Геодезические измерения (стр. 1 из 2). Контрольный метр в геодезии


Геодезические измерения

Понятие о геодезии как о науке и её разделах

Геодезия – наука об измерениях на земной поверхности. Геодезия – наука, изучающая фигуры земли, её внешнее гравитационное поле и гравитационное поле планеты солнечной системы, расположение объектов земной поверхности, формы и рельефа земли и занимающаяся измерениями в натуре, необходимые для решения разных производственно-технических задач народного хоз-ва и обороны страны. Разделы геодезии : 1. Высшая геодезия – раздел геодезии, занимающийся определением фигуры земли в глобальном плане. 2. Геодезия – занимается созданием опорных геодезических сетей на отдельных участках земной поверхности, необходимых для производства съёмок для народного хоз-ва. 3. Инженерная геодезия (топография): геодезически-топографические работы при изысканиях проектировании, строительстве инженерных объектов и т.д. 4. Фототопография – занимается методами фотографирования земной поверхности и состоянием планов, карт поверхности. 5. Картография – занимается методами составления карт, использования их и решения задач народного хоз-ва. 6. Маркшейдерское дело (горная геодезия) – работы, связанные с эксплуатацией месторождений полезных ископаемых. 7. Космическая геодезия – изучение космоса. (траектория полёта спутника).

Задачи геодезии

1. Определение фигуры земли, установление её формы и размеров, её внешнего гравитационного поля. 2. Определение положения отдельных точек земной поверхности в выбранной системе координат. 3. Выполнение измерений на земной поверхности в необходимых для изысканий, проектирования, строительство сооружений, эксплуатации месторождений полезных ископаемых, землеустройства. 4. Обеспечение геодезическими данными нужд обороны страны.

Фигура земли, её формы и размеры

В геодезии введено понятие уровенной поверхности. Уровенной наз выпуклую поверхность, касательная к которой в любой точке перпендикулярна направлению отвесной линии. За фигуру земли принимают геоид. Геоид – фигура, которую образовала бы средняя поверхность мирового океана и морей при некотором среднем уровне воды, свободного от возмущения, вызванного приливами, отливами, течениями, разностью давления, температурой. Фигура земли назвали эллипсоид. Если производить точн геодезич измерен на больших территориях, тогда за форму земли принимают эллипсоид (от 200 км). а – 6378245,00 м, в – 6356803,02 м – полуоси. α – а-в/а = 1:298,3 – полярность сжатия. На участках до 200 км за фигуру земли принимают шар (R = 6371 км). На участках до 20 км – плоскость.

Плоская прямоугольная система координат

При работе на небольших территориях применяется местная система плоских прямоугольных координат. х – расстояние от экватора до точки. у – расстояние от осевого меридиана до точки.

Полярная система координат

β – угол от полярной оси до заданной стрелки. Изменяется от 0 до 360. r – расстояние от полюса до заданной точки. На практике направлен полярной оси выбирают произвольно.

Абсолютные, условные, относительные высоты точек

Возьмём на поверхности земли 2 точки А и В.

Расстояние по вертикали от уровенной поверхности до заданной точки земной поверхности - абсолютная высота точки (Н). Не всегда нужно искать абсолютную высоту, можно взять условную поверхность – расстояние от условной отсчётной поверхности до заданной точки. Расстояние по вертикали между двумя смежными точками – относительная высота (превышение). Высота точки, выраженная числом – отметка. НА – 120,375 м. За уровенную поверхность принята среднее положение уровня Балтийского моря.

Понятие об ориентировании

Заключается в определен расположен линий, относит исходного направлен, в кач-ве кот приним истинный (географич) медиан, осевой медиан, магнитный медиан. направление линий местности определ горизонт углами, азимутами (истинным, магнитным), дирекцион углом, румбом.

Истинный и магнитный азимуты

Магнитный азимут (Ам) – угол, отсчитан по ходу часов стрелки от северного направлен магнитного меридиана до направлен линий на местности. Истинный азимут (А) - горизонтальн угол, отсчитан по ходу часов стрелки от северного направлен географич меридиана до направлен линий на местности.

