Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Реферат Аэрофотосъемка - файл RPS-0014.DOC. Аэрофотосъемка реферат


Сущность аэрофотосъемки - Реферат - Аэрофотосъемка

Реферат - Аэрофотосъемка (44.1 kb.)Доступные файлы (1):содержание

1.docx

Сущность аэрофотосъемки.

Аэрофотосъемка - это комплекс работ, включающий различные процессы от фотографирования земной поверхности с летящего самолета до получения аэрофотоснимков, фотосхем или фотопланов снятой местности. В него входят:

1. подготовительные мероприятия, заключающиеся в изучении местности, которая подлежит фотографированию, подготовке карт, проектированию маршрутов полетов самолета и в производстве расчета элементов аэрофотосъемки;

2. собственно летно-съемочные работы или фотографирование земной поверхности при помощи аэрофотоаппаратов;

3. фотолабораторные работы по проявлению снятой пленки и изготовлению позитивов;

4. геодезические работы по созданию на местности геодезической основы, которая необходима для исправления искажений аэроснимков, возникших в процессе аэрофотосъемки, привязки аэроснимков и для составления фотосхем и фотопланов;

5. фотограмметрические работы, которые проводятся как в полевом, так и в камеральном периодах и связаны с обработкой аэрофотоснимков для составления планов и карт снятой местности.

Все эти процессы тесно связаны один с другим и отчасти взаимно перекрываются. Аэрофотосъемка каждого объекта должна выполняться одной и той же организацией от начала до сдачи окончательной продукции. В результате проведения этих работ изготовляются контактные отпечатки, репродукции с накидного монтажа аэрофотоснимков, фотосхемы или фотопланы, составленные по данным геодезической

основы. Все эти так называемые аэрофотосъемочные материалы используются в дальнейшем для решения целого ряда вопрос ов в области лесного хозяйства и лесной промышленности.

^

Виды аэрофотосъемки отличаются один от другого по ряду признаков. Фотографирование земной поверхности с самолета может происходить при различных положениях главной оптической оси камеры аэрофотоаппарата. В зависимости от пространственного ее положения, различают следующие виды аэрофотосъемки: горизонтальную, плановую и наклонную (перспективную). Под горизонтальной подразумевается такая аэрофотосъемка, при которой главная оптическая ось аэрофотоаппарата занимает отвесное положение (α=0), плоскость негатива – строго горизонтальна. Если в момент фотографирования главная оптическая ось камеры аэрофотоаппарата отклоняется от отвесной линии в среднем на 1,0-1,5°, но не более 3,0-5,0°, то такая аэрофотосъемка называется плановой. Фотографирование же с самолета при наклонном положении главной оптической оси аэрофотоаппарата от отвесной линии на углы более 10° называется наклонной, или перспективной аэрофотосъемкой. В том случае, когда на

аэрофотосъемке изображается естественный горизонт, аэрофотосъемка будет перспективной с горизонтом. Кроме того, может быть еще планово-перспективная аэрофотосъемка, сущность которой заключается в том, что при полете по одному и тому же маршруту с помощью специальных аэрофотоаппаратов одновременно производятся плановые и перспективные аэрофотоснимки. В зависимости от характера покрытия местности аэрофотоснимками аэрофотосъемка разделяется на ординарную, маршрутную и сплошную. Ординарная аэрофотосъемка представляет собой фотографирование отдельных объектов местности (например, гари, ветровала, склада древесины, участка леса, сплава и др.) одиночными или парными снимками, связанными между собой перекрытиями. Маршрутной аэрофотосъемкой называется воздушное фотографирование с самолета полосы местности по определенному маршруту. В зависимости от объекта, подлежащего аэрофотосъемке, маршруты полетов могут быть прямолинейными (ряд кварталов леса) или криволинейными (вдоль русла реки). При такой аэрофотосъемке между снимками в маршруте осуществляется перекрытие, достигающее 56-60%; оно называется продольным перекрытием. Маршрутная аэрофотосъемка применяется для лесотранспортных, водно-мелиоративных и других работ, проводимых в пределах узкой полосы местности. Производится она путем проложения ряда прямолинейных и параллельных между собой маршрутов, взаимно перекрывающихся. При данном виде аэрофотосъемки, помимо продольных перекрытий между снимками в маршрутах, должно быть соблюдено и заданное перекрытие между снимками соседних маршрутов полета, называемое поперечным перекрытием; обычно оно не превышает 30-40%. По методу последующей фотограмметрической обработки аэроснимков и изготовления конечной продукции различают три вида аэрофотосъемки:

1. контурную аэрофотосъемку, в результате которой получается только контурный план местности;

2. комбинированную аэрофотосъемку, при которой топографический план местности создается путем использование материалов аэрофотосъемки, а рельеф изображается на нем горизонталями и условными знаками в результате полевых наземных топографо- геодезических работ, преимущественно с применением мензульной съемки при совместном использовании аэроснимков;

3. стереофотограмметрическую (высотную) аэрофотосъемку, которая дает возможность получить полный топографический план местности с горизонталями на основании камеральной обработки аэроснимков при небольшом количестве геодезических точек.

Летно-съемочный процесс для всех этих видов аэрофотосъемки в основном один и тот же, но стереофотограмметрическая съемка предъявляет специальные требования к оптике, юстировке аппарата и фиксированию элементов внешнего ориентирования. Аэрофотосъемки можно различать, исходя из масштаба фотографирования. Плановая аэрофотосъемка, в зависимости от получаемого масштаба аэроснимков, разделяются на: а)крупномасштабную - при масштабе фотографирования крупнее 1:10000,

б) среднемасштабную – при масштабе фотографирования мельче 1:10 000 до 1:30 000;

в) мелкомасштабную – при масштабе фотографирования мельче 1:30 000; 1:50 000 ; 1:75 000 и предельно до 1:100 000.

Фотограмметрическая обработка плановых аэрофотоснимков весьма проста. В условиях равнинной местности она будет заключатся прежде всего в устранении искажений от несоблюдения вертикального положения оптической оси фотокамеры и от колебаний высоты полета. Для приведения в известность лесов и обследования их на обширных территориях вполне можно ограничиться использованием упрошенных фотосхем, составленных из приведенных к одному масштабу аэрофотоснимков. Возможность использования плановых аэрофотоснимков для таксации леса без предварительной и сложной фотограмметрической обработки (развертывания, трансформирования) является большим достоинством и позволяет сразу же после аэрофотосъемки применить их для полевых работ. В тех же случаях, когда для решения различных лесохозяйственных, и в особенности лесоинженерных задач, требуется составление более точных планов, создаются фотопланы с соблюдением потребной степени точности (при наличии геодезической основы) путем применения метода фототриангуляции и производства трансформирования аэроснимков. Благодаря сравнительно небольшой величине искажений в изображениях леса на плановых аэрофотоснимках пользование ими не вызывает особых затруднений. При продольном перекрытии в 56-60% создается полная возможность стереоскопического их просмотра, оконтуривания участков, дешифрирования различных категорий площадей и земель и составления их описания.

Основным недостатком плановой аэрофотосъемки считается небольшая производительность ее по сравнению с перспективной и планово-перспективной съемки. Но при современном состоянии техники этот недостаток устраняется в связи с применением широкоугольных объектов, увеличением формата аэрофотоснимков и высоты фотографирования. Аэрофотоснимки наклонной аэрофотосъемки с перспективным изображением снятой местности имеют неизбежно резкопеременный масштаб, уменьшающий от переднего плана к дальнему. При этом значительное уменьшение масштаба на дальнем плане вызывает резкое падение распознаваемости заснимаемых объектов и таксационных показателей насаждений. При перспективной аэрофотосъемке в горной местности, в случае наличия резко выраженного рельефа, на аэрофотоснимках получаются значительные искажения ситуации, появляются «мертвые» пространства, вследствие чего на них не фиксируется ряд важных деталей местности. Стереоскопическое рассмотрение таких аэрофотоснимков возможно. Оно лучше на переднем плане и при небольшой перспективе изображения местности. К числу недостатков перспективной аэрофотосъемки относится большая сложность их фотограмметрической обработки. Сущность щелевой аэрофотосъемки заключается в непрерывном фотографировании полосы местности на движущуюся пленку сквозь узкую щель в фокальной плоскости камеры, расположенную перпендикулярно к направлению полета. При целевой аэрофотосъемке происходит непрерывное экспонирование пленки, поэтому контактный отпечаток имеет на рулонной бумаге вид сплошной ленты. Движение пленки синхронизировано с движением изображения, что и обусловливает резкость снимка. Чаще всего щелевые аппараты делаются двухобъективными; один из них –

широкоугольный – дает мелкомасштабное изображение, другой – крупномасштабное. С помощью этих аппаратов можно производить фотографирование с низких высот полета в облачные дни и в условиях сумерек, получать плановые аэроснимки одновременно в различных масштабах, выполнять стереоскопическую съемку под любым заданным углом.

^

Аэрофотосъемка состоит из подготовительных, летно-съемочных полевых фотолабораторных и полевых фотограмметрических работ. Подготовительные работы. Одним из важнейших процессов является расчет элементов аэрофотосъемки. Для этого требуется заданные значения масштаба фотографирования и фокусного расстояния АФА, формат аэрофотоснимка, заданные проценты продольного и поперечного перекрытий, размеры съемочного участка. По этим исходным данным определяют высоту и базис фотографирования, интервал между экспозициями, число аэрофотоснимков в маршруте и на съемочный участок, а так же время, необходимое для аэрофотосъемки всего участка.

Перед началом летно-съемочных работ проверяют и готовят к работе оборудование материалы и полетные карты проводят тренировку экипажей и составляют график полетов, затем приступают аэрофотосъемшик - опреатор, определяет угол сноса и путевую скорость самолета, т.е. скорость движения самолета относительно Земли. С учетом величины угла сноса самолет разворачивают против ветра на угол упреждения. Значение путевой скорости самолета или другого носителя необходимо для вычисления интервала времени между экспозициями. Угол сноса и путевую скорость самолета определяют при помощи оптических визиров в прямом и обратном направлениях по маршруту. После этого приступают аппаратуру, следят за ее работой и прокладыванием аэрофотосъемочных маршрутов в соответствии с проектом. Маршрут самолета прикладывают по приборам контролируют по земным ориентирам. При отсутствии ориентиров съемочные маршруты и заходы на них производят инструментальным методом, особенность которого заключается в прокладке маршрутов только на основании показаний навигационных и пилотажных приборов. Полевые фотолабораторные работы состоят из негативного и позитивного процессов. Негативный процесс включает проявление, фиксирование промывку экспонированной аэропленки на специальных ручных или автоматизированных приборах, которые сконструированы так, чтобы обеспечить равномерное и правильное по времени проявления пленки. Наиболее часто употребляются проявительные приборы с устройством, перематывающим пленку. Состоят они из двух вращающих катушек, расположенных на одной общей станине. Пленку равномерно перематывают с одной катушки на другую вручную или с помощью электромотора, в это время пленка находится в проявляющем растворе. После сушки аэрофильм передают в фотограмметрическую группу, где негативы регистрируют и нумеруют. Затем аэрофильм поступает в фотолабораторию для изготовления позитивных отпечатков. Позитивный процесс заключается в получении контактных аэрофотоснимков путем печатания на специальных станках фотоизображения с негативов на светочувствительную фотобумагу или позитивную фотопленку. Контактные отпечатки

должны быть достаточно контрастными и иметь полную прорубку деталей по всей площади негатива. Для получения таки х аэроснимков необходимо учитывать степень контрастности негативов при наборе фотобумаги, соблюдать нужную экспозицию и правильно выполнять проявление. Нумерацию и регистрацию аэронегативов выполняют сразу после высушивания аэрофильмов. Каждый аэронегатив нумеруют с эмульсионной стороны в левом верхнем углу обратным письмом. Кроме порядковых номеров аэрофотоснимков, подписывают дату и номенклатуру района аэрофотоснимка. Все аэрофотоснимки регистрируют в журнале и направляют в фотолабораторию для изготовления контактной печати. Предварительно аэрофотоснимки раскладывают по маршрутам. Монтаж начинают с верхнего маршрута справа на лево или слева направо, чтобы были видны номера аэрофотоснимков, которые последовательно накладывают один на другой, монтируют по контурам ситуации местности в местах перекрытый и закрепляют кнопками. Каждый следующий маршрут увязывают предыдущим по перекрытиям. Полученный рабочий накидной монтаж позволяет установить границы заснятой территории проверить техническое фотографическое качества съемочных работ. Давая предварительную оценку качества аэрофотоснимков, устанавливают места, подлежащие повторной аэрофотоснимке, если перекрытия между аэрофотоснимками меньше заданной величины или имеются фотографические дефекты.

^

После повторной съемки забракованных маршрутов привозят окончательную оценку материалов по их фотограмметрическому и фотографическому качествам. Фотограмметрическое качество аэрофотоснимков устанавливают по степени соблюдения заданных продольных и поперечных перекрытий, параллельности сторон аэрофотоснимков линям базисов, прямолинейности базисов, прямолинейности маршрутов и выравниванию аэропленки. Проверяют продольное и поперечное перекрытие по контактным отпечаткам с помощью фотограмметрической линейки. Неудовлетворительными считают аэрофотоснимки, имеющее продольное перекрытие меньше 56%, а поперечное - меньше 20%. Поперечное перекрытие измеряют между аэрофотоснимками смежных маршрутов так же, как при оценке продольных перекрытий.

