кнопку". Результат - взрыв и пожар, расплавление и распыление радиоактивного "топлива", ужасные последствия для Украины, Белоруссии, соседних европейских стран.

 В результате чернобыльского взрыва в окружающее пространство было выброшено колоссальное количество радиоактивных веществ. Перемещение в атмосфере радиоактивного облака, осаждение радионуклидов с пылью и дождем, распространение почвенных и поверхностных вод, загрязненных радиоактивными изотопами, - все это привело к облучению сотен тысяч человек на территории свыше 23 тыс. км2.

Несколько десятков пожарных и специалистов - ликвидаторов аварии, работавших на расчистке территории разрушенного четвертого блока станции от обломков графита, радиоактивной пыли и кусков ядерного горючего, - погибли от острой лучевой болезни. Еще несколько сотен человек были признаны больными острой лучевой болезнью. 

С огромными трудностями был построен "саркофаг" - уникальное сооружение из бетона и стали, изолирующее взорвавшийся блок ЧАЭС от окружающей среды. Дезактивация зоны радиоактивного поражения продолжается по сей день, и этой работе не видно конца. Эта зона включает в себя два города (Чернобыль и Припять), около 80 брошенных сел с домами, фермами, мастерскими, сельскохозяйственной техникой. В зоне находятся 800 "могильников", где похоронены" автомобили, трактора, бульдозеры, экскаваторы и даже танки, набравшие такие дозы радиации, что их уже невозможно дезактивировать.

Люди, подвергшиеся облучению в результате Чернобыльской аварии, теряют здоровье и страдают от множества болезней, вызванных не только радиацией, но и психологическим шоком.

Однако несмотря на их тяжесть, в целом вероятность таких аварий невелика. С момента появления атомной энергетики произошло не более трех десятков аварий, и лишь в четырех случаях имел место выброс радиоактивных веществ в окружающую среду.

Всемирная ядерная ассоциация опубликовала данные, согласно которым гигаватт*год электроэнергии, произведенной на угольных электростанциях, в среднем (учитывая всю производственную цепочку) обходится в 342 человеческих жертвы, на газовых — в 85, на гидростанциях — в 885, тогда как на атомных — всего в 8.

Радиоактивный "мусор"

Даже если атомная электростанция работает идеально и без малейших сбоев, ее эксплуатация неизбежно ведет к накоплению радиоактивных веществ. Поэтому людям приходится решать очень серьезную проблему, имя которой - безопасное хранение отходов. Радиоактивные отходы образуются почти на всех стадиях ядерного цикла. Они накапливаются в виде жидких, твердых и газообразных веществ с разным уровнем активности и концентрации. Большинство отходов являются низкоактивными: это вода, используемая для очистки газов и поверхностей реактора, перчатки и обувь, загрязненные инструменты и перегоревшие лампочки из радиоактивных помещений, отработавшее оборудование, пыль, газовые фильтры и многое другое.Газы и загрязненную воду пропускают через специальные фильтры, пока они не достигнут чистоты атмосферного воздуха и питьевой воды. Ставшие радиоактивными фильтры перерабатывают вместе с твердыми отходами. Труднее всего подготовить к долговременному хранению высокоактивные отходы. Лучше всего такой "мусор" превращать в стекло и керамику. Для этого отходы прокаливают и сплавляют с веществами, образующими стеклокерамическую массу. Рассчитано, что для растворения 1 мм поверхностного слоя такой массы в воде потребуется не менее 100 лет. В отличие от многих химических отходов, опасность радиоактивных отходов со временем снижается. Бoльшая часть радиоактивных изотопов имеет период полураспада около 30 лет, поэтому уже через 300 лет они почти полностью исчезнут. Так что для окончательного удаления радиоактивных отходов необходимо строить такие долговременные хранилища, которые позволили бы надежно изолировать отходы от их проникновения в окружающую среду до полного распада радионуклидов. Такие хранилища называют могильниками. Необходимо учитывать, что высокоактивные отходы долгое время выделяют значительное количество теплоты. Поэтому чаще всего их удаляют в глубинные зоны земной коры. Вокруг хранилища устанавливают контролируемую зону, в которой вводят ограничения на деятельность человека, в том числе бурение и добычу полезных ископаемых.  Предлагался еще один способ решения проблемы радиоактивных отходов - отправлять их в космос. Действительно, объем отходов невелик, поэтому их можно удалить на такие космические орбиты, которые не пересекаются с орбитой Земли, и навсегда избавиться радиоактивного загрязнения. Однако этот путь был отвергнут из-за опасности непредвиденного возвращения на Землю ракеты-носителя в случае возникновения каких-либо неполадок.В некоторых странах серьезно рассматривается метод захоронения твердых радиоактивных отходов в глубинные воды океанов. Этот метод подкупает своей простотой и экономичностью. Однако такой способ вызывает серьезные возражения, коррозия достаточно быстро нарушит целостность контейнеров, и радиоактивные вещества попадут в воду, а морские течения разнесут активность по морским просторам.

Заключение

Конечно, от атомной энергетики можно вообще отказаться. Тем самым будет полностью устранена опасность облучения людей и угроза ядерных аварий. Но тогда для удовлетворения потребностей в энергии придется наращивать строительство ТЭЦ и ГЭС. А это неизбежно приведет к большому загрязнению атмосферы вредными веществами, к накоплению в атмосфере избыточного количества углекислого газа, изменению климата Земли и нарушению теплового баланса в масштабах всей планеты. Между тем призрак энергетического голода начинает реально угрожать человечеству. Радиация - грозная и опасная сила, но при должном отношении с ней вполне можно работать. Характерно, что меньше всего боятся радиации те, кто постоянно имеет с ней дело и хорошо знает все связанные с ней опасности. В этом смысле интересно сравнить статистику и интуитивную оценку степени опасности различных факторов повседневной жизни. Так, установлено, что наибольшее число человеческих жизней уносят курение, алкоголь и автомобили. Между тем, по оценке людей из групп населения, различных по возрасту и образованию, наибольшую опасность жизни несут атомная энергетика и огнестрельное оружие (урон, приносимый человечеству курением, алкоголем явно недооценивается).

Специалисты, которые могут наиболее квалифицированно оценить достоинства и возможности использования атомной энергетики, считают, что человечеству уже не обойтись без энергии атома. Атомная энергетика - один из наиболее перспективных путей утоления энергетического голода человечества в условиях энергетических проблем, связанных с использованием ископаемого горючего топлива.

Но в современном обществе отношение к атомной энергетике неоднозначное. Такой вывод я сделал, познакомившись с литературой по данной теме и проведя социологический опрос. Я понял, что большинство людей не обладает достаточной информацией, чтобы судить о плюсах и минусах атомной энергетики.

Поэтому моя исследовательская работа необходима для представления общей картины развития атомной энергетики, о влиянии ее на нашу жизнь и экологию. Да, пусть некоторые говорят против АЭС, но они не могут отрицать, что АЭС нам необходимы!

