Реферат на тему:
Схема транскрипции ДНК.
Ген — структурная и функциональная единица наследственности, контролирующая развитие определенного признака или свойства. Совокупность генов родители передают потомкам во время размножения.
В настоящее время, в молекулярной биологии установлено, что гены — это участки ДНК, несущие какую-либо целостную информацию — о строении одной молекулы белка или одной молекулы РНК. Эти и другие функциональные молекулы определяют развитие, рост и функционирование организма.
В то же время, каждый ген характеризуется рядом специфических регуляторных последовательностей ДНК, таких как промоторы, которые принимают непосредственное участие в регулировании проявления гена. Регуляторные последовательности могут находиться как в непосредственной близости от открытой рамки считывания, кодирующей белок, или начала последовательности РНК, как в случае с промоторами (так называемые cis-регуляторные элементы, англ. cis-regulatory elements), так и на расстоянии многих миллионов пар оснований (нуклеотидов), как в случае с энхансерами, инсуляторами и супрессорами (иногда классифицируемые как trans-регуляторные элементы, англ. trans-regulatory elements). Таким образом, понятие гена не ограничено только кодирующим участком ДНК, а представляет собой более широкую концепцию, включающую в себя и регуляторные последовательности.
Изначально термин ген появился как теоретическая единица передачи дискретной наследственной информации. История биологии помнит споры о том, какие молекулы могут являться носителями наследственной информации. Большинство исследователей считали, что такими носителями могут быть только белки, так как их строение (20 аминокислот) позволяет создать больше вариантов, чем строение ДНК, которое составлено всего из четырёх видов нуклеотидов. Позже было экспериментально доказано, что именно ДНК включает в себя наследственную информацию, что было выражено в виде центральной догмы молекулярной биологии.
Гены могут подвергаться мутациям — случайным или целенаправленным изменениям последовательности нуклеотидов в цепи ДНК. Мутации могут приводить к изменению последовательности, а следовательно изменению биологических характеристик белка или РНК, которые, в свою очередь, могут иметь результатом общее или локальное изменённое или анормальное функционирование организма. Такие мутации в ряде случаев являются патогенными, так как их результатом является заболевание, или летальными на эмбриональном уровне. Однако, далеко не все изменения последовательности нуклеотидов приводят к изменению структуры белка (благодаря эффекту вырожденности генетического кода) или к существенному изменению последовательности и не являются патогенными. В частности, геном человека характеризуется однонуклеотидными полиморфизмами и вариациями числа копий (англ. copy number variations), такими как делеции и дупликации, которые составляют около 1 % всей нуклеотидной последовательности человека.[1] Однонуклеотидные полиморфизмы, в частности, определяют различные аллели одного гена.
Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие в себя азотистые основания: аденин(А) или тимин(Т) или цитозин(Ц) или гуанин(Г), пятиатомный сахар-пентозу-дезоксирибозу,по имени которой и получила название сама ДНК, а так же остаток фосфорной кислоты.Эти соединения носят название нуклеотидов.
wreferat.baza-referat.ru
Химическое строение гена.
Исследования, направленные на выяснение химического строения наследственного материала, доказали, что материальным субстратом наследственности и изменчивости являются нуклеиновые кислот. Нуклеиновые кислоты являются макромолекулами и отличаются большой молекулярной массой. Это полимеры, состоящие из нуклеотидов, включающих три компонента: сахар (пентозу), фосфат и азотистое основание.
Свойства генов:
— Гены контролируют определённые ферментативные реакции.
— Гены могут мутировать. Мутон – это минимальная единица мутирования. Может состоять из одной пары нуклеотидов.
— Ген может рекомбинировать. Рекон – единица рекомбинации. Минимальный размер рекона – две пары нуклеотидов.
— Дискретность.
— Плейотропность – один ген отвечает за развитие нескольких признаков.
— Дозированность – несколько генов могут контролировать один признак. Чем больше генов, тем признак выражен ярче.
— Пенетрантность – свойство генов проявляться в фенотипе.
— Экспрессивность – степень фенотипического проявления гена.
— Специфичность – содержит информацию об определённом белке.
Классификация генов по функциям:
— Структурные
— Функциональные
Структура гена прокариот.
Различают структурные гены – они содержат информацию о последовательности аминокислот в молекуле белка. Функциональные гены – регулируют работу структурных генов. Структурные гены обычно расположены рядом и образуют один блок, который называется оперон. Они отвечают за строение молекулы белка. В оперон входит промотор. Промотор – это участок молекулы ДНК, к которому присоединяется РНК – полимераза. Кроме того, промотор определяет с какой из двух цепей молекулы ДНК будет происходить транскрипция. Ген оператор – регуляторный участок. Ген терминатор – это ген расположен после структурного гена и на этом этапе заканчивается процесс транскрипции. На некотором расстоянии от оперона находится ген регулятор. Он отвечает за кодировку структуры белка репрессора.
Эукариот.
Оперон состоит из двух зон:
— Неинформативная зона – состоит из двух частей. Проксимальная (акцепторная). Эта зона представлена несколькими последовательно расположенными генами промоторами и генами операторами. Дистальная (регуляторная), представлена генами регуляторами, которые ответственны за синтез белка репрессора.
— Информативная зона – представлена структурными генами. Один структурный ген может повторяться многократно. Они ответственны за разные звенья одной цепи биохимических реакций. В структурных генах различают участки экзоны и интроны, которые чередуются друг с другом. В различных генах число их различно. Экзоны – кодирующая зона. Интроны – не
кодирующая зона.
У прокариот и эукариот различают гены модуляторы, которые контролируют работу оперона. К ним относятся ингибиторы или супрессоры, которые блокируют синтез белка, А также гены интенсификаторы, которые усиливают работу оперона.
3. Печёночный сосальщик (Fasciola hepatica) — возбудитель фасциолеза.
Возбудитель фасциолёза. Тело листовидное. Марита фасциолы достигает в длину 3-5 см. Матка находится позади брюшной присоски, за маткой лежит яичник, по бокам тела расположены многочисленные желточники. Всю среднюю часть тела занимают семенники. Яйца желтовато-коричневые, овальные.
Жизненный цикл. Окончательными хозяевами ее являются травоядные млекопитающие и человек. Промежуточный хозяин — малый прудовик. Яйцо развиваться, попав в воду, где из него выходит личинка. Личика внедряется в тело малого прудовика. Церкарии покидает моллюска и активно передвигается в воде. Далее свободноплавающие церкарии прикрепляются к стеблям растений. При проглачивании животными проникает в печень.
Диагностика. Нахождение яиц в фекалиях.
Профилактика. Меры личной профилактики сводятся к следующему: 1) не пользоваться для питья сырой нефильтрованной водой. 2) тщательно мыть овощи. Общественная профилактика должна быть связана с ветеринарной службой. Для предохранения скота проводят смену пастбищ, уничтожают промежуточных хозяев. Санитарно-просветительная работа.
www.ronl.ru
Введение
Часто новейшие гены, кодирующие белки одного метаболического пути или определяющие близкородственные функции, регулируются согласованно. Экспрессия таких генов начинается и заканчивается или согласованно продолжается в ответ на один и тот же регуляторный сигнал. Гены, объединенные в опероны, транскрибируются с промотора, находящегося на 5’-конце такой группы генов, в виде единственной молекулы РНК, которая в дальнейшем подвергается процессу «созревания». Часть генов в хлоропластном геноме входит в состав оперонов. Это свойство они унаследовали от своих предшественников - сине-зеленых водорослей. Хлоропласты имеют также прокариотического типа трансляционную систему и характерные для бактерий регуляторные транскрипционные элементы. Однако в процессе эволюции хлоропласты приобрели и некоторые эукариотические признаки - наличие интронов в генах, процесс редактирования РНК и др.
Особенности транскрипции генов оперонов
С помощью метода run on транскрипции была изучена интенсивность транскрипции нескольких оперонов пластома ячменя. Основой транскрипционной системы служили лизированные хлоропласты, которые были выделены из первых листьев ячменя разного возраста (4-х, 9-ти и 18-ти дневные).
В ходе реакции транскрипции (длительность 10 мин) во вновь синтезированные молекулы РНК включался радиоактивно-меченный УТФ (α32P-УТФ), что позволяло в дальнейшем детектировать только вновь синтезированные транскрипты. Ограниченное время реакции практически исключает влияние процессов деградации РНК на количество синтезированных транскриптов.
Установлено, что у большинства изученных оперонов гены транскрибируются с различной интенсивностью. Наиболее равномерная транскрипция наблюдалась для rpo-оперона, содержащего rpoB-rpoC1-rpoC2 гены. Необходимо отметить, что это, вероятно, единственный оперон пластома ячменя, состоящий только из генов, кодирующих субъединицы одного белкового комплекса (субъединицы РНК-полимеразы бактериального типа). Другие опероны, также несущие большинство генов одной функциональной группы, характеризовались различиями в интенсивности транскрипции генов.
Так, у оперона rps2-atpI-atpH-atpF-atpA считывание РНК значительно повышалось (в 7-10 раз) для atpF гена по сравнению с предыдущими и последующим геном. Транскрипция гена psaB в опероне psaA-psaB-rps14 так же была интенсивнее как минимум вдвое, чем транскрипция первого и последнего генов оперона. Отмечены и значительные изменения в оперонах, содержащих гены, кодирующие компоненты различных функциональных групп хлоропластов. Так оперон atpB-atpE-trnV-ndhС-ndhK-ndhJ характеризуется значительно большей интенсивностью транскрипции генов atpB и trnV, в сравнении с другими генами (превышение в среднем не менее чем в 3 раза).
Структурно-термодинамические исследования генов
Проблема самоорганизации белков, то есть самопроизвольного сворачивания полипептидной цепи в уникальную пространственную структуру, остается одной из центральных в современной молекулярной биологии и имеет три основных аспекта: структурный, термодинамический и кинетический.
Наиболее подходящими для исследования самоорганизации являются маленькие глобулярные белки, способные поддерживать нативную структуру без дополнительных факторов, таких как прочно связанные лиганды или дисульфидные мостики.
Одними из наиболее популярных объектов исследований являются изолированные Sh4 домены, полученные в виде рекомбинантных белков. Ранее путем удлинения центральной β - шпильки на восемь остатков было сконструировано несколько химерных вариантов спектринового Sh4-домена. Предполагалось, что такая вставка придаст β - шпильке дополнительную стабильность, и она будет выступать за пределы глобулы в виде «носа», в связи с чем эти химерные белки были названы «Бержераками». Они уже были использованы для уточнения ряда кинетических аспектов процесса самоорганизации, а в настоящее время изучаются нами в качестве удобной модели для определения термодинамических параметров образования изолированной β-структуры.
Калориметрические данные были получены нами для нескольких вариантов Бержераков в широком диапазоне pH при различных концентрациях белка. Согласно этим данным тепловое разворачивание белков происходит равновесно, обратимо и с хорошей точностью описывается моделью двух состояний при низких концентрациях белка и pH ниже 3,5. То есть выступающий нос образует с телом домена единую кооперативную систему, тепловой эффект разворачивания которой выше теплоты денатурации исходного белка в среднем на 14 кДж/моль.
С целью структурной интерпретации полученных данных методом рентгеноструктурного анализа была определена трехмерная структура одного из белков (так называемого SHH варианта), которая показала, что вставленный фрагмент действительно образует жесткую β-шпильку. В случае SHH взаимодействие этих шпилек приводит к образованию тетрамеров в процессе кристаллизации химер.
Поиск и картирование элементов геномных последовательностей
Нами разработан экспериментальный метод селекции, идентификации и картирования потенциальных энхансерных элементов внутри длинных геномных последовательностей. Предложенный метод позволяет проводить одновременный поиск всех элементов, проявляющих энхансерную активность, среди множества коротких фрагментов ДНК, перекрывающих исследуемую область генома.