Для определения величины не параллельности линии базиса сторонам аэрофотоснимкам монтируют два смежных аэрофотоснимка маршрута по контрам, расположенным в близи начального направления. Затем измеряют угол между стороной одного из аэрофотоснимков и линией, соединяющей идентичные углы аэрофотоснимков. Контроль прямолинейности маршрутов при съемке равнинных районов проводят по накидному монтажу участка, а при съемке горных районов по накидным монтажам аэрофотоснимков отдельных маршрутов. Главные точки крайних аэрофотоснимков отдельных маршрутов соединяют прямой линией L и измеряют величину наибольшего отклонения центра аэрофотоснимка от прямой линии (стрельба прогиба 1). Если линия, соединяющая центры, представляет собой плавную линию без заметных местных искривлений, то для всего маршрута как отношение стрелы прогиба 1 к расстоянию между центрами крайних аэрофотоснимков L, умножение на 100. Если же на маршруте имеется одно или несколько

заметных искривлений, то соединяются прямыми линиями центры крайних аэрофотоснимков каждого из криволинейных отрезков, а измерение 1, L и вычисление показателя параллельности ведут для каждого из них отдельно. Не прямолинейность считается недопустимой, если будет 3. Выравнивание аэропленки предварительно проверяют по отсутствию видимой не резкости фотоизображения и видимого искривления контрольных нитей на аэрофотоснимках. А также просматривая аэрофотоснимки под стереоскопом. При этом аэрофотоснимки равнинной местности рассматривают при нулевом стереоэффекте (базис фотографирования перпендикулярен базису прибора). В этом случае стереомодель должна быть совершенно плоской. Просматривают аэрофотоснимки пересеченной местности при прямой стереоэффекте (базис фотографирования параллелен базису прибора), а при этом не должно наблюдаться заметных для глаз искажений закономерностей форм отдельных элементов рельефа. Если материалы аэрофотоснимка предназначены для стереофотограмметрической обработки, в начале в конце каждого маршрута и на каждом пятом аэронегативе измеряют отклонения от прямой изображения контрольных нитей. Отклонения, величина которых превышает 0,10 мм, признаются недопустимыми. При обнаружении отклонений свыше 0,10 мм и во всех других сомнительных случаях проводят контрольные измерения фотограмметрическими методами. Фотографическое качество аэрофотоснимков оценивают, последовательно просматривая их и глазомерно определяя степень удовлетворения тем требованиям, которые предъявляются к ним действующими инструкциями. Для объективной оценки качества негативов и контактных отпечатков пользуются эталонами и теми придержками, которые приводятся ниже. Резкость и проработка деталей в затененных и освещенных местах должны быть достаточными по всему полю изображения. На аэрофотоснимках должны отображаться все детали, которые имеются на негативе. Плотность и контрастность должны быть достаточными и равномерно распределены в центре и на краях. Для спектрозональных негативов максимальная плотность деталей на негативе не должна превышать 1,8-2,0ед. коэффициент контрастности должен находится в пределах 1,4-1,8, при этом разбалансировка слоев не должна быть выше 0,4-0,5 ед. Вуаль не должна препятствовать получения качественной печати, т.е. должна соответствовать техническим условиям, предусмотренным фабрикой на данный тип аэропленки: для спектрозональных негативов вуаль голубая – не более 0,6; вуаль пурпурная – не более 0,4. Не подлежат приемке спектрозональные негативы, снятые при повышенной дымке. Они характеризуются передержкой для пурпурного слоя, малым контрастом, монотонностью всего изображения. Изображения облаков от них, царапины, пятна, полосы и др. дефекты не должны препятствовать дешифрированию и выполнению фотограмметрических работ. Спектрозональные аэронегативы должны иметь ярко выраженное цветоделение, изображения хвойных и лесных пород должны заметно различать по цвету и всей площади, ограниченной изображением контрольных нитей. Нельзя допускать разницу цветового тона как между аэрофотоснимками одного маршрута, так и различных маршрутов. Цветопередача по всему объекту должна быть одинаковой. По измеренным величинам для каждого аэрофотоснимка и визуальной оценки устанавливают усредненное значение, которое объективно указывает на фотографическое качество

фильма в целом. Если залет признан удовлетворительным, то выполняют чистовой накидной монтаж, на котором размечают рамки трапеции международной разграфки, пишут названия населенных пунктов и рек, а также номенклатуру трапеции. С накидного монтажа изготовляют репродукцию. Масштаб репродукции должен быть в три-четыре раза мельче масштаба аэрофотосъемки. Репродукции накидного монтажа изготовляют в дальнейшем при обследовании лесов и лесоустройстве. По ним можно предварительно ознакомиться с районом работ, разделить территорию на таксаторские участки, подобрать аэроснимки для полевых работ. Для изучения объектов земной поверхности, в том числе и лесов, широко применяются дистанционные методы. Они основаны на получении информации об исследуемых объектах на расстоянии путем регистрации электромагнитных излучений при помощи чувствительных приемников, устанавливаемых на самолетах, космических кораблях и др., или глазом человека. Источниками электромагнитных излучений являются Солнце и радио электрические приборы. Они излучают электромагнитные волны широкого спектрального диапазона. Излучение характеризуется длиной волны и чистотой колебаний. Длина волны выражается в микрометрах (мкм) – тысячных долях миллиметра или нанометрах (нм) – тысячных долях микрометра. В зависимости от длины волны электромагнитное излучение можно представить в виде шкалы спектра. При этом область спектра с интервалами длины волн менее 0,01 мкм принято называть рентгеновской, от 0,01-0,38 мкм – ультрафиолетовой (УФ), 0,38-0,76 мкм – видимой, 0,76-1000 мкм - инфракрасной (ИК), 1000 мкм и более – радиоволновой. При изучении поверхности Земли на расстоянии используются разные зоны спектра - от радиодиапазона до УФ. Дистанционные методы можно подразделить на аэрометоды, когда съемки или наблюдения выполняются из атмосферы, и космические методы из космоса. Дистанционные съемки и зависимости от применяемой аппаратуры подразделяются на фотографические и нефотографические. Материалы съемок могут быть представлены в виде снимков, записи на магнитные носители, графиков, регистрограмм и др. Нефотографические съемки могут быть пассивными и активными. Пассивная съемка могут быть пассивными и активными. Пассивная съемка заключается в регистрации солнечной радиации, отраженной объектом, или собственного теплового излучения земных объектов. К пассивным относятся сканерная (в том числе тепловая и микроволновая) и телевизионная съемки. Сканерная съемка осуществляется оптико-механическими сканерами телевизионная (ТВ) – передающими камерами, микроволновая – радиометрами. При активной съемке местность облучают искусственным источником лучистой энергии, отраженные при этом волны регистрирует приемник. Примером такого вида съемок является радиолокационная, или радарная, съемка (РЛ) с применением установленных на летальных аппаратах радиолокационных станций (РЛС), которые облучают местность электромагнитными волнами вдоль линии полета. Отраженные при этом сигналы фиксируется на электронно-лучевой трубке (ЭЛТ). Съемка может выполняться в одной зоне спектра (однозональная съемка) или одновременно в нескольких разных, более узких зонах электромагнитного спектра (многозональная, или много спектральная съемка). Каждый вид съемки имеет свои особенности, преимущества и недостатки. Например, РЛ – съемка не зависит от метеорологических условий: сканерные и ТВ – съемки обеспечивают оперативную

доставку информации из космоса на Землю в цифровой форме, что позволяет непосредственно ввести ее в ЭВМ и упростить машинный анализ съемочной информации: ИК тепловая и РЛ – съемки возможны не только днем, но и ночью. ИК тепловая съемка эффективно применяется для обнаружения локальных, в том числе подземных лесных пожаров. Многозональные съемки позволяют сопоставлять значения оптических плотностей в разных зонах спектра, а также получат цветные и ложно цветные изображение отснятых объектов. Некоторые из них уже применяются, другие начинают находить применение в лесном хозяйстве. Однако наиболее широкое применение при изучении лесов и контроле за их состоянием находят фотографические аэро - и космические съемки и аэровизуальные наблюдения. За рубежом широко применяются многозональные сканерные снимки.

^

Принцип полета. Тело, которое движется в воздухе, непрерывно испытывает со стороны последнего сопротивление. Для того чтобы преодолеть это сопротивление, нужно приложить определенную силу. Сила сопротивления воздуха, называемой силой любого сопротивления, которую встречают движущееся в нем тело, прямо пропорциональна плотности воздуха, площади сечения тела, квадрату скорости движения и зависит от формы тела, его поверхности и положения в воздушном потоке. Этот закон аэродинамики положен в основу конструкции летальных аппаратов. Тела, имеющие различные формы и размеры, помешенные в различную среду, и при придании им одной и той же силы будут двигаться с различной скоростью. При этом возникающие впереди и сзади давления будут разными, и чем больше это разница, тем больше область завихрения, меньше скорость продвижения и больше сила сопротивления. При обтекании тела с угловатыми формами поток воздуха тормозится меньше, чем при обтекании пластинки, а отсюда меньше область пониженного давления и сила любого сопротивления. Давление будет незначительным впереди и сзади находящегося в воздушном потоке тела, имеющего каплевидную форму, так как струйки воздуха обтекают его и почти не образуют завихрений. При этом для преодоления любого сопротивления потребуется наименьшая сила. Для летального аппарата решающее значение имеет обтекаемая форма, которая создает наименьшее сопротивление и не вызывает завихрений. Такую форму имеют каплевидные и крыло образные тела. Подъемная сила. Крылья самолета и несущие венты вертолета являются их основными частями. Они создают подъемную силу, и благодаря им совершается полет. Пусть крыло движется в воздухе под некоторым углом атаки. Частица воздуха, встречаясь с летающим крылом, огибает как верхнюю, выпуклую, так и нижнюю, плоскую или слегка вогнутую, поверхность крыла. Струйкам, обтекающим крыло сверху, в одно и то де время приходится пройти более длинный путь, чем струйкам, обтекающий крыло снизу. Следовательно, верхние струйки двигаются быстрее, чем нижние. Чем больше скорость потока воздуха, тем меньше в нем давление (закон Бернули). Поэтому над крылом воздается меньше давление, чем под крылом. В результате этого и возникает подъемная сила, направленная перпендикулярно потоку воздуха и действующая снизу вверх. На этом свойстве и основан полет аппаратов тяжелее воздуха – самолетов и вертолетов. Но для того чтобы аппарат двигался в воздухе с определенной скоростью, ему

нужно все время преодолевать сопротивление воздуха. Это достигается силой тяги воздушного винта, вращаемого двигателем аппарата, или благодаря воздействию реактивной силы, возникающей в результате отбрасывания назад с большой скоростью струи отходящих газов из турбины самолета. Оборудование. Рассматривая вопрос об оборудовании самолетов и вертолетов, мы имеем виду здесь пилотажно-навигационную и другую специальную аэрофотосъемочную аппаратуру: автопилот и автомат программного разворота, компас и курсовую систему, высотомер и оптические бортовые визиры. Автопилот предназначен для автоматического пилотирования самолетов. Он стабилизирует заданный курс, высоту полета и положение самолета в полете, а также обеспечивает выход на заданный маршрут и выполнение разворота при выходе с маршрута на маршрут. Настоящее время применяют автопилоты типа АП – 6Е для самолетов Ил – 14ФК и АП – 28Л – 1Ф для аэрофотосъемочного самолета Ан – 30. Автомат программного разворота – устройство к автопилоту, обеспечивающее в комплекс в ним автоматической пилотирование самолета по всему курсу аэросъемочного полета. Схема автомата программного разворота модели АПР – 2 состоит из двух частей: автомата захода и стабилизатора. Компас и курсовая система. Компас служит для определения курса или направления полета. Дистанционны астрономический компас ДАК – ДБ – 5В вырабатывает истинный курс самолета посредством автоматического пеленгования Солнца, может работать самостоятельно и в комплексе с курсовой системой как датчик истинного курса (в практике широко используется). Курсовая система служит для прокладки маршрутов в заданном направлении и состоит из магнитных, гироскопических, радиотехнических и астрономических средств измерения курса самолета, индикации его на визуальные указатели, а также выдачи сигналов курса в автопилот и навигационный вычислитель. Применяются различные типы системы, в том числе КС – 6 и ГМК-1А. Курсовая система КС-6 устанавливается на аэросъемочных самолетах Ан-30 и Ил-14ФК, а система ГМК-1А на вертолете Ка-26. Измерители путевой скорости и угла сноса. На самолетах, производящих аэрофотосъемку, устанавливают доплеровский измеритель ДИСС-013-24 ФК, который непрерывно автоматически измеряет путевую скорость и угол сноса при полетах над любой местностью. Комплекс измерителя ДИСС-013-24 ФК состоит из высокочастотного (антенного) и низкочастотного блоков, блока выдачи данных, индикатора пульта управления и вентилятора обдува блока высокой частоты. Он устанавливается на самолетах Ан-30 и Ил-14ФК. Высотомеры служат для определения высоты полета. Они бываю двух типов – анероидный и радиовысотомер. Первый представляет собой барометр-анероид, длина шкалы которого выражена в метрах. Для определения расстояния от центра проектирования аэрофотосъемки до ближайшей точки земной поверхности применяют топографической радиовысотомер. Он состоит из приемопередатчика, блока измерения, цифрового указателя высоты, антенны, пульт управления и амортизационной рамы. При помощи РВ-18Ж можно измерять высоту полета до 10000м со средней квадратической ошибкой измерение не более 5м. Его масса 20кг. Регистрацию показаний радиовысотомера производят автоматически фотографированием цифрового указателя высоты с помощью фоторегистратора ТАУ или АРФА-7. Для измерения и автоматической регистрации колебаний высоты полета на маршруте применяют статоскопы С-51,С-51М и ТАУ. Они представляют собой жидкостные

дифференциальные барометры и позволяют измерять и записывать изменения статического давления, по которому при последующей обработке определяют разность высот центров аэрофотографирования. Оптические бортовые визиры ОПБ-1Р, НКБП-7 и МКВ применяют при выполнении аэрофотосъемочных работ. Они предназначены для измерения угла сноса, определения интервала фотографирования, а также для контроля правильности продолжения маршрутов. Оптический визир ОПБ-1Р представляет собой телескопическую систему, состоящую из объектива, окуляра, сферического уровня, сетки, двух блоков линз, оборачивающей системы и двух призм (подвижной и неподвижной). Он устанавливается на самолетах Ан-30, Ил-14ФК и Ан-2. Оптический коллиматорный визир НКБП-7 обеспечивает построение углов визирования от –15 до 85 в вертикальной плоскости и в горизонтальной. Визир устанавливается на самолетах Ан-30, Ил-14ФК и вертолете Ка-26. Работа аэросъемочного широкоугольного коллиматорного механического визира МКВ-1 основано на том, что полупрозрачное сферическое зеркало оптической системы создает в бесконечности изображение сетки, расположенной в фокусе зеркала, т.е. проектирует продольную курсовую черту на местность. Масса прибора 1,5 кг. Угол зрения визира вдоль маршрута 105, поперек маршрута 5. Электронный командный прибор ЭКП-2М представляет собой полуавтомат, предназначенный для определения требуемого темпа работы аэрофотоаппарата, измерения угла сноса и обеспечения работы АФА в автоматическом режиме в комплексе с РВ-18Ж и ДИСС-013-24ФК. ЭКП-2М позволяет автоматически передавать командные импульсы на один или два АФА с различными фокусными расстояниями. При этом выдерживается заданное продольное перекрытие аэрофотоснимков для каждого АФА, Он может передавать сигналы аэрофотоустановку для разворота АФА на угол сноса. Прибор состоит из двух блоков: оптического визира, служащего для измерения интервала фотографирования и угла сноса, и электронного блока, выполняющего функции счетно-решающего устройства. Масса комплекта 45кг. Аэроэкспонометр АЭ-2 применяется для объективного определения экспозиции при аэрофотосъемке. Это фотоэлектрический измеритель с электронным калькулятором. Величины выдержки затвора аэрофотоаппарата для заданных значений относительного отверстия и светочувствительности фотоматериала, вводимых в электронный калькулятор, и для интегральной освещенности, измеренной светоприемным устройством, выдаются на стрелочном индикаторе аэроэкспонометра. Конструктивно АЭ-2 состоит из двух блоков: автоприемника и блока индикатора. Масса комплекса 6 кг. Аэрофотоаппараты с целью стабилизации интегральной плотности аэронегативов как в пределах одного аэрофильма, так и от фильма к фильму и получения аэрофильмов для автоматизированной обработки на проявительных машинах снабжены автоматами регулирования экспозиции (АРЕ). Чувствительными элементами являются фотоэлемент и фоторезистор со спектральной чувствительностью, соответствующей с достаточной точностью всем типам применяемых аэрофотопленок. Точность стабилизации оптической плотности находится в пределах 15%.

^

Космической съемкой называю съемку поверхности Земли с космических летальных аппаратов (КЛА). Нижняя граница околоземного космического пространства, где КЛА может совершать обороты вокруг Земли, 140-150 км. Максимальная высота съемки ограничивается целесообразным минимальным масштабом изображения Земли. Основу космических съемок составляет аэросъемка, включающая дополнительно элементы небесной механики, физики атмосферы и др. К особенностям космического зондирования относятся также перемещение КЛА по орбитам по законом небесной механики и аэродинамики, быстро изменение на трассе полета условий освещенности, влияние всей толщи атмосферы на качество изображения, большое разнообразие ландшафтов, которые могут иметь различное сезонное состояние. Запуск КЛА, управлением его полетом, обеспечение съемки, доставка информации на Землю обеспечиваются с помощью средств управления полетом, наземных измерительных и информационных систем, объединяемых вместе с КЛА в единое, как правило многоцелевые, народнохозяйственные космические комплексы. Для изучения природных ресурсов Земли (ИПРЗ), в том числе и лесов, используют наблюдательные космические комплексы, подразделяемые на две группы: а) предназначенные для наблюдения за поверхностью Земли, называемые космическими комплексами исследования природных ресурсов: б) предназначенные для наблюдения за атмосферой, получившие название метеорологических космических комплексов. Развитие технических средств дистанционного зондирования Земли из космоса идет по двум взаимодополняющим друг друга направлениям. Первое из них основана на фотосъемки земной поверхности видимой и ближней ИК-областях спектра и доставке на Землю при посадке спускаемого аппарата космического корабля либо в сбрасываемых контейнерах с отснятыми фотопленками, где предусматривается их фотохимическая обработка и изготовление контактной и увеличенной фотопечати. Данные съемочные материалы предназначены для решения задач, не требующих оперативного принятия решений. Второе направление предусматривает проведение съемок в видимой, ИК и СВЧ областях электромагнитного спектра и передачу полученной информации со спутников по радиоканалам на пункты приема, оперативную обработку и доставку ее потребителям как для исследования быстропротекающих процессов на поверхности Земли, так и решение задач, связанных с разносторонним изучением природных ресурсов.