Я считаю, что работу по данной теме необходимо продолжать и развивать. Для этого я хотел бы предложить проводить экскурсии в информационный центр по атомной энергии города Смоленска, на Смоленскую АЭС. Ведь такая работа со школьниками - основа формирования позитивного отношения к атомной отрасли, а это может позволить выявить среди учащихся тех, кто захочет связать свою жизнь с работой в атомной промышленности.

Список использованной литературы

  1. Большой энциклопедический словарь: Ядерная энергетика / Гл. ред. А. М. Прохоров. — 1-е изд. — М.: Большая Российская энциклопедия, 1991.-350с.
  2.  Грешилов А. А., Егупов Н. Д., Матущенко А. М. Ядерный щит. — М.: Логос, 2008.-170с. 
  3.  Родионов В. Г. Проблемы традиционной энергетики // Энергетика: проблемы настоящего и возможности будущего. — М.: ЭНАС, 2010.-115с. 
Интернет- источники:

http://treeofknowledge.narod.ru/accident.htm

http://www.dozimetr.biz/radiaciya_vokrug_nas_osnovnie_istochniki.php

http://www.bestgenerator.ru/krupn-avarii.html

http://www.lplaces.com/ru

http://ru.wikipedia.org/

h.120-bal.ru

Перспективы развития атомной энергетики в России

Финансовая Академия при Правительстве Российской ФедерацииКафедра “Экономическая география и региональная экономика”

КУРСОВАЯ РАБОТАна тему:“Перспективы развития атомной энергетики в России”

Студента группы НП1_2 Еровиченкова А.С.Научный руководитель доц. Винокуров А.А.

Москва - 1997

План.Введение Ситуация в энергетическом комплексе России
  1. Ограниченность источников энергии
  2. Важнейшие факторы развития атомной энергетики
  3. Плюсы и минусы атомной энергетики
  4. Ядерная топливно-энергетическая база России
  5. Новые энергоблокиЗаключение
  6. Перспективы развития атомной энергетики РоссииПредпосылки развития атомной энергетики        Россия была, есть и будет одной из ведущих энергетических держав мира. И это не только потому, что в недрах страны находится 12% мировых запасов угля, 13% нефти и 36% мировых запасов природного газа, которых достаточно для полного обеспечения собственных потребностей и для экспорта в сопредельные государства. Россия вошла в число ведущих мировых энергетических держав, прежде всего, благодаря созданию уникального производственного, научно-технического и кадрового потенциала топливно-энергетического комплекса (ТЭК). #1        Но экономический кризис последних лет существенным образом затронул и этот комплекс. Производство первичных энергоресурсов в 1993 г. составило 82% от уровня 1990 и продолжало падать. Уменьшение потребления топлива и энергии, обусловленное общим экономическим спадом, временно облегчило задачу энергообеспечения страны, хотя в ряде регионов пришлось вынужденно ограничивать потребление энергии. Отсутствие необходимых инвестиций не позволило в 90-х годах компенсировать естественное выбытие производственных мощностей и обновлять основные фонды, износ которых в отраслях ТЭК колеблется в пределах 30-80%. В соответствии с нормами безопасности требуют реконструкции и до половины АЭС. #9        Следует заметить, что в 1981-1985 гг. среднегодовой ввод мощностей в электроэнергетике был 6 млн. кВт в год, а в 1995 г. - только 0,3 млн. кВт. В 1995 году в России произведено 860 млрд. кВт\час, а в 1996 г. в связи со снижением спроса и износом установленного на электростанциях оборудования - 840 млрд.. кВт\час. Производство электроэнергии на электростанциях России (млрд. Квт-ч)

     

    Начальная

    Windows Commander

    Far
    WinNavigator
    Frigate
    Norton Commander
    WinNC
    Dos Navigator
    Servant Salamander
    Turbo Browser

    Winamp, Skins, Plugins
    Необходимые Утилиты
    Текстовые редакторы
    Юмор

    File managers and best utilites

    Применение ядерной энергии: проблемы и перспективы. Атомная энергетика плюсы и минусы реферат


    Плюсы и минусы атомной энергетики

    aes40000

    Атомная энергетика в основном ассоциируется с Чернобыльской катастрофой, случившейся в 1986 году. Тогда весь мир был потрясен последствиями взрыва атомного реактора, в результате чего тысячи людей получили серьезные проблемы со здоровьем или погибли. Тысячи гектаров загрязненной территории, на которой нельзя жить, работать и выращивать урожай или же экологический способ добывания энергии, который станет шагом в светлое будущее для миллионов людей?

    Плюсы атомной энергетики

    Строительство атомных электростанций остается прибыльными за счет минимальных расходов на производство энергии. Как известно для работы ТЭС нужен уголь, причем ежедневно его расход составляет около миллиона тонн. К себестоимости угля добавляются расходы на транспортировку топлива, что также стоит немало. Что же касается АЭС это обогащенный уран, в связи с чем происходит экономия и на расходы на транспортировку топлива и на его покупку.АЭСТакже нельзя не отметить экологичность работы АЭС, ведь долгое время считалось, что именно атомная энергетика положит конец загрязнению окружающей среды. Города, которые строятся вокруг атомных станций, экологически чистые, так как работа реакторов не сопровождается постоянным выбросом вредных веществ в атмосферу, к тому же использование ядерного топлива не требует кислорода. Как результат, экологическая катастрофа городов может страдать только от выхлопных газов и работы других промышленных объектов.

    Экономия средств в данном случае происходит и за счет того, что не требуется строить очистные сооружения для уменьшения выбросов продуктов сгорания в окружающую среду. Проблема с загрязнением больших городов на сегодняшний день становится все более актуальной, так как нередко уровень загрязнения в городах, в которых построены ТЭС, превышает в 2 – 2,5 раза критические показатели загрязнения воздуха серой, золовой пыли, альдегидами, оксидами углерода и азотом.Специалист на АЭС

    Чернобыльская катастрофа стала большим уроком для мирового сообщества в связи с чем можно сказать о том, что работа атомных электростанций с каждым годом становится все безопаснее. Практически на всех АЭС были установлены дополнительные меры безопасности, которые во много раз уменьшили возможность того, что произойдет авария, подобная Чернобыльской катастрофе. Реакторы типа Чернобыльского РБМК были заменены реакторами нового поколения, имеющими повышенную безопасность.

    Минусы атомной энергетики

    Самым главным минусом атомной энергетики является память о том, как почти 30 лет тому назад на реакторе ЧАЭС, взрыв на котором считался невозможным и практически нереальным, произошла авария, ставшая причиной всемирной трагедии. Случилось так потому что авария коснулась не только СССР, но и всего мира – радиоактивное облако со стороны нынешней Украины пошло сначала в сторону Белоруссии, после Франции, Италии и так достигло США.