Используемый в работе подход основан на способности энхансеров активировать промотор репортерного гена. Набор коротких фрагментов ДНК, полученных расщеплением участка длинной 1 млн. п.н. хромосомы 19 человека, был клонирован в специально сконструированный нами самоинактивирующийся ретровирусный вектор, содержащий репортерный ген неомицин-фосфотрансферазы II под контролем минимального промотора цитомегаловируса.
В дальнейшем был получен пул ретровирусных частиц, которыми инфицировали клетки линии HeLa, после чего, были отобраны неомицин-устойчивые клоны, содержащие интегрированные в геном конструкции с фрагментами ДНК, обладающими активностью энхансеров. ДНК неомицин-устойчивых клонов использовали для амплификации соответствующих фрагментов, которые затем клонировали в плазмидный вектор. Таким образом, была получена библиотека потенциальных энхансеров. Клоны библиотеки секвенировали и была построена карта расположения энхансеров в интересующем нас локусе хромосомы 19 человека. Анализ библиотеки выявил 15 энхансер-подобных последовательностей в полигенном локусе хромосомы 19 человека длинной 1 млн. п.н., энхансерная активность 13 из них была подтверждена в экспериментах по транзиентным трансфекциям с помощью системы двойной люциферазной детекции. Найденные последовательности преимущественно расположены в 5′ прилегающих к генам областях либо внутри интронов.
Анализ гена растительных изопероксидаз
Пероксидаза - один из распространенных ферментов, интерес к изучению которого с годами не ослабевает. Среди кодирующих растительных пероксидаз, образующих большое мультигенное семейство, особое место занимают патоген-индуцируемые пероксидазы, активность которых коррелирует с развитием устойчивости растений к фитопатогенам. Ранее в лаборатории биохимии иммунитета растений ИБГ УНЦ РАН было показано, что некоторые изопероксидазы у многих видов растений характеризуются свойством связывания с хитином.
К сожалению, на фоне активного изучения физиологических функций пероксидаз роль структуры хитин-связывающего сайта в последующем проявлении растениями устойчивости к фитопатогенам остается слабо изученной. Можно предположить, что свойство сорбции пероксидаз на хитин связано с наличием общего полисахарид-связывающего мотива в их аминокислотной последовательности, что предполагает и определенную гомологию в структуре генов, их кодирующих.
Изучение молекулярных механизмов регуляции отдельных изопероксидаз внесет вклад в понимание физиологических основ устойчивости растений к фитопатогенам. Ранее, к нуклеотидной последовательности хитин-связывающего сайта гена анионной пероксидазы пшеницы были подобраны и сконструированы праймеры. С использованием данной пары праймеров нами была проведена ПЦР на ДНК разных видов пшеницы, эгилопса, арабидопсиса и табака.
Обнаружено, что у испытанных видов пшеницы и эгилопса проявляется целевой ампликон размером 190-200 п. н., что совпадает с теоретически рассчитанными размерами, отжигающимися полученными праймерами с гена анионной пероксидазы этих злаков. Данный факт подтверждает предположение о сходной организации этого участка гена. Интересно, что у Arabidopsis thaliana ампликон, полученный после ПЦР, был размером около 150 п. н. Анализ генов, кодирующих пероксидазы, по известным из международного генбанка нуклеиновым последовательностям Arabidopsis thaliana, показал, что из большого количества генов пероксидазы арабидопсиса (70 генов) только у одного имелся подобный мотив размером 175 нуклеотидов и близкий к полученному после ПЦР. При использовании ДНК Nicotiana tabacum, к сожалению, не происходило формирования искомого ампликона. Поскольку анализ известных генов пероксидазы Nicotiana tabacum также не выявил подобных последовательностей, можно предположить, что структура этого ампликона у табака отличается от полученной для пшеницы и требует подбора другой пары праймеров. Таким образом, нами проведен анализ размера ампликона хитин-специфичного сайта пероксидаз из разных видов растений. Более точные результаты предполагается получить после секвенирования ампликонов этих видов и сравнение их последовательностей.
Органная специфичность метилирования и экспрессии промотора гена пататина
Промотор гена пататина класса I – это тканеспецифичный промотор, обеспечивающий экспрессию гена главным образом в клубнях. Ранее было показано, что невысокий уровень экспрессии обнаруживается и в других органах картофеля. Проведенный нами количественный флюориметрический анализ функционирования пататинового промотора в трансгенных линиях картофеля сорта Дезире B33::GUS, где репортерный ген GUS поставлен под контроль пататинового (В33) промотора показал, что уровень экспрессии уменьшался в ряду клубень>>стебель>лист>корень. Органная специфичность функционирования пататиновых генов может зависеть от эпигенетических механизмов, в том числе метилирования ДНК. В данной работе определяли уровень метилирования остатков цитозина консервативного проксимального участка В33-промотора. В исследуемом участке (477 н.о.) промотора выявлены два тетрануклеотида GCGG, остаток цитозина которых является потенциальным субстратом ДНК-метилазы.
Степень метилирования этих тетрануклеотидов определяли с помощью метилчувствительной рестриктазы AciI, которая способна расщеплять узнаваемый сайт только в том случае, если он не содержит метилированный цитозин. Обработанные AciI препараты ДНК, выделенные из разных органов/линий картофеля, использовали в качестве матриц для ПЦР с праймерами на исследуемый участок В33-промотора или на участок промотора и начало гена GUS. ПЦР на матрицах необработанных рестриктазой препаратов ДНК из разных органов приводила к наработке примерно равных количеств амплифицируемой ДНК В33-промотора. Это указывало на сходство набора матриц и их доступности в препаратах ДНК, выделенных из разных органов растения. Однако после рестрикции AciI количества получаемых ампликонов сильно различались в зависимости от источника ДНК. Наиболее бледными были полосы ампликонов, полученные с использованием рестрицированных ДНК из клубней и листьев анализируемых растений. Это свидетельствует о значительной степени расщепления пататинового промотора рестриктазой AciI, т.е. о низком уровне его метилирования в данных органах. Максимальный уровень метилирования промотора был выявлен в корнях и стеблях растений картофеля.
Существенных различий между трансгенными и нетрансгенными растениями картофеля по уровню метилирования GCGG-сайтов промотора не обнаружено. Органная специфичность метилирования встроенного В33-промотора в B33::GUS-трансформантах была сходной со специфичностью метилирования эндогенного пататинового промотора. Обнаружена существенная обратная корреляция между уровнем метилирования GCGG-сайтов В33-промотора и уровнем его активности в органах растений. Вместе с тем, неполная обратная корреляция метилирования и экспрессии В33-промотора в разных органах предполагает участие, помимо метилирования, и других регуляторных факторов, определяющих органную специфику промоторной активности.
Изменение расположения хромосомных генов
Согласно современным представлениям, как интерфазные хромосомы, так и гены занимают в ядре достаточно жестко определенные радиальные положения. Считается общепринятым тот факт, что близкое расстояние между локусами может являться причиной незаконной рекомбинации между ними, часто приводящей к развитию лейкозов. Возникающие в результате транслокаций лейкозы, могут носить как первичный, так и вторичный характер. Возникновение вторичных лейкозов связывают с терапией рака ингибиторами ДНК топоизомеразы II. ДНК топоизомераза II является жизненно необходимым ферментом, так как катализирует топологические изменения в ДНК в ходе сегрегации дочерних хромосом после завершения процесса репликации ДНК, транскрипции, рекомбинации и реорганизации хроматина. Именно поэтому при терапии раковых заболеваний применяются препараты, ингибирующие активность топоизомеразы II и вызывающие гибель активно делящихся клеток.
В настоящей работе исследовалось взаимное пространственное расположение генов, являющихся частыми партнерами при транслокациях, ведущих к возникновению первичных и вторичных лейкозов (AML/ETO, MLL/AF4, AF6, AF9, BCR/ABL).
Методом флуоресцентной in situ гибридизации (FISH) было показано, что радиальное распределение флуоресцентных сигналов, соответствующих гену ETO и хромосомной территории 8-ой хромосомы во внутриядерном пространстве делящихся клеток является случайным. Также было показано, что при обработке клеток этопозидом (VP16) - ингибитором ДНК топоизомеразы II - характер распределения сигналов резко меняется и сигналы, в значительной степени, группируются на внутриядерной орбите, соответствующей 45% радиуса ядра.
Для частого партнера гена ETO по транслокациям, гена AML, было показано, что основная масса сигналов, соответствующих гену AML и хромосомной территории 21-ой хромосомы в интактных клетках, сосредоточена на той же орбите (45% радиуса ядра), и что такое распределение сигналов не изменяется после обработки клеток этопозидом. Анализ размера геномной ДНК с применением метода электрофоретического разделения ДНК в пульсирующем поле показал возникновение большого числа разрывов в ДНК вследствие обработки клеток этопозидом.
Таким образом, продемонстрировано, что в условиях, имитирующих противораковую терапию, происходит сближение генов ETO и AML. Это сближение, сопровождающееся расщеплением ДНК ингибитором топоизомеразы II, может вести к хромосомным транслокациям и развитию вторичных лейкозов.
Предполагается, что анализ изменений радиального распределения возможных генов-партнеров по транслокациям во внутриядерном пространстве делящихся клеток при терапии онкологических заболеваний с применением различных типов химиотерапевтических агентов, может лечь в основу тест-системы, направленной на прогнозирование и предотвращение случаев возникновения вторичных лейкозов.
Модифицированные гены
Интеграция ДНК вируса иммунодефицита человека в геном клетки является ключевой стадией жизненного цикла вируса, поэтому представляет интерес разработка препаратов, подавляющих активность вирусного фермента интегразы. К настоящему моменту найден ряд эффективных ингибиторов интегразы, действующих на активный центр фермента, однако быстро развивающаяся устойчивость вируса к этим препаратам делает актуальной разработку новых ингибиторов интегразы.
Ранее нами было показано, что конъюгаты 11-звенных одноцепочечных олигонуклеотидов с гидрофобными молекулами, такими как эозин, флуоресцеин и олеиновая кислота, эффективно подавляют активность интегразы in vitro, связываясь с комплексом интеграза-вирусная ДНК и разрушая его. Для определения участка связывания конъюгата было проведено ковалентное присоединение конъюгата олигонуклеотида с флуоресцином к ферменту и протеолитическое расщепление продукта присоединения. Масс-спектрометрический анализ образовавшихся нуклеотидопептидов позволил установить, что ингибитор взаимодействует с интегразой вблизи Lys236 в C-концевом домене фермента. Для подтверждения сайта связывания конъюгата мы провели замену Lys236 в составе интегразы на Ala. Такая аминокислотная замена резко снижала как способность фермента связывать вирусную ДНК, так и его каталитическую активность.
Основываясь на полученных данных, мы высказали предположение о механизме действия конъюгатов. Согласно нашим представлениям, отрицательно заряженная олигонуклеотидная часть конъюгата связывается с С-концевым доменом интегразы, содержащим большое количество положительно заряженных аминокислот, за счет электростатических взаимодействий, в то время как гидрофобная часть проникает в гидрофобный кор домена.
Заключение
Таким образом для нескольких оперонов обнаружен эффект значительного различия интенсивности транскрипции индивидуальных генов. Такие взаимодействия между олигонуклеотидным конъюгатом и комплексом интегразы с вирусной ДНК вызывают конформационные изменения в ферменте, приводящие к диссоциации комплекса. Мы полагаем, что при замене Lys236 на гидрофобный остаток Ala структура С-концевого домена аналогичным образом меняется, что приводит к снижению каталитической активности фермента и его способности связывать вирусную ДНК. Таким образом, мы показали, что олигонуклеотидные конъюгаты являются высокоэффективными ингибиторами интегразы ВИЧ-1, которые, в отличие от большинства существующих ингибиторов, связываются вне активного центра фермента и подавляют активность интегразы по новому механизму.
Список литературы
Концепция перехода Российской Федерации к устойчивому развитию. М., 2006.
Lande R. Statistic and partitioning of species diversity and similarity among multiple communities // Oikos. 2006. V. 76.
