Реферат: современные модели описания структуры жидкости. Структура жидкости реферат


Реферат Жидкость

скачать

Реферат на тему:

План:

Введение

Жи́дкость — одно из агрегатных состояний вещества. Основным свойством жидкости, отличающим её от других агрегатных состояний, является способность неограниченно менять форму под действием касательных механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём.

Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое.

Форма жидких тел может полностью или отчасти определяться тем, что их поверхность ведёт себя как упругая мембрана. Так, вода может собираться в капли. Но жидкость способна течь даже под своей неподвижной поверхностью, и это тоже означает несохранение формы (внутренних частей жидкого тела).

Молекулы жидкости не имеют определённого положения, но в то же время им недоступна полная свобода перемещений. Между ними существует притяжение, достаточно сильное, чтобы удержать их на близком расстоянии.

Вещество в жидком состоянии существует в определённом интервале температур, ниже которого переходит в твердое состояние (происходит кристаллизация либо превращение в твердотельное аморфное состояние — стекло), выше — в газообразное (происходит испарение). Границы этого интервала зависят от давления.

Как правило, вещество в жидком состоянии имеет только одну модификацию. (Наиболее важные исключения — это квантовые жидкости и жидкие кристаллы.) Поэтому в большинстве случаев жидкость является не только агрегатным состоянием, но и термодинамической фазой (жидкая фаза).

Все жидкости принято делить на чистые жидкости и смеси. Некоторые смеси жидкостей имеют большое значение для жизни: кровь, морская вода и др. Жидкости могут выполнять функцию растворителей.

В технической гидромеханике под жидкостью понимают физическое тело, обладающее: а) в отличие от твёрдого тела текучестью; и б) в отличие от газа весьма малой изменяемостью своего объёма. Иногда жидкостью в широком смысле этого слова называют и газ; при этом жидкость в узком смысле слова, удовлетворяющую условиям а) и б) называют капельной жидкостью.

Жидкая частица — это часть жидкости, малая по сравнению с объёмом рассматриваемой жидкости, и в то же время содержащая макроскопически большое количество молекул жидкости.

1. Физические свойства жидкостей

Основным свойством жидкостей является текучесть. Если к участку жидкости, находящейся в равновесии, приложить внешнюю силу, то возникает поток частиц жидкости в том направлении, в котором эта сила приложена: жидкость течёт. Таким образом, под действием неуравновешенных внешних сил жидкость не сохраняет форму и относительное расположение частей, и поэтому принимает форму сосуда, в котором находится.

В отличие от пластичных твёрдых тел, жидкость не имеет предела текучести: достаточно приложить сколь угодно малую внешнюю силу, чтобы жидкость потекла.

Одним из характерных свойств жидкости является то, что она имеет определённый объём (при неизменных внешних условиях). Жидкость чрезвычайно трудно сжать механически, поскольку, в отличие от газа, между молекулами очень мало свободного пространства. Давление, производимое на жидкость, заключенную в сосуд, передаётся без изменения в каждую точку объёма этой жидкости (закон Паскаля, справедлив также и для газов). Эта особенность, наряду с очень малой сжимаемостью, используется в гидравлических машинах.

Жидкости обычно увеличивают объём (расширяются) при нагревании и уменьшают объём (сжимаются) при охлаждении. Впрочем, встречаются и исключения, например, вода сжимается при нагревании, при нормальном давлении и температуре от 0 °C до приблизительно 4 °C. А, например, тормозная жидкость в автомобилях, сжимается очень плохо.

Кроме того, жидкости (как и газы) характеризуются вязкостью. Она определяется как способность оказывать сопротивление перемещению одной из части относительно другой — то есть как внутреннее трение.

Когда соседние слои жидкости движутся относительно друг друга, неизбежно происходит столкновение молекул дополнительно к тому, которое обусловлено тепловым движением. Возникают силы, затормаживающие упорядоченное движение. При этом кинетическая энергия упорядоченного движения переходит в тепловую — энергию хаотического движения молекул.

Жидкость в сосуде, приведённая в движение и предоставленная самой себе, постепенно остановится, но её температура повысится.

Из-за сохранения объёма жидкость способна образовывать свободную поверхность. Такая поверхность является поверхностью раздела фаз данного вещества: по одну сторону находится жидкая фаза, по другую — газообразная (пар), и, возможно, другие газы, например, воздух.

Если жидкая и газообразная фазы одного и того же вещества соприкасаются, возникают силы, которые стремятся уменьшить площадь поверхности раздела — силы поверхностного натяжения. Поверхность раздела ведёт себя как упругая мембрана, которая стремится стянуться.

Поверхностное натяжение может быть объяснено притяжением между молекулами жидкости. Каждая молекула притягивает другие молекулы, стремится «окружить» себя ими, а значит, уйти с поверхности. Соответственно, поверхность стремится уменьшиться.

Поэтому мыльные пузыри и пузыри при кипении стремятся принять сферическую форму: при данном объёме минимальной поверхностью обладает шар. Если на жидкость действуют только силы поверхностного натяжения, она обязательно примет сферическую форму — например, капли воды в невесомости.

Маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади поверхности. (См. Поверхностное натяжение.)

Испарение — постепенный переход вещества из жидкости в газообразную фазу (пар).

При тепловом движении некоторые молекулы покидают жидкость через её поверхность и переходят в пар. Вместе с тем, часть молекул переходит обратно из пара в жидкость. Если из жидкости уходит больше молекул, чем приходит, то имеет место испарение.

Конденсация — обратный процесс, переход вещества из газообразного состояния в жидкое. При этом в жидкость переходит из пара больше молекул, чем в пар из жидкости.

Испарение и конденсация — неравновесные процессы, они происходят до тех пор, пока не установится локальное равновесие (если установится), причём жидкость может полностью испариться, или же прийти в равновесие со своим паром, когда из жидкости выходит столько же молекул, сколько возвращается.

Кипение — процесс парообразования внутри жидкости. При достаточно высокой температуре давление пара становится выше давления внутри жидкости, и там начинают образовываться пузырьки пара, которые (в условиях земного притяжения) всплывают наверх.

Смачивание — поверхностное явление, возникающее при контакте жидкости с твёрдой поверхностью в присутствии пара, то есть на границах раздела трёх фаз.

Смачивание характеризует «прилипание» жидкости к поверхности и растекание по ней (или, наоборот, отталкивание и нерастекание). Различают три случая: несмачивание, ограниченное смачивание и полное смачивание.

Смешиваемость — способность жидкостей растворяться друг в друге. Пример смешиваемых жидкостей: вода и этиловый спирт, пример несмешиваемых: вода и жидкое масло.

При нахождении в сосуде двух смешиваемых жидкостей молекулы в результате теплового движения начинают постепенно проходить через поверхность раздела, и таким образом жидкости постепенно смешиваются. Это явление называется диффузией (происходит также и в веществах, находящихся в других агрегатных состояниях).

Жидкость можно нагреть выше точки кипения таким образом, что кипения не происходит. Для этого необходим равномерный нагрев, без значительных перепадов температуры в пределах объёма и без механических воздействий, таких, как вибрация. Если в перегретую жидкость бросить что-либо, она мгновенно вскипает. Перегретую воду легко получить в микроволновой печи.

Переохлаждение — охлаждение жидкости ниже точки замерзания без превращения в твёрдое агрегатное состояние. Как и для перегрева, для переохлаждения необходимо отсутствие вибрации и значительных перепадов температуры.

Хотя жидкость чрезвычайно трудно сжать, тем не менее, при изменении давления её объем и плотность всё же меняются. Это происходит не мгновенно; так, если сжимается один участок, то на другие участки такое сжатие передаётся с запаздыванием. Это означает, что внутри жидкости способны распространяться упругие волны, более конкретно, волны плотности. Вместе с плотностью меняются и другие физические величины, например, температура.

Если при распространении волны́ плотность меняется достаточно слабо, такая волна называется звуковой волной, или звуком.

Если плотность меняется достаточно сильно, то такая волна называется ударной волной. Ударная волна описывается другими уравнениями.

Волны плотности в жидкости являются продольными, то есть плотность меняется вдоль направления распространения волны. Поперечные упругие волны в жидкости отсутствуют из-за несохранения формы.

Упругие волны в жидкости со временем затухают, их энергия постепенно переходит в тепловую энергию. Причины затухания — вязкость, «классическое поглощение», молекулярная релаксация и другие. При этом работает так называемая вторая, или объёмная вязкость — внутреннее трение при изменении плотности. Ударная волна в результате затухания через какое-то время переходит в звуковую.

Упругие волны в жидкости подвержены также рассеянию на неоднородностях, возникающих в результате хаотического теплового движения молекул.

Если сместить участок поверхность жидкости от положения равновесия, то под действием возвращающих сил поверхность начинает двигаться обратно к равновесному положению. Это движение, однако, не останавливается, а превращается в колебательное движение около равновесного положения и распространяется на другие участки. Так возникают волны на поверхности жидкости.

Если возвращающая сила — это преимущественно силы тяжести, то такие волны называются гравитационными волнами (не путать с волнами гравитации). Гравитационные волны на воде можно видеть повсеместно.

Если возвращающая сила — это преимущественно сила поверхностного натяжения, то такие волны называются капиллярными.

Если эти силы сопоставимы, такие волны называются капиллярно-гравитационными.

Волны на поверхности жидкости затухают под действием вязкости и других факторов.

Формально говоря, для равновесного сосуществования жидкой фазы с другими фазами того же вещества — газообразной или кристаллической — нужны строго определённые условия. Так, при данном давлении нужна строго определённая температура. Тем не менее, в природе и в технике повсеместно жидкость сосуществует с паром, или также и с твёрдым агрегатным состоянием — например, вода с водяным паром и часто со льдом (если считать пар отдельной фазой, присутствующей наряду с воздухом). Это объясняется следующими причинами.

— Неравновесное состояние. Для испарения жидкости нужно время, пока жидкость не испарилась полностью, она сосуществует с паром. В природе постоянно происходит испарение воды, также как и обратный процесс — конденсация.

— Замкнутый объём. Жидкость в закрытом сосуде начинает испаряться, но поскольку объём ограничен, давление пара повышается, он становится насыщенным ещё до полного испарения жидкости, если её количество было достаточно велико. При достижении состояния насыщения количество испаряемой жидкости равно количеству конденсируемой жидкости, система приходит в равновесие. Таким образом, в ограниченном объёме могут установиться условия, необходимые для равновесного сосуществования жидкости и пара.

— Присутствие атмосферы в условиях земной гравитации. На жидкость действует атмосферное давление (воздух и пар), тогда как для пара должно учитываться практически только его парциальное давление. Поэтому жидкости и пару над её поверхностью соответствуют разные точки на фазовой диаграмме, в области существования жидкой фазы и в области существования газообразной соответственно. Это не отменяет испарения, но на испарение нужно время, в течение которого обе фазы сосуществуют. Без этого условия жидкости вскипали бы и испарялись очень быстро.

2. Теория

2.1. Механика

Изучению движения и механического равновесия жидкостей и газов и их взаимодействию между собой и с твёрдыми телами посвящён раздел механики — гидроаэромеханика (часто называется также гидродинамикой). Гидроаэромеханика — часть более общей отрасли механики, механики сплошной среды.

Гидромеханика — это раздел гидроаэромеханики, в котором рассматриваются несжимаемые жидкости. Поскольку сжимаемость жидкостей очень мала, во многих случаях ей можно пренебречь. Изучению сжимаемых жидкостей и газов посвящена газовая динамика.

Гидромеханика подразделяется на гидростатику, в которой изучают равновесие несжимаемых жидкостей, и гидродинамику (в узком смысле), в которой изучают их движение.

Движение электропроводных и магнитных жидкостей изучается в магнитной гидродинамике. Для решения прикладных задач применяется гидравлика.

Основной закон гидростатики — закон Паскаля.

Движение идеальной несжимаемой жидкости описывается уравнением Эйлера. Для стационарного потока такой жидкости выполняется закон Бернулли. Вытекание жидкости из отверстий описывается формулой Торичелли.

Движение вязкой жидкости описывается уравнением Навье-Стокса, в котором возможен и учёт сжимаемости.

Упругие колебания и волны в жидкости (и в других средах) исследуются в акустике. Гидроакустика — раздел акустики, в котором изучается звук в реальной водной среде для целей подводной локации, связи и др.

2.2. Молекулярно-кинетическое рассмотрение

Агрегатное состояние вещества определяется внешними условиями, главным образом давлением P и температурой T. Характерными параметрами являются средняя кинетическая энергия молекулы Ekin(P,T) и средняя энергия взаимодействия между молекулами (в расчете на одну молекулу) Eint(P,T). Для жидкостей эти энергии приблизительно равны: для твёрдых тел энергия взаимодействия намного больше кинетической, для газов — намного меньше.

2.3. Классификация жидкостей

Структура и физические свойства жидкости зависят от химической индивидуальности составляющих их частиц и от характера и величины взаимодействия между ними. Можно выделить несколько групп жидкостей в порядке возрастания сложности.

1. Атомарные жидкости или жидкости из атомов или сферических молекул, связанных центральными ван-дер-ваальсовскими силами (жидкий аргон, жидкий метан).

2. Жидкости из двухатомных молекул, состоящих из одинаковых атомов (жидкий водород, жидкий азот). Такие молекулы обладают квадрупольным моментом.

3. Жидкие непереходные металлы (натрий, ртуть), в которых частицы (ионы) связаны дальнодействующими кулоновскими силами.

4. Жидкости, состоящие из полярных молекул, связанных диполь-дипольным взаимодействием (жидкий бромоводород).

5. Ассоциированные жидкости, или жидкости с водородными связями (вода, глицерин).

6. Жидкости, состоящие из больших молекул, для которых существенны внутренние степени свободы.

Жидкости первых двух групп (иногда трёх) обычно называют простыми. Простые жидкости изучены лучше других, из непростых жидкостей наиболее хорошо изучена вода. В эту классификацию не входят квантовые жидкости и жидкие кристаллы, которые представляют собой особые случаи и должны рассматриваться отдельно.

2.4. Статистическая теория

Наиболее успешно структура и термодинамические свойства жидкостей исследуются с помощью уравнения Перкуса-Йевика.

Если воспользоваться моделью твёрдых шаров, то есть считать молекулы жидкости шарами с диаметром d, то уравнение Перкуса-Йевика можно решить аналитически и получить уравнение состояния жидкости:

где n — число частиц в единице объёма,  — безразмерная плотность. При малых плотностях это уравнение переходит в уравнение состояния идеального газа: . Для предельно больших плотностей, , получается уравнение состояния несжимаемой жидкости: .

Модель твёрдых шаров не учитывает притяжение между молекулами, поэтому в ней отсутствует резкий переход между жидкостью и газом при изменении внешних условий.

Если нужно получить более точные результаты, то наилучшее описание структуры и свойств жидкости достигается с помощью теории возмущений. В этом случае модель твёрдых шаров считается нулевым приближением, а силы притяжения между молекулами считаются возмущением и дают поправки.