^

Съемки земной поверхности осуществляют через толщу атмосферы, характеристики которой непостоянны. Ее состояние определяют условия и результаты съемки. Физическое состояние атмосферы характеризуется ее прозрачность и рефракции лучей в ней, температура воздуха, атмосферное давление, влажность воздуха, облачность, перемещение воздушных масс. Наибольшее влияние на результативность съемки в видимом и ближнем ИК-диапазонах спектра оказывают степень прозрачности атмосферы, освещенность и облачность. Аэро и космические съемки обычно выполняются в яркие, солнечные, безоблачности дни. Перистые и перисто-слоистые облака им не препятствуют. Аэросъемка возможна и при высокой сплошной облачности, но выше самолета, выполняющего съемку. Высокая сплошная облачность позволяет

получать бестеневые аэроснимки с улучшенным качеством изображения, смягченными тонами теней, в результате чего полог насаждений просматривается глубже, лучше видны его затененные части.

^

Масштабы аэрофотоснимка отношение величины изображения отрезка на нем к величине соответствующего отрезка на местности. Масштаб горизонтального аэрофотоснимка выражается простым соотношением 1/m=fkH, где m – знаменатель численного масштаба, fk – фокусное расстояние АФА: Н – высота фотографирования. Для плоской местности масштаб постоянен по всей площади аэрофотоснимка: следовательно, горизонтальный аэрофотоснимок-план плоской местности. Масштабы планового и аэрофотоснимков не равны масштабу соответствующего горизонтального аэрофотоснимка. Масштаб планового аэрофотоснимка в принципе различен его частях, но и каждой точке: он неодинаков также для разных направлений. Но поскольку углы наклона плановых аэрофотоснимков малы (до 3 гр) и искажения невелики, для практических целей масштаб определяют по соотношению 1/m=fkH. Перспективный аэрофотоснимок в разных своих частях имеет существенно отличные масштабы изображения, которые зависят от направления измеряемого отрезка: только по линиям перпендикулярным главной вертикали масштаб постоянен. Масштаб перспективного аэрофотоснимка определяют как отношение бесконечно малого отрезка dr на аэрофотоснимке к соответствующему бесконечно малому отрезку на местности DR. Масштаб вдоль любого направления перспективного аэрофотоснимка можно определить по формуле:

Dr = 1 = f [cosα - (x/f) sinα]² (3)

DR m H √1-sin² α sin² φ

Где х – координата искомой точки:

α – угол наклона аэрофотоснимка:

φ – угол, образованной между направлением съемки и направлением по главной точке на искомую точку.

Масштаб горизонтали, проходящей через любую точку аэрофотоснимка, определяют по формуле:

1/m=f | H [cosα - (x/f) sinα] (4)

Масштаб вдоль главной вертикали в обобщенном выражении находят по формуле:

1/m=f | H [cosα - (x/f) sinα]² (6)

^

Искажения возникают на снимках вследствие отклонения оптической оси АФА от вертикали, из-за рельефа местности, под влиянием изменения высоты фотографирования и др.

Рабочая площадь аэрофотоснимка. Величина линейных искажений изображений на аэрофотоснимке тем больше, чем больше расстояние от центра к краям аэрофотоснимка, т.е. все искажения, увеличиваются по мере увеличения расстояний r. Существует искажения изображений, возникающие под влиянием разнообразных физических факторов: дисторсии объектива, рефракции атмосферы, деформации аэрофотопленки, не выравнивания пленки и др. При детальном анализе влияние этих факторов можно увидеть, что они вызывают наибольшие искажения и ухудшения качества изображения на краях аэрофотоснимка. Поэтому при дешифрировании и создании фотопланов используют среднюю, наименее искаженную часть аэрофотоснимка, называемую рабочей площадью аэрофотоснимка, которую практически определяют путем проведения прямых линий посередине зон продольных и поперечных перекрытий.

Стереоскопический эффект. Основы стереоскопического зрения наблюдать предметы можно одним или двумя глазами. Монокулярное зрение характеризуется тем, что наблюдатель, видя предметы, не имеет впечатления объемности формы и расстояние до них. Эти впечатления получают от части косвенными путями, а не посредственно в результате зрительного восприятия. Бинокулярное зрение дополняет представление о предметах, полученные при рассматривании их каждым глазом в отдельности, впечатлениями объемности форм и удаления предметов от друг от друга. Бинокулярное зрение, при котором хорошо ощущаются форма предметов и их взаимное расположение в пространстве, называют стереоскопическим.

www.studmed.ru

Сущность аэрофотосъемки - Реферат - Аэрофотосъемка

Реферат - Аэрофотосъемкаскачать (44.1 kb.)

Доступные файлы (1):

содержание

1.docx

Реклама MarketGid: Сущность аэрофотосъемки.

Аэрофотосъемка - это комплекс работ, включающий различные процессы от фотографирования земной поверхности с летящего самолета до получения аэрофотоснимков, фотосхем или фотопланов снятой местности. В него входят:

1. подготовительные мероприятия, заключающиеся в изучении местности, которая подлежит фотографированию, подготовке карт, проектированию маршрутов полетов самолета и в производстве расчета элементов аэрофотосъемки;

2. собственно летно-съемочные работы или фотографирование земной поверхности при помощи аэрофотоаппаратов;

3. фотолабораторные работы по проявлению снятой пленки и изготовлению позитивов;

4. геодезические работы по созданию на местности геодезической основы, которая необходима для исправления искажений аэроснимков, возникших в процессе аэрофотосъемки, привязки аэроснимков и для составления фотосхем и фотопланов;

5. фотограмметрические работы, которые проводятся как в полевом, так и в камеральном периодах и связаны с обработкой аэрофотоснимков для составления планов и карт снятой местности.

Все эти процессы тесно связаны один с другим и отчасти взаимно перекрываются. Аэрофотосъемка каждого объекта должна выполняться одной и той же организацией от начала до сдачи окончательной продукции. В результате проведения этих работ изготовляются контактные отпечатки, репродукции с накидного монтажа аэрофотоснимков, фотосхемы или фотопланы, составленные по данным геодезической

основы. Все эти так называемые аэрофотосъемочные материалы используются в дальнейшем для решения целого ряда вопрос ов в области лесного хозяйства и лесной промышленности.

^

Виды аэрофотосъемки отличаются один от другого по ряду признаков. Фотографирование земной поверхности с самолета может происходить при различных положениях главной оптической оси камеры аэрофотоаппарата. В зависимости от пространственного ее положения, различают следующие виды аэрофотосъемки: горизонтальную, плановую и наклонную (перспективную). Под горизонтальной подразумевается такая аэрофотосъемка, при которой главная оптическая ось аэрофотоаппарата занимает отвесное положение (α=0), плоскость негатива – строго горизонтальна. Если в момент фотографирования главная оптическая ось камеры аэрофотоаппарата отклоняется от отвесной линии в среднем на 1,0-1,5°, но не более 3,0-5,0°, то такая аэрофотосъемка называется плановой. Фотографирование же с самолета при наклонном положении главной оптической оси аэрофотоаппарата от отвесной линии на углы более 10° называется наклонной, или перспективной аэрофотосъемкой. В том случае, когда на

аэрофотосъемке изображается естественный горизонт, аэрофотосъемка будет перспективной с горизонтом. Кроме того, может быть еще планово-перспективная аэрофотосъемка, сущность которой заключается в том, что при полете по одному и тому же маршруту с помощью специальных аэрофотоаппаратов одновременно производятся плановые и перспективные аэрофотоснимки. В зависимости от характера покрытия местности аэрофотоснимками аэрофотосъемка разделяется на ординарную, маршрутную и сплошную. Ординарная аэрофотосъемка представляет собой фотографирование отдельных объектов местности (например, гари, ветровала, склада древесины, участка леса, сплава и др.) одиночными или парными снимками, связанными между собой перекрытиями. Маршрутной аэрофотосъемкой называется воздушное фотографирование с самолета полосы местности по определенному маршруту. В зависимости от объекта, подлежащего аэрофотосъемке, маршруты полетов могут быть прямолинейными (ряд кварталов леса) или криволинейными (вдоль русла реки). При такой аэрофотосъемке между снимками в маршруте осуществляется перекрытие, достигающее 56-60%; оно называется продольным перекрытием. Маршрутная аэрофотосъемка применяется для лесотранспортных, водно-мелиоративных и других работ, проводимых в пределах узкой полосы местности. Производится она путем проложения ряда прямолинейных и параллельных между собой маршрутов, взаимно перекрывающихся. При данном виде аэрофотосъемки, помимо продольных перекрытий между снимками в маршрутах, должно быть соблюдено и заданное перекрытие между снимками соседних маршрутов полета, называемое поперечным перекрытием; обычно оно не превышает 30-40%. По методу последующей фотограмметрической обработки аэроснимков и изготовления конечной продукции различают три вида аэрофотосъемки:

1. контурную аэрофотосъемку, в результате которой получается только контурный план местности;

2. комбинированную аэрофотосъемку, при которой топографический план местности создается путем использование материалов аэрофотосъемки, а рельеф изображается на нем горизонталями и условными знаками в результате полевых наземных топографо- геодезических работ, преимущественно с применением мензульной съемки при совместном использовании аэроснимков;

3. стереофотограмметрическую (высотную) аэрофотосъемку, которая дает возможность получить полный топографический план местности с горизонталями на основании камеральной обработки аэроснимков при небольшом количестве геодезических точек.

Летно-съемочный процесс для всех этих видов аэрофотосъемки в основном один и тот же, но стереофотограмметрическая съемка предъявляет специальные требования к оптике, юстировке аппарата и фиксированию элементов внешнего ориентирования. Аэрофотосъемки можно различать, исходя из масштаба фотографирования. Плановая аэрофотосъемка, в зависимости от получаемого масштаба аэроснимков, разделяются на: а)крупномасштабную - при масштабе фотографирования крупнее 1:10000,

б) среднемасштабную – при масштабе фотографирования мельче 1:10 000 до 1:30 000;

в) мелкомасштабную – при масштабе фотографирования мельче 1:30 000; 1:50 000 ; 1:75 000 и предельно до 1:100 000.

Фотограмметрическая обработка плановых аэрофотоснимков весьма проста. В условиях равнинной местности она будет заключатся прежде всего в устранении искажений от несоблюдения вертикального положения оптической оси фотокамеры и от колебаний высоты полета. Для приведения в известность лесов и обследования их на обширных территориях вполне можно ограничиться использованием упрошенных фотосхем, составленных из приведенных к одному масштабу аэрофотоснимков. Возможность использования плановых аэрофотоснимков для таксации леса без предварительной и сложной фотограмметрической обработки (развертывания, трансформирования) является большим достоинством и позволяет сразу же после аэрофотосъемки применить их для полевых работ. В тех же случаях, когда для решения различных лесохозяйственных, и в особенности лесоинженерных задач, требуется составление более точных планов, создаются фотопланы с соблюдением потребной степени точности (при наличии геодезической основы) путем применения метода фототриангуляции и производства трансформирования аэроснимков. Благодаря сравнительно небольшой величине искажений в изображениях леса на плановых аэрофотоснимках пользование ими не вызывает особых затруднений. При продольном перекрытии в 56-60% создается полная возможность стереоскопического их просмотра, оконтуривания участков, дешифрирования различных категорий площадей и земель и составления их описания.

Основным недостатком плановой аэрофотосъемки считается небольшая производительность ее по сравнению с перспективной и планово-перспективной съемки. Но при современном состоянии техники этот недостаток устраняется в связи с применением широкоугольных объектов, увеличением формата аэрофотоснимков и высоты фотографирования. Аэрофотоснимки наклонной аэрофотосъемки с перспективным изображением снятой местности имеют неизбежно резкопеременный масштаб, уменьшающий от переднего плана к дальнему. При этом значительное уменьшение масштаба на дальнем плане вызывает резкое падение распознаваемости заснимаемых объектов и таксационных показателей насаждений. При перспективной аэрофотосъемке в горной местности, в случае наличия резко выраженного рельефа, на аэрофотоснимках получаются значительные искажения ситуации, появляются «мертвые» пространства, вследствие чего на них не фиксируется ряд важных деталей местности. Стереоскопическое рассмотрение таких аэрофотоснимков возможно. Оно лучше на переднем плане и при небольшой перспективе изображения местности. К числу недостатков перспективной аэрофотосъемки относится большая сложность их фотограмметрической обработки. Сущность щелевой аэрофотосъемки заключается в непрерывном фотографировании полосы местности на движущуюся пленку сквозь узкую щель в фокальной плоскости камеры, расположенную перпендикулярно к направлению полета. При целевой аэрофотосъемке происходит непрерывное экспонирование пленки, поэтому контактный отпечаток имеет на рулонной бумаге вид сплошной ленты. Движение пленки синхронизировано с движением изображения, что и обусловливает резкость снимка. Чаще всего щелевые аппараты делаются двухобъективными; один из них –

широкоугольный – дает мелкомасштабное изображение, другой – крупномасштабное. С помощью этих аппаратов можно производить фотографирование с низких высот полета в облачные дни и в условиях сумерек, получать плановые аэроснимки одновременно в различных масштабах, выполнять стереоскопическую съемку под любым заданным углом.

^

Аэрофотосъемка состоит из подготовительных, летно-съемочных полевых фотолабораторных и полевых фотограмметрических работ. Подготовительные работы. Одним из важнейших процессов является расчет элементов аэрофотосъемки. Для этого требуется заданные значения масштаба фотографирования и фокусного расстояния АФА, формат аэрофотоснимка, заданные проценты продольного и поперечного перекрытий, размеры съемочного участка. По этим исходным данным определяют высоту и базис фотографирования, интервал между экспозициями, число аэрофотоснимков в маршруте и на съемочный участок, а так же время, необходимое для аэрофотосъемки всего участка.