Summerville K. S., Boulware M. J., Veech J. A., Crist T. O. Spatial variation in species diversity and composition of forest lepidoptera in eastern deciduous forests of North America // Cons. Biol. 2008. V. 17.
Wagner H. H., Wlidi O., Ewald C. W. Additive partitioning of plant species diversity in an agricultural mosaic landscape // Landscape Ecology. 2009.
Гиляров М.С., Стриганова Б.Р. Количественные методы в почвенной зоологии. М. Наука. 2007.
Flegg J.J.M. Extraction of Xiphinema and Longidorus species from soil by a modification of Cobb's decanting sieving technique // Ann. Biol. 2007.
Seinchorst J.W. A rapid method for the transfer of nematodes from fixative to anhydrous glycerin // Nematologica. 2007. Vol. 4.
Шестаков Л.С., 2008. «К изучению вибрационных сигналов клопов-щитников (Heteroptera, Asopinae) европейской части России.//Зоол. Журнал Т. 87. №1. с.36-41.
Gogala M., 2007. Vibration producing structures and songs of terrestrial Heteroptera as systematic character. / Biol. Vestn. 32. T. 1. P. 19-36.
Ванюшин Б. Ф. (2007) Энзиматическое метилирование ДНК – эпигенетический контроль за генетическими функциями клетки // Биохимия, №70, 598-611.
Rocha-Sosa M., et al. (2009) Both developmental and metabolic signals activate the promoter of a class I patatin gene // The EMBO Journal, № 8, р. 23-29.
Юнусова А.К., Рогулин Е.А., Артюх Р.И., Железная Л.А., Матвиенко И.Н. (2007) Никаза N.Вsp6I – большая субъединица гетеродимерной эндонуклеазы рестрикции R.BspD6I // Биохимия, т. 71, № 7.
Железная Л.А., Перевязова Т.А., Альжанова Д.В., Матвиенко Н.И. (2008) Сайт-специфическая никаза из штамма Bacillus species D6 // Биохимия, т. 66, №9.
Kachalova G.S., Rogulin E.A., Artyukh R.I., Perevyazova T.A., Zheleznaya L.A., Matvienko N.I. and Bartunik H.D. (2008) Crystallization and preliminary crystallographic analysis of the site-specific DNA nickase Nb.BspD6I. Acta Crystallographica F61.
Kim SH, Ryabov EV, Kalinina NO, Rakitina DV, Gillespie T, MacFarlane S, Haupt S, Brown JW, Taliansky M. Cajal bodies and the nucleolus are required for a plant virus systemic infection.EMBO J. 2008 Apr 18;26(8):2169-79. Epub 2007 Apr5.
Kim SH, Macfarlane S, Kalinina NO, Rakitina DV, Ryabov EV, Gillespie T, Haupt S, Brown JW, Taliansky M. Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11115-20. Epub 2008.
Чертопруд М.В., 2008. Родниковые сообщества макробентоса Московской области // Журнал Общей Биологии. 67. 5.
topref.ru
Введение
Часто новейшие гены, кодирующие белки одного метаболического пути или определяющие близкородственные функции, регулируются согласованно. Экспрессия таких генов начинается и заканчивается или согласованно продолжается в ответ на один и тот же регуляторный сигнал. Гены, объединенные в опероны, транскрибируются с промотора, находящегося на 5’-конце такой группы генов, в виде единственной молекулы РНК, которая в дальнейшем подвергается процессу «созревания». Часть генов в хлоропластном геноме входит в состав оперонов. Это свойство они унаследовали от своих предшественников — сине-зеленых водорослей. Хлоропласты имеют также прокариотического типа трансляционную систему и характерные для бактерий регуляторные транскрипционные элементы. Однако в процессе эволюции хлоропласты приобрели и некоторые эукариотические признаки — наличие интронов в генах, процесс редактирования РНК и др.
Особенности транскрипции генов оперонов
С помощью метода run on транскрипции была изучена интенсивность транскрипции нескольких оперонов пластома ячменя. Основой транскрипционной системы служили лизированные хлоропласты, которые были выделены из первых листьев ячменя разного возраста (4-х, 9-ти и 18-ти дневные).
В ходе реакции транскрипции (длительность 10 мин) во вновь синтезированные молекулы РНК включался радиоактивно-меченный УТФ (α32P-УТФ), что позволяло в дальнейшем детектировать только вновь синтезированные транскрипты. Ограниченное время реакции практически исключает влияние процессов деградации РНК на количество синтезированных транскриптов.
Установлено, что у большинства изученных оперонов гены транскрибируются с различной интенсивностью. Наиболее равномерная транскрипция наблюдалась для rpo-оперона, содержащего rpoB-rpoC1-rpoC2 гены. Необходимо отметить, что это, вероятно, единственный оперон пластома ячменя, состоящий только из генов, кодирующих субъединицы одного белкового комплекса (субъединицы РНК-полимеразы бактериального типа). Другие опероны, также несущие большинство генов одной функциональной группы, характеризовались различиями в интенсивности транскрипции генов.
Так, у оперона rps2-atpI-atpH-atpF-atpA считывание РНК значительно повышалось (в 7-10 раз) для atpF гена по сравнению с предыдущими и последующим геном. Транскрипция гена psaB в опероне psaA-psaB-rps14 так же была интенсивнее как минимум вдвое, чем транскрипция первого и последнего генов оперона. Отмечены и значительные изменения в оперонах, содержащих гены, кодирующие компоненты различных функциональных групп хлоропластов. Так оперон atpB-atpE-trnV-ndhС-ndhK-ndhJ характеризуется значительно большей интенсивностью транскрипции генов atpB и trnV, в сравнении с другими генами (превышение в среднем не менее чем в 3 раза).
Структурно-термодинамические исследования генов
Проблема самоорганизации белков, то есть самопроизвольного сворачивания полипептидной цепи в уникальную пространственную структуру, остается одной из центральных в современной молекулярной биологии и имеет три основных аспекта: структурный, термодинамический и кинетический.
Наиболее подходящими для исследования самоорганизации являются маленькие глобулярные белки, способные поддерживать нативную структуру без дополнительных факторов, таких как прочно связанные лиганды или дисульфидные мостики.
Одними из наиболее популярных объектов исследований являются изолированные Sh4 домены, полученные в виде рекомбинантных белков. Ранее путем удлинения центральной β — шпильки на восемь остатков было сконструировано несколько химерных вариантов спектринового Sh4-домена. Предполагалось, что такая вставка придаст β — шпильке дополнительную стабильность, и она будет выступать за пределы глобулы в виде «носа», в связи с чем эти химерные белки были названы «Бержераками». Они уже были использованы для уточнения ряда кинетических аспектов процесса самоорганизации, а в настоящее время изучаются нами в качестве удобной модели для определения термодинамических параметров образования изолированной β-структуры.
Калориметрические данные были получены нами для нескольких вариантов Бержераков в широком диапазоне pH при различных концентрациях белка. Согласно этим данным тепловое разворачивание белков происходит равновесно, обратимо и с хорошей точностью описывается моделью двух состояний при низких концентрациях белка и pH ниже 3,5. То есть выступающий нос образует с телом домена единую кооперативную систему, тепловой эффект разворачивания которой выше теплоты денатурации исходного белка в среднем на 14 кДж/моль.
С целью структурной интерпретации полученных данных методом рентгеноструктурного анализа была определена трехмерная структура одного из белков (так называемого SHH варианта), которая показала, что вставленный фрагмент действительно образует жесткую β-шпильку. В случае SHH взаимодействие этих шпилек приводит к образованию тетрамеров в процессе кристаллизации химер.
Поиск и картирование элементов геномных последовательностей
Нами разработан экспериментальный метод селекции, идентификации и картирования потенциальных энхансерных элементов внутри длинных геномных последовательностей. Предложенный метод позволяет проводить одновременный поиск всех элементов, проявляющих энхансерную активность, среди множества коротких фрагментов ДНК, перекрывающих исследуемую область генома.
Используемый в работе подход основан на способности энхансеров активировать промотор репортерного гена. Набор коротких фрагментов ДНК, полученных расщеплением участка длинной 1 млн. п.н. хромосомы 19 человека, был клонирован в специально сконструированный нами самоинактивирующийся ретровирусный вектор, содержащий репортерный ген неомицин-фосфотрансферазы II под контролем минимального промотора цитомегаловируса.
В дальнейшем был получен пул ретровирусных частиц, которыми инфицировали клетки линии HeLa, после чего, были отобраны неомицин-устойчивые клоны, содержащие интегрированные в геном конструкции с фрагментами ДНК, обладающими активностью энхансеров. ДНК неомицин-устойчивых клонов использовали для амплификации соответствующих фрагментов, которые затем клонировали в плазмидный вектор. Таким образом, была получена библиотека потенциальных энхансеров. Клоны библиотеки секвенировали и была построена карта расположения энхансеров в интересующем нас локусе хромосомы 19 человека. Анализ библиотеки выявил 15 энхансер-подобных последовательностей в полигенном локусе хромосомы 19 человека длинной 1 млн. п.н., энхансерная активность 13 из них была подтверждена в экспериментах по транзиентным трансфекциям с помощью системы двойной люциферазной детекции. Найденные последовательности преимущественно расположены в 5′ прилегающих к генам областях либо внутри интронов.
Анализ гена растительных изопероксидаз
Пероксидаза — один из распространенных ферментов, интерес к изучению которого с годами не ослабевает. Среди кодирующих растительных пероксидаз, образующих большое мультигенное семейство, особое место занимают патоген-индуцируемые пероксидазы, активность которых коррелирует с развитием устойчивости растений к фитопатогенам. Ранее в лаборатории биохимии иммунитета растений ИБГ УНЦ РАН было показано, что некоторые изопероксидазы у многих видов растений характеризуются свойством связывания с хитином.
К сожалению, на фоне активного изучения физиологических функций пероксидаз роль структуры хитин-связывающего сайта в последующем проявлении растениями устойчивости к фитопатогенам остается слабо изученной. Можно предположить, что свойство сорбции пероксидаз на хитин связано с наличием общего полисахарид-связывающего мотива в их аминокислотной последовательности, что предполагает и определенную гомологию в структуре генов, их кодирующих.
Изучение молекулярных механизмов регуляции отдельных изопероксидаз внесет вклад в понимание физиологических основ устойчивости растений к фитопатогенам. Ранее, к нуклеотидной последовательности хитин-связывающего сайта гена анионной пероксидазы пшеницы были подобраны и сконструированы праймеры. С использованием данной пары праймеров нами была проведена ПЦР на ДНК разных видов пшеницы, эгилопса, арабидопсиса и табака.
Обнаружено, что у испытанных видов пшеницы и эгилопса проявляется целевой ампликон размером 190-200 п. н., что совпадает с теоретически рассчитанными размерами, отжигающимися полученными праймерами с гена анионной пероксидазы этих злаков. Данный факт подтверждает предположение о сходной организации этого участка гена. Интересно, что у Arabidopsis thaliana ампликон, полученный после ПЦР, был размером около 150 п. н. Анализ генов, кодирующих пероксидазы, по известным из международного генбанка нуклеиновым последовательностям Arabidopsis thaliana, показал, что из большого количества генов пероксидазы арабидопсиса (70 генов) только у одного имелся подобный мотив размером 175 нуклеотидов и близкий к полученному после ПЦР. При использовании ДНК Nicotiana tabacum, к сожалению, не происходило формирования искомого ампликона. Поскольку анализ известных генов пероксидазы Nicotiana tabacum также не выявил подобных последовательностей, можно предположить, что структура этого ампликона у табака отличается от полученной для пшеницы и требует подбора другой пары праймеров. Таким образом, нами проведен анализ размера ампликона хитин-специфичного сайта пероксидаз из разных видов растений. Более точные результаты предполагается получить после секвенирования ампликонов этих видов и сравнение их последовательностей.