    Даже мысль о том, что однажды такое может повториться становится причиной того, что множество людей и ученых выступают против строительства новых АЭС. Кстати Чернобыльская катастрофа считается не единственной аварией подобного рода, еще свежи в памяти события аварии в Японии на АЭС Онагава и АЭС Фукусима – 1, на которых в результате мощнейшего землетрясения начался пожар. Он стал причиной расплавления ядерного топлива в реаторе блока № 1, из-за чего началась утечка радиации. Это стало последствием эвакуации населения, которое проживало на расстоянии 10 км от станций.

    Также стоит вспомнить о крупной аварии на АЭС «Михама», когда от раскаленного пара от турбины третьего реактора погибло 4 человека и пострадало свыше 200 человек. Ежедневно по вине человека или в результате действия стихии возможны аварии на АЭС, в результате чего радиоактивные отходы попадут в продукты, воду и окружающую среду, отравляя миллионы людей. Именно это считается самым главным минусом атомной энергетики на сегодняшний день.АЭС «Михама»

    Кроме того очень остро стоит проблема утилизации радиоактивных отходов, для сооружения могильников нужны большие территории, что является большой проблемой для маленьких стран. Несмотря на то, что отходы битумируются и скрываются за толщей железа и цемента, никто не может с точностью уверить всех в том, что они будут оставаться безопасными для людей много лет. Также не стоит забывать, что утилизация радиоактивных отходов очень дорого обходится, вследствие экономии затрат на остекловывание, сжигание, уплотнение и цементирование радиоактивных отходов, возможны их утечки. При стабильном финансировании и большой территории страны этой проблемы не существует, но этим может похвастаться не каждое государство.

    Также стоит отметить, что при работе АЭС, как и на каждом производстве, происходят аварии, что становится причиной выброса радиоактивных отходов в атмосферу, землю и реки. Мельчайшие частицы урана и других изотопов присутствуют в воздухе городов, в которых построены АЭС, что становится причиной отравления окружающей среды.

    Выводы

    Хотя атомная энергетика остается источником загрязнения и возможных катастроф, все же следует отметить, что ее развитие будет происходить и дальше, хотя бы по той причине, что это дешевый способ получения энергии, а месторождения углеводородного топлива постепенно исчерпываются. В умелых руках атомная энергетика действительно может стать безопасным и экологически чистым способом добывания энергии, однако стоит все же отметить, что большинство катастроф произошло именно по вине человека.

    В проблемах, касающихся утилизации радиоактивных отходов, очень важно международное сотрудничество, ведь только оно может дать достаточное финансирование для безопасного и долгосрочного захоронения радиационных отходов и использованного ядерного топлива.

    Рекомендуем посмотреть интересный документальный фильм об атомной энергетике:

    Похожие записи

    plusiminusi.ru

    Применение ядерной энергии: проблемы и перспективы

    Повсеместное применение ядерной энергии началось благодаря научно-техническому прогрессу не только в военной области, но и в мирных целях. Сегодня нельзя обойтись без нее в промышленности, энергетике и медицине.

    Вместе с тем, использование ядерной энергии имеет не только преимущества, но и недостатки. Прежде всего, это опасность радиации, как для человека, так и для окружающей среды.

    применение ядерной энергии

    Применение ядерной энергии развивается в двух направлениях: использование в энергетике и использование радиоактивных изотопов.

    Изначально атомную энергию предполагалось использовать только в военных целях, и все разработки шли в этом направлении.

    Использование ядерной энергии в военной сфере

    Большое количество высокоактивных материалов используют для производства ядерного оружия. По оценкам экспертов, ядерные боеголовки содержат несколько тонн плутония.

    Ядерное оружие относят к оружию массового поражения, потому что оно производит разрушения на огромных территориях.

    По радиусу действия и мощности заряда ядерное оружие делится на:

    • Тактическое.
    • Оперативно-тактическое.
    • Стратегическое.

    Ядерные боеприпасы делят на атомные и водородные. В основу ядерного оружия положены неуправляемые цепные реакции деления тяжелых ядер и реакции термоядерного синтеза. Для цепной реакции используют уран либо плутоний.

    Хранение такого большого количества опасных материалов – это большая угроза для человечества. А применение ядерной энергии в военных целях может привести к тяжелым последствиям.

    применение ядерной энергии в военных целях

    Впервые ядерное оружие было применено в 1945 году для атаки на японские города Хиросима и Нагасаки. Последствия этой атаки были катастрофичными. Как известно, это было первое и последнее применение ядерной энергии в войне.

    Международное агентство по атомной энергии (МАГАТЭ)

    МАГАТЭ создано в 1957 году с целью развития сотрудничества между странами в области использования атомной энергии в мирных целях. С самого начала агентство осуществляет программу «Ядерная безопасность и защита окружающей среды».

    Но самая главная функция – это контроль за деятельностью стран в ядерной сфере. Организация контролирует, чтобы разработки и использование ядерной энергии происходили только в мирных целях.

    Цель этой программы – обеспечивать безопасное использование ядерной энергии, защита человека и экологии от воздействия радиации. Также агентство занималось изучением последствий аварии на Чернобыльской АЭС.

    Также агентство поддерживает изучение, развитие и применение ядерной энергии в мирных целях и выступает посредником при обмене услугами и материалами между членами агентства.

    Вместе с ООН МАГАТЭ определяет и устанавливает нормы в области безопасности и охраны здоровья.

    Атомная энергетика

    Во второй половине сороковых годов двадцатого столетия советские ученые начали разрабатывать первые проекты мирного использования атома. Главным направлением этих разработок стала электроэнергетика.

    И в 1954 году в СССР построили первую в мире атомную станцию. После этого программы быстрого роста атомной энергетики начали разрабатывать в США, Великобритании, ФРГ и Франции. Но большинство из них не были выполнены. Как оказалось, АЭС не смогла конкурировать со станциями, которые работают на угле, газе и мазуте.

    ядерная энергия применение

    Но после начала мирового энергетического кризиса и подорожания нефти спрос на атомную энергетику вырос. В 70-х годах прошлого столетия эксперты считали, что мощность всех АЭС сможет заменить половину электростанций.

    В середине 80-х рост атомной энергетики снова замедлился, сраны начали пересматривать планы на сооружение новых АЭС. Этому способствовали как политика энергосбережения и снижение цены на нефть, так и катастрофа на Чернобыльской станции, которая имела негативные последствия не только для Украины.

    После некоторые страны вообще прекратили сооружение и эксплуатацию атомных электростанций.

    Атомная энергия для полетов в космос

    В космос слетало более трех десятков ядерных реакторов, они использовались для получения энергии.

    Впервые ядерный реактор в космосе применили американцы в 1965 году. В качестве топлива использовался уран-235. Проработал он 43 дня.

    В Советском Союзе реактор «Ромашка» был запущен в Институте атомной энергии. Его предполагалось использовать на космических аппаратах вместе с плазменными двигателями. Но после всех испытаний он так и не был запущен в космос.