2.5. Кластерная теория

Одной из современных теорий служит «Кластерная теория». В её основе заключена идея, что жидкость представляется как сочетание твёрдого тела и газа. При этом частицы твёрдой фазы (кристаллы, двигающиеся на короткие расстояния) располагаются в облаке газа, образуя кластерную структуру. Энергия частиц отвечает распределению Больцмана, средняя энергия системы при этом остаётся постоянной (при условии её изолированности). Медленные частицы сталкиваются с кластерами и становятся их частью. Так непрерывно изменяется конфигурация кластеров, система находится в состоянии динамического равновесия. При создании внешнего воздействия система будет вести себя согласно принципу Ле Шателье. Таким образом, легко объяснить фазовое превращение:

wreferat.baza-referat.ru

Реферат - Реферат современные модели описания структуры жидкости

Министерство образования Российской Федерации

Химический факультет

РЕФЕРАТ

Современные модели описания структуры жидкости

Ассоциаты и кластеры в жидкостях

Выполнила студентка 691 группы Величкина Юлия

Барнаул 2002

Введение

Жидкое состояние вещества является промежуточным между твердым и газообразным. Область существования жидкости ограничена со стороны низких температур переходят в твердое состояние высоких – переходом в газообразное. Для каждого вещества существует температура, называемая критической Ткр, выше которой жидкость не может находится в равновесии с собственным паром.

Жидкости сохраняют отдельные свойства как твердых тел, так и газов.

Твердые тела по характеру расположения атомов или молекул подразделяются на кристаллические и аморфные. Кристаллы обладают ближним и дальним порядком.

Частицы кристалла расположены так, что расстояние между сколь угодно удаленными частицами непосредственно выражается через кратчайшее расстояние между двумя соседними частицами. По типам связи кристаллы подразделяются на атомные, ионные, молекулярные и металлические. Кристаллические тела обычно анизотропны, их механические, тепловые, электрические и оптические свойства в разных направлениях неодинаковы. Одно и то же кристаллическое вещество может находиться в нескольких модификациях, обладающих неодинаковой структурой. Так, углерод существует в виде графита и алмаза; двуокись кремния SiO2—в виде кварца, тридимита и кристаболита; сера — в виде ромбической и моноклинной модификации. Атомы, ионы или молекулы, образующие кристалл, совершают согласованные (коллективные) колебательные движения, энергия их сцепления больше внутренней энергии кристалла.

В газообразном состоянии вещества атомы или молекулы взаимодействуют друг с другом посредством ван-дер-ваальсовых сил притяжения на больших, по сравнению с размерами частиц, расстояниях, и квантово-механических сил отталкивания на малых расстояниях. Однако силы притяжения не достаточны, чтобы удержать молекулы друг возле друга, вследствие чего их взаимное расположение в газе хаотическое. Молекулы газа находятся в беспрерывном движении, которое происходит в виде поступательных, несогласованных (индивидуальных) перемещений и столкновений в конце каждого свободного пробега. Кинетическая энергия молекул газа значительно больше потенциальной. В многоатомных молекулах наряду с поступательным движением может происходить вращение молекулы как целого и колебания составляющих ее атомов.

Жидкость, как и твердое тело, — система динамическая. Атомы, ионы или молекулы, сохраняя ближний порядок во взаимном расположении, участвуют в тепловом движении, характер которого гораздо более сложный, чем в кристаллах. Молекулы жидкостей совершают колебания такого же типа, как и в кристаллах, но положения равновесия, относительно которых происходят эти колебания, не остаются неподвижными. Совершив определенное число колебаний около одного положения равновесия, молекула скачком переходит в новое положение и продолжает там колебаться вплоть до следующего скачка. Посредством таких скачкообразных перемещений молекул в жидкостях осуществляется диффузия, которую, в отличие от непрерывной, называют диффузией скачком.

Рис. 1. Диаграмма состояния однокомпонентного вещества.

Согласно Я. И. Френкелю, длительность пребывания молекулы во временном положении равновесия — время оседлой жизни — определяется по формуле

еw/Т(1.1)

где 0 — период колебаний молекул около положения равновесия; W—высота потенциального барьера, который отделяет друг от друга два соседних положения равновесия; k—постоянная Больцмана; Т—абсолютная температура. Численное значение  зависит от строения и вязкости жидкости. Для воды при комнатной температуре to=l,4-10 -12 с. Следовательно, каждая молекула воды совершает около 100 колебаний относительно одного и того же положения равновесия, прежде чем переменить место. По образному выражению Френкеля, молекулы в жидкости ведут в основном оседлый образ жизни, что представляет собой характерную черту жидкого состояния, сближающего его с твердым телом, с той разницей, что в твердых телах время оседлой жизни гораздо больше, чем в жидких.

С ростом температуры время оседлой жизни молекул во временном положении равновесия уменьшается. Соответственно усиливается трансляционное движение молекул.

Многочисленные исследования показывают, что наряду с колебанием молекул в окружении своих соседей и активационными скачками в жидкостях происходят плавные перемещения молекул вместе с их ближайшим окружением. Иными словами, находящиеся в колебательном состоянии молекулы жидкости в каждый момент времени смещаются на некоторое расстояние (меньше межатомного), обусловливая непрерывную диффузию. Можно полагать, что в сжиженных инертных газах и металлах преобладает непрерывная диффузия, тогда как для ассоциированных жидкостей (например, для воды) более вероятен прыжковый механизм диффузии.

В жидком состоянии вещества в отличие от газообразного проявляются те же межмолекулярные силы притяжения, которые обусловливают тот или иной тип связи в кристалле. Так, например, между атомами сжиженных инертных газов действуют дисперсионные ван-дер-ваальсовы силы. Те же силы обусловливают взаимное притяжение молекул диэлектрических жидкостей (бензол, парафины и др.). Между молекулами воды, спиртов, кислот жирного ряда действуют специфические силы притяжения, возникновение которых связано с наличием в составе этих молекул группы ОН (водородная связь). В расплавах солей действуют электростатические силы, в металлах — силы металлической связи. В жидком германии, кремнии и других полупроводниковых веществах наряду с металлической связью частично сохраняется ковалентная связь. Жидкости, принадлежащие к данному типу межмолекулярных связей, характеризуются специфическим ближним порядком в расположении частиц, что отражается на поведении физических свойств вещества в жидком состоянии. В естественных условиях жидкости изотропны, имеют только одну модификацию. Исключением является гелий, который может находиться в двух фазах, и так называемые жидкие кристаллы, у которых существует как изотропная, так и анизотропная фазы.

Из изложенного следует, что жидкости по характеру взаимного расположения частиц, их динамике и взаимодействию ближе к кристаллическому, а не к газовому состоянию вещества. Полная энергия молекул жидкости равна сумме их кинетической и потенциальной энергий. Соотношение между их численными значениями зависит от температуры и давления. Являясь фазой, промежуточной между твердой и газообразной, жидкость, естественно, обнаруживает непрерывную гамму переходных свойств, примыкая в области высоких температур и больших удельных объемов к газам, а в области низких температур и малых удельных объемов - к твердым телам^ Глава 1. Структура жидкостей

Структура жидкостей – это способ распределения ее частиц в пространстве. Если взаимное расположение молекул, атомов или ионов, входящих в состав жидкости, изучено, то ее структура считается известной. Экспериментальным методом исследования структуры является рентгенография.

Трактовать структуру жидкости можно на основе существующих молекулярных моделей.

Микрокристаллическая модель

Микрокристаллическая модель предполагает, что в жидкости существуют группы молекул – ''микрокристаллы'', содержащие несколько десятков или сот молекул. Внутри каждого микрокристалла сохраняется в точности порядок твердого тела. Эти группы молекул, или ''кластеры'', существуют непродолжительное время, затем распадаются и создаются вновь; кроме того, они постоянно перемещаются так, что каждая молекула не принадлежит все время к одной и той же группе молекул или ''кластеру''. Собственно этим свойством объясняется текучесть жидкости. Наличие в жидкости пространственного упорядочения молекул подтверждается многими факторами, в частности экспериментальными по рассеянию света и рентгеновского излучения, нейтронов и электронов.

Результаты рентгеновского анализа жидкостей можно объяснить, представив их структуру либо как скопления множества ультрамикроскопических значительно деформированных агрегатов, либо в виде непрерывной, структурной сетки, в которой элементы структурного порядка ограничены ближайшими соседями.

Первое предположение означает, что огромное число мельчайших ''кристаллических островков'' (сиботоксических групп) разделены областями беспорядоченного расположения частиц. Эти группы не имеют резких границ, плавно переходя в области неупорядоченного расположения частиц. Они перемещаются и не только непрерывно утрачивают одни частицы и пополняются другими, но могут разрушаться и создаваться вновь. Как в газе, они перемещаются по объему, как в кристаллах, колеблются около положения равновесия. Нагревание сокращает время ''оседлой'' жизни сиботаксических групп, охлаждение приводит к противоположному результату. Таким образом, представление о жидкости формируется на основании результатов синтеза представлений о газах и кристаллах – сочетания закономерного расположения молекул в небольших объемах с неупорядоченным распределением во всем объеме.

Квазикристаллическая модель.

Квазикристаллическая модель предполагает, что относительное расположение частиц в жидкости приближается к имеющемуся в кристалле, причем отступление от правильности систематически увеличивается с расстоянием по мере удаления от исходной молекулы на большом расстоянии уже не наблюдается правильности в расположении молекул, то есть в жидкости имеет место ''ближний порядок'' и отсутствует ''дальний порядок''.

Второе предположение сводится к представлению о квазикристаллической структуре жидкости: каждая молекула окружена соседними, которые располагаются вокруг нее почти так же, как и в кристалле того же вещества. Однако во втором слое появляются отклонения от упорядоченности, которые увеличиваются по мере отдаления от первоначально взятой молекулы. Иначе говоря, отступление от правильного расположения по мере удаления от данной молекулы систематически возрастает и на большом расстоянии становится очень значительным – в жидкости существует ближний порядок. Этим строение жидкости отличается от строения кристаллов, характеризующегося строгой повторяемостью одного и того же элемента структуры (иона, атома, группы атомов, молекул) во всех направлениях, то есть дальним порядком.

Изучение рассеяния рентгеновских лучей в жидкостях, состоящих из многоатомных молекул, показало не только упорядоченное расположение молекул, но и известную закономерность во взаимной ориентации частиц. Эта ориентация усиливается для полярных молекул и если проявляется действие водородной связи.

Беспорядочное движение молекул жидкости приводит к непрерывному изменению расстояний между ними. Это можно выразить словами: структура жидкости носит статистический характер. В этом состоит существенное различие жидкости от кристаллов. Статистический характер упорядоченного расположения молекул жидкости приводит к флуктуациям – непрерывно происходящим отклонениям не только от средней плотности, но и от средней ориентации, так как молекулы жидкости способны образовывать группы, в которых преобладает определенная ориентация. Чем меньше величина этих отклонений, тем чаще они встречаются.

Колебательно - усредненная структура жидкости

Структурное описание может относиться ко всему множеству элементов атомно-молекулярной системы, задающемуся числом частиц, или к его части. Полное соответствие соблюдается только в случае идеального кристалла, однако оно не является единственно возможным в частично упорядоченных системах (фазах), имеющих внешние и внутренние поверхности раздела. Второе разделение связано с тем, что структура может относиться не только к исходным элементам множества, задающего систему, но и к производным элементам, геометрически или топологически задающимся в пространстве (например, разного рода полиэдральные схемы для всего объема жидкости). Разновременные I, V, D и производные от них структуры в твердом и жидком состоянии, связанные с усреднениями в расположении частиц за разные времена, привносят добавочную специфику и представляют характерный пример отличия структурных элементов в параллельно сосуществующих структурах.

С использованием компьютерного эксперимента и других теоретических и экспериментальных методов в жидкости в настоящее время выделяются разные пространственные структуры.

В структуре I структурные единицы тождественны или задаются исходными точками (частицами) системы, которые могут быть получены методами компьютерного моделирования.

В структуре V исходный структурный элемент выделяется при усреднениях расположений частиц при их колебательных движениях. При этом, в случае кристалла появляется трансляционная упорядоченность в цепочке частиц.

Наиболее вероятная структура Dv, в этом случае геометрически тождественна со структурой ^ V. В то же время только в случае структуры D реального кристалла, реализующейся за макроскопические времена, появляется решетка кристалла и возможность описания системы, используя федоровские группы симметрии (при отсутствии рассмотрения внешних границ). Таким образом, понятие идеального кристалла может соотноситься в первую очередь со структурой D реального объекта. В то же время объединение динамического и геометрического подходов описания структуры кристаллов, по-видимому, возможно через анализ соотношения их конкретных структур I, V, Dv, D.

При переходе к жидкости появляются новые структурные особенности. Описание структуры здесь должно быть дано в уточняющей трактовке, не тождественной квазикристаллическому описанию. Это связано с тем, что в отличие от твердого тела колебательно - усредненную структуру жидкости нельзя рассматривать без учета влияния диффузионных (трансляционных и вращательных) движений молекул на характер усреднения их центров колебаний, задающих геометрию структурных единиц. Особенность рассматриваемой здесь V-структуры заключается в том, что она относится к пространственно - разделенным участкам системы, включающим только часть ее частиц, и отвечает дискретному расположению центров колебаний (или усредненных позиций среди смещающихся центров колебаний) вокруг позиции, задающейся невозмущенной диффузионным движением конфигурацией молекул. Геометрические различия структур V и V' соответствуют различиям ''жестких'' и ''мягких'' структурных конфигураций в конформационном анализе. При совместном рассмотрении жестких и нежестких структур V и V' жидкостей и растворов и жестких (мягких) конфигураций сложных молекул может идти объединение геометрического и динамического подходов к анализу структуры сложных систем и изучение структурных эффектов влияния среды на конформационные движения молекул. Переход к описанию жидкости на уровне колебательно - усредненной структуры в этом случае может осуществляться в рамках рассмотрения двух структурных подсистем (V и V') с учетом трех видов молекул, которые могут в разной степени присутствовать в жидкостях:

^ V-частицы, которые осуществляют колебательные движения во временных положениях равновесия в течение времени τ в постоянном поле, создаваемом одними и теми же соседями (центр колебаний центральной молекулы усредняется вне влияния поля нарушений, появляющегося вследствие изменения расположений частиц при диффузионных движениях).

I'-частицы, находящиеся вне позиций, отвечающих временным положениям равновесия в конфигурациях глубоких минимумов, на поверхности потенциальной энергии системы.

^ V'-частицы, колебания которых осуществляются при наличии влияния быстропеременного поля локальных нарушений исходной постройки, создаваемого I'-частицами.

1.4. Кластерная структура жидкости.

Кластеры, многоядерные комплексные соединения, в основе молекулярной структуры которых лежит объемный скелет (ячейка) из атомов металла, (обычно переходного), непосредственно связанных между собой. Ячейка окружена лигандами и играет роль центра атома. Как правило, она имеет, форму правильного полиэдра. Из возможных полиэдров чаще других реализуются те, стороны которых правильные треугольники.

Атомные и молекулярные кластеры. В простейшем случае эту систему описывают моделями, в которых частицы заменены шарами. При этом кластер удобно рассматривать как жидкую каплю, в которой частицы плотно упакованы. На рис. 2 показан пример такого кластера. С геометрической точки зрения такая модель кластера не представляет наиболее плотную упаковку шаров. Под плотностью упаковки обычно понимают долю пространства занимаемую шарами, которыми заполнено все пространство. Так, например, пентагональная упаковка шаров, изображенная на рис. 3, является более плотной, чем рассматриваемая нами модель (ее плотность составляет 72 процента).

Рис. 2.Шаровая модель кластера. Рис. 3.Пентагональная упаковка шаров.

При конечной температуре такая упаковка, однако, обладала бы большей свободной энергией, чем рассматриваемая нами модель жидкой капли. Возможны и более плотные упаковки шаров, чем изображенная на рис. 3. Существует две основные плотнейшие упаковки — кубическая трехслойная и гексагональная двухслойная. Для плотнейшей упаковки коэффициент заполнения пространства равен 0.74048. Такие структуры действительно могут наблюдаться при очень низких температурах в кластерах из атомов благородных газов.