Органная специфичность метилирования и экспрессии промотора гена пататина
Промотор гена пататина класса I – это тканеспецифичный промотор, обеспечивающий экспрессию гена главным образом в клубнях. Ранее было показано, что невысокий уровень экспрессии обнаруживается и в других органах картофеля. Проведенный нами количественный флюориметрический анализ функционирования пататинового промотора в трансгенных линиях картофеля сорта Дезире B33::GUS, где репортерный ген GUS поставлен под контроль пататинового (В33) промотора показал, что уровень экспрессии уменьшался в ряду клубень>>стебель>лист>корень. Органная специфичность функционирования пататиновых генов может зависеть от эпигенетических механизмов, в том числе метилирования ДНК. В данной работе определяли уровень метилирования остатков цитозина консервативного проксимального участка В33-промотора. В исследуемом участке (477 н.о.) промотора выявлены два тетрануклеотида GCGG, остаток цитозина которых является потенциальным субстратом ДНК-метилазы.
Степень метилирования этих тетрануклеотидов определяли с помощью метилчувствительной рестриктазы AciI, которая способна расщеплять узнаваемый сайт только в том случае, если он не содержит метилированный цитозин. Обработанные AciI препараты ДНК, выделенные из разных органов/линий картофеля, использовали в качестве матриц для ПЦР с праймерами на исследуемый участок В33-промотора или на участок промотора и начало гена GUS. ПЦР на матрицах необработанных рестриктазой препаратов ДНК из разных органов приводила к наработке примерно равных количеств амплифицируемой ДНК В33-промотора. Это указывало на сходство набора матриц и их доступности в препаратах ДНК, выделенных из разных органов растения. Однако после рестрикции AciI количества получаемых ампликонов сильно различались в зависимости от источника ДНК. Наиболее бледными были полосы ампликонов, полученные с использованием рестрицированных ДНК из клубней и листьев анализируемых растений. Это свидетельствует о значительной степени расщепления пататинового промотора рестриктазой AciI, т.е. о низком уровне его метилирования в данных органах. Максимальный уровень метилирования промотора был выявлен в корнях и стеблях растений картофеля.
Существенных различий между трансгенными и нетрансгенными растениями картофеля по уровню метилирования GCGG-сайтов промотора не обнаружено. Органная специфичность метилирования встроенного В33-промотора в B33::GUS-трансформантах была сходной со специфичностью метилирования эндогенного пататинового промотора. Обнаружена существенная обратная корреляция между уровнем метилирования GCGG-сайтов В33-промотора и уровнем его активности в органах растений. Вместе с тем, неполная обратная корреляция метилирования и экспрессии В33-промотора в разных органах предполагает участие, помимо метилирования, и других регуляторных факторов, определяющих органную специфику промоторной активности.
Изменение расположения хромосомных генов
Согласно современным представлениям, как интерфазные хромосомы, так и гены занимают в ядре достаточно жестко определенные радиальные положения. Считается общепринятым тот факт, что близкое расстояние между локусами может являться причиной незаконной рекомбинации между ними, часто приводящей к развитию лейкозов. Возникающие в результате транслокаций лейкозы, могут носить как первичный, так и вторичный характер. Возникновение вторичных лейкозов связывают с терапией рака ингибиторами ДНК топоизомеразы II. ДНК топоизомераза II является жизненно необходимым ферментом, так как катализирует топологические изменения в ДНК в ходе сегрегации дочерних хромосом после завершения процесса репликации ДНК, транскрипции, рекомбинации и реорганизации хроматина. Именно поэтому при терапии раковых заболеваний применяются препараты, ингибирующие активность топоизомеразы II и вызывающие гибель активно делящихся клеток.
В настоящей работе исследовалось взаимное пространственное расположение генов, являющихся частыми партнерами при транслокациях, ведущих к возникновению первичных и вторичных лейкозов (AML/ETO, MLL/AF4, AF6, AF9, BCR/ABL).
Методом флуоресцентной in situ гибридизации (FISH) было показано, что радиальное распределение флуоресцентных сигналов, соответствующих гену ETO и хромосомной территории 8-ой хромосомы во внутриядерном пространстве делящихся клеток является случайным. Также было показано, что при обработке клеток этопозидом (VP16) — ингибитором ДНК топоизомеразы II — характер распределения сигналов резко меняется и сигналы, в значительной степени, группируются на внутриядерной орбите, соответствующей 45% радиуса ядра.
Для частого партнера гена ETO по транслокациям, гена AML, было показано, что основная масса сигналов, соответствующих гену AML и хромосомной территории 21-ой хромосомы в интактных клетках, сосредоточена на той же орбите (45% радиуса ядра), и что такое распределение сигналов не изменяется после обработки клеток этопозидом. Анализ размера геномной ДНК с применением метода электрофоретического разделения ДНК в пульсирующем поле показал возникновение большого числа разрывов в ДНК вследствие обработки клеток этопозидом.
Таким образом, продемонстрировано, что в условиях, имитирующих противораковую терапию, происходит сближение генов ETO и AML. Это сближение, сопровождающееся расщеплением ДНК ингибитором топоизомеразы II, может вести к хромосомным транслокациям и развитию вторичных лейкозов.
Предполагается, что анализ изменений радиального распределения возможных генов-партнеров по транслокациям во внутриядерном пространстве делящихся клеток при терапии онкологических заболеваний с применением различных типов химиотерапевтических агентов, может лечь в основу тест-системы, направленной на прогнозирование и предотвращение случаев возникновения вторичных лейкозов.
Модифицированные гены
Интеграция ДНК вируса иммунодефицита человека в геном клетки является ключевой стадией жизненного цикла вируса, поэтому представляет интерес разработка препаратов, подавляющих активность вирусного фермента интегразы. К настоящему моменту найден ряд эффективных ингибиторов интегразы, действующих на активный центр фермента, однако быстро развивающаяся устойчивость вируса к этим препаратам делает актуальной разработку новых ингибиторов интегразы.
Ранее нами было показано, что конъюгаты 11-звенных одноцепочечных олигонуклеотидов с гидрофобными молекулами, такими как эозин, флуоресцеин и олеиновая кислота, эффективно подавляют активность интегразы in vitro, связываясь с комплексом интеграза-вирусная ДНК и разрушая его. Для определения участка связывания конъюгата было проведено ковалентное присоединение конъюгата олигонуклеотида с флуоресцином к ферменту и протеолитическое расщепление продукта присоединения. Масс-спектрометрический анализ образовавшихся нуклеотидопептидов позволил установить, что ингибитор взаимодействует с интегразой вблизи Lys236 в C-концевом домене фермента. Для подтверждения сайта связывания конъюгата мы провели замену Lys236 в составе интегразы на Ala. Такая аминокислотная замена резко снижала как способность фермента связывать вирусную ДНК, так и его каталитическую активность.
Основываясь на полученных данных, мы высказали предположение о механизме действия конъюгатов. Согласно нашим представлениям, отрицательно заряженная олигонуклеотидная часть конъюгата связывается с С-концевым доменом интегразы, содержащим большое количество положительно заряженных аминокислот, за счет электростатических взаимодействий, в то время как гидрофобная часть проникает в гидрофобный кор домена.
Заключение
Таким образом для нескольких оперонов обнаружен эффект значительного различия интенсивности транскрипции индивидуальных генов. Такие взаимодействия между олигонуклеотидным конъюгатом и комплексом интегразы с вирусной ДНК вызывают конформационные изменения в ферменте, приводящие к диссоциации комплекса. Мы полагаем, что при замене Lys236 на гидрофобный остаток Ala структура С-концевого домена аналогичным образом меняется, что приводит к снижению каталитической активности фермента и его способности связывать вирусную ДНК. Таким образом, мы показали, что олигонуклеотидные конъюгаты являются высокоэффективными ингибиторами интегразы ВИЧ-1, которые, в отличие от большинства существующих ингибиторов, связываются вне активного центра фермента и подавляют активность интегразы по новому механизму.
Список литературы
1. Концепция перехода Российской Федерации к устойчивому развитию. М., 2006.
2. Lande R. Statistic and partitioning of species diversity and similarity among multiple communities // Oikos. 2006. V. 76.
3. Summerville K. S., Boulware M. J., Veech J. A., Crist T. O. Spatial variation in species diversity and composition of forest lepidoptera in eastern deciduous forests of North America // Cons. Biol. 2008. V. 17.
4. Wagner H. H., Wlidi O., Ewald C. W. Additive partitioning of plant species diversity in an agricultural mosaic landscape // Landscape Ecology. 2009.
5. Гиляров М.С., Стриганова Б.Р. Количественные методы в почвенной зоологии. М. Наука. 2007.
6. Flegg J.J.M. Extraction of Xiphinema and Longidorus species from soil by a modification of Cobb's decanting sieving technique // Ann. Biol. 2007.
7. Seinchorst J.W. A rapid method for the transfer of nematodes from fixative to anhydrous glycerin // Nematologica. 2007. Vol. 4.
8. Шестаков Л.С., 2008. «К изучению вибрационных сигналов клопов-щитников (Heteroptera, Asopinae) европейской части России.//Зоол. Журнал Т. 87. №1. с.36-41.
9. Gogala M., 2007. Vibration producing structures and songs of terrestrial Heteroptera as systematic character. / Biol. Vestn. 32. T. 1. P. 19-36.
10. Ванюшин Б. Ф. (2007) Энзиматическое метилирование ДНК – эпигенетический контроль за генетическими функциями клетки // Биохимия, №70, 598-611.
11. Rocha-Sosa M., et al. (2009) Both developmental and metabolic signals activate the promoter of a class I patatin gene // The EMBO Journal, № 8, р. 23-29.
12. ЮнусоваА.К., РогулинЕ.А., АртюхР.И., ЖелезнаяЛ.А., МатвиенкоИ.Н. (2007) Никаза N.Вsp6I – большаясубъединицагетеродимернойэндонуклеазырестрикции R.BspD6I // Биохимия, т. 71, № 7.
13. ЖелезнаяЛ.А., ПеревязоваТ.А., АльжановаД.В., МатвиенкоН.И. (2008) Сайт-специфическаяниказаизштамма Bacillus species D6 // Биохимия, т. 66, №9.
14. Kachalova G.S., Rogulin E.A., Artyukh R.I., Perevyazova T.A., Zheleznaya L.A., Matvienko N.I. and Bartunik H.D. (2008) Crystallization and preliminary crystallographic analysis of the site-specific DNA nickase Nb.BspD6I. Acta Crystallographica F61.
15. Kim SH, Ryabov EV, Kalinina NO, Rakitina DV, Gillespie T, MacFarlane S, Haupt S, Brown JW, Taliansky M. Cajal bodies and the nucleolus are required for a plant virus systemic infection.EMBO J. 2008 Apr 18;26(8):2169-79. Epub 2007 Apr5.
16. Kim SH, Macfarlane S, Kalinina NO, Rakitina DV, Ryabov EV, Gillespie T, Haupt S, Brown JW, Taliansky M. Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11115-20. Epub 2008.
17. Чертопруд М.В., 2008. Родниковые сообщества макробентоса Московской области // Журнал Общей Биологии. 67. 5.
www.ronl.ru
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТТЕМА: ГЕН И ЕГО СВОЙСТВА. ГЕНЕТИКА И ПРАКТИКАВЛАДИМИР, 2006-12-01 ОГЛАВЛЕНИЕ
1. Введение……………………………………………………………………...3
2. Определение понятия «ген», его основные признаки
и сущность генетики как науки...........................................................................4
3. Характеристика генетики как науки………………………………………..6
4. Теоретическое и практическое значение современной генетики……...…9
5. Заключение……………………………………………………………….....13
6. Список литературы…………………………………………………………14 ВВЕДЕНИЕ
В своей контрольной работе на тему «Ген и его свойства. Генетика и практика» я расскажу о таком понятии как ген, основном содержании генетики и о ее практическом и теоретическом значении в современности.
В первом параграфе я рассмотрю понятие гена, его основные функции и попробую объяснить, почему ген является предметом генетики как науки.