    Следующая ядерная установка «Бук» была применена на спутнике радиолокационной разведки. Первый аппарат был запущен в 1970 году с космодрома Байконур.

    Сегодня «Роскосмос» и «Росатом» предлагают сконструировать космический корабль, который будет оснащен ядерным ракетным двигателем и сможет добраться до Луны и Марса. Но пока что это все на стадии предложения.

    Применение ядерной энергии в промышленности

    Атомная энергия применяется для повышения чувствительности химического анализа и производства аммиака, водорода и других химических реагентов, которые используются для производства удобрений.

    применение ядерной энергии в промышленности

    Ядерная энергия, применение которой в химической промышленности позволяет получать новые химические элементы, помогает воссоздавать процессы, которые происходят в земной коре.

    Для опреснения соленых вод также применяется ядерная энергия. Применение в черной металлургии позволяет восстанавливать железо из железной руды. В цветной – применяется для производства алюминия.

    Использование ядерной энергии в сельском хозяйстве

    Применение ядерной энергии в сельском хозяйстве решает задачи селекции и помогает в борьбе с вредителями.

    Ядерную энергию применяют для появления мутаций в семенах. Делается это для получения новых сортов, которые приносят больше урожая и устойчивы к болезням сельскохозяйственных культур. Так, больше половины пшеницы, выращиваемой в Италии для изготовления макарон, было выведено с помощью мутаций.

    Также с помощью радиоизотопов определяют лучшие способы внесения удобрений. Например, с их помощью определили, что при выращивании риса можно уменьшить внесение азотных удобрений. Это не только сэкономило деньги, но и сохранило экологию.

    Немного странное использование ядерной энергии – это облучение личинок насекомых. Делается это для того, чтобы выводить их безвредно для окружающей среды. В таком случае насекомые, появившееся из облученных личинок, не имеют потомства, но в остальных отношениях вполне нормальны.

    Ядерная медицина

    Медицина использует радиоактивные изотопы для постановки точного диагноза. Медицинские изотопы имеют малый период полураспада и не представляет особой опасности как для окружающих, так и для пациента.

    применение ядерной энергии в медицине

    Еще одно применение ядерной энергии в медицине было открыто совсем недавно. Это позитронно-эмиссионная томография. С ее помощью можно обнаружить рак на ранних стадиях.

    Применение ядерной энергии на транспорте

    В начале 50-х годов прошлого века были предприняты попытки создать танк на ядерной тяге. Разработки начались в США, но проект так и не был воплощен в жизнь. В основном из-за того, что в этих танках так и не смогли решить проблему экранирования экипажа.

    Известная компания Ford трудилась над автомобилем, который бы работал на ядерной энергии. Но дальше макета производство такой машины не зашло.

    применение ядерной энергии

    Все дело в том, что ядерная установка занимала очень много места, и автомобиль получался очень габаритным. Компактные реакторы так и не появились, поэтому амбициозный проект свернули.

    Наверное, самый известный транспорт, который работает на ядерной энергии – это различные суда как военного, так и гражданского назначения:

    • Атомные ледоколы.
    • Транспортные суда.
    • Авианосцы.
    • Подводные лодки.
    • Крейсеры.
    • Атомные подводные лодки.

    Плюсы и минусы использования ядерной энергии

    Сегодня доля ядерной энергетики в мировом производстве энергии составляет примерно 17 процентов. Хотя человечество использует органическое топливо, но его запасы не бесконечны.

    Поэтому, как альтернативный вариант, используется ядерное топливо. Но процесс его получения и использования связан с большим риском для жизни и окружающей среды.

    Конечно, постоянно совершенствуются ядерные реакторы, предпринимаются все возможные меры безопасности, но иногда этого недостаточно. Примером могут служить аварии на Чернобыльской атомной электростанции и Фукусиме.

    применение ядерной энергии в сельском хозяйстве

    С одной стороны, исправно работающий реактор не выбрасывает в окружающую среду никакой радиации, тогда как из тепловых электростанций в атмосферу попадает большое количество вредных веществ.

    Самую большую опасность представляет отработанное топливо, его переработка и хранение. Потому что на сегодняшний день не изобретен полностью безопасный способ утилизации ядерных отходов.

    fb.ru

    "плюсы" и "минусы" АЭС - Обеспечение безопасности на объектах атомной энергетики и влияние атомной физики на жизнь людей

    В чем же преимущества АЭС перед другими видами выработки энергии

    Главное преимущество — практическая независимость от источников топлива из-за небольшого объёма используемого топлива, например 54 тепловыделяющих сборки общей массой 41 тонна на один энергоблок с реактором ВВЭР-1000 в 1-1,5 года (для сравнения, одна только Троицкая ГРЭС мощностью 2000 МВт сжигает за сутки два железнодорожных состава угля). Расходы на перевозку ядерного топлива, в отличие от традиционного, ничтожны. В России это особенно важно в европейской части, так как доставка угля из Сибири слишком дорога.Огромным преимуществом АЭС является её относительная экологическая чистота. На ТЭС суммарные годовые выбросы вредных веществ, в которые входят сернистый газ, оксиды азота, оксиды углерода, углеводороды, альдегиды и золовая пыль, на 1000 МВт установленной мощности составляют от примерно 13 000 тонн в год на газовых до 165 000 на пылеугольных ТЭС. Подобные выбросы на АЭС полностью отсутствуют. ТЭС мощностью 1000 МВт потребляет 8 миллионов тонн кислорода в год для окисления топлива, АЭС же не потребляют кислорода вообще[7]. Кроме того, больший удельный (на единицу произведенной электроэнергии) выброс радиоактивных веществ даёт угольная станция. В угле всегда содержатся природные радиоактивные вещества, при сжигании угля они практически полностью попадают во внешнюю среду. При этом удельная активность выбросов ТЭС в несколько раз выше, чем для АЭС[8][9]. Также некоторые АЭС отводят часть тепла на нужды отопления и горячего водоснабжения городов, что снижает непродуктивные тепловые потери, существуют действующие и перспективные проекты по использованию «лишнего» тепла в энергобиологических комплексах (рыбоводство, выращивание устриц, обогрев теплиц и пр.). Кроме того, в перспективе возможно осуществление проектов комбинирования АЭС с ГТУ, в том числе в качестве «надстроек» на существующих АЭС, которые могут позволить добиться аналогичного с тепловыми станциями КПД.Для большинства стран, в том числе и России, производство электроэнергии на АЭС не дороже, чем на пылеугольных и тем более газомазутных ТЭС. Особенно заметно преимущество АЭС в стоимости производимой электроэнергии во время так называемых энергетических кризисов, начавшихся с начала 70-х годов. Падение цен на нефть автоматически снижает конкурентоспособность АЭС.Затраты на строительство АЭС находятся примерно на таком же уровне, как и строительство ТЭС, или несколько выше.Недостатки АЭС-Единственный фактор, в котором АЭС уступают в экологическом плане традиционным КЭС — тепловое загрязнение, вызванное большими расходами технической воды для охлаждения конденсаторов турбин, которое у АЭС несколько выше из-за более низкого КПД (не более 35 %), этот фактор важен для водных экосистем, а современные АЭС в основном имеют собственные искусственно созданные водохранилища-охладители или вовсе охлаждаются градирнями.