Современная технология позволяет получать кластеры, содержащие заданное число молекул данного типа. Методом масс - спектрометрии можно выбрать из пучка кластеры, содержащие фиксированное число молекул п. Так у плотно упакованного кластера из 20 атомов только один атом находится внутри объема. У кластеров из 100 атомов — не более 20.

Для малых кластеров n<100 необходимо детальное знание структуры кластера. В некоторых случаях, однако, рассматриваемая нами модель жидкой капли для описания свойств кластера имеет смысл, даже если число атомов в кластере очень мало. Это можно проиллюстрировать на примере кластеров, образующих изомеры — различные молекулярные конфигурации данного химического соединения. Каждый изомер локально устойчив, поскольку соответствует минимальной энергии, однако он может перейти в другую изомерную форму, если при нагревании получит достаточно энергии. Один из примеров таких «текучих» кластеров — тример натрия: три атома образуют равнобедренный треугольник, у которого угол, образованный двумя одинаковыми сторонами, не остается в каком-то одном положении, а непрерывно перемещается с одной вершины на другую. Поскольку на микроскопическом уровне их форма не фиксирована, текучие кластеры следует рассматривать в этом случае скорее как капли жидкости, а не как твердые частицы.

Кластеры из атомов инертных газов представляют собой простейший и наиболее изученный тип кластеров.

Рис.5.Кластер аргона.

На рис. 5 приведено изображение кластера из атомов аргона, содержащего 16 атомов. Атомы инертных газов с полностью заполненными электронными оболочками слабо взаимодействуют друг с другом посредством ван-дер-ваальсовых сил.

Характерная энергия связи, т.е. энергия, затрачиваемая на отрыв атома от кластера, очень мала и составляет примерно 10 К - 100 К. При описании таких кластеров с достаточно хорошей точностью применима модель твердых шаров. В настоящее время с помощью описанной выше технологии газопламенных кластерных пучков удается создавать кластеры из атомов инертных газов, содержащие от нескольких единиц до десятков тысяч атомов. Кластеры из атомов инертных газов представляют собой уникальный объект для изучения атом-атомных взаимодействий различных типов возбуждений в таких кластерах, электрон-атомного взаимодействия и т.д.

Глава 2. Ассоциаты в жидкостях

Ассоциаты – это неустойчивые группы (димеры, тримеры), в которых молекулы связаны ван–дер–ваальсовыми, диполь–дипольными и другими силами, взаимодействиями с переносом заряда, включая водородную связь.

Существует три способа приближенного описания строения жидкостей. Один из них опирается на представление об ассоциатах и комплексах, другой связан с понятием о функциях распределения частиц, третий использует понятия о флуктуациях. Поскольку строение жидкостей определятся короткодействующими химическими силами, то и корреляция, то есть взаимосвязь положений молекул, также должна зависеть, в основном, от короткодействующих сил химического типа. Эти силы определяют вероятные положения молекул первой координационной сферы. От этих сил зависят вероятные положения молекул второй координационной сферы по отношению к молекулам сферы и так далее. Таким образом, корреляция есть статистическое описание ассоциации и комплексообразования. Функции распределения положений частиц, описывающие корреляцию молекул или атомов, имеют статистическую природу. Связь между функциями распределения и межмолекулярными взаимодействиями, а также строением ассоциатов и комплексов сложна и неоднозначна. Известен ряд приближенных аналитических выражений этой связи, которые, как правило, основаны на предположении, что молекулы представляют собой шарики. Потенциал взаимодействия молекул обычно подбирается с помощью эмпирических соотношений, например, уравнения Леннарда – Джонса. Этот подход получил наибольшее распространение при описании строения одноатомных жидкостей, таких, как жидкий аргон.

Наибольший интерес представляют те сведения о функциях распределения, которые могут быть получены на основе анализа экспериментальных данных, то есть независимо от модели системы. Основным источником такой информации для жидкостей служат рассеяние рентгеновских лучей или нейтронов. Каждый из этих методов позволяет получить сведения о радиальной функции распределения g(R).

К сожалению, g(R) малочувствительна даже к существенным изменениям не только дальнодействующей, но и близкодействующей части потенциометрической энергии межмолекулярных сил.

Метод функций распределения в настоящее время не дает возможности исследовать механизмы быстрых процессов, протекающих в жидких фазах. Наиболее перспективен в этом отношении способ описания структуры жидкостей с помощью понятий об ассоциатах и комплексах.

Каждую жидкую фазу можно считать гигантской макромолекулой. В таких огромных макромолекулах встречаются однотипные, малые фрагменты, содержащие небольшое число атомных ядер, взаимное расположение которых более или менее фиксировано. Эти фрагменты – упорядоченные образования, возникающие в результате химического взаимодействия между частицами, называются молекулами, их ассоциатами и комплексами. Ассоциаты и комплексы – однотипные образования и различаются только своим составом. Ассоциатами называются такие упорядоченные образования, которые состоят из одинаковых молекул (мономерных звеньев). Таков ассоциат (h3O)p, в котором имеется р молекул воды, ассоциат метилового спирта (СН3ОН)n и так далее. Комплексы отличаются от ассоциатов тем, что состоят из разнородных молекул.

Для характеристики ассоциатов необходимо знать их состав, структуру, а также энергии химических связей между частицами (молекулами, атомами, ионами), образующими ассоциат. Когда состав и структура ассоциатов установлена, нужно найти их концентрации. Как правило, в чистых жидкостях имеется множество различных ассоциатов, а в растворах кроме ассоциатов присутствует очень много разнообразных комплексов. Полное описание всех видов и форм ассоциатов, которые могут быть в какой – либо жидкой фазе, не может быть достигнуто ни одним из современных методов исследования или их сочетанием. Но можно определить основные, типические ассоциаты, наиболее часто встречающиеся в данной жидкости, и поэтому в первом приближении, характеризующие ее строение. Такая характеристика будет приближенной. Положительная сторона ее состоит в наглядности, возможности проверки несколькими независимыми методами, а, главное, в способности предсказывать свойства жидких фаз и изучать молекулярные механизмы тех процессов, которые протекают в жидкостях. Рассмотрим пример – описание структуры жидких одноатомных алканолов RОН.

Молекулы жидких алканолов могут образовывать друг с другом связи вида: О – Н…О, С – Н…О и С – Н…С. Ограничимся характеристикой тех ассоциатов, которые возникают за счет более прочных связей О – Н…О.

Атом кислорода в молекуле RОН имеет две не поделенные пары электронов и может принимать участие не более, чем в двух связях О – Н…О. В результате могут образовываться цепочечные и кольцевые ассоциаты, разветвленные и неразветвленные. Приведем примеры.

Цепочечные неразветвленные ассоциаты.

В неразветвленных цепочечных ассоциатах (RОН)p каждый атом кислорода участвует только в одной Н – связи. Цепочка может состоять из 2,3,4,…,р молекул RОН. Число р в принципе не ограничено. Ассоциаты могут иметь различные конформации за счет ''внутреннего вращения'' вокруг связей О – Н…О. Переход от одной конформации к другой в ходе теплового движения молекул в данном случае происходит, как правило, с разрывом Н – связей, следовательно, не так, как в полиэтилене и других полимерах, образованных за счет сильных химических связей. Но итог одинаков – наряду с трансконформацией ассоциата существует множество свернутых конформаций.

Цепочечные разветвленные ассоциаты алканолов (ROH)p

Присутствие второй, не поделенной пары электронов у атомов кислорода в спиртах, может приводить к возникновению разветвленных ассоциатов. Эти ассоциаты имеют большее число свободных концевых групп ОН, равное числу ответвлений в цепочке. Те кислородные атомы, которые одновременно участвуют в двух водородных связях, что и приводит к разветвлению цепочки, сохраняют способность выполнять ''шарнирные скачки'', сопровождающиеся изменением ориентации соответствующей группы OR. Но в отличие от неразветвленных участков здесь ''шарнирный переход'' требует одновременного разрыва двух Н – связей и после восстановления одной из них сопровождается исчезновением разветвления. Такие переходы приводят к частичному распаду разветвленного ассоциата и потому не входят в группу конформационных превращений.

Кольцевые ассоциаты могут быть неразветвленными и разветвленными. Неразветвленные кольцевые ассоциаты (ROH)p не имеют свободных гидроксильных групп.

Разветвленные кольцевые ассоциаты при большом числе ответвлений от кольца могут образовывать кустовые ассоциаты.

В любом жидком одноатомном алканоле могут присутствовать все перечисленные ассоциаты, возникающие за счет связей ^ О – Н…О. Кроме того, существует множество менее устойчивых ассоциатов, образованных с помощью связей С – Н…О и С – Н…С.

Наиболее доступны исследованию ассоциаты, удовлетворяющие следующим условиям. Связи, благодаря которым они возникают, более прочны, чем все другие типы связей между молекулами, возможные в данной жидкой фазе. Так, в спиртах связи О – Н…О значительно прочнее, чем связи С – Н…О и C - Н…С. Присутствие более слабых связей на фоне относительно сильных связей обычно остается незамеченным.

Исследование ассоциатов существенно облегчается, если их строение простое, а другие структуры за счет тех же связей отсутствуют или же играют второстепенную роль. В нормальных одноатомных алканолах ROH основной тип ассоциатов – неразветвленные цепочки. Другие типы ассоциатов за счет связей О – Н…О могут быть, но их концентрация мала, их влиянием на свойства алканолов при современной точности эксперимента можно пренебречь.

Принципиальные трудности возникают, когда речь идет об ассоциатах, представляющих собой двух или трехмерные сетки, похожие на те, которые наблюдаются в стеклах. Само понятие об ассоциатах как фрагментах макромолекул в этом случае теряет смысл, потому что пространственная сетка, в сущности, не имеет границ. Выделение в пространственной сетке отдельных фрагментов и описание их как относительно независимых конструкций представляет собой более грубое приближение, чем в тех случаях, когда можно отвлечься от существования сетчатых структур.

В любой жидкой фазе пространственные сетки молекул существуют всегда. Каждый образец жидкости – гигантская макромолекула. Речь идет о возможности приближенного подразделения пространственных структур на относительно независимые простые фрагменты. Наконец, изучение ассоциатов становится на много более сложным, если молекулы могут образовывать друг с другом несколько одинаковых связей, например С – Н…С, приобретая при этом разные взаимные ориентации. Если вероятность возникновения димеров, тримеров и так далее со многими различными взаимными ориентациями мономерных звеньев приблизительно одинакова, то подобные ассоциаты для большинства современных методов исследования выглядят как хаотические, бесструктурные, неупорядоченные, неассоциированные системы. Именно эта особенность объясняет то, что ассоциация четыреххлористого углерода, алканов и некоторых других жидкостей до недавних пор не обнаруживалась.

^ Глава 3. Кластеры в жидкостях

Для описания жидкого состояния наиболее полную картину кластерной динамики предложил Стюарт. По Стюарту, жидкость состоит из очень маленьких кристаллов (сиботаксических групп), представляющих собой агрегат из нескольких десятков или сотен молекул, которые неустойчивы и непрерывно меняют свое положение. Комплексы распадаются и образуются вновь так, что вполне определенная молекула непрерывно меняет группы и входит в состав все новых и новых конгломератов. Сиботаксические группы Стюарт рассматривал, как не резко очерченные области, переходящие непрерывным образом одна в другую. В пределах сиботаксических областей относительное расположение частиц и их относительная ориентация сохраняют достаточную степень правильности. К этому же времени относятся работы Данилова по рентгеноструктурному исследованию жидкостей, который доказал наличие в них ближнего порядка.

Не подвергал сомнению реальное существование кластеров Френкель. Он полагал, что у веществ с вытянутой стержнеобразной формой между кристаллическим и обычным жидким состояниями наблюдается промежуточное жидкокристаллическое или анизотропно – жидкое состояние. При этом ориентационный порядок сохраняется в макроскопически малых областях, которые, по Орнштейну, называются роями. Ориентационно - упорядоченные области, но значительно меньших размеров, существуют в обычном аморфно – жидком состоянии, которые Стюарт обозначил как сиботаксические области. В случае анизотропных жидкостей рои при отсутствии внешних воздействий сохраняют неизменную структуру, то есть представляют собой термодинамически устойчивые образования. Сиботаксические области отличаются от роев не только своими малыми размерами, но и флуктуационным характером образования и распада. Такого же мнения придерживается Уббелоде, который определил рои как кристаллизуемые кластеры и сиботаксические группы как антикристаллические кластеры.

Кластеры устойчивы и могут находиться длительное время в изолированном состоянии. Есть основания полагать, что заряженные частицы стабилизируют кластеры. Поэтому можно подразделить кластеры на заряженные и не имеющие заряда – нейтральные кластеры.

Процессы взаимодействия кластеров настолько деликатны, что зачастую не поддаются прямым измерениям. Любое воздействие на кластер в большинстве случаев должно приводить к его разрушению.

3.1. Поляронные состояния в нейтральных кластерах

Исследование электронных свойств нейтральных кластеров из поляронных молекул были начаты сравнительно недавно, лишь в начале 1990-х годов. Вначале были исследованы металлосодержащие кластеры воды и аммиака. Потенциал ионизации металламиачных кластеров имеет обычную асимптотическую зависимость, которая подтверждается различными теоретическими исследованиями. По сравнению с аммиачными кластерами, комплексы из атомов металла и молекул воды проявляют аномальные свойства: в частности, при большом числе полярных молекул потенциал ионизации не зависит от размера кластера. Для объяснения этих аномалий может быть использована континуальная модель.

Континуальная модель. Для того чтобы качественно проанализировать ситуацию в случае нейтральных кластеров, рассмотрим простейшую континуальную модель, где вместо электрона в кластере помещен атом металла. Поскольку в качестве металла обычно используются щелочные атомы, валентный электрон которых слабо связан с атомом, такой кластер можно рассматривать как непрерывную полярную среду, заполняющую сферу радиуса R, которая содержит электрон и ион атома металла. Взаимодействие между ионом и валентным электроном включает в себя не только кулоновский потенциал, но и поляризацию, создаваемую полярными молекулами кластера. Вклад поляризации можно описывать с помощью двух диэлектрических проницаемостей - высокочастотной  и статической 0. В рассматриваемой нами модели могут реализоваться три качественно различных случая, отвечающих трем различным типам состояний валентного электрона: с двумя центрами (ионная пара), с одним центром и поверхностным состоянием (рис. 10). Состояния с двумя центрами имеют два центра сольватации (ион металла и валентный электрон), находящихся внутри кластера. Очевидно, что состояния с двумя центрами должны больше подходить для больших кластеров, т. к. атом щелочного металла распадается внутри макроскопического объема жидкости на ион и сольватированный электрон. Для небольшого числа полярных молекул электрон, вероятно, образует состояние, которое локализуется на ионе металла, в то время как поверхностные состояния электрона образуются, когда взаимодействие между полярными молекулами и ионом металла преобладают по сравнению с взаимодействием, между валентным электроном и ионом.