Перед началом летно-съемочных работ проверяют и готовят к работе оборудование материалы и полетные карты проводят тренировку экипажей и составляют график полетов, затем приступают аэрофотосъемшик - опреатор, определяет угол сноса и путевую скорость самолета, т.е. скорость движения самолета относительно Земли. С учетом величины угла сноса самолет разворачивают против ветра на угол упреждения. Значение путевой скорости самолета или другого носителя необходимо для вычисления интервала времени между экспозициями. Угол сноса и путевую скорость самолета определяют при помощи оптических визиров в прямом и обратном направлениях по маршруту. После этого приступают аппаратуру, следят за ее работой и прокладыванием аэрофотосъемочных маршрутов в соответствии с проектом. Маршрут самолета прикладывают по приборам контролируют по земным ориентирам. При отсутствии ориентиров съемочные маршруты и заходы на них производят инструментальным методом, особенность которого заключается в прокладке маршрутов только на основании показаний навигационных и пилотажных приборов. Полевые фотолабораторные работы состоят из негативного и позитивного процессов. Негативный процесс включает проявление, фиксирование промывку экспонированной аэропленки на специальных ручных или автоматизированных приборах, которые сконструированы так, чтобы обеспечить равномерное и правильное по времени проявления пленки. Наиболее часто употребляются проявительные приборы с устройством, перематывающим пленку. Состоят они из двух вращающих катушек, расположенных на одной общей станине. Пленку равномерно перематывают с одной катушки на другую вручную или с помощью электромотора, в это время пленка находится в проявляющем растворе. После сушки аэрофильм передают в фотограмметрическую группу, где негативы регистрируют и нумеруют. Затем аэрофильм поступает в фотолабораторию для изготовления позитивных отпечатков. Позитивный процесс заключается в получении контактных аэрофотоснимков путем печатания на специальных станках фотоизображения с негативов на светочувствительную фотобумагу или позитивную фотопленку. Контактные отпечатки

должны быть достаточно контрастными и иметь полную прорубку деталей по всей площади негатива. Для получения таки х аэроснимков необходимо учитывать степень контрастности негативов при наборе фотобумаги, соблюдать нужную экспозицию и правильно выполнять проявление. Нумерацию и регистрацию аэронегативов выполняют сразу после высушивания аэрофильмов. Каждый аэронегатив нумеруют с эмульсионной стороны в левом верхнем углу обратным письмом. Кроме порядковых номеров аэрофотоснимков, подписывают дату и номенклатуру района аэрофотоснимка. Все аэрофотоснимки регистрируют в журнале и направляют в фотолабораторию для изготовления контактной печати. Предварительно аэрофотоснимки раскладывают по маршрутам. Монтаж начинают с верхнего маршрута справа на лево или слева направо, чтобы были видны номера аэрофотоснимков, которые последовательно накладывают один на другой, монтируют по контурам ситуации местности в местах перекрытый и закрепляют кнопками. Каждый следующий маршрут увязывают предыдущим по перекрытиям. Полученный рабочий накидной монтаж позволяет установить границы заснятой территории проверить техническое фотографическое качества съемочных работ. Давая предварительную оценку качества аэрофотоснимков, устанавливают места, подлежащие повторной аэрофотоснимке, если перекрытия между аэрофотоснимками меньше заданной величины или имеются фотографические дефекты.

^

После повторной съемки забракованных маршрутов привозят окончательную оценку материалов по их фотограмметрическому и фотографическому качествам. Фотограмметрическое качество аэрофотоснимков устанавливают по степени соблюдения заданных продольных и поперечных перекрытий, параллельности сторон аэрофотоснимков линям базисов, прямолинейности базисов, прямолинейности маршрутов и выравниванию аэропленки. Проверяют продольное и поперечное перекрытие по контактным отпечаткам с помощью фотограмметрической линейки. Неудовлетворительными считают аэрофотоснимки, имеющее продольное перекрытие меньше 56%, а поперечное - меньше 20%. Поперечное перекрытие измеряют между аэрофотоснимками смежных маршрутов так же, как при оценке продольных перекрытий.

Для определения величины не параллельности линии базиса сторонам аэрофотоснимкам монтируют два смежных аэрофотоснимка маршрута по контрам, расположенным в близи начального направления. Затем измеряют угол между стороной одного из аэрофотоснимков и линией, соединяющей идентичные углы аэрофотоснимков. Контроль прямолинейности маршрутов при съемке равнинных районов проводят по накидному монтажу участка, а при съемке горных районов по накидным монтажам аэрофотоснимков отдельных маршрутов. Главные точки крайних аэрофотоснимков отдельных маршрутов соединяют прямой линией L и измеряют величину наибольшего отклонения центра аэрофотоснимка от прямой линии (стрельба прогиба 1). Если линия, соединяющая центры, представляет собой плавную линию без заметных местных искривлений, то для всего маршрута как отношение стрелы прогиба 1 к расстоянию между центрами крайних аэрофотоснимков L, умножение на 100. Если же на маршруте имеется одно или несколько

заметных искривлений, то соединяются прямыми линиями центры крайних аэрофотоснимков каждого из криволинейных отрезков, а измерение 1, L и вычисление показателя параллельности ведут для каждого из них отдельно. Не прямолинейность считается недопустимой, если будет 3. Выравнивание аэропленки предварительно проверяют по отсутствию видимой не резкости фотоизображения и видимого искривления контрольных нитей на аэрофотоснимках. А также просматривая аэрофотоснимки под стереоскопом. При этом аэрофотоснимки равнинной местности рассматривают при нулевом стереоэффекте (базис фотографирования перпендикулярен базису прибора). В этом случае стереомодель должна быть совершенно плоской. Просматривают аэрофотоснимки пересеченной местности при прямой стереоэффекте (базис фотографирования параллелен базису прибора), а при этом не должно наблюдаться заметных для глаз искажений закономерностей форм отдельных элементов рельефа. Если материалы аэрофотоснимка предназначены для стереофотограмметрической обработки, в начале в конце каждого маршрута и на каждом пятом аэронегативе измеряют отклонения от прямой изображения контрольных нитей. Отклонения, величина которых превышает 0,10 мм, признаются недопустимыми. При обнаружении отклонений свыше 0,10 мм и во всех других сомнительных случаях проводят контрольные измерения фотограмметрическими методами. Фотографическое качество аэрофотоснимков оценивают, последовательно просматривая их и глазомерно определяя степень удовлетворения тем требованиям, которые предъявляются к ним действующими инструкциями. Для объективной оценки качества негативов и контактных отпечатков пользуются эталонами и теми придержками, которые приводятся ниже. Резкость и проработка деталей в затененных и освещенных местах должны быть достаточными по всему полю изображения. На аэрофотоснимках должны отображаться все детали, которые имеются на негативе. Плотность и контрастность должны быть достаточными и равномерно распределены в центре и на краях. Для спектрозональных негативов максимальная плотность деталей на негативе не должна превышать 1,8-2,0ед. коэффициент контрастности должен находится в пределах 1,4-1,8, при этом разбалансировка слоев не должна быть выше 0,4-0,5 ед. Вуаль не должна препятствовать получения качественной печати, т.е. должна соответствовать техническим условиям, предусмотренным фабрикой на данный тип аэропленки: для спектрозональных негативов вуаль голубая – не более 0,6; вуаль пурпурная – не более 0,4. Не подлежат приемке спектрозональные негативы, снятые при повышенной дымке. Они характеризуются передержкой для пурпурного слоя, малым контрастом, монотонностью всего изображения. Изображения облаков от них, царапины, пятна, полосы и др. дефекты не должны препятствовать дешифрированию и выполнению фотограмметрических работ. Спектрозональные аэронегативы должны иметь ярко выраженное цветоделение, изображения хвойных и лесных пород должны заметно различать по цвету и всей площади, ограниченной изображением контрольных нитей. Нельзя допускать разницу цветового тона как между аэрофотоснимками одного маршрута, так и различных маршрутов. Цветопередача по всему объекту должна быть одинаковой. По измеренным величинам для каждого аэрофотоснимка и визуальной оценки устанавливают усредненное значение, которое объективно указывает на фотографическое качество

фильма в целом. Если залет признан удовлетворительным, то выполняют чистовой накидной монтаж, на котором размечают рамки трапеции международной разграфки, пишут названия населенных пунктов и рек, а также номенклатуру трапеции. С накидного монтажа изготовляют репродукцию. Масштаб репродукции должен быть в три-четыре раза мельче масштаба аэрофотосъемки. Репродукции накидного монтажа изготовляют в дальнейшем при обследовании лесов и лесоустройстве. По ним можно предварительно ознакомиться с районом работ, разделить территорию на таксаторские участки, подобрать аэроснимки для полевых работ. Для изучения объектов земной поверхности, в том числе и лесов, широко применяются дистанционные методы. Они основаны на получении информации об исследуемых объектах на расстоянии путем регистрации электромагнитных излучений при помощи чувствительных приемников, устанавливаемых на самолетах, космических кораблях и др., или глазом человека. Источниками электромагнитных излучений являются Солнце и радио электрические приборы. Они излучают электромагнитные волны широкого спектрального диапазона. Излучение характеризуется длиной волны и чистотой колебаний. Длина волны выражается в микрометрах (мкм) – тысячных долях миллиметра или нанометрах (нм) – тысячных долях микрометра. В зависимости от длины волны электромагнитное излучение можно представить в виде шкалы спектра. При этом область спектра с интервалами длины волн менее 0,01 мкм принято называть рентгеновской, от 0,01-0,38 мкм – ультрафиолетовой (УФ), 0,38-0,76 мкм – видимой, 0,76-1000 мкм - инфракрасной (ИК), 1000 мкм и более – радиоволновой. При изучении поверхности Земли на расстоянии используются разные зоны спектра - от радиодиапазона до УФ. Дистанционные методы можно подразделить на аэрометоды, когда съемки или наблюдения выполняются из атмосферы, и космические методы из космоса. Дистанционные съемки и зависимости от применяемой аппаратуры подразделяются на фотографические и нефотографические. Материалы съемок могут быть представлены в виде снимков, записи на магнитные носители, графиков, регистрограмм и др. Нефотографические съемки могут быть пассивными и активными. Пассивная съемка могут быть пассивными и активными. Пассивная съемка заключается в регистрации солнечной радиации, отраженной объектом, или собственного теплового излучения земных объектов. К пассивным относятся сканерная (в том числе тепловая и микроволновая) и телевизионная съемки. Сканерная съемка осуществляется оптико-механическими сканерами телевизионная (ТВ) – передающими камерами, микроволновая – радиометрами. При активной съемке местность облучают искусственным источником лучистой энергии, отраженные при этом волны регистрирует приемник. Примером такого вида съемок является радиолокационная, или радарная, съемка (РЛ) с применением установленных на летальных аппаратах радиолокационных станций (РЛС), которые облучают местность электромагнитными волнами вдоль линии полета. Отраженные при этом сигналы фиксируется на электронно-лучевой трубке (ЭЛТ). Съемка может выполняться в одной зоне спектра (однозональная съемка) или одновременно в нескольких разных, более узких зонах электромагнитного спектра (многозональная, или много спектральная съемка). Каждый вид съемки имеет свои особенности, преимущества и недостатки. Например, РЛ – съемка не зависит от метеорологических условий: сканерные и ТВ – съемки обеспечивают оперативную

доставку информации из космоса на Землю в цифровой форме, что позволяет непосредственно ввести ее в ЭВМ и упростить машинный анализ съемочной информации: ИК тепловая и РЛ – съемки возможны не только днем, но и ночью. ИК тепловая съемка эффективно применяется для обнаружения локальных, в том числе подземных лесных пожаров. Многозональные съемки позволяют сопоставлять значения оптических плотностей в разных зонах спектра, а также получат цветные и ложно цветные изображение отснятых объектов. Некоторые из них уже применяются, другие начинают находить применение в лесном хозяйстве. Однако наиболее широкое применение при изучении лесов и контроле за их состоянием находят фотографические аэро - и космические съемки и аэровизуальные наблюдения. За рубежом широко применяются многозональные сканерные снимки.

^

Принцип полета. Тело, которое движется в воздухе, непрерывно испытывает со стороны последнего сопротивление. Для того чтобы преодолеть это сопротивление, нужно приложить определенную силу. Сила сопротивления воздуха, называемой силой любого сопротивления, которую встречают движущееся в нем тело, прямо пропорциональна плотности воздуха, площади сечения тела, квадрату скорости движения и зависит от формы тела, его поверхности и положения в воздушном потоке. Этот закон аэродинамики положен в основу конструкции летальных аппаратов. Тела, имеющие различные формы и размеры, помешенные в различную среду, и при придании им одной и той же силы будут двигаться с различной скоростью. При этом возникающие впереди и сзади давления будут разными, и чем больше это разница, тем больше область завихрения, меньше скорость продвижения и больше сила сопротивления. При обтекании тела с угловатыми формами поток воздуха тормозится меньше, чем при обтекании пластинки, а отсюда меньше область пониженного давления и сила любого сопротивления. Давление будет незначительным впереди и сзади находящегося в воздушном потоке тела, имеющего каплевидную форму, так как струйки воздуха обтекают его и почти не образуют завихрений. При этом для преодоления любого сопротивления потребуется наименьшая сила. Для летального аппарата решающее значение имеет обтекаемая форма, которая создает наименьшее сопротивление и не вызывает завихрений. Такую форму имеют каплевидные и крыло образные тела. Подъемная сила. Крылья самолета и несущие венты вертолета являются их основными частями. Они создают подъемную силу, и благодаря им совершается полет. Пусть крыло движется в воздухе под некоторым углом атаки. Частица воздуха, встречаясь с летающим крылом, огибает как верхнюю, выпуклую, так и нижнюю, плоскую или слегка вогнутую, поверхность крыла. Струйкам, обтекающим крыло сверху, в одно и то де время приходится пройти более длинный путь, чем струйкам, обтекающий крыло снизу. Следовательно, верхние струйки двигаются быстрее, чем нижние. Чем больше скорость потока воздуха, тем меньше в нем давление (закон Бернули). Поэтому над крылом воздается меньше давление, чем под крылом. В результате этого и возникает подъемная сила, направленная перпендикулярно потоку воздуха и действующая снизу вверх. На этом свойстве и основан полет аппаратов тяжелее воздуха – самолетов и вертолетов. Но для того чтобы аппарат двигался в воздухе с определенной скоростью, ему

нужно все время преодолевать сопротивление воздуха. Это достигается силой тяги воздушного винта, вращаемого двигателем аппарата, или благодаря воздействию реактивной силы, возникающей в результате отбрасывания назад с большой скоростью струи отходящих газов из турбины самолета. Оборудование. Рассматривая вопрос об оборудовании самолетов и вертолетов, мы имеем виду здесь пилотажно-навигационную и другую специальную аэрофотосъемочную аппаратуру: автопилот и автомат программного разворота, компас и курсовую систему, высотомер и оптические бортовые визиры. Автопилот предназначен для автоматического пилотирования самолетов. Он стабилизирует заданный курс, высоту полета и положение самолета в полете, а также обеспечивает выход на заданный маршрут и выполнение разворота при выходе с маршрута на маршрут. Настоящее время применяют автопилоты типа АП – 6Е для самолетов Ил – 14ФК и АП – 28Л – 1Ф для аэрофотосъемочного самолета Ан – 30. Автомат программного разворота – устройство к автопилоту, обеспечивающее в комплекс в ним автоматической пилотирование самолета по всему курсу аэросъемочного полета. Схема автомата программного разворота модели АПР – 2 состоит из двух частей: автомата захода и стабилизатора. Компас и курсовая система. Компас служит для определения курса или направления полета. Дистанционны астрономический компас ДАК – ДБ – 5В вырабатывает истинный курс самолета посредством автоматического пеленгования Солнца, может работать самостоятельно и в комплексе с курсовой системой как датчик истинного курса (в практике широко используется). Курсовая система служит для прокладки маршрутов в заданном направлении и состоит из магнитных, гироскопических, радиотехнических и астрономических средств измерения курса самолета, индикации его на визуальные указатели, а также выдачи сигналов курса в автопилот и навигационный вычислитель. Применяются различные типы системы, в том числе КС – 6 и ГМК-1А. Курсовая система КС-6 устанавливается на аэросъемочных самолетах Ан-30 и Ил-14ФК, а система ГМК-1А на вертолете Ка-26. Измерители путевой скорости и угла сноса. На самолетах, производящих аэрофотосъемку, устанавливают доплеровский измеритель ДИСС-013-24 ФК, который непрерывно автоматически измеряет путевую скорость и угол сноса при полетах над любой местностью. Комплекс измерителя ДИСС-013-24 ФК состоит из высокочастотного (антенного) и низкочастотного блоков, блока выдачи данных, индикатора пульта управления и вентилятора обдува блока высокой частоты. Он устанавливается на самолетах Ан-30 и Ил-14ФК. Высотомеры служат для определения высоты полета. Они бываю двух типов – анероидный и радиовысотомер. Первый представляет собой барометр-анероид, длина шкалы которого выражена в метрах. Для определения расстояния от центра проектирования аэрофотосъемки до ближайшей точки земной поверхности применяют топографической радиовысотомер. Он состоит из приемопередатчика, блока измерения, цифрового указателя высоты, антенны, пульт управления и амортизационной рамы. При помощи РВ-18Ж можно измерять высоту полета до 10000м со средней квадратической ошибкой измерение не более 5м. Его масса 20кг. Регистрацию показаний радиовысотомера производят автоматически фотографированием цифрового указателя высоты с помощью фоторегистратора ТАУ или АРФА-7. Для измерения и автоматической регистрации колебаний высоты полета на маршруте применяют статоскопы С-51,С-51М и ТАУ. Они представляют собой жидкостные