    Падение цен на нефть автоматически снижает конкурентоспособность АЭС.

    Главный недостаток АЭС — тяжелые последствия аварий, для исключения которых АЭС оборудуются сложнейшими системами безопасности с многократными запасами и резервированием, обеспечивающими исключение расплавления активной зоны даже в случае максимальной проектной аварии (местный полный поперечный разрыв трубопровода циркуляционного контура реактора).Серьёзной проблемой для АЭС является их ликвидация после выработки ресурса, по оценкам она может составить до 20 % от стоимости их строительства.По ряду технических причин для АЭС крайне нежелательна работа в манёвренных режимах, то есть покрытие переменной части графика электрической нагрузки.

      1990 1995 2000 2005
    ВСЕГО 1082 860 922 1020
    ГЭС и ГАС 167 177 166 180
    КЭС 397 252 242 249
    ТЭЦ 400 332 392 457
    АЭС 118 99 122 134
    Таблица 1 #3        Доля России в объёме мирового производства электроэнергии составляла в 1990 г 8,2%, а в 1995 г сократилась до 7,6%.         В 1993 году по производству электроэнергии на душу населения Россия занимала 13-е место в мире (6297 кВт\ч).         В 1991-1996 гг. электропотребление в России снизилось более чем на 20%, в том числе в 1996 г - на 1%. В 1997 г впервые в 90-е годы ожидается рост производства электроэнергии. В начале 90-х годов установленные энергетические мощности России превышали 7% мировых. В 1995 г установленная мощность электроэнергетики России составляла 215,3 млн. кВт, в том числе доля мощностей ТЭС - 70%, ГЭС - 20% и АЭС - 10%. В 1992-1995 гг. было введено 66 млн. кВт генерирующих мощностей. В настоящее время 15 млн. кВт оборудования ТЭС выработали ресурс. В 2000 году таких мощностей будет уже 35 млн. кВт и в 2005 году - 55 млн. кВт. К 2005 году предельного срока эксплуатации достигнут агрегаты ГЭС мощностью 21 млн. кВт (50% мощностей ГЭС России). На АЭС в 2001-2005 гг. будут выведены из эксплуатации 6 энергоблоков общей мощностью 3,8 млн. кВт.         По оценкам экспертов в настоящее время на 40% электростанций России используется устаревшее оборудование.Если не будут приняты меры по обновлению генерирующего оборудования, то динамика его старения к 2010 году будет выглядеть следующим образом: (тыс. млн. кВт)
      1995 г 2000 г 2005 г 2010 г
    ВСЕГО 17,0 49,3 83,3 108,5
    ТЭС 14,2 35,3 55,1 75,1
    ГЭС 2,8 14,0 24,0 25,0
    АЭС - - 3,8 8,4
    Таблица 2 #3В этих условиях для обеспечения прогнозируемого спроса на электрическую энергию и мощность потребуется значительная реконструкция действующих, а затем и строительство новых электростанций. Но какой вид энергии самый экономичный, безопасный и экологически чистый? На развитие какой отрасли направить основные средства? На сегодняшний день при выборе источника электроэнергии нельзя не отметить актуальность такого фактора, как ограниченность источников энергии. Ограниченность источников энергии.        Современные темпы энергопотребления составляют примерно 0,5 Q в год, однако они растут в геометрической прогрессии. Так, в первой четверти следующего тысячелетия энергопотребление, по прогнозам, составит 1 Q в год. Следовательно, если даже учесть, что темпы роста потребления электроэнергии несколько сократятся из-за совершенствования энергосберегающих технологий, запасов энергетического сырья хватит максимум на 100 лет.Однако положение усугубляется еще и несоответствием структуры запасов и потребления органического сырья. Так, 80% запасов органического топлива приходится на уголь и лигниты и лишь 20% на нефть и газ, в то время как 8/10 современного энергопотребления приходится на нефть и газ. Следовательно, временные рамки еще более сужаются.Альтернативой органическому топливу и возобновляемым источником энергии является гидроэнергетика. Однако и здесь источник энергии достаточно сильно ограничен. Это связано с тем, что крупные реки, как правило, сильно удалены от промышленных центров либо их мощности практически полностью использованы. Таким образом, гидроэнергетика, в настоящий момент обеспечивающая около 10% производства энергии в мире, не сможет существенно увеличить эту цифру.Огромный потенциал энергии Солнца (порядка 10 Q в среднем в сутки) мог бы теоретически обеспечить все мировые потребности энергетики. Но если отнести эту энергию на один квадратный метр поверхности Земли, то средняя тепловая мощность получится не более 200 Вт/м, или около 20 Вт/м электрической мощности при кпд преобразования в электроэнергию 10%. Это, очевидно, ограничивает возможности солнечной энергетики при создании электростанций большой мощности (для станции мощностью 1 млн. кВт площадь солнечных преобразователей должна быть около 100 км ). Принципиальные трудности возникают и при анализе возможностей создания генераторов большой мощности, использующих энергию ветра, приливы и отливы в океане, геотермальную энергию, биогаз, растительное топливо и т.д. Все это приводит к выводу об ограниченности возможностей рассмотренных так называемых “воспроизводимых” и относительно экологически чистых ресурсов энергетики, по крайней мере, в относительно близком будущем. Хотя эффект от их использования при решении отдельных частных проблем энергообеспечения может быть уже сейчас весьма впечатляющим, суммарная доля воспроизводимых ресурсов в ближайшие 40 50 лет не превысит 15 20%.        Конечно, существует оптимизм по поводу возможностей термоядерной энергии и других эффективных способов получения энергии, интенсивно исследуемых наукой, но при современных масштабах энергопроизводства, при практическом освоении этих возможных источников потребуется несколько десятков лет из-за высокой капиталоемкости (до 30% всех капитальных затрат в промышленности требует энергетика) и соответствующей инерционности в реализации проектов. Так что в перспективе до середины следующего века можно ориентироваться на существенный вклад в мировую энергетику лишь тех новых источников, для которых уже сегодня решены принципиальные проблемы массового использования и создана техническая база для промышленного освоения. Единственным здесь конкурентом традиционному органическому топливу может быть только ядерная энергетика, обеспечивающая уже сейчас около 20% мирового производства электроэнергии с развитой сырьевой и производственной базой для дальнейшего развития отрасли. #2Важнейшие факторы развития атомной энергетикиНа все более конкурентном и многонациональном глобальном энергетическом рынке ряд важнейших факторов будет влиять не только на выбор вида энергии, но также и на степень и характер использования разных источников энергии. Эти факторы включают в себя:Для ядерной энергии эти пять факторов определяют будущие стратегии в области топливного цикла и реакторов. Цель заключается в том, чтобы оптимизировать эти факторы.Хотя достижение признания со стороны общественности не всегда включалось в качестве важнейшего фактора, в действительности этот фактор является жизненно важным для ядерной энергии. Необходимо открыто и достоверно ознакомить общественность и лиц, принимающих решения, с реальными выгодами ядерной энергетики. В следующем ниже обсуждении содержатся элементы убедительной аргументации. Растущее нежелание общественности, особенно в промышленно развитых странах, соглашаться с вводом новых промышленных установок сказывается на политике во всем энергетическом секторе и влияет на осуществление всех проектов энергетических установок.
    1. Максимальное использование ресурсов
    Известные и вероятные запасы урана должны обеспечить достаточное снабжение ядерным топливом в краткосрочном и среднесрочном плане, даже если реакторы будут работать главным образом с однократными циклами, предусматривающими захоронение отработавшего топлива. Проблемы в топливообеспечении атомной энергетики могут возникнуть лишь к 2030 году при условии развития и увеличения к этому времени атомных энергомощностей. Для их решения потребуются разведка и освоение новых месторождений урана на территории России, использование накопленных оружеййного и энергетического плутония и урана, развитие атомной энергетики на альтернативных видах ядерного топлива. Одна тонна оружейного плутония по теплотворному эквиваленту органического топлива при “сжигании” в тепловых реакторах в открытом топливном цикле соответствует 2,5 млрд. куб. м. природного газа. Приближенная оценка показывает, что общий энергетический потенциал оружейного сырья, с использованием в парке АЭС также реакторов на быстрых нейтронах, может соответствовать выработке 12-14 трлн. киловатт-часов электроэнергии, т.е 12-14 годовым её выработкам на уровне 1993 года, и сэкономить в электроэнергетике около 3,5 трлн.кубометров природного газа. Однако по мере роста спроса на уран и уменьшения его запасов, обусловленного необходимостью удовлетворять потребности растущих мощностей атомных станций, возникнет экономическая необходимость оптимального использования урана таким образом, чтобы вырабатывалась вся потенциально содержащаяся в нем энергия на единицу количества руды. Существуют разнообразные способы достижения этого в ходе процесса обогащения и на этапе эксплуатации. В долгосрочном плане потребуются повторное использование наработанных делящихся материалов в тепловых реакторах и внедрение быстрых реакторов-размножителей.