При континуальном описании поведение потенциала ионизации IP описывается асимптотической зависимостью:

IP(n)=A+Bn-1/3 (3.1.1)

где А и В — константы, которые зависят от типа электронного соcтояния, n- число атомов.

www.ronl.ru

Реферат - современные модели описания структуры жидкости

Министерство образования Российской Федерации

Химический факультет

РЕФЕРАТ

Современные модели описания структуры жидкости

Ассоциаты и кластеры в жидкостях

Выполнила студентка 691 группы Величкина Юлия

Барнаул 2002

Введение

Жидкое состояние вещества является промежуточным между твердым и газообразным. Область существования жидкости ограничена со стороны низких температур переходят в твердое состояние высоких – переходом в газообразное. Для каждого вещества существует температура, называемая критической Ткр , выше которой жидкость не может находится в равновесии с собственным паром.

Жидкости сохраняют отдельные свойства как твердых тел, так и газов.

Твердые тела по характеру расположения атомов или молекул подразделяются на кристаллические и аморфные. Кристаллы обладают ближним и дальним порядком.

Частицы кристалла расположены так, что расстояние между сколь угодно удаленными частицами непосредственно выражается через кратчайшее расстояние между двумя соседними частицами. По типам связи кристаллы подразделяются на атомные, ионные, молекулярные и металлические. Кристаллические тела обычно анизотропны, их механические, тепловые, электрические и оптические свойства в разных направлениях неодинаковы. Одно и то же кристаллическое вещество может находиться в нескольких модификациях, обладающих неодинаковой структурой. Так, углерод существует в виде графита и алмаза; двуокись кремния SiO2 —в виде кварца, тридимита и кристаболита; сера — в виде ромбической и моноклинной модификации. Атомы, ионы или молекулы, образующие кристалл, совершают согласованные (коллективные) колебательные движения, энергия их сцепления больше внутренней энергии кристалла.

В газообразном состоянии вещества атомы или молекулы взаимодействуют друг с другом посредством ван-дер-ваальсовых сил притяжения на больших, по сравнению с размерами частиц, расстояниях, и квантово-механических сил отталкивания на малых расстояниях. Однако силы притяжения не достаточны, чтобы удержать молекулы друг возле друга, вследствие чего их взаимное расположение в газе хаотическое. Молекулы газа находятся в беспрерывном движении, которое происходит в виде поступательных, несогласованных (индивидуальных) перемещений и столкновений в конце каждого свободного пробега. Кинетическая энергия молекул газа значительно больше потенциальной. В многоатомных молекулах наряду с поступательным движением может происходить вращение молекулы как целого и колебания составляющих ее атомов.

Жидкость, как и твердое тело, — система динамическая. Атомы, ионы или молекулы, сохраняя ближний порядок во взаимном расположении, участвуют в тепловом движении, характер которого гораздо более сложный, чем в кристаллах. Молекулы жидкостей совершают колебания такого же типа, как и в кристаллах, но положения равновесия, относительно которых происходят эти колебания, не остаются неподвижными. Совершив определенное число колебаний около одного положения равновесия, молекула скачком переходит в новое положение и продолжает там колебаться вплоть до следующего скачка. Посредством таких скачкообразных перемещений молекул в жидкостях осуществляется диффузия, которую, в отличие от непрерывной, называют диффузией скачком.

Рис. 1. Диаграмма состояния однокомпонентного вещества.

Согласно Я. И. Френкелю, длительность пребывания молекулы во временном положении равновесия — время оседлой жизни — определяется по формуле

t = t е w / k Т (1.1)

где t — период колебаний молекул около положения равновесия; W — высота потенциального барьера, который отделяет друг от друга два соседних положения равновесия; k — постоянная Больцмана; Т — абсолютная температура. Численное значение t зависит от строения и вязкости жидкости. Для воды при комнатной температуре to = l ,4-10 -12 с. Следовательно, каждая молекула воды совершает около 100 колебаний относительно одного и того же положения равновесия, прежде чем переменить место. По образному выражению Френкеля, молекулы в жидкости ведут в основном оседлый образ жизни, что представляет собой характерную черту жидкого состояния, сближающего его с твердым телом, с той разницей, что в твердых телах время оседлой жизни гораздо больше, чем в жидких.

С ростом температуры время оседлой жизни молекул во временном положении равновесия уменьшается. Соответственно усиливается трансляционное движение молекул.

Многочисленные исследования показывают, что наряду с колебанием молекул в окружении своих соседей и активационными скачками в жидкостях происходят плавные перемещения молекул вместе с их ближайшим окружением. Иными словами, находящиеся в колебательном состоянии молекулы жидкости в каждый момент времени смещаются на некоторое расстояние (меньше межатомного), обусловливая непрерывную диффузию. Можно полагать, что в сжиженных инертных газах и металлах преобладает непрерывная диффузия, тогда как для ассоциированных жидкостей (например, для воды) более вероятен прыжковый механизм диффузии.

В жидком состоянии вещества в отличие от газообразного проявляются те же межмолекулярные силы притяжения, которые обусловливают тот или иной тип связи в кристалле. Так, например, между атомами сжиженных инертных газов действуют дисперсионные ван-дер-ваальсовы силы. Те же силы обусловливают взаимное притяжение молекул диэлектрических жидкостей (бензол, парафины и др.). Между молекулами воды, спиртов, кислот жирного ряда действуют специфические силы притяжения, возникновение которых связано с наличием в составе этих молекул группы ОН (водородная связь). В расплавах солей действуют электростатические силы, в металлах — силы металлической связи. В жидком германии, кремнии и других полупроводниковых веществах наряду с металлической связью частично сохраняется ковалентная связь. Жидкости, принадлежащие к данному типу межмолекулярных связей, характеризуются специфическим ближним порядком в расположении частиц, что отражается на поведении физических свойств вещества в жидком состоянии. В естественных условиях жидкости изотропны, имеют только одну модификацию. Исключением является гелий, который может находиться в двух фазах, и так называемые жидкие кристаллы, у которых существует как изотропная, так и анизотропная фазы.

Из изложенного следует, что жидкости по характеру взаимного расположения частиц, их динамике и взаимодействию ближе к кристаллическому, а не к газовому состоянию вещества. Полная энергия молекул жидкости равна сумме их кинетической и потенциальной энергий. Соотношение между их численными значениями зависит от температуры и давления. Являясь фазой, промежуточной между твердой и газообразной, жидкость, естественно, обнаруживает непрерывную гамму переходных свойств, примыкая в области высоких температур и больших удельных объемов к газам, а в области низких температур и малых удельных объемов — к твердым телам

Глава 1. Структура жидкостей

Структура жидкостей – это способ распределения ее частиц в пространстве. Если взаимное расположение молекул, атомов или ионов, входящих в состав жидкости, изучено, то ее структура считается известной. Экспериментальным методом исследования структуры является рентгенография.

Трактовать структуру жидкости можно на основе существующих молекулярных моделей.

1.1. Микрокристаллическая модель

Микрокристаллическая модель предполагает, что в жидкости существуют группы молекул – ''микрокристаллы'', содержащие несколько десятков или сот молекул. Внутри каждого микрокристалла сохраняется в точности порядок твердого тела. Эти группы молекул, или ''кластеры'', существуют непродолжительное время, затем распадаются и создаются вновь; кроме того, они постоянно перемещаются так, что каждая молекула не принадлежит все время к одной и той же группе молекул или ''кластеру''. Собственно этим свойством объясняется текучесть жидкости. Наличие в жидкости пространственного упорядочения молекул подтверждается многими факторами, в частности экспериментальными по рассеянию света и рентгеновского излучения, нейтронов и электронов.

Результаты рентгеновского анализа жидкостей можно объяснить, представив их структуру либо как скопления множества ультрамикроскопических значительно деформированных агрегатов, либо в виде непрерывной, структурной сетки, в которой элементы структурного порядка ограничены ближайшими соседями.

Первое предположение означает, что огромное число мельчайших ''кристаллических островков'' (сиботоксических групп ) разделены областями беспорядоченного расположения частиц. Эти группы не имеют резких границ, плавно переходя в области неупорядоченного расположения частиц. Они перемещаются и не только непрерывно утрачивают одни частицы и пополняются другими, но могут разрушаться и создаваться вновь. Как в газе, они перемещаются по объему, как в кристаллах, колеблются около положения равновесия. Нагревание сокращает время ''оседлой'' жизни сиботаксических групп, охлаждение приводит к противоположному результату. Таким образом, представление о жидкости формируется на основании результатов синтеза представлений о газах и кристаллах – сочетания закономерного расположения молекул в небольших объемах с неупорядоченным распределением во всем объеме.

1.2. Квазикристаллическая модель.

Квазикристаллическая модель предполагает, что относительное расположение частиц в жидкости приближается к имеющемуся в кристалле, причем отступление от правильности систематически увеличивается с расстоянием по мере удаления от исходной молекулы на большом расстоянии уже не наблюдается правильности в расположении молекул, то есть в жидкости имеет место ''ближний порядок'' и отсутствует ''дальний порядок''.

Второе предположение сводится к представлению о квазикристаллической структуре жидкости: каждая молекула окружена соседними, которые располагаются вокруг нее почти так же, как и в кристалле того же вещества. Однако во втором слое появляются отклонения от упорядоченности, которые увеличиваются по мере отдаления от первоначально взятой молекулы. Иначе говоря, отступление от правильного расположения по мере удаления от данной молекулы систематически возрастает и на большом расстоянии становится очень значительным – в жидкости существует ближний порядок. Этим строение жидкости отличается от строения кристаллов, характеризующегося строгой повторяемостью одного и того же элемента структуры (иона, атома, группы атомов, молекул) во всех направлениях, то есть дальним порядком .

Изучение рассеяния рентгеновских лучей в жидкостях, состоящих из многоатомных молекул, показало не только упорядоченное расположение молекул, но и известную закономерность во взаимной ориентации частиц. Эта ориентация усиливается для полярных молекул и если проявляется действие водородной связи.

Беспорядочное движение молекул жидкости приводит к непрерывному изменению расстояний между ними. Это можно выразить словами: структура жидкости носит статистический характер. В этом состоит существенное различие жидкости от кристаллов. Статистический характер упорядоченного расположения молекул жидкости приводит к флуктуациям – непрерывно происходящим отклонениям не только от средней плотности, но и от средней ориентации, так как молекулы жидкости способны образовывать группы, в которых преобладает определенная ориентация. Чем меньше величина этих отклонений, тем чаще они встречаются.

1.3. Колебательно — усредненная структура жидкости

Структурное описание может относиться ко всему множеству элементов атомно-молекулярной системы, задающемуся числом частиц, или к его части. Полное соответствие соблюдается только в случае идеального кристалла, однако оно не является единственно возможным в частично упорядоченных системах (фазах), имеющих внешние и внутренние поверхности раздела. Второе разделение связано с тем, что структура может относиться не только к исходным элементам множества, задающего систему, но и к производным элементам, геометрически или топологически задающимся в пространстве (например, разного рода полиэдральные схемы для всего объема жидкости). Разновременные I , V , D и производные от них структуры в твердом и жидком состоянии, связанные с усреднениями в расположении частиц за разные времена, привносят добавочную специфику и представляют характерный пример отличия структурных элементов в параллельно сосуществующих структурах.

С использованием компьютерного эксперимента и других теоретических и экспериментальных методов в жидкости в настоящее время выделяются разные пространственные структуры.

В структуре I структурные единицы тождественны или задаются исходными точками (частицами) системы, которые могут быть получены методами компьютерного моделирования.

В структуре V исходный структурный элемент выделяется при усреднениях расположений частиц при их колебательных движениях. При этом, в случае кристалла появляется трансляционная упорядоченность в цепочке частиц.

Наиболее вероятная структура Dv, в этом случае геометрически тождественна со структурой V. В то же время только в случае структуры D реального кристалла, реализующейся за макроскопические времена, появляется решетка кристалла и возможность описания системы, используя федоровские группы симметрии (при отсутствии рассмотрения внешних границ). Таким образом, понятие идеального кристалла может соотноситься в первую очередь со структурой D реального объекта. В то же время объединение динамического и геометрического подходов описания структуры кристаллов, по-видимому, возможно через анализ соотношения их конкретных структур I , V , Dv , D .

При переходе к жидкости появляются новые структурные особенности. Описание структуры здесь должно быть дано в уточняющей трактовке, не тождественной квазикристаллическому описанию. Это связано с тем, что в отличие от твердого тела колебательно — усредненную структуру жидкости нельзя рассматривать без учета влияния диффузионных (трансляционных и вращательных) движений молекул на характер усреднения их центров колебаний, задающих геометрию структурных единиц. Особенность рассматриваемой здесь V -структуры заключается в том, что она относится к пространственно — разделенным участкам системы, включающим только часть ее частиц, и отвечает дискретному расположению центров колебаний (или усредненных позиций среди смещающихся центров колебаний) вокруг позиции, задающейся невозмущенной диффузионным движением конфигурацией молекул. Геометрические различия структур V и V ' соответствуют различиям ''жестких'' и ''мягких'' структурных конфигураций в конформационном анализе. При совместном рассмотрении жестких и нежестких структур V и V ' жидкостей и растворов и жестких (мягких) конфигураций сложных молекул может идти объединение геометрического и динамического подходов к анализу структуры сложных систем и изучение структурных эффектов влияния среды на конформационные движения молекул. Переход к описанию жидкости на уровне колебательно — усредненной структуры в этом случае может осуществляться в рамках рассмотрения двух структурных подсистем (V и V ' ) с учетом трех видов молекул, которые могут в разной степени присутствовать в жидкостях:

V -частицы, которые осуществляют колебательные движения во временных положениях равновесия в течение времени τ в постоянном поле, создаваемом одними и теми же соседями (центр колебаний центральной молекулы усредняется вне влияния поля нарушений, появляющегося вследствие изменения расположений частиц при диффузионных движениях).

I ' -частицы, находящиеся вне позиций, отвечающих временным положениям равновесия в конфигурациях глубоких минимумов, на поверхности потенциальной энергии системы.

V ' -частицы, колебания которых осуществляются при наличии влияния быстропеременного поля локальных нарушений исходной постройки, создаваемого I ' -частицами.

1.4. Кластерная структура жидкости.

Кластеры, многоядерные комплексные соединения, в основе молекулярной структуры которых лежит объемный скелет (ячейка) из атомов металла, (обычно переходного), непосредственно связанных между собой. Ячейка окружена лигандами и играет роль центра атома. Как правило, она имеет, форму правильного полиэдра. Из возможных полиэдров чаще других реализуются те, стороны которых правильные треугольники.

Атомные и молекулярные кластеры. В простейшем случае эту систему описывают моделями, в которых частицы заменены шарами. При этом кластер удобно рассматривать как жидкую каплю, в которой частицы плотно упакованы. На рис. 2 показан пример такого кластера. С геометрической точки зрения такая модель кластера не представляет наиболее плотную упаковку шаров. Под плотностью упаковки обычно понимают долю пространства занимаемую шарами, которыми заполнено все пространство. Так, например, пентагональная упаковка шаров, изображенная на рис. 3, является более плотной, чем рассматриваемая нами модель (ее плотность составляет 72 процента).

Рис. 2.Шаровая модель кластера. Рис. 3.Пентагональная упаковка шаров.

При конечной температуре такая упаковка, однако, обладала бы большей свободной энергией, чем рассматриваемая нами модель жидкой капли. Возможны и более плотные упаковки шаров, чем изображенная на рис. 3. Существует две основные плотнейшие упаковки — кубическая трехслойная и гексагональная двухслойная. Для плотнейшей упаковки коэффициент заполнения пространства равен 0.74048. Такие структуры действительно могут наблюдаться при очень низких температурах в кластерах из атомов благородных газов.