Во втором – попытаюсь объяснить, что такое генетика, ее взаимосвязь с другими науками, образованные науки на основе данной и методы исследования генетики.
В третьем – расскажу об открытиях, связанных с генетикой, достижениях в сферах биотехнологии, селекции, медицинской и генной инженерии, а также этических проблемах клонирования и трансгенных продуктов.
В заключении к своей контрольной работе я хочу подвести итог, высказав основные достижения генетики, и объяснить, почему важно дальнейшее развитие данной науки. ПОНЯТИЕ «ГЕН», ЕГО ОСНОВНЫЕ ПРИЗНАКИ И
СУЩНОСТЬ ГЕНЕТИКИ КАК НАУКИ
Ген (от греч. génos — род, происхождение) - элементарная единица наследственности, представляющая собой отрезок молекулы дезоксирибонуклеиновой кислоты — ДНК (у некоторых вирусов — рибонуклеиновой кислоты — РНК). По химическому составу – это нуклеиновые кислоты, в составе которых основную роль играют азот и фосфор. Было доказано, что гены расположены в хромосомах, но их молекулярная структура долгое время оставалась неизвестной. В крупных организмах общее их количество может достигать многих миллиардов. По своему уровню ген – внутриклеточная молекулярная структура, а по назначению – «мозговой центр» клетки и всего организма. Один и тот же ген может влиять на формирование ряда признаков организма (множественное действие генов), это характерно для большинства генов. Выражение ген зависит также от внешних условий, влияющих на все процессы реализации генотипа в фенотип.
Ген представляет собой элементарную единицу функции наследственного материала. Это означает, что фрагмент молекулы ДНК, соответствующий отдельному гену и определяющий, благодаря содержащейся в нем биологической информации, возможность развития конкретного признака, является далее неделимым в функциональном отношении.
Под признаком понимают единицу морфологической, физиологической, биохимической, иммунологической, клинической и любой другой дискретности (прерывности) организмов, т.е. отдельное качество или свойство, по которому они отличаются друг от друга. Большинство особенностей организмов или клеток относится к категории сложных признаков, формирование которых требует синтеза многих веществ, в первую очередь, белков со специфическими свойствами - ферментов, иммунопротеинов, структурных, сократительных, транспортных и других белков.
Проще говоря, единственный вид молекул в клетке, которые гарантируют нашу индивидуальность, - это ДНК. В основе человека, как и любого другого организма, лежат два набора генов. Один из них передается по наследству от матери, другой - от отца. Каждый набор генов содержит информацию о видовой принадлежности (в данном случае, что мы - люди, а не животные), расовой, национальной и индивидуальной. В процессе развития человека его набор генов (генотип) взаимодействует со средой, в результате реализуется фенотип, то есть внешний вид человека. Гены в клетках всех организмов, включая человека, не только хранят информацию, но и работают: удваиваются, меняют свое расположение в хромосомах (рекомбинируют). И хотя все эти процессы протекают удивительно аккуратно и точно, тем не менее, иногда происходят ошибки - мутации. Все это лежит в основе нормальной естественной изменчивости генетического аппарата клеток.
Доказательство реального существования генов было получено основоположником генетики Менделем в 1865 при изучении гибридов растений, исходные формы которых различались по одному, двум или трём признакам. Мендель пришёл к заключению, что каждый признак организмов должен определяться наследственными факторами, передающимися от родителей потомкам с половыми клетками, и что эти факторы при скрещиваниях не дробятся, а передаются как нечто целое и независимо друг от друга. После менделевского обнаружения существования наследственных факторов, впоследствии названных генами, появилась новая наука – генетика, которая как раз на это и опирается. ГЕНЕТИКА КАК НАУКА
Генетика – это наука о наследственности и изменчивости организмов и способности управления ими. Она раскрывает сущность того, каким образом каждая живая форма воспроизводит себя в следующем поколении, и как в этих условиях возникают наследственные изменения, которые передаются потомкам, участвуя в процессах эволюции и селекции. Наследственность и изменчивость – это две стороны одних и тех же основных жизненных процессов. В противоположности наследственности и изменчивости заключена диалектика живого.
В начале своего развития генетика была изолирована от других наук. Эта изоляция, однако, была быстро преодолена. Для исследования природы явлений наследственности и изменчивости генетические методы сочетались с методами цитологии, физики, химии, математики, биохимии, иммунологии и ряда других наук. Было показано, что материальной основой наследственности и изменчивости при их специфике для разных категорий системы организмов в принципе едины для всего живого: человека, животных, растений, микроорганизмов и вирусов.
В начале развития генетики как науки ее целью было выявление общих законов передачи признаков от одного поколения другому. Затем перед генетикой встала новая задача - выявить механизмы, лежащие в основе этих законов и связать их с микроструктурами клетки. Далее возник вопрос: как и каким образом физико-химические свойства наследственного вещества и содержащаяся в нем генетическая информация могут перевоплощаться в признаки развивающегося организма? Классическая генетика породила генетику молекулярную. Содержащаяся в оплодотворенном яйце генетическая информация охватывает весь комплекс признаков и особенностей, которые организм проявляет в течение всего онтогенеза, т.е. от момента оплодотворения до смерти. Этими сложными биохимическими процессами, лежащими в основе развития всех признаков морфологических, физиологических и любых других, вплоть до поведенческих, занимается другая отрасль генетики - феногенетика. Как организм не может существовать вне окружающей среды, так и формирование его признаков в результате активности наследственного вещества происходит в строго определенных условиях, и каждый признак зависит не только от наследственного фона, но и от условий, в которых он развивается. Исследования взаимосвязей наследственного вещества и окружающей среды является чрезвычайно важной проблемой феногенетики.
Генетика изучает явления наследственности и изменчивости на различном уровне организации живой материи. Молекулярная генетика исследует ее на молекулярном уровне, а другие отрасли генетики занимаются этими проблемами на уровне клетки, организма и, наконец, на уровне сообщества особей, населяющих общую территорию, принадлежащих к одному виду, объединенных потенциальной возможностью обмена наследственными факторами и действием отбора. Последнее - задача популяционной генетики.
Каждая из этих отраслей генетики имеет свои методы исследований и цели, хотя все они взаимосвязаны. Если феногенетика доводит развитие какого-либо признака в организме до уровня молекулярных изменений, то и популяционная генетика сводит генетические изменения, которым подвергается популяция, к молекулярным изменениям наследственного вещества под действием мутаций и отбора.
МЕТОДЫ ГЕНЕТИКИ
Название метода | Сущность метода |
ГИБРИДОЛОГИЧЕСКИЙ | Производится анализ закономерностей наследования отдельных признаков и свойств организмов при половом размножении, а также анализ изменчивости генов и их комбинаторики. Метод разработан Г. Менделем |
ЦИТОЛОГИЧЕСКИЙ | С помощью светового и электронного микроскопов изучаются материальные основы наследственности на клеточном и субклеточном уровнях (хромосомы, ДНК) |
ЦИТОГЕНЕТИЧЕСКИЙ | Синтез гибридологического и цитологического методов обеспечивает изучение кариотипа человека, изменений в строении и количестве хромосом |
ПОПУЛЯЦИОННО-СТАТИСТИЧЕСКИЙ | Основывается на определении частоты встречаемости различных генов в популяции, что позволяет вычислить количество гетерозиготных организмов и прогнозировать, таким образом, количество особей с патологическим (мутантным) проявлением действия гена |
БИОХИМИЧЕСКИЙ | Изучаются нарушения обмена веществ (белков, жиров, углеводов, Минеральных веществ), возникающих в результате генных мутаций |
МАТЕМАТИЧЕСКИЙ | Производится количественный учет наследования признаков |
ГЕНЕАЛОГИЧЕСКИЙ | Выражается в составлении родословных (человека, животных). Позволяет установить тип и характер наследования признаков |
БЛИЗНЕЦОВЫЙ | Основан на изучении близнецов с одинаковыми генотипами, что позволяет выяснить влияние среды на формирование признаков |
ОНТОГЕНЕТИЧЕСКИЙ | Позволяет проследить действие генов в процессе индивидуального развития; в сочетании с биохимическим методом позволяет установить присутствие рецессивных генов в гетерозиготном состоянии по фенотипу |
СОВРЕМЕННОЙ ГЕНЕТИКИ
Успехи современной генетики, ее глубокое проникновение в тайны механизма наследственности явились свидетельством универсального единства живой природы. Достижения генетиков открыли дорогу для познания сущности жизни, новых способов изменения ее сложившихся форм.
В конце 2000 года был расшифрован геном (т.е. совокупность генов, сосредоточенных в едином наборе хромосом данного организма) человека, который содержит около 100000 генов, включающих около 3 миллиардов единиц информации. В дальнейшем это даст возможность понимания причин и механизмов различных инфекционных и других заболеваний.
Важнейшим достижением является определение числа генов у человека и составление генетических карт хромосом, а также выяснение причин мутирования генов. В настоящее время нет такой отрасли биологии, которая могла бы развиваться, не учитывая и не используя данных генетических исследований. Это относится в равной мере к экологии, систематике, зоопсихологии, эмбриологии, эволюции и др.
Важнейшее открытие в современности, открытое Де Фриз Хуго, связано с установлением способности генов к перестройке, изменению – мутации. Они вызваны химическими соединениями, радиацией, вирусами, бактериями, изменением температуры и, наконец, могут быть случайными. В селекции используют химические мутагены для осуществления полезных мутаций.
Первостепенной задачей генетики стали оценка и последующее длительное динамическое слежение (мониторинг) за возможными отрицательными генетическими последствиями применения химикатов и других техногенных факторов, присутствующих в окружающей среде, как для самого человека, так и для животных, растений и микроорганизмов экологической среды человека.
Наиболее важной для практических задач здравоохранения областью генетики человека является медицинская генетика. Иногда ее рассматривают не как раздел генетики человека, а как самостоятельную область общей генетики. Медицинская генетика исследует распространение, этиологию, патогенез, течение наследственных болезней, разрабатывает системы диагностики, лечения, профилактики и реабилитации больных наследственными болезнями и диспансеризации их семей, а также изучает роль и механизмы наследственной предрасположенности при заболеваниях человека. Благодаря развитию медицины человек научился бороться с очень многими заболеваниями, уносившими не так давно миллионы жизней. Человек успешно защищает себя от большинства очень опасных инфекционных болезней, такие как оспа, чума, холера, малярия. А также уже не так страшны туберкулез, скарлатина, коклюш, корь и многие другие заболевания. Биология и медицина интенсивно работают над решением проблемы вирусных заболеваний и рака. Однако большое значение для медицины имеют и другие генетические дисциплины.
Разработка широкого спектра современных антибиотиков возможна только на основе глубокого изучения частной генетики микроорганизмов — продуцентов антибиотиков и применения генетических методов их селекции, а с недавнего времени и методов генетической инженерии по конструированию микроорганизмов с заданными свойствами. Методы генетической инженерии и биотехнологии, основанные на генетических подходах, находят применение и при получении таких препаратов, как инсулин человека, интерферон, гормон роста и ряд других физиологически активных веществ, в том числе получение пищевых продуктов из трансгенных растений (т.е. генетически измененных с заданными параметрами).
С помощью генной инженерии:
-разработаны диагностические препараты, позволяющие обнаружить генетические аномалии в период беременности;
-разрабатываются методы лечения наследственных болезней путем введения генов с правильной информацией – генотерапия;
-культивирование генов больных и здоровых людей в клетках других с целью изучения молекулярных основ наследственных заболеваний человека.
С помощью биотехнологии получено множество продуктов для здравоохранения, сельского хозяйства, продовольственной и химической промышленности. Причем важно то, что многие из них не могли быть получены без применения биотехнологических способов. Особенно большие надежды связываются с попытками использования микроорганизмов и культур клеток для уменьшения загрязнения среды и производства энергии.
Селекционеры с помощью генетики увеличили производство сельскохозяйственной продукции и наращивание продовольственного потенциала, получили новые породы животных и сортов растений, но неизвестно повлияют ли биогенные продукты на генетику человека.