Дирекционные углы, румбы

Дирекционные углы - угол, отсчитан от северного направлен осевого меридиана и линий, ему параллельн по ходу часовой стрелки до заданного направлен. Румб – угол между ближайшим северным или южным направлением меридиан и направлен линий. Измер от 0-90. Все остальные от 0-360. α = Ам + (σ-γ). α – дирекцион угол, Ам – магнитн азимут, σ – магнитное склонение, γ - сближение меридианов. Дирекц угол на карте измер с помощью транспортира.

Проекции, применяемые в геодезии

В геодезии применяется множество проекций при составлений карт и планов. 1. Азимутальные проекты (сферическая проекция). Элементы её: меридиан и параллель. 2. Картографическ проекция. Изображается поверхность земного шара на плоскости. 3. Конические проекции. Система координат - конические окружности. 4. Перспективные проекцию получаемые проектированием точек поверхности шара на касательную ему поверхность. 5. Поликонические проекции. 6. Равновеликие проекции – проекции, в которых сохраняются отношения площадей любых фигур на земном эллипсоиде и на карте. 7. Равнопромежуточные проекции. 8. Равноугольн проекции. Здесь сохран углы изображаемых фигур. 9. Гноманическая проекция. Здесь точка зрения находится в центре шара. 10. Стереографические проекции. Точка зрения на поверхности шара. 11. Ортогональные проекции – проекция на плоскость осущ-ся посредством проектирующих лучей перпендикулярных к плоскости проектирования.

Геодезические измерения, виды измерений, единицы мер

Нахождение физической величины с помощью спец технич средств в принятой системе единиц. Их подраздел на 3 группы: 1. Угловые - определ значен гориз и вертик углов, с помощью спец приборов. 2. Линейные – опред значен наклон и горизон линий на местности. 3. Высотные – определ абсолютн высот точек или превышен между ними.

Виды ошибок измерения

Измерен, выполнен один раз заверены. 3 группы ошибок 1. Грубые - ошибки, зависящ от исполнителя. 2. Систематич – возник по причине инструментов. 3. Случайные – любая из случайностей.

Классификация теодолитов. Электронные тахеометры

Предназначен для измерен горизонт, вертик углов, т/ж расстояние при помощи нитяного дальномера. Различ по точности, назначен. По точности измерен углов среди оптич теодолитов выдел: высокоточечные (Т-1, Т-05), точные (Т-2, Т-5), технич (Т-15, Т-30). Электрон техеометр – прибор, объединяющ в себе возможности электрон теодолита и лазерного дальномера. Имеет память для сохранен рез-тов измерения, обеспечен контролем, снабжён встроенным программным обеспечением для решения большого числа геодезич задач.

Измерение горизонтальных углов

Существ способы измерения горизонт углов: 1. Способ приёмов – примен, когда из вершины измеряемого угла выходит не более 2 направлений.

АВ, АС – стороны измеряемого угла. Правый угол – если от В к С. Левый угол – от С к В. Точка В – правая задняя, С – левая передняя. В точку А ставим теодолит и приводим его в рабоч положение. закрепляем лимб, открепляем алидаду, зрительную трубу наводим на точку В. По горизонтальн кругу теодолита берём отсчёт в1 (произвольный). Открепляем алидаду и зрит трубу наводим на точку С и берём отсчёт с1 . Это измерение выполненное при одном положении теодолита наз полуприёмом. β1 =в1 -с1 – угол в полуприёме. 2. Способ круговых приёмов . Применяют, когда из вершины угла выходит несколько направлений. 01 – начальное направление, а1 = 0°05'. На лимбе устанавливают отсчёт, близкий к 0. Закрепляем алидаду, открепляем лимб и выбираем начальное направление и с этим отсчётом наводим зрит трубу на нач направление. Закрепляем лимб, открепляем алидаду и зрит трубу по ходу часовой стрелки наводим на все точки. Берём отсчёты а1 ,а2 ,…,а6 и повторно наводим на нач точку а1 => а1 '. трубу проводим через зенит, открепляем алидаду, 3-ий раз наводим на начальную точку и берём отсчёт а1 ''. Теодолит поворачиваем против хода часовой стрелки и снимаем отсчёт => в нач точке а1 '''. Углы вычисляем как разность отсчётов по сторонам углов. 3. Способ повторения . Над точкой устанавливают теодолит. На лимбе устанавлив отсчёт, близкий к 0. (аллидада откреплена). Открепляем лимб, прикрепляем алидаду и этим отсчётом наводим на точку А, открепляем алидаду и зрит трубой наводим на 2 точку, берём контрольный отсчёт Ак. N – число повторений. Β = (А – А1 + N 360°) / 2N.