Современная технология позволяет получать кластеры, содержащие заданное число молекул данного типа. Методом масс — спектрометрии можно выбрать из пучка кластеры, содержащие фиксированное число молекул п . Так у плотно упакованного кластера из 20 атомов только один атом находится внутри объема. У кластеров из 100 атомов — не более 20.

Для малых кластеров n < 100 необходимо детальное знание структуры кластера. В некоторых случаях, однако, рассматриваемая нами модель жидкой капли для описания свойств кластера имеет смысл, даже если число атомов в кластере очень мало. Это можно проиллюстрировать на примере кластеров, образующих изомеры — различные молекулярные конфигурации данного химического соединения. Каждый изомер локально устойчив, поскольку соответствует минимальной энергии, однако он может перейти в другую изомерную форму, если при нагревании получит достаточно энергии. Один из примеров таких «текучих» кластеров — тример натрия: три атома образуют равнобедренный треугольник, у которого угол, образованный двумя одинаковыми сторонами, не остается в каком-то одном положении, а непрерывно перемещается с одной вершины на другую. Поскольку на микроскопическом уровне их форма не фиксирована, текучие кластеры следует рассматривать в этом случае скорее как капли жидкости, а не как твердые частицы.

Кластеры из атомов инертных газов представляют собой простейший и наиболее изученный тип кластеров.

Рис.5.Кластер аргона.

На рис. 5 приведено изображение кластера из атомов аргона, содержащего 16 атомов. Атомы инертных газов с полностью заполненными электронными оболочками слабо взаимодействуют друг с другом посредством ван-дер-ваальсовых сил.

Характерная энергия связи, т.е. энергия, затрачиваемая на отрыв атома от кластера, очень мала и составляет примерно 10 К — 100 К. При описании таких кластеров с достаточно хорошей точностью применима модель твердых шаров. В настоящее время с помощью описанной выше технологии газопламенных кластерных пучков удается создавать кластеры из атомов инертных газов, содержащие от нескольких единиц до десятков тысяч атомов. Кластеры из атомов инертных газов представляют собой уникальный объект для изучения атом-атомных взаимодействий различных типов возбуждений в таких кластерах, электрон-атомного взаимодействия и т.д.

Глава 2. Ассоциаты в жидкостях

Ассоциаты – это неустойчивые группы (димеры, тримеры), в которых молекулы связаны ван–дер–ваальсовыми, диполь–дипольными и другими силами, взаимодействиями с переносом заряда, включая водородную связь.

Существует три способа приближенного описания строения жидкостей. Один из них опирается на представление об ассоциатах и комплексах, другой связан с понятием о функциях распределения частиц, третий использует понятия о флуктуациях. Поскольку строение жидкостей определятся короткодействующими химическими силами, то и корреляция, то есть взаимосвязь положений молекул, также должна зависеть, в основном, от короткодействующих сил химического типа. Эти силы определяют вероятные положения молекул первой координационной сферы. От этих сил зависят вероятные положения молекул второй координационной сферы по отношению к молекулам сферы и так далее. Таким образом, корреляция есть статистическое описание ассоциации и комплексообразования. Функции распределения положений частиц, описывающие корреляцию молекул или атомов, имеют статистическую природу. Связь между функциями распределения и межмолекулярными взаимодействиями, а также строением ассоциатов и комплексов сложна и неоднозначна. Известен ряд приближенных аналитических выражений этой связи, которые, как правило, основаны на предположении, что молекулы представляют собой шарики. Потенциал взаимодействия молекул обычно подбирается с помощью эмпирических соотношений, например, уравнения Леннарда – Джонса. Этот подход получил наибольшее распространение при описании строения одноатомных жидкостей, таких, как жидкий аргон.

Наибольший интерес представляют те сведения о функциях распределения, которые могут быть получены на основе анализа экспериментальных данных, то есть независимо от модели системы. Основным источником такой информации для жидкостей служат рассеяние рентгеновских лучей или нейтронов. Каждый из этих методов позволяет получить сведения о радиальной функции распределения g ( R ).

К сожалению, g ( R ) малочувствительна даже к существенным изменениям не только дальнодействующей, но и близкодействующей части потенциометрической энергии межмолекулярных сил.

Метод функций распределения в настоящее время не дает возможности исследовать механизмы быстрых процессов, протекающих в жидких фазах. Наиболее перспективен в этом отношении способ описания структуры жидкостей с помощью понятий об ассоциатах и комплексах.

Каждую жидкую фазу можно считать гигантской макромолекулой. В таких огромных макромолекулах встречаются однотипные, малые фрагменты, содержащие небольшое число атомных ядер, взаимное расположение которых более или менее фиксировано. Эти фрагменты – упорядоченные образования, возникающие в результате химического взаимодействия между частицами, называются молекулами, их ассоциатами и комплексами. Ассоциаты и комплексы – однотипные образования и различаются только своим составом. Ассоциатами называются такие упорядоченные образования, которые состоят из одинаковых молекул (мономерных звеньев). Таков ассоциат (h3 O)p, в котором имеется р молекул воды, ассоциат метилового спирта (СН3 ОН)n и так далее. Комплексы отличаются от ассоциатов тем, что состоят из разнородных молекул.

Для характеристики ассоциатов необходимо знать их состав, структуру, а также энергии химических связей между частицами (молекулами, атомами, ионами), образующими ассоциат. Когда состав и структура ассоциатов установлена, нужно найти их концентрации. Как правило, в чистых жидкостях имеется множество различных ассоциатов, а в растворах кроме ассоциатов присутствует очень много разнообразных комплексов. Полное описание всех видов и форм ассоциатов, которые могут быть в какой – либо жидкой фазе, не может быть достигнуто ни одним из современных методов исследования или их сочетанием. Но можно определить основные, типические ассоциаты, наиболее часто встречающиеся в данной жидкости, и поэтому в первом приближении, характеризующие ее строение. Такая характеристика будет приближенной. Положительная сторона ее состоит в наглядности, возможности проверки несколькими независимыми методами, а, главное, в способности предсказывать свойства жидких фаз и изучать молекулярные механизмы тех процессов, которые протекают в жидкостях. Рассмотрим пример – описание структуры жидких одноатомных алканолов R ОН.

Молекулы жидких алканолов могут образовывать друг с другом связи вида: О – Н …О, С – Н…О и С – Н…С. Ограничимся характеристикой тех ассоциатов, которые возникают за счет более прочных связей О – Н…О.

Атом кислорода в молекуле R ОН имеет две не поделенные пары электронов и может принимать участие не более, чем в двух связях О – Н…О. В результате могут образовываться цепочечные и кольцевые ассоциаты, разветвленные и неразветвленные. Приведем примеры.

Цепочечные неразветвленные ассоциаты.

В неразветвленных цепочечных ассоциатах ( R ОН) p каждый атом кислорода участвует только в одной Н – связи. Цепочка может состоять из 2,3,4,…,р молекул R ОН. Число р в принципе не ограничено. Ассоциаты могут иметь различные конформации за счет ''внутреннего вращения'' вокруг связей О – Н…О. Переход от одной конформации к другой в ходе теплового движения молекул в данном случае происходит, как правило, с разрывом Н – связей, следовательно, не так, как в полиэтилене и других полимерах, образованных за счет сильных химических связей. Но итог одинаков – наряду с трансконформацией ассоциата существует множество свернутых конформаций.

Цепочечные разветвленные ассоциаты алканолов ( ROH ) p

Присутствие второй, не поделенной пары электронов у атомов кислорода в спиртах, может приводить к возникновению разветвленных ассоциатов. Эти ассоциаты имеют большее число свободных концевых групп ОН, равное числу ответвлений в цепочке. Те кислородные атомы, которые одновременно участвуют в двух водородных связях, что и приводит к разветвлению цепочки, сохраняют способность выполнять ''шарнирные скачки'', сопровождающиеся изменением ориентации соответствующей группы OR. Но в отличие от неразветвленных участков здесь ''шарнирный переход'' требует одновременного разрыва двух Н – связей и после восстановления одной из них сопровождается исчезновением разветвления. Такие переходы приводят к частичному распаду разветвленного ассоциата и потому не входят в группу конформационных превращений.

Кольцевые ассоциаты могут быть неразветвленными и разветвленными. Неразветвленные кольцевые ассоциаты ( ROH ) p не имеют свободных гидроксильных групп.

Разветвленные кольцевые ассоциаты при большом числе ответвлений от кольца могут образовывать кустовые ассоциаты.

В любом жидком одноатомном алканоле могут присутствовать все перечисленные ассоциаты, возникающие за счет связей О – Н…О. Кроме того, существует множество менее устойчивых ассоциатов, образованных с помощью связей С – Н…О и С – Н…С.

Наиболее доступны исследованию ассоциаты, удовлетворяющие следующим условиям. Связи, благодаря которым они возникают, более прочны, чем все другие типы связей между молекулами, возможные в данной жидкой фазе. Так, в спиртах связи О – Н…О значительно прочнее, чем связи С – Н…О и C - Н…С. Присутствие более слабых связей на фоне относительно сильных связей обычно остается незамеченным.

Исследование ассоциатов существенно облегчается, если их строение простое, а другие структуры за счет тех же связей отсутствуют или же играют второстепенную роль. В нормальных одноатомных алканолах ROH основной тип ассоциатов – неразветвленные цепочки. Другие типы ассоциатов за счет связей О – Н…О могут быть, но их концентрация мала, их влиянием на свойства алканолов при современной точности эксперимента можно пренебречь.

Принципиальные трудности возникают, когда речь идет об ассоциатах, представляющих собой двух или трехмерные сетки, похожие на те, которые наблюдаются в стеклах. Само понятие об ассоциатах как фрагментах макромолекул в этом случае теряет смысл, потому что пространственная сетка, в сущности, не имеет границ. Выделение в пространственной сетке отдельных фрагментов и описание их как относительно независимых конструкций представляет собой более грубое приближение, чем в тех случаях, когда можно отвлечься от существования сетчатых структур.

В любой жидкой фазе пространственные сетки молекул существуют всегда. Каждый образец жидкости – гигантская макромолекула. Речь идет о возможности приближенного подразделения пространственных структур на относительно независимые простые фрагменты. Наконец, изучение ассоциатов становится на много более сложным, если молекулы могут образовывать друг с другом несколько одинаковых связей, например С – Н…С, приобретая при этом разные взаимные ориентации. Если вероятность возникновения димеров, тримеров и так далее со многими различными взаимными ориентациями мономерных звеньев приблизительно одинакова, то подобные ассоциаты для большинства современных методов исследования выглядят как хаотические, бесструктурные, неупорядоченные, неассоциированные системы. Именно эта особенность объясняет то, что ассоциация четыреххлористого углерода, алканов и некоторых других жидкостей до недавних пор не обнаруживалась.

Глава 3. Кластеры в жидкостях

Для описания жидкого состояния наиболее полную картину кластерной динамики предложил Стюарт. По Стюарту, жидкость состоит из очень маленьких кристаллов (сиботаксических групп), представляющих собой агрегат из нескольких десятков или сотен молекул, которые неустойчивы и непрерывно меняют свое положение. Комплексы распадаются и образуются вновь так, что вполне определенная молекула непрерывно меняет группы и входит в состав все новых и новых конгломератов. Сиботаксические группы Стюарт рассматривал, как не резко очерченные области, переходящие непрерывным образом одна в другую. В пределах сиботаксических областей относительное расположение частиц и их относительная ориентация сохраняют достаточную степень правильности. К этому же времени относятся работы Данилова по рентгеноструктурному исследованию жидкостей, который доказал наличие в них ближнего порядка.

Не подвергал сомнению реальное существование кластеров Френкель. Он полагал, что у веществ с вытянутой стержнеобразной формой между кристаллическим и обычным жидким состояниями наблюдается промежуточное жидкокристаллическое или анизотропно – жидкое состояние. При этом ориентационный порядок сохраняется в макроскопически малых областях, которые, по Орнштейну, называются роями. Ориентационно — упорядоченные области, но значительно меньших размеров, существуют в обычном аморфно – жидком состоянии, которые Стюарт обозначил как сиботаксические области. В случае анизотропных жидкостей рои при отсутствии внешних воздействий сохраняют неизменную структуру, то есть представляют собой термодинамически устойчивые образования. Сиботаксические области отличаются от роев не только своими малыми размерами, но и флуктуационным характером образования и распада. Такого же мнения придерживается Уббелоде, который определил рои как кристаллизуемые кластеры и сиботаксические группы как антикристаллические кластеры.

Кластеры устойчивы и могут находиться длительное время в изолированном состоянии. Есть основания полагать, что заряженные частицы стабилизируют кластеры. Поэтому можно подразделить кластеры на заряженные и не имеющие заряда – нейтральные кластеры.

Процессы взаимодействия кластеров настолько деликатны, что зачастую не поддаются прямым измерениям. Любое воздействие на кластер в большинстве случаев должно приводить к его разрушению.

3.1. Поляронные состояния в нейтральных кластерах

Исследование электронных свойств нейтральных кластеров из поляронных молекул были начаты сравнительно недавно, лишь в начале 1990-х годов. Вначале были исследованы металлосодержащие кластеры воды и аммиака. Потенциал ионизации металламиачных кластеров имеет обычную асимптотическую зависимость, которая подтверждается различными теоретическими исследованиями. По сравнению с аммиачными кластерами, комплексы из атомов металла и молекул воды проявляют аномальные свойства: в частности, при большом числе полярных молекул потенциал ионизации не зависит от размера кластера. Для объяснения этих аномалий может быть использована континуальная модель.

Континуальная модель. Для того чтобы качественно проанализировать ситуацию в случае нейтральных кластеров, рассмотрим простейшую континуальную модель, где вместо электрона в кластере помещен атом металла. Поскольку в качестве металла обычно используются щелочные атомы, валентный электрон которых слабо связан с атомом, такой кластер можно рассматривать как непрерывную полярную среду, заполняющую сферу радиуса R , которая содержит электрон и ион атома металла. Взаимодействие между ионом и валентным электроном включает в себя не только кулоновский потенциал, но и поляризацию, создаваемую полярными молекулами кластера. Вклад поляризации можно описывать с помощью двух диэлектрических проницаемостей — высокочастотной e ¥ и статической e . В рассматриваемой нами модели могут реализоваться три качественно различных случая, отвечающих трем различным типам состояний валентного электрона: с двумя центрами (ионная пара), с одним центром и поверхностным состоянием (рис. 10). Состояния с двумя центрами имеют два центра сольватации (ион металла и валентный электрон), находящихся внутри кластера. Очевидно, что состояния с двумя центрами должны больше подходить для больших кластеров, т. к. атом щелочного металла распадается внутри макроскопического объема жидкости на ион и сольватированный электрон. Для небольшого числа полярных молекул электрон, вероятно, образует состояние, которое локализуется на ионе металла, в то время как поверхностные состояния электрона образуются, когда взаимодействие между полярными молекулами и ионом металла преобладают по сравнению с взаимодействием, между валентным электроном и ионом.

При континуальном описании поведение потенциала ионизации IP описывается асимптотической зависимостью:

IP(n ® ¥ )=A+Bn-1/3 (3.1.1)

где А и В — константы, которые зависят от типа электронного соcтояния, n — число атомов.

Рис. 10. Состояния валентного электрона в кластере из полярных молекул содержащего атом металла: а) двух — центровая модель, б) одно — центровая модель, в) модель поверхностного состояния.

Для поверхностных состояний предельное значение А определяется связыванием электрона потенциалом изображения вблизи поверхности. Соответствующая энергия связи небольшая и составляет менее 1 эВ.