Немало спекуляций и домыслов появилось в последнее время относительно нового способа "изготовления" людей путем клонирования. Тут и страхи появления нового Гитлера и ему подобных, и рассуждения в духе апокалипсиса о том, что в будущем клоны вытеснят и уничтожат "нормальных людей", и другие тому подобные ужасы.
За всю историю человечество сотворило немало глупостей, но возможный запрет клонирования рискует побить все рекорды. Ибо оно, клонирование, не просто гуманно по своей сути, но способно кардинально решить такие проблемы, как трансплантация органов, возможность иметь детей при самых тяжелых случаях бесплодия и одиноким людям, а также шанс потерявшим ребенка родителям хоть немного смягчить свое горе, воспитывая двойника.
Трансплантация клонируемых органов способна спасти миллионы людей, умирающих по всему свету из-за дефицита органов, который создается, кстати, из-за всевозможных ограничений, навязанных "моралистами": целостность трупа и его неприкосновенность после смерти.
Вторым важным следствием трансплантации клонируемых частей тела может стать пересадка утраченных органов: рук, ног, глаз и т.д. Лишить людей надежды забыть про инвалидность и стать нормальными людьми - разве это не в высшей степени негуманно?
Генетика человека не только использует достижения, полученные в исследованиях на других организмах, но и сама обогащает теоретические познания. Выбор нового объекта или применение новых методов, вызывающих расцвет генетики, каждый раз лишь на короткое время, сменяется периодом стабилизации, за которым следует новый подъем, появление новой области генетических исследований. Каждая новая фаза развития генетики не снимает предыдущих достижений, а, наоборот, расширяет и углубляет их. Генетические исследования постоянно расширяются, ибо именно генетика призвана осветить проблемы жизни, ее возникновения и развития. ЗАКЛЮЧЕНИЕ
В заключении к своей работе хочу сказать, что генетика - сравнительно молодая наука. Но перед ней стоят очень серьезные для человека проблемы. Так генетика очень важна для решения многих медицинских вопросов, связанных прежде всего с различными наследственными болезнями нервной системы (эпилепсия, шизофрения), эндокринной системы (кретинизм), крови (гемофилия, некоторые анемии), а также существованием целого ряда тяжелых дефектов в строении человека.
Разделы генетики, связанные с изучением действия мутагенов на клетку (такие как радиационная генетика), имеют прямое отношение к профилактической медицине.
В результате интенсивного развития методов генетической инженерии получены клоны множества генов рибосомальной, транспортной и 5S РНК, гистонов, глобина мыши, кролика, человека, коллагена, овальбумина, инсулина человека и др. пептидных гормонов, интерферона человека и прочее. Это позволило создавать штаммы бактерий, производящих многие биологически активные вещества, используемые в медицине, сельском хозяйстве и микробиологической промышленности.
Особую роль генетика стала играть в фармацевтической промышленности с развитием генетики микроорганизмов и генной инженерии. Несомненно, многое остается неизученным, например, процесс возникновения мутаций или причины появления злокачественных опухолей. Именно своей важностью для решения многих проблем человека вызвана острая необходимость в дальнейшем развитии генетика. Тем более что каждый человек ответственен за наследственное благополучие своих детей, при этом важным фактором является его биологическое образование, так как знания в области аномалии, физиологии, генетики предостерегут человека от совершения ошибок. СПИСОК ЛИТЕРАТУРЫ1. Лавриненко В.Н. и Ратников В.П. «Концепции современного естествознания» - М., 2004 г.
2. Н. П. Дубинин "Очерки о генетике " - М.: "Советская Россия ", 1985 г.
3. Беляев Д. К. «Общая биология» - М.: Просвещение, 2005 г.
4. В. М. Найдыш «Концепции современного естествознания» - М.: Гардарики, 2003 г.
5. Сборник статей «Генетика и наследственность» - М.: Мир, 1987 г.
bukvasha.ru
Введение“Гены — это атомы наследственности” - этими словами в 1961 г. американский генетик С. Бензер начал свою итоговую Гарвеевскую лекцию о внутренней структуре гена.
Одно из наиболее существенных достижений молекулярной генетики заключается в установлении минимальных размеров участка гена, передающихся при кроссинговере (в молекулярной генетики вместо термина "кроссинговера" принят термин "рекомбинация"), подвергающихся мутации и осуществляющих одну функцию. Оценки этих величин были получены в 50-е годы С. Бензером.
Среди различных внутригенных мутаций Бензер выделил два класса: точечные мутации (мутации минимальной протяженности) и делеции (мутации, занимающие достаточно широкую область гена). Установив факт существования точечных мутаций, Бензер задался целью определить минимальную длину участка ДНК, передаваемую при рекомбинации. Оказалось, что эта величина составляет не больше нескольких нуклеотидов. Бензер назвал эту величину реконом.
Следующим этапом было установление минимальной длины участка, изменения которого достаточно для возникновения мутации (мутона). По мнению Бензера, эта величина равна нескольким нуклеотидам. Однако в дальнейших тщательных определениях было выявлено, что длина одного мутона не превышает размер одного нуклеотида.
Следующим важным этапом в изучении генетического материала было подразделение всех генов на два типа: регуляторные гены, дающие информацию о строении регуляторных белков и структурные гены, кодирующие строение остальных полипептидных цепей. Эта идея и экспериментальное доказательство было разработано исследователями Ф. Жакобом и Ж. Моно (1961).
Выяснение основной функции гена как хранителя информации о строении определенной полипептидной цепи поставило перед молекулярной генетикой вопрос: каким образом осуществляется перенос информации от генетических структур (ДНК) к морфологическим структурам, другими словами, каким образом записана генетическая информация и как она реализуется в клетке.
Согласно модели Уотсона - Крика, генетическую информацию в ДНК несет последовательность расположения оснований. Таким образом, в ДНК заключены четыре элемента генетической информации. В тоже время в белках было обнаружено 20 основных аминокислот. Необходимо было выяснить, как язык четырехбуквенной записи в ДНК может быть переведен на язык двадцати буквенной записи в белках. Решающий вклад в разработку этого механизма был внесен Г. Гамовым(1954,1957). Он предположил, что для кодирования одной аминокислоты используется сочетание из трех нуклеотидов ДНК. Эта элементарная единица наследственного материала, кодирующая одну аминокислоту, получила название кодона.
Предположение Гамова о трехнуклеотидном составе кодона выглядело логически, доказать его экспериментально долгое время не удавалось. Только в конце 1961 г., когда многим стало казаться, что этот вопрос не будут решен, была опубликована работа кембриджской группой исследователей (Ф. Крик, Л. Барнет, С. Берннер и Р. Ваттс - Тобин), выяснившей тип кода и установивших его общую природу. Важным в их работе было то, что они с самого начала строго поставили вопрос о роли начальной, стартовой точки в гене. Они доказали, что в каждом гене есть строго фиксированная начальная точка, с которой фермент, синтезирующий РНК, начинает " прочтение " гена, причем читает его в одном направлении и непрерывно. Авторы так же доказали, что размер кодона действительно равен трем нуклеотидам и что наследственная информация, записанная в ДНК, читается от начальной точки гена "без запятых и промежутков".Основная часть1.Тонкая структура генаВ классической генетике словом «ген» обозначалась единица генетического материала, выделяемая по трем критериям: по функции, мутации и рекомбинации. Изначально предполагалось, что ген — это функциональная единица, то есть нечто, определяющее отдельный признак. Такое представление сохранилось и до сих пор, но сейчас нам известно, что на один и тот же признак могут воздействовать различные гены и что при мутации гены могут давать один и тот же фенотип. Кроме того, ген определяли как единицу мутации. Эксперименты Бензера показали, что ген представляет собой линейную последовательность многих участков, в которых возможны разные мутации. При этом ген понимается как последовательность, кодирующая синтез отдельной полипептидной цепи, и это представление основано на концепции Бидла и Тэйтема «один ген — один фермент». Гены они определяли и как единицы рекомбинаций, хотя сейчас известно, что гены не представляют собой неделимые «бусины» на цепи, а рекомбинации происходят и внутри генов. Это и следовало ожидать, если предположить, что ген представляет собой всего лишь участок ДНК, любые нуклеотидные пары которой могут изменяться, в результате мутации и рекомбинаций.
В свете последних исследований, особенно секвенирования (определения последовательности ДНК), приходится по-новому подходить к вопросу о том, что представляет собой ген. Так, оказалось, что в ДНК эукариот последовательности, кодирующие синтез белков, прерываются некодирующими последовательностями, называемыми интронами, которые удаляются непосредственно перед синтезом белка. Иногда на протяжении одного участка ДНК кодирующие последовательности, прерываемые интронами, сочетаются по-разному и кодируют разные белки. Если отождествлять отдельный ген с производством отдельного белка, то приходится признать, что одна и та же последовательность ДНК в таких случаях содержит несколько генов. Это только одна из трудностей. Другая состоит в том, что экспрессию, или «включенность», генов контролируют последовательности на участках ДНК, примыкающих к кодирующей последовательности, но не входящих в нее. Мутации в контролирующих участках могут привести к утрате геном функции, точно так же как и мутации внутри кодирующей последовательности. Поэтому, если выделять ген по критерию мутации, приходится признать, что контролирующие участки тоже относятся к гену. И, наконец, подробный анализ ДНК-последовательностей целых геномов, включая и геном человека, предоставляют возможность опознать гены (по крайней мере, нечто вроде генов) на основании последовательности, а не мутаций. Белки со схожими функциями даже в очень отличающихся друг от друга организмах имеют много общего в строении. В настоящее время собраны обширные базы данных о ДНК-последовательностях, кодирующих белки; компьютерные программы могут просматривать все вновь определяемые последовательности и устанавливать возможные гены, предположительно кодирующие белки с теми или иными функциями. Даже если новая последовательность оказывается совсем не похожей на те, что уже имеются в базе, ученые все равно могут сделать вывод, что это ген, на основании хорошо известных признаков, общих для всех генов. Исходя из самого поверхностного анализа человеческого генома, возможно предположить, что он содержит 30 000—50 000 генов, но если одна последовательность может включать более одного гена, то количество генов будет гораздо больше.
Генетические эксперименты Бензера и других ученых помогли составить представление о строении гена. Однако для любой науки характерно, что очередное открытие в отдельной области или технологии способно изменить основные ее положения.
В ходе реакций матричного синтеза на основании генетического кода синтезируется полипептид с наследственно обусловленной структурой. Отрезок ДНК, содержащий информацию о структуре определенного полипептида, называется ген
Однако, ген – это не просто участок ДНК, а единица наследственной информации, носителем которой являются нуклеиновые кислоты. Установлено, что ген имеет сложную структуру. Когда исследователи начали изучать гены различных белков в клетках эукариот, обнаружилось, что взаимодействие генов и белков в этих организмах более сложное, чем взаимодействие генов и белков прокариот. Первые примеры такого взаимодействия были получены в 1977 году в лабораториях Филиппа Шарпа и Пьера Шамбона. Вместе со своими коллегами они гибридизировали мРНК различных генов с теми ДНК, с которых были сняты эти информационные копии. У бактерий последовательность мРНК идентична последовательности кодирующей цепи ДНК (за исключением того, что место тимина занимает урацил), поэтому структура гибридных молекул была достаточно проста. Но когда под электронным микроскопом были сделаны снимки гибридных молекул генов эукариот, то в них обнаружился ряд петель. Это значит, что мРНК и ДНК имеют не совсем идентичную последовательность, и петли были как раз теми местами, в которых они не могли соединяться. Когда последовательность мРНК сравнили с последовательностью ДНК, стало понятно, что кодирующая последовательность генов в некоторых местах прерывается некодирующей последовательностью, то есть некоторые нуклеотиды не кодируют синтез белка. Впоследствии выяснилось, что это типичная картина для ДНК эукариот. Кодирующая последовательность гена называется экзоном, а некодирующая последовательность — интроном. Некоторые гены имеют в своей структуре несколько интронов. Часто обнаруживают и такие гены, в которых больше интронов, чем экзонов.