дифференциальные барометры и позволяют измерять и записывать изменения статического давления, по которому при последующей обработке определяют разность высот центров аэрофотографирования. Оптические бортовые визиры ОПБ-1Р, НКБП-7 и МКВ применяют при выполнении аэрофотосъемочных работ. Они предназначены для измерения угла сноса, определения интервала фотографирования, а также для контроля правильности продолжения маршрутов. Оптический визир ОПБ-1Р представляет собой телескопическую систему, состоящую из объектива, окуляра, сферического уровня, сетки, двух блоков линз, оборачивающей системы и двух призм (подвижной и неподвижной). Он устанавливается на самолетах Ан-30, Ил-14ФК и Ан-2. Оптический коллиматорный визир НКБП-7 обеспечивает построение углов визирования от –15 до +85 в вертикальной плоскости и + в горизонтальной. Визир устанавливается на самолетах Ан-30, Ил-14ФК и вертолете Ка-26. Работа аэросъемочного широкоугольного коллиматорного механического визира МКВ-1 основано на том, что полупрозрачное сферическое зеркало оптической системы создает в бесконечности изображение сетки, расположенной в фокусе зеркала, т.е. проектирует продольную курсовую черту на местность. Масса прибора 1,5 кг. Угол зрения визира вдоль маршрута 105, поперек маршрута + 5. Электронный командный прибор ЭКП-2М представляет собой полуавтомат, предназначенный для определения требуемого темпа работы аэрофотоаппарата, измерения угла сноса и обеспечения работы АФА в автоматическом режиме в комплексе с РВ-18Ж и ДИСС-013-24ФК. ЭКП-2М позволяет автоматически передавать командные импульсы на один или два АФА с различными фокусными расстояниями. При этом выдерживается заданное продольное перекрытие аэрофотоснимков для каждого АФА, Он может передавать сигналы аэрофотоустановку для разворота АФА на угол сноса. Прибор состоит из двух блоков: оптического визира, служащего для измерения интервала фотографирования и угла сноса, и электронного блока, выполняющего функции счетно-решающего устройства. Масса комплекта 45кг. Аэроэкспонометр АЭ-2 применяется для объективного определения экспозиции при аэрофотосъемке. Это фотоэлектрический измеритель с электронным калькулятором. Величины выдержки затвора аэрофотоаппарата для заданных значений относительного отверстия и светочувствительности фотоматериала, вводимых в электронный калькулятор, и для интегральной освещенности, измеренной светоприемным устройством, выдаются на стрелочном индикаторе аэроэкспонометра. Конструктивно АЭ-2 состоит из двух блоков: автоприемника и блока индикатора. Масса комплекса 6 кг. Аэрофотоаппараты с целью стабилизации интегральной плотности аэронегативов как в пределах одного аэрофильма, так и от фильма к фильму и получения аэрофильмов для автоматизированной обработки на проявительных машинах снабжены автоматами регулирования экспозиции (АРЕ). Чувствительными элементами являются фотоэлемент и фоторезистор со спектральной чувствительностью, соответствующей с достаточной точностью всем типам применяемых аэрофотопленок. Точность стабилизации оптической плотности находится в пределах + 15%.

^

Космической съемкой называю съемку поверхности Земли с космических летальных аппаратов (КЛА). Нижняя граница околоземного космического пространства, где КЛА может совершать обороты вокруг Земли, 140-150 км. Максимальная высота съемки ограничивается целесообразным минимальным масштабом изображения Земли. Основу космических съемок составляет аэросъемка, включающая дополнительно элементы небесной механики, физики атмосферы и др. К особенностям космического зондирования относятся также перемещение КЛА по орбитам по законом небесной механики и аэродинамики, быстро изменение на трассе полета условий освещенности, влияние всей толщи атмосферы на качество изображения, большое разнообразие ландшафтов, которые могут иметь различное сезонное состояние. Запуск КЛА, управлением его полетом, обеспечение съемки, доставка информации на Землю обеспечиваются с помощью средств управления полетом, наземных измерительных и информационных систем, объединяемых вместе с КЛА в единое, как правило многоцелевые, народнохозяйственные космические комплексы. Для изучения природных ресурсов Земли (ИПРЗ), в том числе и лесов, используют наблюдательные космические комплексы, подразделяемые на две группы: а) предназначенные для наблюдения за поверхностью Земли, называемые космическими комплексами исследования природных ресурсов: б) предназначенные для наблюдения за атмосферой, получившие название метеорологических космических комплексов. Развитие технических средств дистанционного зондирования Земли из космоса идет по двум взаимодополняющим друг друга направлениям. Первое из них основана на фотосъемки земной поверхности видимой и ближней ИК-областях спектра и доставке на Землю при посадке спускаемого аппарата космического корабля либо в сбрасываемых контейнерах с отснятыми фотопленками, где предусматривается их фотохимическая обработка и изготовление контактной и увеличенной фотопечати. Данные съемочные материалы предназначены для решения задач, не требующих оперативного принятия решений. Второе направление предусматривает проведение съемок в видимой, ИК и СВЧ областях электромагнитного спектра и передачу полученной информации со спутников по радиоканалам на пункты приема, оперативную обработку и доставку ее потребителям как для исследования быстропротекающих процессов на поверхности Земли, так и решение задач, связанных с разносторонним изучением природных ресурсов.

^

Съемки земной поверхности осуществляют через толщу атмосферы, характеристики которой непостоянны. Ее состояние определяют условия и результаты съемки. Физическое состояние атмосферы характеризуется ее прозрачность и рефракции лучей в ней, температура воздуха, атмосферное давление, влажность воздуха, облачность, перемещение воздушных масс. Наибольшее влияние на результативность съемки в видимом и ближнем ИК-диапазонах спектра оказывают степень прозрачности атмосферы, освещенность и облачность. Аэро и космические съемки обычно выполняются в яркие, солнечные, безоблачности дни. Перистые и перисто-слоистые облака им не препятствуют. Аэросъемка возможна и при высокой сплошной облачности, но выше самолета, выполняющего съемку. Высокая сплошная облачность позволяет

получать бестеневые аэроснимки с улучшенным качеством изображения, смягченными тонами теней, в результате чего полог насаждений просматривается глубже, лучше видны его затененные части.

^

Масштабы аэрофотоснимка отношение величины изображения отрезка на нем к величине соответствующего отрезка на местности. Масштаб горизонтального аэрофотоснимка выражается простым соотношением 1/m=fkH, где m – знаменатель численного масштаба, fk – фокусное расстояние АФА: Н – высота фотографирования. Для плоской местности масштаб постоянен по всей площади аэрофотоснимка: следовательно, горизонтальный аэрофотоснимок-план плоской местности. Масштабы планового и аэрофотоснимков не равны масштабу соответствующего горизонтального аэрофотоснимка. Масштаб планового аэрофотоснимка в принципе различен его частях, но и каждой точке: он неодинаков также для разных направлений. Но поскольку углы наклона плановых аэрофотоснимков малы (до 3 гр) и искажения невелики, для практических целей масштаб определяют по соотношению 1/m=fkH. Перспективный аэрофотоснимок в разных своих частях имеет существенно отличные масштабы изображения, которые зависят от направления измеряемого отрезка: только по линиям перпендикулярным главной вертикали масштаб постоянен. Масштаб перспективного аэрофотоснимка определяют как отношение бесконечно малого отрезка dr на аэрофотоснимке к соответствующему бесконечно малому отрезку на местности DR. Масштаб вдоль любого направления перспективного аэрофотоснимка можно определить по формуле:

Dr = 1 = f [cosα - (x/f) sinα]² (3)

DR m H √1-sin² α sin² φ

Где х – координата искомой точки:

α – угол наклона аэрофотоснимка:

φ – угол, образованной между направлением съемки и направлением по главной точке на искомую точку.

Масштаб горизонтали, проходящей через любую точку аэрофотоснимка, определяют по формуле:

1/m=f | H [cosα - (x/f) sinα] (4)

Масштаб вдоль главной вертикали в обобщенном выражении находят по формуле:

1/m=f | H [cosα - (x/f) sinα]² (6)

^

Искажения возникают на снимках вследствие отклонения оптической оси АФА от вертикали, из-за рельефа местности, под влиянием изменения высоты фотографирования и др.

Рабочая площадь аэрофотоснимка. Величина линейных искажений изображений на аэрофотоснимке тем больше, чем больше расстояние от центра к краям аэрофотоснимка, т.е. все искажения, увеличиваются по мере увеличения расстояний r. Существует искажения изображений, возникающие под влиянием разнообразных физических факторов: дисторсии объектива, рефракции атмосферы, деформации аэрофотопленки, не выравнивания пленки и др. При детальном анализе влияние этих факторов можно увидеть, что они вызывают наибольшие искажения и ухудшения качества изображения на краях аэрофотоснимка. Поэтому при дешифрировании и создании фотопланов используют среднюю, наименее искаженную часть аэрофотоснимка, называемую рабочей площадью аэрофотоснимка, которую практически определяют путем проведения прямых линий посередине зон продольных и поперечных перекрытий.

Стереоскопический эффект. Основы стереоскопического зрения наблюдать предметы можно одним или двумя глазами. Монокулярное зрение характеризуется тем, что наблюдатель, видя предметы, не имеет впечатления объемности формы и расстояние до них. Эти впечатления получают от части косвенными путями, а не посредственно в результате зрительного восприятия. Бинокулярное зрение дополняет представление о предметах, полученные при рассматривании их каждым глазом в отдельности, впечатлениями объемности форм и удаления предметов от друг от друга. Бинокулярное зрение, при котором хорошо ощущаются форма предметов и их взаимное расположение в пространстве, называют стереоскопическим.

Скачать файл (44.1 kb.)

gendocs.ru

Аэросъемка, её виды и методы - реферат

Описание.

В настоящее время динамические съёмочные системы широко применяются не только в космических съёмках, но и в аэросъёмках.

Аппаратуру, с помощью которой в съёмочных системах воспринимается энергия, несущая информацию об объектах съёмки называют съёмочными устройствами (СУ). Разновидностями СУ являются фотокамеры, телекамеры, сканеры, тепловизоры, ИК – и СВЧ – радиометры, радарные установки и т.п.

Выдержка из работы.

       Содержание

  1. Аэрогеодезия, её содержание………………………………………...5
  2. Аэросъемка, её виды и методы…..………………………………….8
    1. Метод аэрофотосъёмки……………………………………...10
    2. Метод космической съёмки………………………………….13
  3. Метод аэрогеодезических работ на основе лазерной локации и цифровой аэрофотосъёмки………………………………………….15

      В России до середины тридцатых годов  комплекс работ по созданию карт по фотоснимкам местности, полученным с летательного аппарата называли аэрофотосъёмкой. Впоследствии термин аэрофотосъёмка отнесли  только к лётно-съёмочному процессу, включая проектирование, самолётовождение, фотографирование и вспомогательные  операции. Аэрофотографией назвали  процессы экспонирования и фотолабораторной обработки аэрофотоснимков.

      Понятие аэрофототопография охватывает комплекс процессов по созданию топографических  карт по фотоснимкам местности, полученным с авиационного летательного аппарата. Сюда входят лётно-съёмочные работы, привязка снимков, дешифрирование, построение сетей фототриангуляции, изготовление фотоосновы карты, стереоскопическая  съёмка рельефа, составление топографической  карты и др.

      В конце двадцатых – начале тридцатых  годов в России внедряется аэрофотограмметрический  метод в геодезическое производство. Появляется название аэрогеодезическое  производство и термин «аэрогеодезия», который в большей степени  дублирует аналогичный термин «аэрофототопография», но охватывает более широкий спектр применения различного рода аэроснимков  для получения отраслевых видов  информации.

      Прикладные  тематические направления трансформировали понятие термина «фототопография» и изменили его содержание. Выделилась фотограмметрия, которая стала включать в себя комплекс процессов, непосредственно  использующих геометрию изображения (измерение, преобразование, построение сетей, рисовку рельефа и т.п.).

В традиционной фотограмметрии излагаются теория и  технология, построенные на математическом аппарате и практических приемах, в  основе которых лежит представление  о статической центральной проекции местности, получаемую в условиях, когда  фотоаппарат и местность взаимно  неподвижны (фототеодолитная съёмка) или их передвижением во время экспонирования кадра можно пренебречь (топографическая аэрофотосъёмка).

      В условиях космических съёмок применяют  динамические съёмочые системы. Первыми  динамическими съёмочными системами  были телевизионные и тепловизионные сканеры. Геометрия сканерных снимков  отличается от обычных аэрофотоснимков  тем, что процесс построения проекции местности в пределах снимка растянут по времени и значительно зависит  от подвижности носителя.

Качественной  особенностью ряда динамических систем является то, что они работают в  более широком невидимом диапазоне  электромагнитных волн, что даёт возможность  получать более полную информацию об окружающей среде и о земных ресурсах.

      В настоящее время динамические съёмочные  системы широко применяются не только в космических съёмках,  но и  в аэросъёмках.

      Аппаратуру, с помощью которой в съёмочных  системах воспринимается энергия, несущая  информацию об объектах съёмки называют съёмочными устройствами (СУ). Разновидностями  СУ являются фотокамеры, телекамеры, сканеры, тепловизоры, ИК – и СВЧ – радиометры, радарные установки и т.п.            

  1. Аэрогеодезия, её содержание.

       Аэрогеодезия  – это раздел геодезии, изучающий  методы  измерения и  преобразования изображений земной поверхности,  методы получения по ним широкого спектра информации об объектах съёмки с целью составления топографических  и специальных планов и карт, цифровых моделей местности, а также для  решения ряда инженерных отраслевых задач при проектировании, строительстве  и эксплуатации различных искусственных  сооружений (дорог, мостов, аэродромов, плотин, каналов, трубопроводов, линий  электропередач и т. п.). Аэрогеодезия рассматривает часть тех же вопросов, что и геодезия, но использует для  этого вместо измерений и установления качественных и количественных характеристик  объектов непосредственно на поверхности  земли измерения  и интерпретацию  этих объектов по  аэрокосмическим  изображениям.

       В технологии и методах системного автоматизированного проектирования объектов строительства (САПР) аэрофотогеодезический  метод выступает как один из основных видов изыскательских работ, позволяющий  при значительном увеличении производительности полевых работ перенести основной объём работы по получению информации о местности в комфортные камеральные  условия с широким привлечением для этих целей средств автоматизации  и компьютерной техники.

       Аэроизыскания – комплекс специальных воздушных, наземных полевых и камеральных  работ, направленных на получение исходной топографической, инженерно-геологической, гидрогеологической, гидрометеорологической, экономической и других видов  информации, необходимой для разработки проектов объектов строительства.