Рис. 11. Размерная зависимость потенциала ионизации нейтральных металламмиачных кластеров: кружки — эксперимент; сплошная линия — результаты одно-центровой модели; пунктир — двух — центровая модель.

.Для постоянной В можно вычислить только нижний предел, который приближенно равен:

В= 3 ¤ 8е2 Rws -1 (3.1.2)

, где Rws -1 – функция распределения.

Отметим, что результаты расчета энергии отрыва и критических размеров кластера, выполненных с использованием континуальной модели, количественно согласуются с экспериментальными данными, полученными для заряженных кластеров.

Заметное различие возникает только для небольших значений п < 8. Для всех рассмотренных видов состояний потенциал ионизации возрастает с увеличением размера кластера. На рис. 11 изображен график размерной зависимости потенциала ионизации для нейтральных аммиачных кластеров: кружками отмечены экспериментальные данные, сплошная линия показывает асимптотическую размерную зависимость для электронного состояния с одним центром, для которого значение постоянной А составляет 1.95 эВ. Пунктирная линия описывает асимптотическую размерную зависимость для электронного состояния с двумя центрами. Как видно, теоретические вычисления не согласуются с экспериментальными данными для кластеров больших размеров. По этой причине в качестве возможного объяснения предполагалась возможность перехода от состояния с одним центром к состоянию с двумя центрами. Как выяснилось, такой переход возможен лишь при n > 23. В качестве другого объяснения предполагалось, что изменения тангенса наклона графика размерной зависимости могут быть вызваны фазовым переходом полярных молекул от твердого состояния к жидкому. К сожалению, до настоящего времени, экспериментальные данные в этой области недостаточно точны.

Подводя итог, можно сказать, что континуальное приближение применимо для описания размерной зависимости потенциалов ионизации. Дальнейшее уточнение модели связано с ее обобщением на несферический случай.

Список литературы:

1. Астафуров В. И., Бусев А. И. ''Строение вещества'': Кн. для учащихся – 2-е изд., перераб. – М.: Просвещение, 1983. – 160 с.

2. Динамические свойства молекул и конденсированных систем. Сборник научных трудов. /под ред. А. И. Лазарева. Лениград, :«Наука», Ленинградское отделение, 1988, 455с.

3. Лахно В. Д. Кластеры в физике, химии, биологии. М.: изд. «Мир», 2001, 403 с.

4. Лященко А. К. '' Структуры жидкостей и виды порядка'': ЖФХ, 1993. Том 67, выпуск 2. С. – 281 – 283.

5. Карапетьянц М. Х. Строение вещества: (Учебное пособие для хим. и хим. – технол. спец. вузов) \ М. Х. Карапетьянц, С. И. Дракин. – 3-е изд., перераб. и доп. – М.: ''Высш. школа'', 1978. – 304с.

6. Палатник Л. С., Фалько И. И. '' О стабильности аморфных систем'' – ЖФХ, 1983. Выпуск 10. С. –2398 – 2411.

7. Скрышевский А. Ф. “Структурный анализ жидкостей и аморфных тел”. Москва “Высшая школа” 1980, 325с.

8. Скрышевский А. Ф. “Структурный анализ жидкостей”. Москва “Высшая школа” 1971, 246с.

9. Татарникова Л. И. Структура твердых аморфных и жидких веществ. Монография. – М.: «Наука» 1983 г., 368с.

10. Торяник А. И. '' Физика жидкостей '': Учебное пособие. Донецк. ДонГУ, 1987. С. – 64 – 68.

www.ronl.ru

Структура жидкости

Количество просмотров публикации Структура жидкости - 50

Применение термина "структура" для описания льда понятно, лед кристалл и, разумеется, обладает внутренней структурой. Но что такое структура жидкости? "Разве отсутствие структуры - текучесть - не является определяющим качеством жидкости?" - писал Бернал. Оказывается, жидкость обладает структурой, и не одной, а несколькими. Все дело во временном масштабе.

В случае если с какой-либо фиксированной молекулой воды связать систему координат, то для наблюдателя, находящегося в этой системе, структура воды будет зависеть от характерного масштаба времени, с которым он будет наблюдать молекулярную жизнь воды. У воды существуют два характерных временных параметра. Как и у всякого вещества, будь то жидкость или твердое тело, существует период колебаний отдельной молекулы τυ. Для воды эта величина составляет значение 10-13с. В жидкости, кроме периода колебаний молекул около своего положения равновесия τυ, имеется еще одно характерное время - время "осœедлой жизни" τD, ᴛ.ᴇ. среднее время существования данного локального окружения одной молекулы. Для воды τD ~ 10-11 с, ᴛ.ᴇ. прежде чем перескочить на новое место, молекула воды совершает 100 колебаний на одном месте.

Два эти параметра разбивают временную шкалу на три области, каждой из которых соответствует своя структура жидкости. В случае если наблюдатель будет пользоваться достаточно малым временным масштабом, ᴛ.ᴇ. будет смотреть в течение времени, много меньшего τυ, то он увидит хаотически разбросанные молекулы, среди которых трудно усмотреть какой-либо порядок. Тем не менее это беспорядочное расположение молекул называют мгновенной, или М-структурой.

Чтобы понять, почему всœе-таки данный беспорядок называют структурой, наблюдателю крайне важно перейти к более длительному временному масштабу. Но не чересчур, точнее, больше чем τυ, но меньше чем τD. На этом временном интервале реальные молекулы уже не будут видны, наблюдатель сможет увидеть лишь точки, вокруг которых они совершают свои колебания. Оказывается, что эти точки в воде расположены довольно регулярно и образуют четкую структуру, называемую К-структурой, что означает "колебательно усредненная".

М- и К-структуры воды подобны таким же структурам льда. Чтобы увидеть различия этих структур у воды и льда, нужно понаблюдать за ними несколько дольше, ᴛ.ᴇ. с характерным временем, много большим чем τD. Наблюдаемую в данном случае картину называют Д-структурой - диффузионно усредненной. В отличие от льда Д-структура воды полностью размыта из-за частых перескоков молекул воды на большие расстояния (эти перескоки составляют процесс самодиффузии молекул воды). Д-структура образуется диффузионным усреднением К-структур и не должна быть описана каким-либо особым расположением точек в пространстве. Сторонний наблюдатель видит, что, по сути дела, никакой Д-структуры жидкости и не существует (заметим, что именно Д-структура как полное статистическое усреднение ансамбля молекул определяет термодинамические свойства воды.).

И тем не менее Д-структура существует, и ее можно увидеть. Наблюдатель, находящийся на некоторой молекуле воды, увидит, что его собственная молекула, перемещается хаотически по всœему объёму воды, каждый раз оказывается в более или менее упорядоченном окружении. Он увидит, что чаще всœего "его" молекулу будут окружать четыре других молекулы h3O, иногда сосœедей окажется пять, иногда шесть, в среднем как мы знаем, их будет 4,4. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, Д-структурой воды можно считать картину, видимую наблюдателœем.

Такой подход к описанию структуры воды чаще всœего используется при интерпретации спектроскопических данных, потому что различные спектроскопические методы - рентгеновский, ЯМР, диэлектрическая релаксация, комбинационное рассеяние нейтронов - способны "считывать" молекулярные данные с различным характерным временем разрешения.

Перемещение молекул доказывается обычно броуновским движением. Каплю воды, в которой плавают очень легкие частицы твердого нерастворимого вещества, рассматривают под микроскопом и наблюдают, что частицы беспорядочно перемещаются в массе воды. Каждая такая частица состоит из множества молекул и не облачает самопроизвольным движением. Частицы испытывают удары со стороны движущихся молекул воды, которые заставляют их всё время менять направление движения, а это означает, что сами молекулы воды движутся беспорядочно.

.

referatwork.ru

Структура жидкости — реферат

Рис. 4. Магнитное поле одного из протонов из молекулы метилового спирта. Ядерный магнит 1 создает большое магнитное поле на магните 2, находящемся от него на малом расстоянии, и меньшее поле на магните 3, находящемся дальше (светлый кружок - протон, заштрихованный - кислород, черный - углерод)

малом расстоянии находится другое магнитное ядро. А если скорость релаксации очень мала, то магнитные ядра сравнительно далеко расположены друг от друга. Но кроме того, что скорость релаксации пропорциональна квадрату локального магнитного поля, она также пропорциональна еще одной микроскопической величине, называемой временем корреляции тс. Итак мы имеем следующую зависимость:

где, кг - коэффициент пропорциональности, теперь уже другой, включающий характеристики, ядра и фундаментальные физические константы. Время корреляции определяет характеристику микроскопических вращательного и поступательного движения молекул; в чистых жидкостях, которые мы пока рассматриваем, оно имеет величины от 10-11 до Ю-4 с. Таким образом, 1/тс находится в микроволновом частотном диапазоне. Во многих случаях тс определяется сравнительно легко, поэтому из измерений 7\ могут быть найдены межатомные расстояния г. Итак, будем считать, что межатомные расстояния установлены. Теперь надо определить расстояния между атомами, находящимися в разных молекулах. Иначе говоря, нужно отделить межмолекулярную часть от внутримолекулярной части. Этого достигают заменой всех протонов одинаковых молекул ядрами тяжелого водорода, т. е. дейтронами. По сравнению с протонами (ядрами легкого водорода) дейтроны имеют много меньший магнитный момент. Сведения по ядерной релаксации протонов позволяют получить искомые меж- или внутримолекулярные вклады в локальные магнитные поля. Это и есть путь для измерения межмолекулярных расстояний.

 

Рис. 5. Зависимость коэффициента А от состава смеси с четыреххлористым углеродом (СС14)

Теперь коснемся вопроса, имеющего очень важное фундаментальное значение. Жидкости делятся на ассоциированные и неассоциированные. Ассоциированные жидкости- вода, спирты, жирные кислоты; типичные неассоциированные жидкости - бензин, бензол, ацетон и т. д. В первом названном классе жидкостей между молекулами образуются так называемые водородные связи. Величина их энергии примерно попадает в интервал между величинами энергии обычных межмолекулярных взаимодействий и энергии химических связей. Есть чрезвычайно много спектроскопических, термодинамических, кинетических методов исследований этих Н-связей. Однако все они сводятся к тому, что выясняют, как поведут себя связанные молекулы, если пытаться их разъединить. Чтобы разъединить компоненты с водородной связью, вводят инертный разбавитель (естественно в виде жидкости). Тогда время релаксации 1/7\ будет уменьшаться прямо пропорционально концентрации С таких компонентов

где к - константа. До введения разбавителя компоненты, обладающие Н-связями, были чистыми или почти чистыми, их частицы располагались друг от друга на различных расстояниях. При разбавлении инертным растворителем все частицы, способные к объединению, стремятся сблизиться до расстояния г, задаваемого оптимальной связью. Из приведенных на рис. 5 зависимостей можно видеть, что при малых концентрациях веществ с Н-связями коэффициент ассоциации А, определяющий связь между атомами и молекулами, велик, т. е. частицы не хотят "отходить" друг от друга. Теперь обратимся к другому случаю. Поместим на концы двух стрежней по одному магниту, т. е. по одному протону (ядру атома водорода)

Рис. 6. Примеры магнитных взаимодействий и структуры циклических димеров уксусной кислоты (стрелки - направления магнитных моментов протонов)

(см. рис. 6а). Обозначим их через / и 5. Тогда появятся три следующие  парные магнитные взаимодействия: /-I, S-S, I-S. Воспользуемся уже описанным методом изотопного замещения протонов ядрами тяжелого водорода дейтерия. Это позволит нам измерить указанные магнитные взаимодействия. Зная их, по ранее приведенной зависимости Я2лок=М2/г6, можем определить три расстояния: r,_" rs_s, r,_s. Это так называемые расстояния при плотнейшей упаковке. По такой схеме нами был поставлен эксперимент, позволивший определить структуру расположения молекул уксусной кислоты. Стержень - это наша молекула. При этом /, например, представляет собой три магнита, которые созданы

Рис. 7. Экспериментально обнаруженное ион-молекулярное расположение в гидрат-ном комплексе. Четыре ближайшие к иону F молекулы воды представлены в виде шара с двумя кнопками (атомами водорода). Оказывается, что молекула воды подходит к иону F со стороны протона (кнопки)

метальными протонами; 5 - магнит протона ОН-группы. Уксусная кислота - сильно ассоциированная жидкость, ее молекулы при бесконечном разбавлении существуют и объединяются в пары и в виде "димеров". Ранее циклические димеры уксусной кислоты

представляли в виде плоских фигур. Измерения расстояний г_, г_5 и s дали нам возможность определить структуры циклических димеров (рис. 6 б, в). Выяснилось, что это - изогнутые фигуры. Тепловое движение сгибает и разгибает димер. Изогнутые формы можно представить как поворотные точки маятника, где он находится наибольшее время. В инертном растворителе циклогексане (рис. 66) изгиб димера меньше, чем в растворе СС14 (рис. 6в), молекулы которого имеют сравнительно большую локальную поляризацию из-за дипольного момента связи С-С1. До сих пор мы говорили о нейтральных молекулярных жидкостях, теперь перейдем к растворам солей, электролитам. Растворитель вызывает распад электролита на ионы. Взаимодействие молекул растворителя с ионами растворенного вещества называется сольватацией, в водных растворах этот процесс называют гидратацией. Для понимания гидратационного взаимодействия очень важно знать, как

Рис. 8. Экспериментально установленная структура в растворе формамида (HCONh3), содержащем натриевую соль (сольватная структура). В центре - ион Na+, вокруг него - молекулы формамида. Стрелками отмечены расстояния от центрального иона Na+ до ионов азота и водорода ближайшей молекулы формамида

располагаются молекулы и ионы, и установить расстояния между частицами образующихся ги-дратных комплексов: центром комплекса, т. е. ионом и молекулами воды - ближайшими соседями иона. Здесь снова может быть полезен ранее описанный метод ЯМР взаимодействия. На рис. 7 и 8 показаны наиболее вероятные конфигурации ион-молекулярного расположения в гидратном и сольватном комплексах, которые были установлены методом ЯМР и с использованием функции парного распределения ион - молекула растворителя. К сожалению, существует много атомных ядер, которые находятся в центре сферических ионов и обладают не только магнитным дипольным моментом, но еще и электрическим квадрупольным моментом. Тогда к локальному магнитному полю, измеряемому с помощью упоминавшихся выше наших магнитных зондов, добавляется электрическое поле. Это "мешающее" воздействие у многих ядер превалирует. В таких случаях нельзя использовать описанный метод. Для структурных исследований еще очень важен следующий вопрос. Может ли отрицательно заряженный ион - анион находиться в непосредственном контакте с положительно заряженным катионом? Чтобы ответить на него, представим следующую схему. Предположим, что в первой сольватной сфере* вокруг катиона есть шесть мест (рис. 9). Если на одно из них попадает анион, то одна из молекул растворителя будет вытеснена (выйдет из первой сольватной сферы). Тогда из-за отдаления ее от центрального ядра вклад этой молекулы в релаксацию будет пренебрежимо мал, останется только 5/6 от полной величины. При "прощупывании" будет зарегистрировано особо короткое расстояние между анионом и катионом. А если больше анионов займут места около катиона, то их воздействие еще сильнее изменит локальное поле. Можно также использовать магнитное поле электронных спиновых моментов иона при условии, что он парамагнитен. Иногда для установления возможного прямого контакта аниона с катионом можно использовать упомянутое ранее "мешающее" взаимодействие электрических ядерных квадрупольных моментов с локальным электрическим полем. Есть еще и другие методы исследования, в частности интерференционные. В них используются рентгеновское, электронное и нейтронное излучения. Для исследований с помощью нейтронного излучения можно воспользоваться изотопным замещением.