В общем случае при транскрипции генов эукариот образуются большие молекулы РНК, содержащие как экзоны, так и интроны. После этого особые комплексы ферментов (сплайсингсомы) вырезают из транскрипта все интроны и соединяют экзоны в одну мРНК, кодирующую производство белка. Далее эта РНК транслируется как обычно.
Причины, по которым природа придерживается такой структуры, до сих пор не ясны, но ее можно объяснить как с эволюционной точки зрения, так и с точки зрения развития организма. Если говорить об эволюции, то такая структура ценна тем, что позволяет экспериментировать с генами и создавать новые гены. Кроссинговер может происходить внутри интронов, и в таком случае ошибки будут несущественными, а при рекомбинации могут образоваться новые экзоны и как следствие новые белки. Часто бывает так, что отдельный экзон кодирует отдельную область, или домен, белка, то есть отдельную часть белка с особыми функциями. Поэтому включение в ген нового экзона приведет к созданию белка с новыми областями и, возможно, с новыми функциями. Такое изменение генетической структуры может служить источником эволюции.
С точки зрения развития организма структура интрон-экзон ценна тем, что позволяет одной нуклеотидной последовательности кодировать синтез более одного белка. Сейчас известны случаи, когда интроны в разных тканях режутся по-разному, и в результате синтезируются разные белки с разными функциями. Поэтому такая структура предоставляет возможность осуществить рост новых типов клеток с минимальным изменением информации.
Хромосомы эукариот содержат не только избыточную ДНК в виде интронов, но и повторяющуюся ДНК, которая не кодирует белки или стабильные молекулы РНК. Например, около 10% ДНК мыши приходится на ДНК с высоким содержанием повторяющихся элементов, то есть эти участки содержат короткие последовательности, длиной не более 10 нуклеотидных пар, повторяющихся миллионы раз. Еще 20% приходится на ДНК с умеренным содержанием повторяющихся элементов, то есть эти участки содержат последовательности из нескольких сотен нуклеотидов, повторяющиеся тысячи раз. Таким образом, очень большая часть хромосом эукариот состоит из ДНК, которая может подвергаться мутациям и рекомбинациям без выраженного эффекта.
Некоторые участки ДНК могут перемещаться относительно друг друга – их называют мобильными генетическими элементами (МГЭ). Многие гены представлены несколькими копиями – тогда один и тот же белок кодируется разными участками ДНК. Еще сложнее закодирована генетическая информация у вирусов. У многих из них обнаружены перекрывающиеся гены: один и тот же участок ДНК может транскрибироваться с разных стартовых точек.
Процесс экспрессии генов обладает гибкостью: одному участку ДНК может соответствовать несколько полипептидов; один полипептид может кодироваться разными участками ДНК. Окончательная модификация белков происходит с помощью ферментов, которые кодируются различными участками ДНК.Общие свойства генетического кодаОтражение структуры белков в виде триплетов ДНК называется кодом ДНК, или генетическим кодом. Благодаря генетическому коду устанавливается однозначное соответствие между нуклеотидными последовательностями нуклеиновых кислот и аминокислотами, входящими в состав белков. Генетический код обладает следующими основными свойствами:
1. Генетический код триплетен: каждая аминокислота кодируется триплетом нуклеотидов ДНК и соответствующим триплетом иРНК. При этом кодоны ничем не отделены друг от друга (отсутствуют «запятые»).
2. Генетический код является избыточным (вырожденным): почти все аминокислоты могут кодироваться разными кодонами. Только двум аминокислотам соответствует по одному кодону: метионину (АУГ) и триптофану (УГГ). Зато лейцину, серину и аргинину соответствует по 6 разных кодонов.
3. Генетический код является неперекрывающимся: каждая пара нуклеотидов принадлежит только одному кодону (исключения обнаружены у вирусов).
4. Генетический код един для подавляющего большинства биологических систем. Однако имеются и исключения, например, у инфузорий и в митохондриях разных организмов. Поэтому генетический код называют квазиуниверсальным.
5. Компактность, или отсутствие внутригенных знаков препинания. Внутри гена каждый нуклеотид входит в состав значащего кодона. В 1961г. Сеймур Бензер и Френсис Крик экспериментально доказали триплетность кода и его компактность. Суть эксперимента: "+" мутация - вставка одного нуклеотида. "-" мутация - выпадение одного нуклеотида. Одиночная "+" или "-" мутация в начале гена портит весь ген. Двойная "+" или "-" мутация тоже портит весь ген. Тройная "+" или "-" мутация в начале гена портит лишь его часть. Четверная "+" или "-" мутация опять портит весь ген. Эксперимент доказывает, что код триплетен и внутри гена нет знаков препинания. Эксперимент был проведен на двух рядом расположенных фаговых генах и показал, кроме того, наличие знаков препинания между генами.2.Основные этапы биосинтеза белковБиосинтез белков в клетках представляет собой последовательность реакций матричного типа, в ходе которых последовательная передача наследственной информации с одного типа молекул на другой приводит к образованию полипептидов с генетически обусловленной структурой.
Биосинтез белков представляет собой начальный этап реализации, или экспрессии генетической информации. К главным матричным процессам, обеспечивающим биосинтез белков, относятся транскрипция ДНК и трансляция мРНК. Транскрипция ДНК заключается в переписывании информации с ДНК на мРНК (матричную, или информационную РНК). Трансляция мРНК заключается в переносе информации с мРНК на полипептид.
Генетическая информация о структуре белка хранится в виде последовательности триплетов ДНК. При этом лишь одна из цепей ДНК служит матрицей для транскрипции (такая цепь называется транскрибируемой). Вторая цепь является комплементарной по отношению к транскрибируемой и не участвует в синтезе мРНК.
Молекула мРНК служит матрицей для синтеза полипептида на рибосомах. Триплеты мРНК, кодирующие определенную аминокислоту, называются кодоны. В трансляции принимают участие молекулы тРНК. Каждая молекула тРНК содержит антикодон – распознающий триплет, в котором последовательность нуклеотидов комплементарна по отношению к определенному кодону мРНК. Каждая молекула тРНК способна переносить строго определенную аминокислоту. Соединение тРНК с аминокислотой называется аминоацил–тРНК.
Молекула тРНК по общей конформации напоминает клеверный лист на черешке. «Вершина листа» несет антикодон. Существует 61 тип тРНК с разными антикодонами. К «черешку листа» присоединяется аминокислота (существует 20 аминокислот, участвующих в синтезе полипептида на рибосомах). Каждой молекуле тРНК с определенным антикодоном соответствует строго определенная аминокислота. В то же время, определенной аминокислоте обычно соответствует несколько типов тРНК с разными антикодонами. Аминокислота ковалентно присоединяется к тРНК с помощью ферментов – аминоацил-тРНК-синтетаз. Эта реакция называется аминоацилированием тРНК.
На рибосомах к определенному кодону мРНК с помощью специфического белка присоединяется антикодон соответствующей молекулы аминоацил-тРНК. Такое связывание мРНК и аминоацил-тРНК называется кодонзависимым. На рибосомах аминокислоты соединяются между собой с помощью пептидных связей, а освободившиеся молекулы тРНК уходят на поиски свободных аминокислот.
Рассмотрим подробнее основные этапы биосинтеза белков.
1 этап. Транскрипция ДНК. На транскрибируемой цепи ДНК с помощью ДНК-зависимой РНК-полимеразы достраивается комплементарная цепь мРНК. Молекула мРНК является точной копией нетранскрибируемой цепи ДНК с той разницей, что вместо дезоксирибонуклеотидов в ее состав входят рибонуклеотиды, в состав которых вместо тимина входит урацил.
2 этап. Процессинг (созревание) мРНК. Синтезированная молекула мРНК (первичный транскрипт) подвергается дополнительным превращениям. В большинстве случаев исходная молекула мРНК разрезается на отдельные фрагменты. Одни фрагменты – интроны – расщепляются до нуклеотидов, а другие – экзоны – сшиваются в зрелую мРНК. Процесс соединения экзонов «без узелков» называется сплайсинг.
Все стадии процессинга мРНК происходят в РНП-частицах (рибонуклеопротеидных комплексах).
По мере синтеза про-мРНК, она тут же образует комплексы с ядерными белками - информоферами. И в ядерные, и в цитоплазматические комплексы мРНК с белками - информосомы. Таким образом, мРНК не бывает свободной от белков. На всем пути следования до завершения трансляции мРНК защищена от нуклеаз. Кроме того, белки придают ей необходимую конформацию.
Сплайсинг характерен для эукариот и архебактерий, но иногда встречается и у прокариот. Существует несколько видов сплайсинга. Сущность альтернативного сплайсинга заключается в том, что одни и те же участки исходной мРНК могут быть и интронами, и экзонами. Тогда одному и тому же участку ДНК соответствует несколько типов зрелой мРНК и, соответственно, несколько разных форм одного и того же белка. Сущность транс–сплайсинга заключается в соединение экзонов, кодируемых разными генами (иногда даже из разных хромосом), в одну зрелую молекулу мРНК.
3 этап. Трансляция мРНК. Трансляция (как и все матричные процессы) включает три стадии: инициацию (начало), элонгацию (продолжение) и терминацию (окончание).
Инициация. Сущность инициации заключается в образовании пептидной связи между двумя первыми аминокислотами полипептида.
Первоначально образуется инициирующий комплекс, в состав которого входят: малая субъединица рибосомы, специфические белки (факторы инициации) и специальная инициаторная метиониновая тРНК с аминокислотой метионином – Мет–тРНКМет. Инициирующий комплекс узнает начало мРНК, присоединяется к ней и скользит до точки инициации (начала) биосинтеза белка: в большинстве случаев это стартовый кодон АУГ. Между стартовым кодоном мРНК и антикодоном метиониновой тРНК происходит кодонзависимое связывание с образованием водородных связей. Затем происходит присоединение большой субъединицы рибосомы.
При объединении субъединиц образуется целостная рибосома, которая несет два активных центра (сайта): А–участок (аминоацильный, который служит для присоединения аминоацил-тРНК) и Р–участок (пептидилтрансферазный, который служит для образования пептидной связи между аминокислотами).
Первоначально Мет–тРНКМет находится на А–участке, но затем перемещается на Р–участок. На освободившийся А–участок поступает аминоацил-тРНК с антикодоном, который комплементарен кодону мРНК, следующему за кодоном АУГ. В нашем примере это Гли–тРНКГли с антикодоном ЦЦГ, который комплементарен кодону ГГЦ. В результате кодонзависимого связывания между кодоном мРНК и антикодоном аминоацил-тРНК образуются водородные связи. Таким образом, на рибосоме рядом оказываются две аминокислоты, между которыми образуется пептидная связь. Ковалентная связь между первой аминокислотой (метионином) и её тРНК разрывается.
После образования пептидной связи между двумя первыми аминокислотами рибосома сдвигается на один триплет. В результате происходит транслокация (перемещение) инициаторной метиониновой тРНКМет за пределы рибосомы. Водородная связь между стартовым кодоном и антикодоном инициаторной тРНК разрывается. В результате свободная тРНКМет отщепляется и уходит на поиск своей аминокислоты.
Вторая тРНК вместе с аминокислотой (в нашем примере Гли–тРНКГли) в результате транслокации оказывается на Р–участке, а А–участок освобождается.
Элонгация. Сущность элонгации заключается в присоединении последующих аминокислот, то есть в наращивании полипептидной цепи. Рабочий цикл рибосомы в процессе элонгации состоит из трех шагов: кодонзависимого связывания мРНК и аминоацил-тРНК на А–участке, образования пептидной связи между аминокислотой и растущей полипептидной цепью и транслокации с освобождением А–участка.
На освободившийся А–участок поступает аминоацил-тРНК с антикодоном, соответствующим следующему кодону мРНК (в нашем примере это Тир–тРНКТир с антикодоном АУА, который комплементарен кодону УАУ).