    2. Достижение максимальной экономической выгодыПоскольку затраты на топливо относительно низки, для общей экономической жизнеспособности ядерной энергии весьма важно сокращение суммарных расходов за счет снижения затрат на разработку, выбор площадки, сооружение, эксплуатацию и первоначальное финансирование. Устранение неопределенностей и изменчивости требований лицензирования, особенно перед вводом в эксплуатацию, позволило бы осуществить более прогнозируемые стратегии капиталовложений и финансовые стратегии.

    Потребности в инвестициях согласно результатам СИАРЭ (млрд. долларов)(СИАРЭ - Совместное исследование альтернатив развития электроэнергетики)

      Высокое энергопотребление Низкое электропотребление
      Производство электроэнергии
    1995-2000 гг 21-26 9-10
    2001-2005 гг 25-32 14-20
    Всего 46-58 23-30
      Энерго сбережение
    1995-2000 гг 3-4 2-3
    2001-2005 гг 5-11 3-8
    Всего 8-15 5-11
      Передача энергии
    1995-2000 гг 2-3 1-3
    2001-2005 гг 5-5 3-5
    Всего 7-8 4-8
      Суммарные потребности
    1995-2000 гг 26-34 12-16
    2001-2005 гг 35-48 20-33
    Всего 61-81 32-49
    Таблица 3 #1

    3. Достижение максимальной экологической выгодыХотя ядерная энергия с точки зрения объемов потребляемого топлива, выбросов и образующихся отходов обладает явными преимуществами по сравнению с нынешними системами, использующими ископаемые виды топлива, дальнейшие меры по смягчению соответствующих экологических проблем могут оказать значительное влияние на отношение общественности.

    Сравнительные данные по топливу и отходам (тонн в год для электростанции мощностью 1000 МВт)

    Атомная станция: топливо : 27 (160 т. природного урана в год)
      отходы : 27 высокоактивные
        310 среднеактивные
        460 низкоактивные
         
    Станция на угле: топливо: 2,600,000 [5 поездов (1400 т. в день)]
      отходы: 6,000,000 CO2
        44,000 SO2
        22,000 NOn
        320,000 золы (включая 400 т. тяжелых токсичных металлов)
    Таблица 4 #8Поскольку общее влияние ядерного топливного цикла на здоровье людей и окружающую среду невелико, внимание будет направлено на улучшенные методы в области радиоактивных отходов. При этом была бы оказана поддержка целям устойчивого развития и в то же время повышена конкурентоспособность по сравнению с другими источниками энергии, для которых также должны надлежащим образом решаться вопросы отходов. В реакторные системы и в топливные циклы могут быть внесены изменения, сводящие к минимуму образование отходов. Будут вводиться проектные требования по уменьшению количеств отходов и такие методы сокращения объемов отходов, как компактирование.

    4. Максимальное повышение безопасности реакторовЯдерная энергетика в целом имеет отличные показатели безопасности: в эксплуатации находится 433 реактора, работающих в среднем более чем по 20 лет. Однако чернобыльская катастрофа показала, что весьма тяжелая ядерная авария может привести к радиоактивному загрязнению в масштабах страны и региона. Хотя вопросы безопасности и экологии становятся важнейшими для всех источников энергии, многие воспринимают ядерную энергетику как особенно и органически небезопасную. Обеспокоенность по поводу безопасности в сочетании с соответствующими регламентационными требованиями будет в ближайшее время по-прежнему оказывать сильное влияние на развитие ядерной энергетики. В целях снижения масштабов реальных и возможных аварий на установках будет осуществлен ряд подходов. Чрезвычайно эффективные барьеры (такие, как двойные защитные оболочки) снизят вероятность значительных радиологических последствий аварий за пределами площадок до крайне низкого уровня, устраняя необходимость в планах аварийных действий. Повышение характеристик целостности корпуса реактора и реакторных систем также позволит снизить вероятность возникновения последствий на площадке. Внутренняя безопасность конструкций и технологических процессов на станциях может быть повышена скорее путем включения пассивных функций безопасности, чем активных систем защиты. В качестве жизнеспособного варианта могут появиться высокотемпературные газоохлаждаемые реакторы, использующие керамическое графитное топливо с высокой теплостойкостью и целостностью, снижающее вероятность выброса радиоактивного материала. #8