Рис. 9. Если в первой сольватной сфере центрального иона одно из шести мест занимает анион (заштрихован), то в ней остается всего пять молекул воды (две из них лежат над и под плоскостью чертежа и поэтому не видны). Расстояние от катиона до вытесненной из сферы шестой молекулы воды из-за внедрения аниона стало больше  

Молекулярные движения в жидкостях

До сих пор мы описывали структуру жидкости как некую совокупность частиц, т. е. рассматривали как бы моментальный снимок. Но ведь мы уже говорили, что частицы жидкости совершают быстрые беспорядочные движения. Поэтому если через весьма короткий промежуток времени сделать еще один моментальный снимок, то все положения точек на двух снимках не совпадут. Каким должен быть для молекулярных жидкостей этот промежуток времени, чтобы нельзя было увидеть какое-либо совпадение двух положений? Согласно теоретическому расчету получают время порядка Ю-11 с, что соответствует периоду колебания в микроволновой области или сантиметровому диапазону электромагнитных волн. Как измерять столь малое время? Для этого можно "пометить" определенные молекулы и следить за их перемещением. Предложено два независимых метода нанесения меток. В первом молекулы или атомы замещают изотопическими частицами, имеющими такие же химические свойства, и следят за их перемещением с помощью масс-спектрометра (в случае стабильных изотопов) или фиксируют их излучение (в случае радиоактивных изотопов). Второй метод основан на использовании уже описанного ЯМР. Напомним, что если жидкость поместить в неоднородное магнитное поле, то ядра начинают прецесси-ровать вокруг направления магнитного поля. Частота вращения ядер пропорциональна напряженности магнитного поля. При диффузии частиц в области с другим значением напряженности поля меняется частота вращения ядер. Используя довольно известные методы, можно измерить так называемый коэффициент самодиффузии, характеризующий перемещение частиц среди себе подобных. А затем уж рассчитать интервал времени, необходимый для того, чтобы частица смогла, случайно блуждая, пройти расстояние, примерно равное ее диаметру. Такой расчет для молекулярных жидкостей дает величину 2-Ю"11 с, что приблизительно соответствует теоретической величине, названной раньше. Пока мы говорили о чистых жидкостях, а каков будет этот интервал времени, если мы смешаем жидкости? Можно предположить, что в случае ассоциирующихся жидкостей под действием межмолекулярных сил как бы произойдет агрегирование и входящие в агрегат частицы будут иметь одинаковый коэффициент самодиффузии. У такого агрегата, состоящего из различных молекул или других частиц, например ионов, будет большой эффективный диаметр. Эти агрегаты с большим диаметром движутся медленно и как единое целое (рис. 10). Некоторые полученные нами результаты подтверждают описанную схему. Например, если очень сильно разбавить этиловый спирт четырех-хлористым углеродом, то молекулы спирта в смеси будут иметь более высокий коэффициент диффузии по сравнению с чистой жидкостью. Если же еще уменьшить концентрацию спирта, то поступательная подвижность молекул спирта резко упадет. Это происходит из-за того, что возникают Н-связи между отдельными молекулами, которые объединяют их друг с другом, образуя медленнее диффундирующие агрегаты (см. рис. 5). Весьма интересны данные для водных смесей, содержащих молекулы с одной или несколькими метальными или алкильными группами. Даже если органические компоненты в чистой жидкости имеют более высокий коэффициент, чем вода, то коэффициенты диффузии воды и ее партнеров по смеси сначала с ростом содержания органического компонента уменьшаются, а потом, после достижения некоторого минимума, снова растут. Это явление называется гидрофобной гидратацией (обволакиванием). Гидрофобные группы окружаются водной оболочкой несмотря на то, что в самом деле они "инертны", т. е. не могут взаимодействовать. Однако гидрофобная гидратация очень неустойчива. Образовавшаяся "клетка" разрушается приблизительно за время Ю-11 с, и возникает уже новая с другими молекулами воды. При обычной гидратации малых и высокозарядных ионов, таких, как Mg2+, Са2+, Мп2+, Ni2+, Al3+, Ga3-1", возникает такое сильное ион-молекулярное взаимодействие, что не только коэффициент диффузии молекул воды в первой гидратной оболочке резко убывает, но и ионы в центре агрегата вместе с молекулами воды двигаются, как твердоспаянные в клетке (рис. И). Наблюдается еще одно интересное явление. Около клетки будет "летать" рой анионов, который как бы принадлежит к рассматриваемому катиону и нейтрализует его. Так, например, у хлорида

Рис. 10. Блуждание центрального иона при тепловом движении. Гидратированные молекулы воды движутся вместе с ним, "танцуя" вокруг этого центра 

алюминия А1С13 три хлорид-иона "танцуют" около клетки на более или менее значительном расстоянии. Отдельно взятые анионы при высоких разбавлениях совершают относительно быстрое неупорядоченное движение в растворе. Однако при высоких концентрациях растворенных солей они находятся где-то вблизи от катионов, "привязываются" к ним и замедляют свое движение. Итак, анионные коэффициенты самодиффузии с ростом концентрации соли будут быстро уменьшаться. До этого мы говорили о неупорядоченном движении маленьких высокозаряженных ионов. А как проявляют себя ионы с малым зарядом и большим радиусом, т. е. такие, как Gs+, Rb+, К+, I-, Br? Ответ поразительный: неупорядочное движение молекул воды в присутствии этих ионов становится быстрее. Представим опять молекулу воды в виде шара с двумя маленькими кнопками, атомами водорода (рис. 12). Может так случиться, что одна или две кнопки прилипнут к другой молекуле воды. Тогда возникнет сильно разветвленная пространственная сеть, весьма похожая на кристаллическую структуру льда. Введем в воду только что упомянутые большие ионы, электрические поля которых смогут порвать водородные связи, т. е. как бы усилием оторвем кнопку от места прилипания. Вся специфическая структура воды мгновенно разрушится, ее молекулы начнут двигаться быстрее, чем в чистой воде. И с противоионом (ионом противоположного заряда) здесь происходит нечто, прямо противоположное тому, о чем мы говорили выше, когда речь шла о маленьких, сильных образующих структуру ионах. Например, в растворе KI большой ион I", который разрушает структуру, будет воздействовать и на ион К+. Последний, находясь в растворе с разрушенной структурой, будет иметь большой коэффициент самодиффузии. Поэтому с добавлением соли KI в воду коэффициент самодиффузии иона К+ сначала будет расти, а затем упадет. Полагают, что это связано с тем, что в растворе появляется много ионов имеющих большие размеры, к тому же часть этих ионов может ассоциироваться с ионами К+, создавая агрегаты большого размера. Особенно отчетливо заметен эффект при низких температурах, когда структура воды еще подобна льду и потому может резко кооперативно разрушаться. Рассмотрим раствор соли в воде, т. е. электролита. Допустим, что мы можем наблюдать блуждания отдельной молекулы воды. Оказывается, что молекула не только перемещается, но она еще и изменяет свою ориентацию в пространстве (рис. 13). Биссектриса угла (стрелка на рисунке) между обеими О-Н-связями указывает направление электрического дипольного момента молекулы Н20. Дипольный момент постоянно меняет свою ориентацию относительно стенок сосуда, содержащего жидкость; т. е. происходит постоянное переориентирующее движение. Из опытов по диэлектрической поляризации воды, а также по данным магнитной релаксации ядер найдено,

yaneuch.ru

Структура жидкости — реферат

Введение

Газообразное состояние — самое распространённое состояние вещества Вселенной (межзвёздное вещество, туманности, звёзды, атмосферы  планет и т.д.). По химическим свойствам газы и их смеси весьма разнообразны — от малоактивных инертных газов до взрывчатых газовых смесей. К газам иногда относят не только системы из атомов и молекул, но и системы из других частиц — фотонов, электронов, броуновских частиц, а также плазму.

Жидкое состояние вещества является промежуточным между твердым и газообразным. Область существования жидкости ограничена со стороны низких температур переходят в твердое состояние высоких – переходом в газообразное. Для каждого вещества существует температура, называемая критической Ткр, выше которой жидкость не может находится в равновесии с собственным паром.

Жидкости сохраняют отдельные свойства как твердых тел, так и газов.

Твердые тела по характеру расположения атомов или молекул подразделяются на кристаллические и аморфные. Кристаллы обладают ближним и дальним порядком.

Частицы кристалла расположены так, что расстояние между сколь угодно удаленными частицами непосредственно выражается через кратчайшее расстояние между двумя соседними частицами. По типам связи кристаллы подразделяются на атомные, ионные, молекулярные и металлические. Кристаллические тела обычно анизотропны, их механические, тепловые, электрические и оптические свойства в разных направлениях неодинаковы. Одно и то же кристаллическое вещество может находиться в нескольких модификациях, обладающих неодинаковой структурой. Так, углерод существует в виде графита и алмаза;  двуокись  кремния SiO2—в виде кварца, тридимита и кристаболита; сера — в виде ромбической и моноклинной модификации. Атомы, ионы или молекулы, образующие кристалл, совершают согласованные (коллективные) колебательные движения, энергия их сцепления больше внутренней энергии кристалла.

В газообразном состоянии вещества атомы или молекулы взаимодействуют друг с другом посредством ван-дер-ваальсовых сил притяжения на больших, по сравнению с размерами частиц, расстояниях, и квантово-механических сил отталкивания на малых расстояниях. Однако силы притяжения не достаточны, чтобы удержать молекулы друг возле друга, вследствие чего их взаимное расположение в газе хаотическое. Молекулы газа находятся в беспрерывном движении, которое происходит в виде поступательных, несогласованных (индивидуальных) перемещений и столкновений в конце каждого свободного пробега. Кинетическая энергия молекул газа значительно больше потенциальной. В многоатомных молекулах наряду с поступательным движением может происходить вращение молекулы как целого и колебания составляющих ее атомов.

Жидкость, как и твердое тело, — система динамическая. Атомы, ионы или молекулы, сохраняя ближний порядок во взаимном расположении, участвуют в тепловом движении, характер которого гораздо более сложный, чем в кристаллах. Молекулы жидкостей совершают колебания такого же типа, как и в кристаллах, но положения равновесия, относительно которых происходят эти колебания, не остаются неподвижными. Совершив определенное число колебаний около одного положения равновесия, молекула скачком переходит в новое положение и продолжает там колебаться вплоть до следующего скачка. Посредством таких скачкообразных перемещений молекул в жидкостях осуществляется диффузия, которую, в отличие от непрерывной, называют диффузией скачком.

С ростом температуры, время оседлой жизни молекул во временном положении равновесия уменьшается. Соответственно усиливается трансляционное движение молекул.

Многочисленные исследования показывают, что наряду с колебанием молекул в окружении своих соседей и активационными скачками в жидкостях происходят плавные перемещения молекул вместе с их ближайшим окружением. Иными словами, находящиеся в колебательном состоянии молекулы жидкости в каждый момент времени смещаются на некоторое расстояние (меньше межатомного), обусловливая непрерывную диффузию. Можно полагать, что в сжиженных инертных газах и металлах преобладает непрерывная диффузия, тогда как для ассоциированных жидкостей (например, для воды) более вероятен прыжковый механизм диффузии.

В жидком состоянии вещества в отличие от газообразного проявляются те же межмолекулярные силы притяжения, которые обусловливают тот или иной тип связи в кристалле. Так, например, между атомами сжиженных инертных газов действуют дисперсионные ван-дер-ваальсовы силы. Те же силы обусловливают взаимное притяжение молекул диэлектрических жидкостей (бензол, парафины и др.). Между молекулами воды, спиртов, кислот жирного ряда действуют специфические силы притяжения, возникновение которых связано с наличием в составе этих молекул группы ОН (водородная связь). В расплавах солей действуют электростатические силы, в металлах — силы металлической связи. В жидком германии, кремнии и других полупроводниковых веществах наряду с металлической связью частично сохраняется ковалентная связь. Жидкости, принадлежащие к данному типу межмолекулярных связей, характеризуются специфическим ближним порядком в расположении частиц, что отражается на поведении физических свойств вещества в жидком состоянии. В естественных условиях жидкости изотропны, имеют только одну модификацию. Исключением является гелий, который может находиться в двух фазах, и так называемые жидкие кристаллы, у которых существует как изотропная, так и анизотропная фазы.

Из изложенного следует, что жидкости по характеру взаимного расположения частиц, их динамике и взаимодействию ближе к кристаллическому, а не к газовому состоянию вещества. Полная энергия молекул жидкости равна сумме их кинетической и потенциальной энергий. Соотношение между их численными значениями зависит от температуры и давления. Являясь фазой, промежуточной между твердой и газообразной, жидкость, естественно, обнаруживает непрерывную гамму переходных свойств, примыкая в области высоких температур и больших удельных объемов к газам, а в области низких температур и малых удельных объемов - к твердым телам

 

 

Структура жидкостей

Структура жидкостей – это способ распределения ее частиц в пространстве. Если взаимное расположение молекул, атомов или ионов, входящих в состав жидкости, изучено, то ее структура считается известной. Экспериментальным методом исследования структуры является рентгенография.

Трактовать структуру жидкости можно на основе существующих молекулярных моделей.

Микрокристаллическая модель

Микрокристаллическая модель предполагает, что в жидкости существуют группы молекул – ''микрокристаллы'', содержащие несколько десятков или сот молекул. Внутри каждого микрокристалла сохраняется в точности порядок твердого тела. Эти группы молекул, или ''кластеры'', существуют непродолжительное время, затем распадаются и создаются вновь; кроме того, они постоянно перемещаются так, что каждая молекула не принадлежит все время к одной и той же группе молекул или ''кластеру''. Собственно этим свойством объясняется текучесть жидкости. Наличие в жидкости пространственного упорядочения молекул подтверждается многими факторами, в частности экспериментальными по рассеянию света и рентгеновского излучения, нейтронов и электронов.

Результаты рентгеновского анализа жидкостей можно объяснить, представив их структуру либо как скопления множества ультрамикроскопических значительно деформированных агрегатов, либо в виде непрерывной, структурной сетки, в которой элементы структурного порядка ограничены ближайшими соседями.

Первое предположение означает, что огромное число мельчайших ''кристаллических островков'' (сиботоксических групп) разделены областями беспорядоченного расположения частиц. Эти группы не имеют резких границ, плавно переходя в области неупорядоченного расположения частиц. Они перемещаются и не только непрерывно утрачивают одни частицы и пополняются другими, но могут разрушаться и создаваться вновь. Как в газе, они перемещаются по объему, как в кристаллах, колеблются около положения равновесия. Нагревание сокращает время ''оседлой'' жизни сиботаксических групп, охлаждение приводит к противоположному результату. Таким образом, представление о жидкости формируется на основании результатов синтеза представлений о газах и кристаллах – сочетания закономерного расположения молекул в небольших объемах с неупорядоченным распределением во всем объеме.

Квазикристаллическая модель

Квазикристаллическая модель предполагает, что относительное расположение частиц в жидкости приближается к имеющемуся в кристалле, причем отступление от правильности систематически увеличивается с расстоянием по мере удаления от исходной молекулы на большом расстоянии уже не наблюдается правильности в расположении молекул, то есть в жидкости имеет место ''ближний порядок'' и отсутствует ''дальний порядок''.