Измерение вертикальных углов

Угол наклона – угол между направлением визирной оси на точку и проекций на горизонтальную плоскость. Углы + (выше оси) и – (ниже оси). Условие измерения вертикальн углов. Когда визирная ось принимает горизонтальное положение, пузырёк уровня горизонтального круга или горизонтальности отсчётного индекса у теодолита с компенсатором отсчёта по вертикальному кругу должен быть = 0. Отсчёт по вертикальн кругу когда визирная ось горизонтальна, а пузырёк уровня вертикального круга ил горизонтальности отсчётного индекса у теодолитов с компенсаторами называется местом нуля. МО =

КЛ – круг слева, КП – круг справа. υ = КЛ-МО = МО-КП =

Линейные измерения

Вид геодезических измерений. Непосредственно (рулетка, землемерная лента, метр). Рулетки стальные (дм. см. мм) на вилке и футляре и тесемочные в пластмассовом корпусе. Землемерная лента: 20, 24,30,50 м. 1,5см-ширина,0,5мм-толщина. Номинальная длина между штрихами на ее концах, вырезы для шпилек, пластинки с метрами, клепки - 0,5м, отверстия-10см. Косвенно: дальномер – прибор для измерения линий. Оптические, нитяные, физические, двойного изображения.

mirznanii.com

Раздел 2 Геодезические измерения

Тема 2.1 Топографические съемки

Общие сведения о топографических съемках

Строительство, реконструкция и благоустройство промышленных или гражданских объектов осуществляются на основе проектов застройки, детальной планировки и рабочих чертежей. В свою очередь, разработка проекта требует создания исходных топографических материалов (карт, планов и профилей), которое сводится к определению взаимного положения различных элементов ситуации и рельефа и к отображению полученной информации.

Полевые геодезические измерения, выполняемые с целью создания карт, планов и профилей, называют съёмкой.

В зависимости от характера конечной продукции определяется состав работ. Если требуется получить план (карту) местности без изображения рельефа, то выполняют горизонтальную или контурную съемку, если с изображением рельефа, то топографическую.

Для получения изображения рельефа или высотных характеристик применяют высотную или вертикальную съемку.

При съемке небольших участков местности, как это встречается в строительстве, чаще всего применяют наземную съемку, которая в зависимости от наименования основного прибора получает соответствующее название: теодолитная - выполняется с помощью теодолита и мерных приборов, в результате получают контурный план; тахеометрическая - с помощью тахеометра, в результате получают план с изображением рельефа; мензульная - с помощью мензулы и кипрегеля, топографический план с изображением рельефа получают непосредственно в поле;

фототеодолитная - с помощью фототеодолита, в результате можно получить как контурный, так и топографический план.

На геодезической практике студент должен приобрести навыки в производстве простейших видов топографических съемок, научиться выбирать наиболее рациональные способы съемки ситуации и рельефа в зависимости от особенностей местности, а также освоить методику выполнения полевых и камеральных работ.

Общими характерными признаками участка для топографической съемки должны быть:

пересеченная местность с четко выраженными формами рельефа;

наличие на участке достаточного количества элементов ситуации и предметов местности;

наличие на участке капитальных зданий и сооружений, выходов подземных коммуникаций (водостоки, колодцы, люки/камеры и т.д.).