    Плюсы и минусы атомной энергетики За 40 лет развития атомной энергетики в мире построено около 400 энергоблоков в 26 странах мира с суммарной энергетической модностью около 300 млн. кВт. Основными преимуществами атомной энергетики являются высокая конечная рентабельность и отсутствие выбросов в атмосферу продуктов сгорания (с этой точки зрения она может рассматриваться как экологически чистая), основными недостатками потенциальная опасность радиоактивного заражения окружающей среды продуктами деления ядерного топлива при аварии (типа Чернобыльской или на американской станции Тримайл Айленд) и проблема переработки использованного ядерного топлива.Остановимся сначала на преимуществах. Рентабельность атомной энергетики складывается из нескольких составляющих. Одна из них независимость от транспортировки топлива. Если для электростанции мощностью 1 млн. кВт требуется в год около 2 млн. т.у.т. (или около 5 млн. низкосортного угля), то для блока ВВЭР-1000 понадобится доставить не более 30 т. обогащенного урана, что практически сводит к нулю расходы на перевозку топлива (на угольных станциях эти расходы составляют до 50% себестоимости). Использование ядерного топлива для производства энергии не требует кислорода и не сопровождается постоянным выбросом продуктов сгорания, что, соответственно, не потребует строительства сооружений для очистки выбросов в атмосферу. Города, находящиеся вблизи атомных станций, являются в основном экологически чистыми зелеными городами во всех странах мира, а если это не так, то это происходит из-за влияния других производств и объектов, расположенных на этой же территории. В этом отношении ТЭС дают совсем иную картину. Анализ экологической ситуации в России показывает, что на долю ТЭС приходится более 25% всех вредных выбросов в атмосферу. Около 60% выбросов ТЭС приходится на европейскую часть и Урал, где экологическая нагрузка существенно превышает предельную. Наиболее тяжелая экологическая ситуация сложилась в Уральском, Центральном и Поволжском районах, где нагрузки, создаваемые выпадением серы и азота, в некоторых местах превышают критические в 2-2,5 раза.К недостаткам ядерной энергетики следует отнести потенциальную опасность радиоактивного заражения окружающей среды при тяжелых авариях типа Чернобыльской. Сейчас на АЭС, использующих реакторы типа Чернобыльского (РБМК), приняты меры дополнительной безопасности, которые, по заключению МАГАТЭ (Международного агентства по атомной энергии), полностью исключают аварию подобной тяжести: по мере выработки проектного ресурса такие реакторы должны быть заменены реакторами нового поколения повышенной безопасности. Тем не менее в общественном мнении перелом по отношению к безопасному использованию атомной энергии произойдет, по-видимому, не скоро. Проблема утилизации радиоактивных отходов стоит очень остро для всего мирового сообщества. Сейчас уже существуют методы остекловывания, битумирования и цементирования радиоактивных отходов АЭС, но требуются территории для сооружения могильников, куда будут помещаться эти отходы на вечное хранение. Страны с малой территорией и большой плотностью населения испытывают серьезные трудности при решении этой проблемы. #2

    Ядерная топливно-энергетическая база России.Пуск в 1954 году первой атомной электростанции мощностью всего лишь 5000 кВт стал событием мировой важности. Он ознаменовал начало развития атомной энергетики, которая может обеспечить человечество электрической и тепловой энергией на длительный период. Ныне мировая доля электрической энергии, вырабатываемой на АЭС, относительно невелика и составляет около 17 процентов, но в ряде стран она достигает 50-75 процентов. В Советском Союзе была создана мощная ядерно-энергетическая промышленность, которая обеспечивала топливом не только свои АЭС, но и АЭС ряда других стран. В настоящее время на АЭС России, стран СНГ и Восточной Европы эксплуатируются 20 блоков с реакторами ВВЭР-1000, 26 блоков с реакторами ВВЭР-440, 15 блоков с реакторами РБМК и 2 блока с реакторами на быстрых нейтронах. Обеспечение ядерным топливом этих реакторов и определяет объем промышленного производства твэлов и ТВС в России. Они изготавливаются на двух заводах: в г.Электросталь - для реакторов ВВЭР-440, РБМК и реакторов на быстрых нейтронах; в г-Новосибирске - для реакторов ВВЭР-1000.Таблетки для твэлов ВВЭР-1000 и РБМК поставляет завод, находящийся в Казахстане (г.Усть-Каменогорск). #4        В настоящее время из 15 атомных электростанций , построенных в СССР, 9 находятся на территории России; установленная мощность их 29 энергоблоков составляет 21242 мегаватта. Среди действующих энергоблоков 13 имеют корпусные реакторы ВВЭР (водо-водяной энергетический реактор, активная зона которого размещается в металлическом или из предварительно напряженного бетона корпусе, рассчитанном на полное давление теплоносителя), 11 блоков- канальные реакторы РМБК-1000(РМБК - графито-водяной реактор без прочного корпуса. Теплоноситель в этом реакторе протекает через трубы, внутри которых находятся тепловыделяющие элементы), 4 блока- ЭГП (водо-графитовый канальный реактор с кипящим теплоносителем) по 12 мегаватт каждый установлены на Билибинской АТЭС и еще один энергоблок снабжен реактором БН-600 на быстрых нейтронах. Следует заметить, что основной парк корпусных реакторов последнего поколения был размещен на Украине (10 блоков ВВЭР-1000 и 2 блока ВВЭР-440). #9Новые энергоблоки.Сооружение нового поколения энергоблоков с корпусными реакторами (с водой под давлением) начинается в этом десятилетии. Первыми из них станут блоки ВВЭР-640, конструкция и параметры которых учитывают отечественный и мировой опыт, а также блоки с усовершенствованным реактором ВВЭР-1000 с существенно повышенными показателями безопасности. Головные энергоблоки ВВЭР-640 размещаются на площадках г. Сосновый Бор Ленинградской области и Кольской АЭС, а на базе ВВЭР-1000 - на площадке Нововоронежской АЭС.Разработан также проект корпусного реактора ВПБЭР-600 средней мощности с интегральной компоновкой. АЭС с такими реакторами смогут сооружаться несколько позже.Названные типы оборудования при своевременном выполнении всех научно-исследовательских и опытных работ обеспечат основные потребности атомной энергетики на прогнозируемый 15-20-летний период.Существуют предложения продолжать работы по графито-водяным канальным реакторам, перейти на электрическую мощность 800 мегаватт и создать реактор, не уступающий реактору ВВЭР по безопасности. Такие реакторы могли бы заменить действующие реакторы РБМК. В перспективе возможно строительство энергоблоков с современными безопасными реакторами БН-800 на быстрых нейтронах. Эти реакторы могут быть использованы и для вовлечения в топливный цикл энергетического и оружейного плутония, для освоения технологий выжигания актиноидов (радиоактивных элементов-металлов, все изотопы которых радиоактивны). #9