Второе предположение сводится к представлению о квазикристаллической структуре жидкости: каждая молекула окружена соседними, которые располагаются вокруг нее почти так же, как и в кристалле того же вещества. Однако во втором слое появляются отклонения от упорядоченности, которые увеличиваются по мере отдаления от первоначально взятой молекулы. Иначе говоря, отступление от правильного расположения по мере удаления от данной молекулы систематически возрастает и на большом расстоянии становится очень значительным – в жидкости существует ближний порядок. Этим строение жидкости отличается от строения кристаллов, характеризующегося строгой повторяемостью одного и того же элемента структуры (иона, атома, группы атомов, молекул) во всех направлениях, то есть дальним порядком.

Изучение рассеяния рентгеновских лучей в жидкостях, состоящих из многоатомных молекул, показало не только упорядоченное расположение молекул, но и известную закономерность во взаимной ориентации частиц. Эта ориентация усиливается для полярных молекул и если проявляется действие водородной связи.

Беспорядочное движение молекул жидкости приводит к непрерывному изменению расстояний между ними. Это можно выразить словами: структура жидкости носит статистический характер. В этом состоит существенное различие жидкости от кристаллов. Статистический характер упорядоченного расположения молекул жидкости приводит к флуктуациям – непрерывно происходящим отклонениям не только от средней плотности, но и от средней ориентации, так как молекулы жидкости способны образовывать группы, в которых преобладает определенная ориентация. Чем меньше величина этих отклонений, тем чаще они встречаются.

Колебательно - усредненная структура жидкости

Структурное описание может относиться ко всему множеству элементов атомно-молекулярной системы, задающемуся числом частиц, или к его части. Полное соответствие соблюдается только в случае идеального кристалла, однако оно не является единственно возможным в частично упорядоченных системах (фазах), имеющих внешние и внутренние поверхности раздела. Второе разделение связано с тем, что структура может относиться не только к исходным элементам множества, задающего систему, но и к производным элементам, геометрически или топологически задающимся в пространстве (например, разного рода полиэдральные схемы для всего объема жидкости). Разновременные I, V, D и производные от них структуры в твердом и жидком состоянии, связанные с усреднениями в расположении частиц за разные времена, привносят добавочную специфику и представляют характерный пример отличия структурных элементов в параллельно сосуществующих структурах.

С использованием компьютерного эксперимента и других теоретических и экспериментальных методов в жидкости в настоящее время выделяются разные пространственные структуры.

В структуре I структурные единицы тождественны или задаются исходными точками (частицами) системы, которые могут быть получены методами компьютерного моделирования.

В структуре V исходный структурный элемент выделяется при усреднениях расположений частиц при их колебательных движениях. При этом, в случае кристалла появляется трансляционная упорядоченность в цепочке частиц.

Наиболее вероятная структура Dv, в этом случае геометрически тождественна со структурой V. В то же время только в случае структуры D реального кристалла, реализующейся за макроскопические времена, появляется решетка кристалла и возможность описания системы, используя федоровские группы симметрии (при отсутствии рассмотрения внешних границ). Таким образом, понятие идеального кристалла может соотноситься в первую очередь со структурой D реального объекта. В то же время объединение динамического и геометрического подходов описания структуры кристаллов, по-видимому, возможно через анализ соотношения их конкретных структур I, V, Dv, D.

При переходе к жидкости появляются новые структурные особенности. Описание структуры здесь должно быть дано в уточняющей трактовке, не тождественной квазикристаллическому описанию. Это связано с тем, что в отличие от твердого тела колебательно - усредненную структуру жидкости нельзя рассматривать без учета влияния диффузионных (трансляционных и вращательных) движений молекул на характер усреднения их центров колебаний, задающих геометрию структурных единиц. Особенность рассматриваемой здесь V-структуры заключается в том, что она относится к пространственно - разделенным участкам системы, включающим только часть ее частиц, и отвечает дискретному расположению центров колебаний (или усредненных позиций среди смещающихся центров колебаний) вокруг позиции, задающейся невозмущенной диффузионным движением конфигурацией молекул. Геометрические различия структур V и  V' соответствуют различиям ''жестких'' и ''мягких'' структурных конфигураций в конформационном анализе. При совместном рассмотрении жестких и нежестких структур V и V' жидкостей и растворов и жестких (мягких) конфигураций сложных молекул может идти объединение геометрического и динамического подходов к анализу структуры сложных систем и изучение структурных эффектов влияния среды на конформационные движения молекул. Переход к описанию жидкости на уровне колебательно - усредненной структуры в этом случае может осуществляться в рамках рассмотрения двух структурных подсистем (V и V') с учетом трех видов молекул, которые могут в разной степени присутствовать в жидкостях:

yaneuch.ru

Реферат - Свойства жидкостей - Теоритическая физика

1. Объемные свойства жидкостей

Сжимаемость жидкостей

Молекулы в жидкостях находятся близко друг к другу, примерно на расстояниях равных размерам самих молекул. Это является причиной высокого молекулярного ван-дер-ваальсового давления, которое равно . Для воды, например, он равен около 11000 атм. Удельный объем жидкостей в тысячи раз меньше чем газов, следовательно, отношение в жидкостях в миллионы раз больше, чем в газах. Поэтому можно пренебречь внешним давлением, и уравнение Ван-дер-Ваальса примет вид

Большой величиной молекулярного давления объясняется ничтожно малая сжимаемость жидкостей. Это сразу видно из уравнения кривой Ван-дер-Ваальса, на которой жидкому состоянию соответствует участок AB (см. рис. 1). Коэффициент сжимаемости ? жидкости – относительное изменение объема dV при изменении давления на единицу т.е.

Опыт показывает, что коэффициент сжимаемости большинства жидкостей лежит в пределах от 10-4 до 10-5 . Коэффициент сжимаемости жидкости зависит от давления. Он возрастает с повышением температуры. К этому результату можно прийти и опытным путем и исходя из уравнения Ван-дер-Ваальса. Поскольку это уравнение связывает температуру, объем и давление, то из него можно вычислить величину . При расчете необходимо учитывать, что постоянные a и b на самом деле зависят от температуры. Совокупность опытных данных позволила получить эмпирическую формулу для коэффициента сжимаемости жидкости:

где A – некоторая функция, возрастающая с температурой, p – внешнее давление и pT – давление, связанное с силами Ван-дер-Ваальса (a/V2) при температуре T. Эта формула показывает, что коэффициент сжимаемости растет с повышением температуры и уменьшается с ростом давления. Среди всех жидкостей наибольшей сжимаемостью обладает жидкий гелий, у которого при давлении в несколько атмосфер коэффициент ? равен . Коэффициент сжимаемости воды равен , а ртути –.

Тепловое расширение жидкости

Тепловое расширение вещества характеризуется коэффициентом объемного расширения , т.е. относительным изменением объема V при изменении температуры T на 1 К. Числовые значения коэффициента ? сильно зависят от температуры и давления. Для различных жидкостей значения ? при одинаковых температурах могут меняться весьма значительно. Так, например, для воды , для бензола , для жидкой углекислоты , глицерина и т.д. При повышении температуры ? сильно возрастает. Так для жидкой углекислоты при повышении температуры от 0° до 20° коэффициент теплового расширения возрастает вдвое. Увеличение давления несколько снижает значение ?. Вода обладает аномальным тепловым расширением. В интервале от 0° до 3,98° коэффициент ? отрицателен: при нагревании объем воды уменьшается и наибольшей плотности вода достигает при 3,98° C. При этой температуре ? = 0. Причиной этого явления является то, что молекулы воды имеют различный состав: не только h3O, но 2h3O и 3h3O. Относительные количества этих молекул меняются с температурой и давлением.

2. Теплоемкость жидкостей

Внутренняя энергия жидкостей определяется не только кинетической энергией тепловых движений частиц, но и их потенциальной энергией взаимодействия. Поэтому закономерности, полученные для теплоемкостей идеальных газов из уравнений кинетической теории, не могут быть справедливы для жидкостей. Опыт показывает, что теплоемкость жидкостей зависит от температуры, причем вид зависимости у разных жидкостей различный. У большинства из них теплоемкость с повышением температуры увеличивается, но есть и такие у которых, наоборот, - уменьшается. У некоторых жидкостей теплоемкость с повышением температуры сначала падает, а затем, пройдя через минимум, начинает расти. Такой ход теплоемкости наблюдается у воды. Жидкости с большим молекулярным весом обычно имеют большие значения теплоемкостей. Особенно это проявляется у органических жидкостей. У жидкостей, как и газов, следует различать теплоемкость при постоянном объеме и при постоянном давлении. Разность молярных теплоемкостей равна Cp – CV равна работе расширения pdV ( p – молекулярное давление ) моля жидкости при его нагревании на один градус, поэтому численное значение этой разности зависит от значения коэффициента объемного теплового расширения жидкости. В отличие от идеальных газов значение Cp - CV у жидкостей не равно постоянной R, а может быть и больше и меньше в зависимости от значения коэффициента объемного расширения и от величины внутренних сил взаимодействия частиц жидкости, против которых совершается работа расширения (давление p в выражении pdV связано именно с этими силами). Так, у жидкого аргона при 140 К теплоемкость , а и, следовательно . У воды же при температуре около 0° C теплоемкость , а , так что . Таким образом, численные значения теплоемкостей жидкостей могут быть самыми разнообразными. Исключение составляют жидкие металлы, у которых молярная теплоемкость обычно близка к значению .

3. Явления переноса в жидкостях

В жидкостях, как и в газах, наблюдаются явления диффузии, теплопроводности и вязкости. Но механизм этих процессов в жидкостях иной, чем в газах. В отличие от газов, в жидкостях отсутствует понятие длины свободного пробега. Это связано с тем, что в жидкостях среднее расстояние между молекулами такого же порядка, как и размеры самих молекул. Молекулы жидкости могут совершать лишь малые колебания в пределах, ограниченных межмолекулярными расстояниями. Такие колебания молекул время от времени сменяются скачками на некоторое расстояние ?, происходящими из-за получения молекулой в результате флуктуации избыточной энергии от соседних молекул. Колебания, сменяющиеся скачками, – и есть тепловые движения молекул жидкости.

Диффузия

Для явления диффузии в жидкости справедлив закон Фика. Он гласит: , где I – диффузионный поток в направлении оси X, D – коэффициент диффузии, а - градиент концентрации по оси X. Обозначим время между скачками молекул через t, тогда величина - скорости молекулы. Это дает возможность сравнить со средней длинной свободного пробега, а - со средней скоростью молекул. Тогда по аналогии с идеальными газами коэффициент диффузии (точнее самодиффузии) жидкости равен: . Коэффициент самодиффузии сильно зависит от температуры, т.е. с повышением температуры он увеличивается. Выражение коэффициента диффузии можно переписать в виде , где , причем ? - частота вышеописанных колебаний, а w – энергия, необходимая для скачка молекулы, называемая энергией активации молекулы. Численное значение коэффициента диффузии у жидкостей много меньше чем у газов. Например коэффициент диффузии NaCl в воде равен 1,1·10-9 м2/с, в то время как для диффузии аргона в гелий он равен 7·10-5 м2/с.

Вязкость

Внутреннее трение жидкостей возникает при движении жидкости из-за переноса импульса в направлении, перпендикулярном к направлению движения. Перенос импульса из одного слоя в другой осуществляется при скачках молекул, о которых говорилось выше. Очевидно, что жидкость будет тем менее вязкой, чем меньше время t между скачками молекул, и значит, чем чаще происходят скачки. Исходя из этого, можно написать выражение для коэффициента вязкости, называемого уравнением Френкеля – Андраде: . Множитель C, входящий в это уравнение зависит от дальности скачка , частоты колебаний ? и температуры. Однако температурный ход вязкости определяется множителем ew/kT. Как следует из этой формулы, с повышением температуры вязкость быстро уменьшается.

Теплопроводность

Теплопроводность в жидкостях имеет место при наличии градиента температуры. При этом энергия в жидкостях передается в процессе столкновения колеблющихся частиц. Частицы с более высокой энергией совершают колебания с большей амплитудой, и при столкновениях с другими частицами как бы раскачивают их, передавая им энергию. Такой механизм передачи энергии не обеспечивает ее быстрого переноса. Поэтому теплопроводность жидкостей очень мала. Например, коэффициент теплопроводности этилового спирта составляет 1,76 Вт/м·К. Исключение составляют жидкие металлы, коэффициенты теплопроводности которых близки к значениям для твердых металлов. Это объясняется тем, что тепло в жидких металлах переносится не только вместе с передачей колебаний от одних частиц к другим, но и при помощи электронов, которые есть в металлах, но отсутствуют в других жидкостях.

4. Парообразование и кипение

Испарение

В поверхностном слое и вблизи поверхности жидкости действуют силы, которые обеспечивают существование поверхности и не позволяют молекулам покидать объем жидкости. Благодаря тепловому движению некоторая часть молекул имеет достаточно большие скорости, чтобы преодолеть силы, удерживающие молекулы в жидкости, и покинуть жидкость. Это явление называется испарением. Оно наблюдается при любой температуре, но его интенсивность возрастает с увеличением температуры. Если покинувшие жидкость молекулы удаляются из пространства вблизи поверхности жидкости, то, в конце концов, вся жидкость испарится. Если же молекулы, покинувшие жидкость не удаляются, то они образуют пар. Молекулы пара, попавшие в область вблизи поверхности жидкости, силами притяжения втягиваются в жидкость. Этот процесс называется конденсацией. Таким образом, в случае неудаления молекул скорость испарения уменьшается со временем. При дальнейшем увеличении плотности пара достигается такая ситуация, когда число молекул, покидающих жидкость за некоторое время, будет равно числу молекул, возвращающихся в жидкость за то же время. Наступает состояние динамического равновесия. Пар в состоянии динамического равновесия с жидкостью называется насыщенным. С повышением температуры плотность и давление насыщенного пара увеличиваются. Чем выше температура, тем большее число молекул жидкости обладает энергией, достаточной для испарения, и тем большей, должна быть плотность пара, чтобы конденсация могла сравняться с испарением.

Кипение

Когда при нагревании жидкости достигается температура, при которой давление насыщенных паров равно внешнему давлению, устанавливается равновесие между жидкостью и ее насыщенным паром. При сообщении жидкости дополнительного количества теплоты происходит немедленное превращение соответствующей массы жидкости в пар. Этот процесс называется кипением. Температурой кипения является та температура, при которой давление насыщенных паров становится равным внешнему давлению. При увеличении давления температура кипения увеличивается, а при уменьшении - уменьшается. По причине изменения давления в жидкости с высотой ее столба, кипение на различных уровнях в жидкости происходит, строго говоря, при различной температуре. Определенную температуру имеет лишь насыщенный пар над поверхностью кипящей жидкости. Его температура определяется только внешним давлением. Именно эта температура имеется в виду, когда говорят о температуре кипения. Количество тепла, которое необходимо подвести, для того чтобы изотермически превратить в пар определенное количество жидкости, при внешнем давлении, равном давлению ее насыщенных паров, называется скрытой теплотой парообразования. Обычно эту величину соотносят к одному грамму, или одному молю. Количество теплоты, необходимое для изотермического испарения моля жидкости называется молярной скрытой теплотой парообразования. Если эту величину поделить на молекулярный вес, то получится удельная скрытая теплота парообразования.

Литература:

1. А. К. Кикоин, И. К. Кикоин, Молекулярная физика, «Наука», 1976. 2. Телеснин Р. В., Молекулярная физика, «Высшая школа», 1973. 3. Матвеев А. Н., Молекулярная физика, «Высшая школа», 1987.

www.ronl.ru


Смотрите также