До начала работ необходимо уяснить цель составления топографического плана данного участка местности и возможные варианты его использования, так как от этого зависит выбор масштаба съемки. Например, планы масштаба 1:2000 используются прежде всего для составления проектов

детальной планировки микрорайонов города или поселка, для ведения оперативного плана района с подземными коммуникациями, для составления генеральных планов поселков и т.д. Планы масштаба 1:500 используются для разработки стройгенплана объекта строительства, для составления рабочих

чертежей. Топографическая съемка осуществляется по принципу «от общего к частному»: сначала определяется взаимное положение основных (опорных) точек, т.е. создается съемочное обоснование (плановое и высотное), а затем производится съемка подробностей ситуации и рельефа.

Заканчивается работа составлением топографического плана участка.

Проведение планово-высотного обоснования

Для съемки местности в дополнение к пунктам государ­ственной геодезической сети создается плановое и высотное геодезическое обоснование. Плановым съемочным обосно­ванием крупномасштабных съемок (1:5 000 — 1:500) являют­ся, как правило, теодолитные ходы, проложенные между пун­ктами государственной геодезической сети. Теодолитные ходы могут быть замкнутыми и разомкнутыми, опирающи­мися на две точки с известными координатами. При съемке небольших участков допускается прокладка теодолитных ходов без привязки их к пунктам государственной геодези­ческой основы. Теодолитные ходы прокладываются также при обмерах архитектурных сооружений и служат плановым обоснованием для детальных обмеров фасадов и интерьеров. Существуют и другие способы создания планового геодези­ческого обоснования: микротриангуляция, прямые, обратные и комбинированные засечки.

Высотным съемочным обоснованием служит, как прави­ло, нивелирный ход, проложенный по пунктам теодолитного хода.

      1. Плановое обоснование

Задача: усвоить методику создания планового обоснования на строительном участке, закрепить навыки измерения горизонтальных углов и расстояний на местности, научиться самостоятельно выполнять обработку геодезических измерений и вычислять координаты точек обоснования. Приборы и принадлежности: теодолит, штатив, три вешки, мерный прибор, колышки для закрепления вершин хода, молоток, журналы измерений горизонтальных углов и длин линий, микрокалькулятор или таблицы приращений, координат, бланк ведомости вычисления координат, карандаши, ручки, чертежная бумага, рабочие тетради.

Рисунок 7 - Схемы планового обоснования:

а - полигон; б - ход, опирающийся на один исходный пункт

До начала работы составляют график распределения обязанностей. Образец графика для бригады из 5 студентов (А, Б, В, Г, Д) применительно к схеме ходов на рисунке 7, а приведен в таблице 2.

Плановое съемочное обоснование создается проложением основного и диагонального теодолитных ходов. Основной теодолитный ход опирается на два пункта опорной геодезической сети (см. рисунок 7, а) или прокладывается в виде замкнутого полигона (рисунок 7, б), точки которого

расположены примерно по границе участка.

Ход I-VI-V, проложенный внутри полигона для съемки ситуации, называют диагональным. Полевые геодезические работы при создании съемочного обоснования включают:

Таблица 3- График распределения обязанностей

Рекогносцировка участка

Рекогносцировка служит для окончательного выбора положения на местности вepшин теодолитного хода и привязки точек съемочного обоснования к пунктам геодезической сети.

Рекогносцировка выполняется при непосредственном руководстве преподавателя и участии всех членов бригады. Одна из вершин теодолитного хода принимается за начальную и закрепляется временным знаком (металлической трубкой диаметром 2 - 3 см, костылем, деревянным колышком и т.д.). Смежные с ней вершины выбирают с таким расчетом, чтобы было удобно выполнять угловые и линейные измерения, а также производить съемочные работы. Между смежными вершинами должны быть хорошая взаимная видимость и благоприятные условия для линейных измерений.

Для проверки видимости на смежных вершинах теодолитного хода устанавливают вешки.

Видимость между точками считается хорошей, если вешка видна на 3/4 высоты. После установления видимости начальную точку закрепляют окончательно (забивают вровень с землей), а процесс рекогносцировки продолжают, переходя на следующую точку. Для облегчения отыскания точки ее окапывают канавкой. При этом разные бригады применяют различные формы окопки. В конце практики, после приемки руководителем полевой части работ, колышки из земли удаляют.