       Опыт, накопленный в области применения аэрометодов при изысканиях, показывает их исключительную эффективность по сравнению с традиционными методами сбора информации как в части  значительного снижения трудоёмкости и сокращения сроков изысканий, так  и в части широты охвата различных  видов информации, необходимой для  проектирования. Аэроизыскания выполняют в три этапа: подготовительный, полевой и камеральный.

       В подготовительный период осуществляется сбор имеющейся на район изысканий  топографической информации и материалов аэросъёмок прошлых лет, на основании  которых обосновывают полосу варьирования конкурентносособных вариантов  трассы и составляют проект производства аэросъёмочных, полевых и камеральных  аэрофотогеодезиеских работ.

       В полевой период производят: наземные геодезические работы по созданию планово-высотного  обоснования аэросъёмок; закрепление  и маркировку точек опорной сети; различные виды аэросъёмочных работ, привязку и дешифрирование аэрофотоснимков. Важным видом аэрогеодезических  изысканий является дешифрирование – выявление (обнаружение и опознавание) и раскрытие содержания (познания) различных объектов и элементов  местности по их изображениям на снимках, их качественных и количественных характеристик, своеобразных свойств и особенностей.

       В камеральный период выполняют полную обработку результатов геодезических  измерений, фотограмметрическое сгущение геодезического съёмочного обоснования  методами аналитической фототриангуляции, стереофотограмметрические работы по получению информации о рельефе  и изготовлению топографических  планов и ЦММ в единой системе  координат.

       Аэрогеологические изыскания – комплекс наземных, воздушных и камеральных работ  по установлению геологических, почвенно-грунтовых  и гидрогеологических условий местности, включающие в себя также поиск  и разведку местных дорожно-строительных материалов. Аэрогеологические изыскания  оказываются особенно эффективными при совместном использовании наземных методов инженерно-геологических  изысканий, с обязательным использованием геофизических методов разведки.

       Аэрогидрологические изыскания направлены на выявление  морфометрических, гидравлических и  гидрологических характеристик  водотоков, типа и интенсивности руслового процесса, ледового режима, характеристик малых водосборов и т. д. Эта информация необходима для проектирования мостовых переходов, малых водопропускных сооружений (например, водопропускных дорожных труб и малых мостов) и системы поверхностного водоотвода.

       Аэроэкономические изыскания прежде всего позволяют  установить характеристики транспортных потоков на существующей сети автомобильных  дорог в разное время суток, разные дни недели, месяцы и годы (интенсивность  и состав движения, скорости, плотности  на различных участках дорог, распределение  интервалов между автомобилями и  т. д.), направления транспортных связей, границы и типы земельных и  лесных угодий с последующей оценкой  стоимостей их отвода и др.

       Аэрофотогеодезические изыскания в настоящее время  производят с применением современного аэросъёмочного, навигационного оборудования (в частности, систем спутниковой  навигации и определения координат  центров фотографирования «GPS») и технологических линий цифровой картографии и ГИС.              

  1. Аэросъёмка, её виды и методы.

       Аэросъёмкой называют процесс получения изображений  местности с летательных аппаратов. Если её ведут фотоаппаратами, то её называют аэрофотосъёмкой, если с помощью  специальных телевизионных или  электронных сканирующих устройств, то – электронной аэросъёмкой, если с помощью тепловизоров в инфракрасной части спектра, то - тепловой или  инфрарасной съёмкой, а если радиолакаторами, при которых получают изображение  в отражённых от поверхностных слоёв  электромагнитных радиоволн – радиолакационной съёмкой.

       Регистрацию изображений местности можно вести в разных зонах спектра электромагнитных волн: видимой с длинами волн (0,38 – 0,78 мкм), ультрафиолетовой ближней (0,28 – 0,32 мкм), инфракрасной (0,18 – 10 мкм), или микрорадиоволновой (0,01 – 100 см). Съёмку выполняют либо водной зоне электромагнитного излучения, либо одновременно в нескольких.

       Одним из современных методов сбора  и обработки данных о местоположении объектов и рельефе местности, а  также их качественных и количественных характеристиках, является комбинированный  метод на основе лазерной локации  и цифровой аэрофотосъёмки.

       При инфракрасной аэросъёмке регистрируется электромагнитное излучение в диапазоне  длин волн 0,7 – 12 мкм, которое излучают или отражают различные объекты  местности. Инфракрасное излучение  как носитель информации близко к  свету и радиосигналам, зависит  от температуры источника излучения, характеризует его вещество и  состояние. Оно выявляет внутренние свойства объектов, позволяет изучать  процессы в верхнем слое Земли. Инфракрасные системы имеют оптическую часть, приёмное устройство, устройство обработки  и выдачи информации. Излучение природной  среды в ифракрасной области  спектра регистрируется тепловизорами  в трёх зонах: ближней (0,7 – 2,5 мкм), средней (3,0 – 5,5) мкм) и дальней (8 – 12 мкм). На практике установлена важность совместного  дешифрирования панхроматических и  инфракрасных аэрофотоснимков.

       Российский  тепловизор «Вулкан» производит аэрофотосъёмку преимущественно в средней инфракрасной зоне спектра, а тепловизор шведской фирмы «AGA» - в дальней инфракрасной зоне спектра. Их применение особенно эффективно при выявлении и изучении переувлажнённых и мерзлотных участков земной поверхности, течений грунтовых вод, гидрологии мелководий и речных отложений, выделении отдельных горных пород.

       При радиолокационной съёмке получают изображения  местности в радиоволновом диапазоне  электромагнитного излучения. Существуют специально приспособленные для  глубинных геологических  гидрологических  работ многочастотные радиолакационные установки, использующие сантиметровые  дециметровые волны. Радиолакационные съёмки особенно эффективны при исследовании влажности, мерзлотных явлений, болот, геологических и гидрологических  образований.

       Радиолокационная  съёмка (РЛС) делится на съёмку бокового обзора и съёмку кругового обзора. Наибольшее расстояние до объектов, при  котором они обнаруживаются, называется дальностью действия. Разрешающая способность  – это минимальное расстояние между двумя объектами, имеющими один и тот же азимут или угол, при котором отражённые сигналы  не сливаются на экране индикатора, то есть когда на экране электроннолучевой  трубки начало импульса от от второго  объекта отстаёт от конца импульса от первого объекта на время, превышающее  длительность одного импульса. При  радиолокационной съёмке посылаются сигналы, излучающие энергию в определённых направлениях и принимают сигналы  так же с определённых направлений. Чем у?же диаграмма направленности, тем выше разрешающая способность РЛС.

       Наиболее  интенсивно развиваются и широко распространены для картографических целей методы аэрофотосъёмки, космической  съёмки и комбинированный метод  лазерной локации и цифровой аэрофотосъёмки, который применяется преимущественно  для крупномасштабного картографирования и особенно эффективно для линейных объектов. Эти методы рассматриваются далее более детально.

    1. Метод аэрофотосъёмки.

       Одним из важнейших применений фотографии является воздушное и космическое фотографирование, т. е. получение снимков земной поверхности с летательных аппаратов – самолетов, вертолетов, искусственных спутников Земли и др.

       Аэрофотосъемкой называют совокупность работ по получению аэронегативов и аэроснимков  или цифровых снимков местности с целью последующего их использования для создания планов  и карт местности. Термин «Аэрофотосъемка» объединяет ряд взаимосвязанных процессов, в частности:

        - летно-съемочные работы, включающие  разработку технических условий аэрофотосъемки,    составление проекта и его исполнение;

       - полевые фотолабораторные работы, в случае традиционной аэрофотосъёмки, включающие фотографическую обработку экспонированных аэрофильмов, изготовление по ним отпечатков и иной первичной продукции;

       - полевые фотограмметрические работы, включающие регистрацию материалов аэрофотосъемки и оценку качества исполненной фотосъемки.

       Результатом традиционных работ являются аэронегативы, аэроснимки, а также зафиксированные в полете показания специальных приборов.

       Аэронегативы (аэроснимки) – фотографические изображения местности, покрывающие без разрывов заданный участок земной поверхности – используются для последующего преобразования и создания по ним карт и планов. Для обеспечения последующих работ смежные аэронегативы (аэроснимки) должны иметь перекрытия расчетной величины. Метрические и фотометрические характеристики аэронегативов в значительной степени зависят от выполнения технических условий аэрофотосъемки и выбора параметров применяемых для аэрофотосъемки фотографических материалов и оптических систем. Точность и качество аэронегативов, в свою очередь, определяет  качество создаваемых по ним карт и планов, сроки фотограмметрической обработки, организацию работ и т.п. Для получения полноценных аэронегативов и их эффективного использования необходимо согласование летно-съемочных работ, и в первую очередь их параметров, с организацией всего топографо-геодезического производства.

Узнать стоимость уникальной работы в Zaochnik.com

  • Самые низкие цены на рынке
  • 100% гарантия качества
  • Опыт работ более 10 лет
  • Официальный договор
  • Проверка на Антиплагиат
  • Соблюдения сроков
  • Соответсвие ГОСТу
  • Бесплатная доработка
  • Персональный менеджер

dipland.ru

Реферат Аэрофотосъемка - RPS-0014.DOC

Реферат Аэрофотосъемка (97.8 kb.)Доступные файлы (1):содержание

RPS-0014.DOC

Работу выполнил Комосов Д.Ю.

Группа АГС - 41

Исходные данные………………………………………….. 3Объект съемки……………………………………………... 4Схема объекта……………………………………………… 5Высотные характеристики объекта…………………….. 5Картограмма объекта съемки…………………………… 6Отношение высот………………………………………….. 7Заданные перекрытия снимков…………………………. 8Размеры съемочных участков…………………………… 8Базисы фотографирования………………………………. 9Количество маршрутов…………………………………… 9Общая ширина участков…………………………………. 9Количество маршрутов…………………………………… 9Количество аэрофотоснимков…………………………… 10Необходимые расходные материалы…………………… 10 Производительность………………………………………. 11

Аэрофотоаппарат

Фокусное расстояние АФА ……………………………300 мм

Формат аэроснимка ………………………………………18х18 см

Масштаб фотографирования

1/М …………………………………1:5 000

Количество

зарамочных снимков…………………………………………………………4

сдаваемых комплектов отпечатков………………………4

№№ Номенклатура трапеций hmax,

m

hmin,

m

1
К – 42 – 7 – А – б – 1
468 370
2 – 7 – А – б – 2 410 350
3 – 7 – А – б – 3 425 160
4 – 7 – А – б – 4 508 407
5 – 7 – А – в – 3 512 490
6 – 7 – А – в – 4 601 350
7 – 7 – А – г – 1 501 480
8 – 7 – А – г – 2 595 436
9 – 7 – А – г – 3 611 390
10 – 7 – А – г – 4 750 560
11 – 7 – Б – а – 1 930 824
12 – 7 – Б – а – 3 949 700
13 – 7 – Б – г – 1 1195 915
14 – 7 – Б – г – 2 973 830
15 – 7 – Б – г – 3 935 770
16 – 7 – Б – г – 4 980 820
17 – 7 – В – а – 1 1112 807
18 – 7 – В – а – 2 1033 867
19 – 7 – В – б – 1 1051 867
20 – 7 – В – б – 2 391 350
21 – 7 – Г – а – 1 387 310
22 – 7 – Г – а – 2 630 350
23 – 7 – Г – а – 3 701 625
24 – 7 – Г – а – 4 751 570
25 – 7 – Г – б – 1 530 500
26 – 7 – Г – б – 2 782 521
27 – 7 – Г – б – 3 723 500
28 – 7 – Г – б – 4 790 503
29 – 7 – Г – в – 1 797 560
30 – 7 – Г – в – 2 813 601
31 – 7 – Г – в – 3 778 570
32 – 7 – Г – в – 4 802 565
33 – 7 – Г – г – 1 772 620
34 – 7 – Г – г – 2 797 701
35 – 7 – Г – г – 3 991 739
36 – 7 – Г – г – 4 971 750
37 – 8 – А – в – 1 1017 760
38 – 8 – А – в – 3 963 769
39 –19– Б – а – 1 893 764
40 –19– Б – а – 2 825 785
41 –19– Б – б – 1 727 703
42 –19– Б – б – 2 713 601
^ 32083 25400

69o

69o30’

44o

1 2 1
3 4 3
1 2 1 2 1
3 4 3 4 3 4 3
1 2 1 2 1 2 1 2

69o

33’

45”

3 4 3 4
1 2 1 2
3 4 3 4

43o40’

1 2 1 2

43o37’30”

Высота фотографирования ……………………………1500 m

Максимальная высота объекта (с карты)……………1195 m

Минимальная высота объекта (с карты)………………160 m

Критерий рельефа hmax - hmin …………………………………………0.69

Схема объекта с разбивкой его на съемочные трапеции. Съемочной трапецией будет трапеция масштаба 1:10 000. Трапеции обозначаем порядковыми номерами.

468 0.06

370 419

410 0.04

350 380

930 0.07

824 877

425 0.18

160 292

508 0.07

407 458

949 0.17

700 824

501 0.01

480 490

595 0.11

436 516

1195 0.19

915 1055

973 0.09

830 902

1017 0.17

760 888

512 0.01

490 501

601 0.17

350 576

611 0.15

390 500

750 0.13

560 655

935 0.11

770 852

980 0.11

820 900

963 0.13

769 866

1112 0.20

807 960

1033 0.11

867 950

1051 0.12

867 959

391 0.03

350 370

387 0.05

310 348

630 0.19

350 490

530 0.02

500 515

782 0.17

521 652

701 0.05

625 663

751 0.12

570 660

723 0.15

500 612

790 0.19

503 646

797 0.16

560 678

813 0.14

601 707

772 0.10

620 696

797 0.06

701 749

778 0.14

570 674

802 0.16

565 684

991 0.17

739 865

971 0.15

750 860

893 0.09

764 828

825 0.03

785 805

727 0.02

703 760

713 0.07

601 757

Наивыгоднейшие размеры съемочного участка, выраженные числом съемочных трапеций на широте 70о при условии прокладки съемочных маршрутов с запада на восток и с востока на запад: вдоль маршрутов – 8 трапеций, поперек маршрутов - 3 трапеции. Границы съемочных участков проведены утолщенными линиями.

Отношение разности экстремальных высот местности к высоте фотографирования и поправки за рельеф в перекрытия снимков для каждого съемочного участка.

Участки 1 2 3 4 5 6 7 8 9 10 11
h

H

0.10 0.17 0.18 0.27 0.19 0.17 0.20 0.21 0.19 0.21 0.26
qx, % 2 4 4 6 4 4 4 5 4 5 6
qy, % 4 7 7 11 8 7 8 8 8 8 10

Где:

h – разность экстремальных высот местности в пределах съемочного участка;

H- высота фотографирования;

qx,qy – поправки за рельеф в соответствующие перекрытия снимков;Минимальные перекрытия: продольное 56%, поперечное 20%. Навигационные поправки в перекрытия снимков qmx = 5%, qmy = 13%. Пилотажная поправка в перекрытия снимков: q = 5%.

Участки 1 2 3 4 5 6 7 8 9 10 11
Qx, % 68 70 70 72 70 70 70 71 70 71 72
Qy, % 42 45 45 49 46 45 46 46 46 46 48

Где:

Qx – продольное перекрытие снимков;

Qy – поперечное перекрытие снимков;Размеры топографических трапеций масштаба 1:10 000 для широты северной рамки 44о будут соответствовать ширине 5,02 км по средней параллели, и длине 4,63 км по среднему меридиану. Площадь такой трапеции составит 23,22 км2.