    Перспективы развития атомной энергетики. При рассмотрении вопроса о перспективах атомной энергетики в ближайшем (до конца века) и отдаленном будущем необходимо учитывать влияние многих факторов: ограничение запасов природного урана, высокая по сравнению с ТЭС стоимость капитального строительства АЭС, негативное общественное мнение, которое привело к принятию в ряде стран (США, ФРГ, Швеция, Италия) законов, ограничивающих атомную энергетику в праве использовать ряд технологий (например, с использованием Рu и др.), что привело к свертыванию строительства новых мощностей и постепенному выводу отработавших без замены на новые. В то же время наличие большого запаса уже добытого и обогащенного урана, а также высвобождаемого при демонтаже ядерных боеголовок урана и плутония, наличие технологий расширенного воспроизводства (где в выгружаемом из реактора топливе содержится больше делящихся изотопов, чем загружалось) снимают проблему ограничения запасов природного урана, увеличивая возможности атомной энергетики до 200-300 Q. Это превышает ресурсы органического топлива и позволяет сформировать фундамент мировой энергетики на 200-300 лет вперед.Но технологии расширенного воспроизводства (в частности, реакторы-размножители на быстрых нейтронах) не перешли в стадию серийного производства из-за отставания в области переработки и рецикла (извлечения из отработанного топлива "полезного" урана и плутония). А наиболее распространенные в мире современные реакторы на тепловых нейтронах используют лишь 0,50,6% урана (в основном делящийся изотоп U238 , концентрация которого в природном уране 0,7%). При такой низкой эффективности использования урана энергетические возможности атомной энергетики оцениваются только в 35 Q. Хотя это может оказаться приемлемым для мирового сообщества на ближайшую перспективу, с учетом уже сложившегося соотношения между атомной и традиционной энергетикой и постановкой темпов роста мощностей АЭС во всем мире. Кроме того, технология расширенного воспроизводства дает значительную дополнительную экологическую нагрузку. .Сегодня специалистам вполне понятно, что ядерная анергия, в принципе, является единственным реальным и существенным источником обеспечения электроэнергией человечества в долгосрочном плане, не вызывающим такие отрицательные для планеты явления, как парниковый эффект, кислотные дожди и т.д. Как известно, сегодня энергетика, базирующаяся на органическом топливе, то есть на сжигании угля, нефти и газа, является основой производства электроэнергии в мире Стремление сохранить органические виды топлива, одновременно являющиеся ценным сырьем, обязательство установить пределы для выбросов СО; или снизить их уровень и ограниченные перспективы широкомасштабного использования возобновляемых источников энергии все это свидетельствует о необходимости увеличения вклада ядерной энергетики.Учитывая все перечисленное выше, можно сделать вывод, что перспективы развития атомной энергетики в мире будут различны для разных регионов и отдельных стран, исходя из потребностей и электроэнергии, масштабов территории, наличия запасов органического топлива, возможности привлечения финансовых ресурсов для строительства и эксплуатации такой достаточно дорогой технологии, влияния общественного мнения в данной стране и ряда других причин. #2Отдельно рассмотрим перспективы атомной энергетики в России. Созданный в России замкнутый научно-производственный комплекс технологически связанных предприятий охватывает все сферы, необходимые для функционирования атомной отрасли, включая добычу и переработку руды, металлургию, химию и радиохимию, машино- и приборостроение, строительный потенциал. Уникальным является научный и инженерно-технический потенциал отрасли. Промышленно-сырьевой потенциал отрасли позволяет уже в настоящее время обеспечить работу АЭС России и СНГ на много лет вперед, кроме того, планируются работы по вовлечению в топливный цикл накопленного оружейного урана и плутония. Россия может экспортировать природный и обогащенный уран на мировой рынок, учитывая, что уровень технологии добычи и переработки урана по некоторым направлениям превосходит мировой, что дает возможность в условиях мировой конкуренции удерживать позиции на мировом урановом рынке.Но дальнейшее развитие отрасли без возврата к ней доверия населения невозможно. Для этого нужно на базе открытости отрасли формировать позитивное общественное мнение и обеспечить возможность безопасного функционирования АЭС под контролем МАГАТЭ. Учитывая экономические трудности России, отрасль сосредоточится в ближайшее время на безопасной эксплуатации существующих мощностей с постепенной заменой отработавших блоков первого поколения наиболее совершенными российскими реакторами (ВВЭР-1000, 500, 600), а небольшой рост мощностей произойдет за счет завершения строительства уже начатых станций. На длительную перспективу в России вероятен рост мощностей в переходом на АЭС новых поколений, уровень безопасности и экономические показатели которых обеспечат устойчивое развитие отрасли на перспективу.В диалоге сторонников и противников атомной энергетики необходимы полная и точная информация по состоянию дел в отрасли как в отдельной стране, так и в мире, научно обоснованные прогнозы развития и потребности в атомной энергии. Только на пути гласности и информированности могут быть достигнуты приемлемые результаты. Более 400 блоков во всем мире (по данным, содержащимся в Информационной системе МАГАТЭ по энергетическим реакторам на конец 1994 года, в 30 странах эксплуатируется 432 АЭС общей мощностью приблизительно 340 ГВт) обеспечивают весомую долю потребностей общества в энергии. Миллионы людей в мире добывают уран, обогащают его, создают оборудование и строят атомные станции, десятки тысяч ученых работают в отрасли. Это одна из наиболее мощных отраслей современной индустрии, ставшая уже ее неотъемлемой частью. И хотя взлет атомной энергетики сейчас сменяется периодом стабилизации мощностей, учитывая позиции, завоеванные атомной энергетикой за 40 лет, есть надежда, что она сможет сохранить свою долю в мировом производстве электроэнергии на довольно длительную перспективу, пока не будет сформирован единый взгляд в мировом сообществе на необходимость и масштабы использования атомной энергетики в мире.

    Список использованной литературы:#1.”Ядерная энергетика в альтернативных энергетических сценариях”         Энергия 1997 №4#2.”Некоторые экономические аспекты современного развития атомной энергетики” Вестник МГУ 1997 №1#3.”Положение и перспективы развития электроэнергетики России” БИКИ 1997 №8#4.Международная жизнь 1997 №5,№6#5.ВЕК 1996 №18, №13#6.Независимая газета 30.01.97#7.Новое Время 17 апреля 1995г#8.”Стратегия ядерной энергии” Международная жизнь 1997 №7#9 “О перспективах атомной энергетики в России” июнь 1995

    Дата добавления: 07.07.2000

    www.km.ru


    Смотрите также

     

    ..:::Новинки:::..

    Windows Commander 5.11 Свежая версия.

    Новая версия
    IrfanView 3.75 (рус)

    Обновление текстового редактора TextEd, уже 1.75a

    System mechanic 3.7f
    Новая версия

    Обновление плагинов для WC, смотрим :-)

    Весь Winamp
    Посетите новый сайт.

    WinRaR 3.00
    Релиз уже здесь

    PowerDesk 4.0 free
    Просто - напросто сильный upgrade проводника.

    ..:::Счетчики:::..

     

         

     

     

    .