Запрещается устанавливать (закреплять) пункты теодолитного хода на проезжей части дорог или на дорожках для пешеходов.

Измерение горизонтальных углов

Перед началом работ должны быть выполнены все поверки теодолита и проведено компарирование мерного прибора.

Обычно измеряют внутренние углы полигона. Если ход проложен по часовой стрелке, то измеряют правые по ходу углы. Отсчет по горизонтальному кругу берут сначала на предшествующую, а затем на последующую точки. Так, на точке II берут отсчет на точку I, а затем на точку III. Если ход проложен против часовой стрелки, то измеряют левые по ходу углы, то есть отсчеты сначала берут на предшествующую, а затем на последующую токи.

Точка, над которой устанавливают теодолит для выполнения измерений, называют станцией. На каждой станции теодолит приводят в рабочее положение: центрируют над вершиной угла; приводят вертикальную ось прибора в отвесное положение; подготавливают зрительную трубу теодолита к наблюдению.

Центрирование теодолита над вершиной угла осуществляют с помощью отвеса или оптического центрира. Прибор центрируют тем точнее, чем короче стороны теодолитного хода. Погрешность m ц в измерении угла за центрирование можно вычислить до начала измерений по формуле

,

глее где т β - погрешность измерения угла; D - длина наиболее короткой стороны угла.

Приняв погрешность m ц в два раза меньше погрешности m β и длину короткой стороны D = 100 м, получим

Из этого следует, что при работе теодолитом 30-секундной точности на сторонах угла D = 100 м ошибка центрирования не должна превышать 7 мм. При более коротких сторонах погрешность центрирования должна быть меньше. Приведение вертикальной оси в отвесное положение выполняют при помощи цилиндрического уровня и трех подъемных винтов.

После установки теодолита в рабочее положение приступают к измерению углов хода. При двух направлениях на станции углы измеряют способом полуприемов. Если число направлений больше двух, применяют способ круговых приемов.

Расхождения значений углов в полуприемах не должны превышать двойной точности прибора. За окончательный результат принимают среднее арифметическое значение угла из двух полуприемов. Для ориентирования линий теодолитного хода, а также для контроля измерения углов

целесообразно отсчитывать по буссоли магнитные азимуты сторон хода и записывать их в журнал.

Измерение сторон теодолитного хода

Измерения сторон теодолитного хода производят последовательным уложением мерной ленты вствор линии. Мерные ленты или рулетки не должны отклоняться от створа. Для указания створа линии длиной более 150 м устанавливают дополнительные вешки. Перед измерением необходимо расчистить створ от посторонних предметов (камней, завалов и т.д.).

Привязка планового обоснования к пунктам опорной геодезической сети

В тех случаях, когда участок съемки удален от пунктов опорной геодезической сети, для получения прямоугольных координат точек планового обоснования выполняют дополнительные геодезические измерения. Так, на рисунке 6 б, кроме внутренних углов и сторон основного теодолитного хода, измерены два дополнительных угла на точках VII и пз 7110, а также длина стороны пз 7110 - VII.

Обработка результатов измерений. Вычислительные работы начинают с проверки во «вторую руку» полевых журналов. Если не выполнить эту работу, то ошибки полевых вычислений обнаружатся только после полной обработки материалов, что повлечет за собой переделку всей работы.

Затем в журнале измерения горизонтальных углов составляют рабочую схему теодолитного хода. На схеме показывают пункты опорной геодезической сети, исходные направления, вершины и стороны теодолитных ходов. Исходные пункты и стороны показывают красным цветом. На схему выписывают названия пунктов, значения горизонтальных углов и длин сторон. Для ориентирования на схеме стрелкой показывают направление север - юг.