Участки 1 2 3 4 5
Da/Dc км 9.26 \ 5.02

4.63 \ 5.02

4.63 \ 10.04 4.63 \ 5.02 9.26 \ 5.02

18.52 \ 5.02

4.63 \ 5.02
Руч 69.66 46.44 23.22 139.32 23.22

Участки 6 7 8 9 10 11
Da/Dc км 9.26 \ 5.02

13.89 \ 5.02

13.89 \ 5.02 13.89 \ 5.02 9.26 \ 5.02 18.52 \ 10.04

9.26 \ 5.02

9.26 \ 5.02

18.52 \ 5.02

Руч 116.10 69.66 69.66 46.44 232.20 139.32

Где:

Da – длина съемочного участка;

Dc – ширина съемочного участка;

Руч – площадь съемочного участка;

Базисы фотографирования Bx и расстояние между съемочными маршрутами By будут равны:

Участки 1 2 3 4 5 6 7 8 9 10 11
Bx, M 228 270 270 252 270 270 270 261 270 261 252
By, M 552 495 495 459 486 495 486 486 486 486 468

В следующей таблице расчитано количество маршрутов в участках Ny и общая ширина участка как сумма Dc его прямоугольных частей. Величину увеличения числа маршрутов примем равную 2, так как объект съемки имеет горный рельеф.

Участки 1 2 3 4 5 6 7 8 9 10 11
Dcуч,км 10,04 10,04 5,02 10,04 5,02 10,04 5,02 5,02 5,02 15,06 10,04
Ny уч 20 22 12 22 12 22 12 12 12 32 23

Далее рассчитано количество аэроснимков в маршрутах Nx, количество маршрутов в наибольших прямоугольных частях участков Ny, общее количество аэроснимков по участкам Nуч и необходимое для съемки каждого участка количество погонных метров аэропленки. Количество зарамочных снимков в маршруте Nзр = 4. Коэффициент увеличения количества аэроснимков за счет возможных ошибок в выдерживании их перекрытий Ксн = 1.15.

Участки 1 2 3 4 5 6 7 8 9 10 11
Nx/Ny 45/11

25/11

22/22 22/12 41/12

78/12

22/12 39/12

56/12

56/12 58/12 39/12 75/22

40/12

41/12

78/12

Nуч 886 557 304 1643 304 1311 773 801 539 2501 1643
Lап, м 178 112 61 329 61 263 155 161 108 501 329

Площадь объекта Роб и общее количество аэроснимков на объект Nоб составит: Роб = 975,24 км2 Nоб = 11 262.Для съемки необходимо 40 катушек пленки по 60 метров и одна катушка по 35 метров с учетом 4 метров технологических отходов на катушку. Для показаний радиовысотомера необходимо 676 погонных метров, что соответствует 12 катушкам пленки по 60 метров с учетом 1 метра технологических отходов на катушку.

Для обработки необходимо 51 468 листов фотобумаги из расчета того, что при выполнении накидного монтажа печатаются все аэроснимки, и допускается 5% брака, а для сдачи отпечатываются 80 % аэроснимков и допускается 10% брака. Сдаче подлежат 4 комплекта контактных отпечатков.

Для проявки аэропленки необходимо 463 литра проявителя.

Для контактной печати необходимо 1030 литров фиксажа.

Участки 1 2 3 4 5 6 7 8 9 10 11
Dacp 7,2 4,6 4,6 14,3 4,63 11,8 13,9 13,9 9,26 15,6 14,1
Пс км2/ч 100 160 160 70 160 80 70 70 90 70 70
tс час 0,7 0,3 0,1 2,0 0,1 1,4 1,0 1,0 0,5 3,3 2,0

Автор:

Комосов Дмитрий Юрьевич

Студент группы АГС – 41

Московского Колледжа Геодезии и Картографии

^ Предмет:

Фотограмметрия

Сдано в набор в конце декабря 1997 года. Подписано в печать в январе 1998 года. По техническим причинам печать была отложена до 1 марта 1998 года. Формат А4. Бумага DATA COPY laser ink-jet. Плотность 80 g/m2. Цвет белый. Тип печати струйный. Принтер EPSON Stylus color 600. Разрешение 360dpi. Титульный и последний листы отпечатаны на бумаге EPSON photo quality ink jet paper с разрешением 1440dpi. Тираж 1 экземпляр. ПРОДАЖЕ НЕ ПОДЛЕЖИТ. Права на данное издание принадлежат Комосову Дмитрию Юрьевичу. Любое коммерческое использование материалов возможно лишь с письменного разрешения автора.

Телефон в Москве: (095) 325-3821

Директор:

Хинкис Генадий ЛьвовичНаписано под руководством:

^ Главный редактор:

Давыдова Елена Андреевна

www.studmed.ru

Реферат: Реферат: Дешифрование аэрофотоснимков

Министерство образования и науки Российской Федерации

Якутский государственный университет им. М.К.Аммосова

Инженерно-технический факультет

Реферат по дисциплине «Инженерная геодезия»

на тему:

ДЕШИФРОВАНИЕ АЭРОФОТОСНИМКОВ

Выполнила студентка

З-ПГС-08

Мельнова Е.Б.

г.Якутск, 2009 г

СОДЕРЖАНИЕ

 

Введение

Глава 1. Аэрофотографическая съемка

Глава 2. Топографическое дешифрование аэрофотоснимков

Заключение

Список литературы

ВВЕДЕНИЕ

 

В современном мире аэрофотосъемка имеет важное значение. Полученные при аэрофотосъемке снимки особенно применимы в картографии, определении границ землевладений, видовой разведке, археологии, изучении окружающей среды, производстве кинофильмов и рекламных роликов и др. Ясно, каких огромных затрат и времени требует сплошное изучение, наземная съемка значительных территорий. Тем более этот подход малореален при комплексном изучении территории, ведь для одновременного изучения и растительного покрова, и почв, и геологического строения, и объектов хозяйственной деятельности человека требуется одновременно посылать на полевые работы специалистов многих профессий. Отметим также, что при проведении полевых обследований очень трудно, а для больших территорий невозможно, добиться синхронизированности, одновременности наблюдений во всех частях территории. Наблюдения в разных частях могут тогда относиться к разным фенологическим стадиям развития растений, разным состояниям погоды, разным этапам сельскохозяйственных работ. Короче, единственным этот метод сбора информации - в поле, при непосредственном посещении местности, при прямом контакте с ее объектами, быть не может. Он обязательно должен дополняться другими, неконтактными методами сбора информации, позволяющими охватить сразу значительные площади.

Эту задачу позволяет решить аэрофотосъемка. Первые аэрофотосъемки проводились еще с воздушных шаров на заре развития фотографии в середине XIX века, а уже в 20-30-е годы нашего века фотосъемка местности с самолетов стала широко применяться для создания лесных, топографических, геологических карт, для изыскательских работ.

 

Глава 1. АЭРОФОТОГРАФИЧЕСКАЯ СЪЕМКА

Аэрофототопографическая съемка – один из видов топографической съемки, который основан на фотографировании местности сверху: с борта тихоходных самолетов, вертолетов, искусственных спутников Земли. Сейчас она служит основным методом создания современных топографических планов и карт крупного масштаба, особенно на обширных труднодоступных и удаленных территориях, а также при комплексных и отраслевых исследованиях (геологических, почвенных, землеустроительных, инженерных и др.)

Важное преимущество аэрофотосъемки – объективность и информативность фотоснимков, по которым создается карта, а также то, что основной объем работы происходит в камеральных условиях. Она включает в себя собственно фотографирование, плановую и высотную подготовку снимков, дешифрование снимков и работы по обработке снимков – фотограмметрические работы.

Разные типы фотопленок позволяют получать различные типы снимков. Черно-белые АФС отображают объекты изменением тональности серого цвета; на цветных снимках местность изображается в цветах, близких к естественным; на спектрозональных снимках некоторые объекты, например растительные сообщества, изображаются в контрастных цветах, что облегчает их дешифрование.[1]

Чаще всего снимаемый участок не может быть размещен на одном снимке, тогда участок фотографируется последовательно маршрут за маршрутом. Съемочные маршруты летательного аппарата прокладываются прямолинейно, обычно с запада на восток и в обратном направлении, на постоянной высоте. При этом соблюдается перекрытие вдоль маршрута между снимками до 57-60% от рамки кадра и поперечное перекрытие между маршрутами – 20-40% от рамки кадра. Время съемки выбирается так, чтобы солнце не было скрыто облаками и стояло над горизонтом не слишком низко и не в зените (рис.1).

Рис. 1. Схема аэрофотографического залета и перекрытий снимков

Различают плановую и перспективную аэрофотосъемку. Плановая съемка – когда оптическая ось камеры отклоняется от отвесной линии не более чем на 3о; при большем угле наклона - съемка перспективная. В первом случае площадь, отображенная на одном снимке, будет меньше, но и искажения по краям снимка не будут такими сильными, как при перспективной съемке. [1]

Глава 2. ТОПОГРАФИЧЕСКОЕ ДЕШИФРОВАНИЕ АЭРОФОТОСНИМКОВ

аэрофототопографическая топографическая съемка дешифрование

Дешифрование – это процесс извлечения разнообразных информационных данных из фотоизображений земной поверхности. [3] При этом производится обнаружение, распознавание объектов, определение их географической сущности, установление их качественных и количественных характеристик и закрепление результатов изучения на снимке или карте условными знаками. Дешифрование не менее важно, чем сама аэрофотосъемка, так как является основным этапом создания и обновления топографических карт. Его качество зависит от оптических и геометрических свойств АФС, применяемых приборов, а также уровня знаний и опыта дешифровщика.

В зависимости от поставленных задач различают общегеографическое (топографическое и ландшафтное) и специальное (геологическое, почвенное, лесное, военное и др.) дешифрование.[3]

Топографическое дешифрование АФС производится с целью обнаружения и получения характеристик тех объектов, которые должны быть изображены на топографической карте. Оно может производится полевым, камеральным и комбинированным методом.

При полевом дешифровании объекты распознаются непосредственно на местности путем сличения АФС с натурой; при камеральном – изучают снимки в лабораторных условиях; при комбинированном – также и в поле, и по созданным эталонам дешифрования участков характерных ландшафтов.

Дешифрование АФС производится визуально или с помощью стереофотограмметрических приборов: стереоскопа, стереометра, стереопроектора. Во всех случаях дешифрование должно опираться на знание основных географических закономерностей и особенностей исследуемой местности, а также на изучение дешифровочных признаков объектов. Их делят на прямые и косвенные. Дешифровочными признаками считают характерные свойства объектов, по которым эти объекты могут быть обнаружены и опознаны.

Свойства объектов, отобразившиеся на АФС, называют прямыми признаками: размеры, форма, тень, цвет изображения объекта, а также структура фотоизображения.

Форма – основной прямой дешифровочный признак, выявляющий наличие объекта и некоторые его свойства. Например, на плановых аэрофотоснимках плоские объекты (пашни, озера и т.д.) сохраняют свои очертания. Тогда как вертикальные объекты (трубы, сооружения башенного типа и т.д.) изображаются в ортогональной проекции в центре снимка, а при удалении от центра (главной точки) приобретают все более перспективное.

Рис. 2. Определение формы объекта на АФС по изображению их теней

а – отклонение изображений высоких объектов. Тени объектов заштрихованы; б – определение высоты дерева h по длине его падающей тени l.

изображение, с наклоном от главной точки. По радиальному направлению форму объектов на АФС определяют по изображению их теней (рис. 2). Различают тени собственную и падающую. Часть объекта, расположенная со стороны, противоположной Солнцу, имеет собственную тень. Падающая тень отбрасывается объектом на поверхность Земли (другие предметы). Длина тени зависит от высоты Солнца и самого объекта. По теням на АФС определяют высоту объектов.

Размер изображения зависит от масштаба снимка. Линейная величина объекта определяется по формуле L=lm, где l – длина (ширина) объекта на снимке; L – длина объекта в натуре; m – знаменатель масштаба снимка.

Тон фотоизображения объекта зависит от степени почернения фотоэмульсионного слоя или яркости изображаемого объекта. Разный тон изображения на АФС обусловлен различной отражательной способностью, цветом объектов, условиями освещенности, качеством съемочной аппаратуры и фотоматериалов. Объекты с высоким коэффициентом яркости имеют на АФС более светлый тон (светлоокрашенные, сухие, гладкие, наиболее освещенные). А шероховатые и сильно увлаженные – более темный. [3]

Рисунок (структура) фотоизображения обусловлен повторяемостью и характером размещения отдельных деталей. Он создается закономерным сочетанием ряда элементов, составляющих объект, и передает структуру этого объекта.

Рис. 3. Признаки для определения направления течения реки по аэроснимку

1 – притоки впадают под острым углом к направлению течения; 2 – выносы протоков сносятся вниз по течению; 3 – слияние поток разной мутности; 4 – при обтекании препятствия (пороги, водопады) белые полосы вспененной воды вытянуты по течению; 5 – заводи слепым концом расположены против течения; 6 – заостренный конец косы направлен вниз по течению; 7 – остров имеет грушевидную форму с сужением вниз по течению; 8 – мели выгнуты по течению; 9 – зубцы отмелей на изгибах реки обращены вниз по течению; 10 – водохранилище имеет грушевидную форму с сужением вверх по течению; 11 – ледорезы перед мостом расположены вверх по течению; 12 – понтонные мосты и запани прогибаются вниз по течению.

Рисунок фотоизображения зависит от внутренних связей между компонентами ландшафта и процессов, происходящих в конкретном природном комплексе. Каждому природно-территориальному комплексу свойственен определенный рисунок, передающий его морфологические особенности. Различают бесструктурный рисунок, характерный для изображения спокойной водной поверхности, луговой растительности, и структурный – пятнистый, зернистый, точечный, полосатый и т.д. Например, пятнистый рисунок характерен для торфяно-бугристой тундры; полосатый – для изображения свежевспаханных полей; линейно-точечный – для посевов технических культур; зернистый отображает участки леса.

Существенное значение при дешифрировании АФС имеют косвенные признаки, основанные на связях и взаимозависимостях объектов местности. Зная географические закономерности, можно по прямым признакам опознать какие-то объекты и по ним выявить связанные с ними другие, хотя на снимке они не изображены.

При дешифрировании природных, экономических и других объектов широко применяют косвенные признаки. Так, например, грунтовая дорога подходит к реке и продолжается на другом ее берегу, очевидно, что через реку есть переправа. А если берега пологие, сильно разъезженные у воды, и на реке заметен перекат, то здесь возможен и брод. По рисунку проселочной дороги можно судить о грунтах местности: на влажных участках дорога сильно разбита, имеет много объездов; на песчаном грунте – границы дороги расплывчатые ; на глинистом грунте контур дороги резко выражен, как бы врезан. Направление течения реки можно определить по притокам, впадающим под острым углом к направлению течения; выносы притоков сносятся по течению реки; острова сужаются вниз по течению (рис. 3).

Объектами топографического дешифрования являются населенные пункты, пути сообщения, линии связи и электропередачи, элементы экономики и культуры, гидрографические объекты, рельеф, грунты и растительность.

Населенные пункты: четко выделяются структурой фотоизображения и геометрическими фигурами кварталов. Можно определить тип населенного пункта, характер планировки. Так, сельские населенные пункты располагаются на берегах рек, оврагов. Характерно наличие хозяйственных построек, приусадебных участков и т.д.

Пути сообщения: признаками являются форма и местоположение, светлый тон фотоизображения. Для железных дорог характерна прямолинейность отрезков пути, закругленность поворотов, наличие насыпей и выемок, придорожных сооружений. Автомобильные дороги на АФС изображаются светлыми линиями различной толщины и извилистости. Грунтовые дороги выделяются извилистыми светлыми линиями с наличиями объездов, разъезженных участков. Дороги с покрытием выделяются прямолинейностью, плавностью поворотов, наличие насыпей и выемок, мостов, обсадок.

Разъезженные участки дорог, объезды, выделенные на снимках, служат косвенными признаками для характеристики грунта, заболоченных участков местности.

Водные объекты на АФС имеют темный фототон. Для них характерны неправильные очертания, многообразие форм и окраски.