Вычисления координат вершин теодолитного хода производят в специальной ведомости (таблица 4) в следующей последовательности:

1. Со схемы теодолитного хода в графу 1 ведомости выписывают названия исходных пунктов и вершин основного теодолитного хода, начиная с ориентирного направления пз 7109-пз 7108 и до направления пз 7109-пз 7109, а из журнала измерения углов выписывают в графу 2 значения

измеренных углов и для контроля сверяют их со схемой хода.

Из журнала измерений линий выписывают в графу 6 значения горизонтальных проложений d i и сверяют их для контроля со схемой теодолитного хода.

2. В графу 4 выписывают значения исходных дирекционных углов α 7109-7108 , а в графы 11 и 12 - абсциссы и ординаты пунктов 7108 и 7109. Исходные данные вписывают красным цветом.

3. Подсчитывают в графе 2 сумму измеренных углов и вычисляют угловую невязку хода

, (5)

где Σβ т - теоретическая сумма углов хода, которую вычисляют по формулам:

Σβ т = α н - α к + 180° (n + 1) - для правых углов;

Σβ т = α к - α н + 180° (п + 1) - для левых углов;

Σβ т = 180° (п - 2) - для замкнутого полигона,

где α н и α к - ориентирные дирекционные углы начальной и конечной сторон хода; п - число сторон хода.

Таблица 4 - Ведомость вычислений координат вершин оси основного теодолитного хода

Невязку, полученную по формуле (5), сравнивают с допустимой

Если угловая невязка получилась больше допустимой, надо второй раз проверить вычисление углов в полевом журнале, затем проверить углы, пользуясь магнитными азимутами сторон хода, и выявить, какие углы надо измерить повторно на местности.

Необходимо помнить, что по магнитным азимутам можно обнаружить только грубые промахи в измерении углов. Если угловая невязка меньше допустимой, ее распределяют на все углы поровну. Поправку δ β , которую вычисляют по формуле

округляют до 0,1′.

Если f β не делится без остатка на n, то большую по абсолютной величине поправку вводят в углы с короткими сторонами.

В теодолитных ходах небольшой длины поправки в измеренные углы можно вводить так, чтобы углы оказались округленными до целых минут.

Для контроля подсчитывают сумму поправок, она должна точно равняться невязке, взятой с обратным знаком.

4. По формуле

вычисляют исправленные значения углов и выписывают их в графу 3 ведомости. Сумма исправленных углов должна точно равняться теоретической сумме углов хода.

5. По исправленным значениям углов вычисляют дирекционные углы сторон хода:

α i + 1 = α i ± 180° - β - для правых углов; (6)

α i + 1 = α i + β ± 180° - для левых углов, (7)

Таблица 5 - Перевод дирекционных углов в румбы

где α i и α i + 1 - дирекционные углы предшествующей и последующей сторон хода. Вычисления начинают с дирекционного угла α н исходной стороны. В табл. 5 это сторона пз 7109 - пз 7108.

В примере дан порядок записи при вычислении дирекционных углов по формуле (7) для таблицы 2.

Контролем правильности вычислений служит равенство вычисленного и исходного значений конечного дирекционного угла. В рассматриваемом примере это значение для стороны пз 7109 - пз 7108 равно α к = 339°03,2′. Дирекционные углы сторон выписывают в графу 4.

6. Если приращения координат, предполагается определять с помощью таблиц, то в графу 5 выписывают румбы сторон.

Для определения названия и вычисления румба используют данные, приведенные в таблице 3.

studfiles.net

11. Виды геодезических измерений. Единицы измерений. Погрешности измерений, их классификация.

Вид геодезических измерений– классификационная категория геодезических измерений, выделяемая по признаку измеряемой геодезической величины.

Различают следующие виды геодезических измерений:

Измерениямогут быть прямыми и косвенными. Прямое – непосредственное накладывание единицы измерения на накладываемую величину. Косвенные – измерения величин и вычисления по ним искомой величины. Геодезические измерения состоят из условных и линейных. В линейных используется метрическая система (десятичная), где каждая последующая мера в 10 раз больше предыдущей. За единицу м. с. принят метр; 1м = 1/40млн дуги меридиана. Первый эталон был создан в 1799 году из сплава элидии и платины. В 1889 г было создано еще 34 таких эталона. 2 эталона №28 и №11 хранятся в России в Питере в Метрологическом музее.

1м = 10дм ,1дм = 10см, 1см = 10мм, 100м2 = 1ар, 100ар = 1Га, 1км2 = 1000000км2, 1 дюйм =

2.54 см(ширина большого пальца руки), 1 фут- длина ступни

Угловые измерения. Измеряются стягивающими их длинами дуг. Измеряются в градусах, минутах, секундах.

1о = 60’ ;1’ = 60’’; 1о = 360’’

1g = 0,9° (гон или град-единицы измерения плоских углов.) 1mg= 0,001g=3,24”

1рад – угол, который стягивает дуга, равная R.

1рад = 57,3о ; ρ’ = 34,38’; ρ’’ = 206,265’’

Погрешность геодезических измерений

Все измерения, как бы тщательно они не были выполнены, сопровождаются погрешностями. В этом легко убедиться, измерив одну и ту же величину несколько раз и сравнив полученные результаты. В общем случае они будут отличаться друг от друга.

Под погрешностью измерения ε понимают разность между результатом данного измерения l и истинным или действительными значением измеряемой величины Х:

ε = l-X . (2.1)

Другими словами, погрешность равна тому, что есть, минус то, что должно быть. Каждый из пяти факторов, перечисленных в п.1.2, порождает ряд так называемых элементарных погрешностей. Таким образом, погрешность ε — суммарное воздействие элементарных погрешностей.

Все погрешности измерений можно подразделить на три группы:

1.Грубые погрешности или промахи, резко отклоняют результаты измерений от истинного значения. Всегда они возникают только по вине исполнителя. В теории погрешностей грубые погрешности не изучают. Их необходимо своевременно обнаружить, а результаты измерений, содержащие эти погрешности, исключить из дальнейшей обработки. Наиболее действенными методами обнаружения грубых погрешностей является производство избыточных измерений. Вот почему в геодезии каждую величину измеряют, как правило, не менее двух раз.

2.Систематические элементарные погрешности порождаются существенными связями между факторами измерений и возникают всякий раз при одних и тех же условиях. Систематические погрешности подчинены какой-то в той или иной степени определенной закономерности.

Закономерности эти поддаются изучению. И при определенных условиях систематические погрешности могут быть исключены из отдельного результата измерений.

3.Случайные элементарные погрешности порождаются не существенными, а второстепенными случайными связями между факторами измерений, при данных условиях измерений они могут быть, а могут и не появиться, могут быть большими или меньшими, положительными или отрицательными. Величина и знак этих погрешностей носит случайный характер, а их распределение подчинено законам теории вероятностей.

Случайные погрешности не могут быть исключены из отдельного результата измерения. Влияние их на результаты измерений можно лишь ослабить, повышая квалификацию исполнителя, совершенствуя измерительные приборы и методику измерений, выполняя измерения при более благоприятных условиях. Влияние случайных погрешностей можно также ослабить надлежащей математической обработкой результатов измерений.

Суммарное влияние элементарных систематических погрешностей образует систематическую погрешность θ результата измерения, а суммарное влияние элементарных случайных погрешностей — случайную погрешность Δ результата измерений.

Таким образом, погрешность измерения ε в (2.1) можно представить, как сумму двух составляющих:

ε= θ +Δ. (2.2)

В (2.2) погрешность измерения четко разделена на систематическую и случайную. Но это только в теории. На практике при производстве геодезических измерений они действуют совместно, поэтому их разделение в процессе обработки результатов измерений оказывается затруднительным. Более того, в некоторых случаях погрешности, случайные по происхождению, при определенных условиях становятся систематическими.

Пример. Погрешности высот точек съемочной сети, полученных из геометрического или тригонометрического нивелирования, по своей природе являются случайными. Однако при тахеометрической или мензульной съемке на данной конкретной станции эта погрешность постоянна по величине и знаку, а потому войдет в высоты реечных пикетов как систематическая.

studfiles.net


Смотрите также