Реки, озера, пруды распознаются по форме островов, направлению притоков, мелей и т.д.

Рельеф местности во всем его многообразии наиболее четко распознается при стереоскопическом рассматривании аэрофотоснимков. Дешифровочными признаками служат плановая конфигурация, объемная форма, тень, структура фотоизображения, состав растительности и т.д.

Почвенно-растительный покров: прямыми дешифровочными признаками служат фототон, структура фотоизображения, форма падающей тени, рельеф полога в лесных сообществах, связь с рельефом и гидрогеографической сетью. Древесные насаждения опознаются на снимках по относительно темному тону и зернистой структуре. В тоже время структура фотоизображения зависит от формы, размера и яркости крон деревьев, состава и расположения из в лесном массиве. Для саженного леса характерна линейная структура, сады опознаются по правильному изображению «зерен». «Зерна» кустарников мельче, чем «зерна» деревьев, имеют рассредоточенное размещение и очень короткую тень. Травянистые и кустарниковые сообщества на снимках имеют общий серый тон, который сильно варьирует в зависимости от наличия вида растительности и степени влажности болот.

Пашни обладают четко выраженной геометрической формой границ, полосчатым рисунком и разнотонностью.

Отдешифрированные объекты изображают условными знаками на АФС или кальке. Изображение рельефа на АФС может быть получено или в поле путем топографической съемки, или путем рисовки рельефа на стереофотограмметрических приборах.

ЗАКЛЮЧЕНИЕ

По настоящему широкие перспективы открылись перед дистанционным зондированием только с развитием компьютерных технологий, переносом всех основных операций по обработке и использованию данных съемок на компьютеры, особенно в связи с появлением и широким распространением геоинформационных технологий, ГИС.

Дистанционное зондирование сегодня - это огромное разнообразие методов получения изображений буквально во всех диапазонах длин волн электромагнитного спектра от ультрафиолетовой до дальней инфракрасной и радиодиапазона, самая различная обзорность изображений - от снимков с метеорологических геостационарных спутников, охватывающих практически целое полушарие, до детальных аэросъемок участка в несколько сот квадратных метров. Пространственное разрешение может варьировать, соответственно, от нескольких километров до сантиметров.

По снимаемым спектральным диапазонам они могут различаться как полученные в одном спектральном диапазоне (чаще всего в широком видимом участке спектра, тогда их называют панхроматическими), съемки в реальных или условных цветах, когда одновременно совместно фиксируются 2 или 3 зоны спектра на одной и той же фотопленке (и дальше изображения в этих зонах уже реально неразделимы) и съемки многозональные - самый информативный и перспективный вид съемок, когда одновременно, но раздельно фиксируются несколько изображений в различных зонах спектра. Их может 3, 4, 5, 7 и даже больше, вплоть до недавно фантастических значений в несколько десятков и даже сотен узких спектральных зон. Если этих зон больше 16, то такие снимки уже называют не многозональными или мультиспектральными, а гиперспектральными. Такие съемки позволяют изучать спектры отражения объектов местности столь детально, что можно определить типы и даже конкретные виды растительности, горные породы и почвы, определить состав пленки загрязнений на поверхности воды, материал, из которого выполнено дорожное покрытие. Правда, в космическом варианте гиперспектральные съемки еще дело будущего.

В настоящее время обработку полученных изображений ведут с помощью специальных компьютерных комплексов — Цифровых фотограмметрических станций (ЦФС) — например, Intergraph ImageStation или PHOTOMOD. При этом дополнительно выполняются коррекции перспективы, дисторсии и иных оптических искажений, цветовая и тоновая коррекция полученных снимков, сшивка смонтированного фотоплана в единое изображение, каталогизация изображений, совмещение их с уже существующими картографическими материалами, включение в Географические информационные системы (ГИС) и пр.

СПИСОК ЛИТЕРАТУРЫ

 

1.  Картография с основами топографии: Учебное пособие для студентов пед.ин-тов по спец. «География»/Г.Ю.Грюнберг, Н.А.Лапкина, Н.В.Малахов, Е.С.Фельдман; Под ред. Г.Ю.Грюнберга. – М.: Просвещение, 1991. – 368с.: ил.

2.  Курошев Г.Д. Геодезия и топография: учебник для студ.вузов/Г.Д.Курошев, Л.Е.Смирнов. – 2-е изд., стер. – М.: Издательский центр «Академия», 2008. – 176 с.

3.  Южанинов В.С. Картография с основами топографии: Учеб. пособие. – М.: Высш. Шк., 2001. – 302 с.: ил.

www.neuch.ru

Реферат Аэрофотосъемка - RPS-0014.DOC

Реферат Аэрофотосъемкаскачать (97.8 kb.)

Доступные файлы (1):

содержание

RPS-0014.DOC

Реклама MarketGid:

Работу выполнил Комосов Д.Ю.

Группа АГС - 41

Исходные данные………………………………………….. 3Объект съемки……………………………………………... 4Схема объекта……………………………………………… 5Высотные характеристики объекта…………………….. 5Картограмма объекта съемки…………………………… 6Отношение высот………………………………………….. 7Заданные перекрытия снимков…………………………. 8Размеры съемочных участков…………………………… 8Базисы фотографирования………………………………. 9Количество маршрутов…………………………………… 9Общая ширина участков…………………………………. 9Количество маршрутов…………………………………… 9Количество аэрофотоснимков…………………………… 10Необходимые расходные материалы…………………… 10 Производительность………………………………………. 11

Аэрофотоаппарат

Фокусное расстояние АФА ……………………………300 мм

Формат аэроснимка ………………………………………18х18 см

Масштаб фотографирования

1/М …………………………………1:5 000

Количество

зарамочных снимков…………………………………………………………4

сдаваемых комплектов отпечатков………………………4

№№ Номенклатура трапеций hmax,

m

hmin,

m

1
К – 42 – 7 – А – б – 1
468 370
2 – 7 – А – б – 2 410 350
3 – 7 – А – б – 3 425 160
4 – 7 – А – б – 4 508 407
5 – 7 – А – в – 3 512 490
6 – 7 – А – в – 4 601 350
7 – 7 – А – г – 1 501 480
8 – 7 – А – г – 2 595 436
9 – 7 – А – г – 3 611 390
10 – 7 – А – г – 4 750 560
11 – 7 – Б – а – 1 930 824
12 – 7 – Б – а – 3 949 700
13 – 7 – Б – г – 1 1195 915
14 – 7 – Б – г – 2 973 830
15 – 7 – Б – г – 3 935 770
16 – 7 – Б – г – 4 980 820
17 – 7 – В – а – 1 1112 807
18 – 7 – В – а – 2 1033 867
19 – 7 – В – б – 1 1051 867
20 – 7 – В – б – 2 391 350
21 – 7 – Г – а – 1 387 310
22 – 7 – Г – а – 2 630 350
23 – 7 – Г – а – 3 701 625
24 – 7 – Г – а – 4 751 570
25 – 7 – Г – б – 1 530 500
26 – 7 – Г – б – 2 782 521
27 – 7 – Г – б – 3 723 500
28 – 7 – Г – б – 4 790 503
29 – 7 – Г – в – 1 797 560
30 – 7 – Г – в – 2 813 601
31 – 7 – Г – в – 3 778 570
32 – 7 – Г – в – 4 802 565
33 – 7 – Г – г – 1 772 620
34 – 7 – Г – г – 2 797 701
35 – 7 – Г – г – 3 991 739
36 – 7 – Г – г – 4 971 750
37 – 8 – А – в – 1 1017 760
38 – 8 – А – в – 3 963 769
39 –19– Б – а – 1 893 764
40 –19– Б – а – 2 825 785
41 –19– Б – б – 1 727 703
42 –19– Б – б – 2 713 601
^ 32083 25400

69o

69o30’

44o

1 2 1
3 4 3
1 2 1 2 1
3 4 3 4 3 4 3
1 2 1 2 1 2 1 2

69o

33’

45”

3 4 3 4
1 2 1 2
3 4 3 4

43o40’

1 2 1 2

43o37’30”

Высота фотографирования ……………………………1500 m

Максимальная высота объекта (с карты)……………1195 m

Минимальная высота объекта (с карты)………………160 m

Критерий рельефа hmax - hmin …………………………………………0.69

Схема объекта с разбивкой его на съемочные трапеции. Съемочной трапецией будет трапеция масштаба 1:10 000. Трапеции обозначаем порядковыми номерами.

468 0.06

370 419

410 0.04

350 380

930 0.07

824 877

425 0.18

160 292

508 0.07

407 458

949 0.17

700 824

501 0.01

480 490

595 0.11

436 516

1195 0.19

915 1055

973 0.09

830 902

1017 0.17

760 888

512 0.01

490 501

601 0.17

350 576

611 0.15

390 500

750 0.13

560 655

935 0.11

770 852

980 0.11

820 900

963 0.13

769 866

1112 0.20

807 960

1033 0.11

867 950

1051 0.12

867 959

391 0.03

350 370

387 0.05

310 348

630 0.19

350 490

530 0.02

500 515

782 0.17

521 652

701 0.05

625 663

751 0.12

570 660

723 0.15

500 612

790 0.19

503 646

797 0.16

560 678

813 0.14

601 707

772 0.10

620 696

797 0.06

701 749

778 0.14

570 674

802 0.16

565 684

991 0.17

739 865

971 0.15

750 860

893 0.09

764 828

825 0.03

785 805

727 0.02

703 760

713 0.07

601 757

Наивыгоднейшие размеры съемочного участка, выраженные числом съемочных трапеций на широте 70о при условии прокладки съемочных маршрутов с запада на восток и с востока на запад: вдоль маршрутов – 8 трапеций, поперек маршрутов - 3 трапеции. Границы съемочных участков проведены утолщенными линиями.

Отношение разности экстремальных высот местности к высоте фотографирования и поправки за рельеф в перекрытия снимков для каждого съемочного участка.

Участки 1 2 3 4 5 6 7 8 9 10 11
h

H

0.10 0.17 0.18 0.27 0.19 0.17 0.20 0.21 0.19 0.21 0.26
qx, % 2 4 4 6 4 4 4 5 4 5 6
qy, % 4 7 7 11 8 7 8 8 8 8 10

Где:

h – разность экстремальных высот местности в пределах съемочного участка;

H- высота фотографирования;

qx,qy – поправки за рельеф в соответствующие перекрытия снимков;Минимальные перекрытия: продольное 56%, поперечное 20%. Навигационные поправки в перекрытия снимков qmx = 5%, qmy = 13%. Пилотажная поправка в перекрытия снимков: q = 5%.

Участки 1 2 3 4 5 6 7 8 9 10 11
Qx, % 68 70 70 72 70 70 70 71 70 71 72
Qy, % 42 45 45 49 46 45 46 46 46 46 48

Где:

Qx – продольное перекрытие снимков;

Qy – поперечное перекрытие снимков;Размеры топографических трапеций масштаба 1:10 000 для широты северной рамки 44о будут соответствовать ширине 5,02 км по средней параллели, и длине 4,63 км по среднему меридиану. Площадь такой трапеции составит 23,22 км2.

Участки 1 2 3 4 5
Da/Dc км 9.26 \ 5.02

4.63 \ 5.02

4.63 \ 10.04 4.63 \ 5.02 9.26 \ 5.02

18.52 \ 5.02

4.63 \ 5.02
Руч 69.66 46.44 23.22 139.32 23.22

Участки 6 7 8 9 10 11
Da/Dc км 9.26 \ 5.02

13.89 \ 5.02

13.89 \ 5.02 13.89 \ 5.02 9.26 \ 5.02 18.52 \ 10.04

9.26 \ 5.02

9.26 \ 5.02

18.52 \ 5.02

Руч 116.10 69.66 69.66 46.44 232.20 139.32

Где:

Da – длина съемочного участка;

Dc – ширина съемочного участка;

Руч – площадь съемочного участка;

Базисы фотографирования Bx и расстояние между съемочными маршрутами By будут равны:

Участки 1 2 3 4 5 6 7 8 9 10 11
Bx, M 228 270 270 252 270 270 270 261 270 261 252
By, M 552 495 495 459 486 495 486 486 486 486 468

В следующей таблице расчитано количество маршрутов в участках Ny и общая ширина участка как сумма Dc его прямоугольных частей. Величину увеличения числа маршрутов примем равную 2, так как объект съемки имеет горный рельеф.

Участки 1 2 3 4 5 6 7 8 9 10 11
Dcуч,км 10,04 10,04 5,02 10,04 5,02 10,04 5,02 5,02 5,02 15,06 10,04
Ny уч 20 22 12 22 12 22 12 12 12 32 23

Далее рассчитано количество аэроснимков в маршрутах Nx, количество маршрутов в наибольших прямоугольных частях участков Ny, общее количество аэроснимков по участкам Nуч и необходимое для съемки каждого участка количество погонных метров аэропленки. Количество зарамочных снимков в маршруте Nзр = 4. Коэффициент увеличения количества аэроснимков за счет возможных ошибок в выдерживании их перекрытий Ксн = 1.15.

Участки 1 2 3 4 5 6 7 8 9 10 11
Nx/Ny 45/11

25/11

22/22 22/12 41/12

78/12

22/12 39/12

56/12

56/12 58/12 39/12 75/22

40/12

41/12

78/12

Nуч 886 557 304 1643 304 1311 773 801 539 2501 1643
Lап, м 178 112 61 329 61 263 155 161 108 501 329

Площадь объекта Роб и общее количество аэроснимков на объект Nоб составит: Роб = 975,24 км2 Nоб = 11 262.Для съемки необходимо 40 катушек пленки по 60 метров и одна катушка по 35 метров с учетом 4 метров технологических отходов на катушку. Для показаний радиовысотомера необходимо 676 погонных метров, что соответствует 12 катушкам пленки по 60 метров с учетом 1 метра технологических отходов на катушку.

Для обработки необходимо 51 468 листов фотобумаги из расчета того, что при выполнении накидного монтажа печатаются все аэроснимки, и допускается 5% брака, а для сдачи отпечатываются 80 % аэроснимков и допускается 10% брака. Сдаче подлежат 4 комплекта контактных отпечатков.

Для проявки аэропленки необходимо 463 литра проявителя.

Для контактной печати необходимо 1030 литров фиксажа.

Участки 1 2 3 4 5 6 7 8 9 10 11
Dacp 7,2 4,6 4,6 14,3 4,63 11,8 13,9 13,9 9,26 15,6 14,1
Пс км2/ч 100 160 160 70 160 80 70 70 90 70 70
tс час 0,7 0,3 0,1 2,0 0,1 1,4 1,0 1,0 0,5 3,3 2,0

Автор:

Комосов Дмитрий Юрьевич

Студент группы АГС – 41

Московского Колледжа Геодезии и Картографии

^ Предмет:

Фотограмметрия

Сдано в набор в конце декабря 1997 года. Подписано в печать в январе 1998 года. По техническим причинам печать была отложена до 1 марта 1998 года. Формат А4. Бумага DATA COPY laser ink-jet. Плотность 80 g/m2. Цвет белый. Тип печати струйный. Принтер EPSON Stylus color 600. Разрешение 360dpi. Титульный и последний листы отпечатаны на бумаге EPSON photo quality ink jet paper с разрешением 1440dpi. Тираж 1 экземпляр. ПРОДАЖЕ НЕ ПОДЛЕЖИТ. Права на данное издание принадлежат Комосову Дмитрию Юрьевичу. Любое коммерческое использование материалов возможно лишь с письменного разрешения автора.

Телефон в Москве: (095) 325-3821

Директор:

Хинкис Генадий ЛьвовичНаписано под руководством:

^ Главный редактор:

Давыдова Елена Андреевна

Скачать файл (97.8 kb.)

gendocs.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.