На рибосоме рядом оказываются две аминокислоты, между которыми образуется пептидная связь. Связь между предыдущей аминокислотой и её тРНК (в нашем примере между глицином и тРНКГли) разрывается.
Затем рибосома смещается еще на один триплет, и в результате транслокации тРНК, которая была на Р–участке (в нашем примере тРНКГли), оказывается за пределами рибосомы и отщепляется от мРНК. А–участок освобождается, и рабочий цикл рибосомы начинается сначала.
Терминация. Заключается в окончании синтеза полипептидной цепи.
В конце концов, рибосома достигает такого кодона мРНК, которому не соответствует ни одна тРНК (и ни одна аминокислота). Существует три таких нонсенс–кодона: УАА («охра»), УАГ («янтарь»), УГА («опал»). На этих кодонах мРНК рабочий цикл рибосомы прерывается, и наращивание полипептида прекращается. Рибосома под воздействием определенных белков вновь разделяется на субъединицы.
Модификация белков. Как правило, синтезированный полипептид подвергается дальнейшим химическим превращениям. Исходная молекула может разрезаться на отдельные фрагменты; затем одни фрагменты сшиваются, другие гидролизуются до аминокислот. Простые белки могут соединяться с самыми разнообразными веществами, образуя гликопротеины, липопротеины, металлопротеины, хромопротеины и другие сложные белки. Кроме того, аминокислоты уже в составе полипептида могут подвергаться химическим превращениям. Например, аминокислота пролин, входящая в состав белка проколлагена, окисляется до гидроксипролина. В результате из проколлагена образуется коллаген – основной белковый компонент соединительной ткани. Такие биохимические реакции называются ступенчатыми.
Энергетика биосинтеза белков. Биосинтез белков – очень энергоемкий процесс. При аминоацилировании тРНК затрачивается энергия одной связи молекулы АТФ, при кодонзависимом связывании аминоацил-тРНК – энергия одной связи молекулы ГТФ, при перемещении рибосомы на один триплет – энергия одной связи еще одной молекулы ГТФ. В итоге на присоединение аминокислоты к полипептидной цепи затрачивается около 90 кДж/моль. При гидролизе же пептидной связи высвобождается лишь 2 кДж/моль. Таким образом, при биосинтезе большая часть энергии безвозвратно теряется (рассеивается в виде тепла).
3. Регуляция экспрессии геновОбщие принципы регуляции экспрессии геновАктивность генов определяется объемом генопродуктов (РНК и белков). Степень активности генов называется их экспрессией.
Все гены клетки (и целостного организма) можно разделить на две группы: регуляторные и структурные. Регуляторные гены не транскрибируются, т.е. в обычных условиях им не соответствует ни один из типов РНК. Структурные гены способны транскрибироваться с образованием РНК (матричной, рибосомальной, транспортной). В свою очередь, структурные гены делятся на конститутивные и индуцибельные.
Конститутивные гены постоянно включены: они функционируют на всех стадиях онтогенеза и во всех тканях. К конститутивным относятся
à гены, обслуживающие матричные процессы (кодирующие тРНК, рРНК, ДНК-полимеразы, РНК-полимеразы, рибосомальные белки),
à гены, кодирующие обязательные структурные компоненты клетки (например, белки-гистоны),
à гены, контролирующие постоянно протекающие обменные процессы (например, гликолиз). Иначе говоря, это «гены домашнего хозяйства», без которых клетки не могут существовать.
Индуцибельные гены функционируют в разных тканях на определенных этапах онтогенеза, они могут включаться и выключаться, их активность может регулироваться по принципу «больше или меньше». Это тканеспецифичные гены, или «гены роскоши». К индуцибельным генам относятся как гены, контролирующие ход онтогенеза (переключатели, или диспетчеры), так и гены, прямо определяющие структуру и функции компонентов клетки и целостного организма.
(Нужно отметить, что строгой разницы между перечисленными группами генов не существует, поскольку один и тот же участок ДНК может выполнять разные функции.)
Существуют индуцибельные гены, в норме включенные, и гены, в норме выключенные. Включение нормально выключенных индуцибельных генов называется индукцией, выключение нормально включенных – репрессией.
Регуляцию активности генов осуществляют молекулярно-генетические системы управления. На индукцию и репрессию могут влиять самые разнообразные факторы, которые называются эффекторами. Одни из них прямо закодированы в геноме организма (например, белки теплового шока), другие образуются как промежуточные продукты обмена веществ, третьи поступают в клетку извне в готовом виде из внешней среды или из других клеток (тканей) организма, четвертые образуются в клетке под влиянием физических факторов (экстремальных температур, ультрафиолета) и т.д. Особую группу эффекторов составляют белки теплового шока, которые синтезируются в клетке при различных видах стресса (при повышении температуры, при воздействии других неблагоприятных факторов). Эти белки эволюционно консервативны, они обнаружены у самых различных организмов; вероятно, они являются универсальными эффекторами.
Именно регуляцией активности генов объясняется тот факт, что, несмотря на идентичность генотипов клеток многоклеточного организма, они значительно различаются по строению и функции. Переключение синтеза с одних белков на другие лежит в основе всякого развития, будь то репродукция вирусов в зараженных клетках, рост и спорообразование у бактерий, развитие эмбрионов или дифференцировка тканей. На каждом этапе этих процессов синтезируются специфичные белки.
Известно несколько типов механизмов, с помощью которых один и тот же набор генов в неодинаковых условиях жизнедеятельности организма и на разных стадиях развития детерминирует синтез белков. Регуляция экспрессии (выражения) генов может осуществляться на нескольких уровнях: генном, транскрипционном, трансляционном и функциональном. Первый из них связан с изменением количества или локализации генов, контролирующих данный признак. Второй определяет, какие и сколько мРНК должны синтезироваться в данный момент. Третий обеспечивает отбор мРНК, транслирующихся на рибосомах. Четвертый связан с аллостерической регуляцией активности ферментов. Наконец, контроль действия генов может осуществляться путем посттрансляционной модификации полипептидов, посттранскрипционной модификации мРНК, и другими путями.
Единицей регуляции экспрессии генов у прокариот является оперон. Оперон – это участок бактериальной хромосомы, включающий следующие участки ДНК: промотор, оператор, структурные гены, терминатор.
Промотор – это регуляторный участок ДНК, который служит для присоединения РНК-полимеразы к молекуле ДНК.
Оператор – это регуляторный участок ДНК, который способен присоединять белок-репрессор, который кодируется соответствующим геном. Если репрессор присоединен к оператору, то РНК-полимераза не может двигаться вдоль молекулы ДНК и синтезировать мРНК.
Терминатор – это регуляторный участок ДНК, который служит для отсоединения РНК-полимеразы после окончания синтеза мРНК.
Общие принципы регуляции активности генов в оперонах разработали Франсуа Жакоб и Жак Моно (1961; Нобелевская премия 1965). Согласно концепции Жакоба–Моно, единицей регуляции активности генов у прокариот является оперон. Транскрипция группы структурных генов, регулируется двумя элементами – геном-регулятором и оператором. Оператор часто локализуется между промотором и структурными генами; ген-регулятор может локализоваться рядом с опероном или на некотором расстоянии от него.
Если продуктом гена-регулятора является белок-репрессор, его присоединение к оператору блокирует транскрипцию структурных генов, препятствуя присоединению РНК-полимеразы к специфичному участку – промотору, необходимому для инициации транскрипции. Напротив, если белком-регулятором служит активный апоиндуктор, его присоединение к оператору создает условия для инициации транскрипции. В регуляции работы оперонов участвуют также низкомолекулярные вещества – эффекторы, выступающие как индукторы либо корепрессоры структурных генов, входящих в состав оперонов.
Объединение функционально близких генов в опероны, видимо, постепенно сложилось в эволюции бактерий по той причине, что у них перенос генетической информации обычно осуществляется небольшими порциями (например, при трансдукции или посредством плазмид). Значение имеет само по себе сцепление функционально родственных генов, что позволяет бактериям приобретать необходимую функцию в один этап.
Регуляция экспрессии генов у высших эукариот
Важнейшая особенность функционально-генетической организации эукариот – отсутствие у них оперонов, подобных оперонам бактерий. Однако промоторные и терминаторные участки у эукариот имеются; более того, они более разнообразны, чем у прокариот. Однако структурные гены, контролирующие последовательные этапы метаболического процесса, могут находиться у эукариот в разных участках одной хромосомы или даже в разных хромосомах. Физико-химический и электронно-микроскопический анализ вновь синтезированной РНК показывает, что она состоит из огромных молекул длиной в несколько десятков тысяч нуклеотидов. Поэтому правильнее говорить о функциональной генетической единице у эукариот как о транскриптоне (Г.П. Георгиев), т. е. участке ДНК, с которого считывается единая непрерывная молекула РНК. Доказано, что в ответ на действие указанных индукторов активируется целая батарея структурных генов, среди которых находятся как гены, кодирующие определенные белки, так и гены рРНК и тРНК.
Наряду с обычными нуклеотидными последовательностями промоторной и терминаторной областей транскрипции у эукариот обнаружены такие специфические элементы регуляции, как усилители (энхансеры), и глушители (сайленсеры).
Энхансеры – это участки ДНК, которые действуют как усилители транскрипции, находясь на расстоянии нескольких сот и даже тысяч пар нуклеотидов от регулируемого гена; в других случаях энхансеры находятся в самих структурные генах в составе интронов. Вероятно, механизм действия энхансеров связан с изменением нуклеосомной структуры хроматина. Сайленсеры – это участки ДНК, которые, располагаясь в нескольких сотнях пар нуклеотидов до или после регулируемого гена, выключает транскрипцию, изменяя структуру хроматина. Существуют мутации, которые не затрагивая сам глушитель, делают его неактивным и тем самым «разрешают» транскрипцию с промотора регулируемого гена.
Существенная особенность генетической регуляции в клетках эукариот заключается в том, что процесс транскрипции зависит от состояния хроматина. В частности локальная компактизация ДНК в её отдельных участках полностью блокирует синтез РНК. Вероятно, это связано с тем, что в такие области не может проникнуть РНК-полимераза.
Сам факт тотальной регуляции действия генов в настоящее время не вызывает сомнений. Активность генов оценивается по числу типов генных продуктов (РНК-вых копий) в цитоплазме. Этот вопрос был исследован на клетках человека линии HeLa – «стандартной» раковой ткани, культивируемой in vitro в течение десятков лет. Геном клеток HeLa считается сильно дерепрессированным, т. е. в них функционирует значительно большее (около 35 тыс.) число генов, чем в обычных соматических клетках, хотя это не означает, что клетки HeLa производят столь же большое количество конечных генных продуктов – полипептидов. Оказалось, что по функциональной активности гены клеток HeLa могут различаться почти на четыре порядка. Так, существует около 10-12 генов, представленных 12-13 тыс. РНК-вых копий, и несколько десятков генов, которым в цитоплазме соответствуют единичные молекулы мРНК.
Клетки различных тканей растений и животных отличаются друг от друга главным образом тем, что в них происходит синтез различных групп белков, что и определяет их структурную и функциональную специфику. Таким образом, проблема генетического контроля индивидуального развития тесно связана с проблемой дифференциальной экспрессии генов. Экспрессия генов зависит от факторов внешней и внутренней среды и, в то же время, находится под контролем генотипа. Например, известны особые гомеозисные гены, контролирующие экспрессию других генов.
Регуляция экспрессии генов осуществляется на различных уровнях: генном, транскрипционном, посттранскрипционном, трансляционном и посттрансляционном (функциональном).
1. Регуляция на генном уровне
1.1. Модификация ДНК. Замена мажорных «обычных» азотистых оснований – аденина, гуанина, цитозина и тимина – на минорные «редкие» азотистые основания, обычно на метил-цитозин или метил-гуанин. Доказано, что метилирование цитозина существенно влияет на экспрессию генов. Например, активные гены гемоглобина менее метилированы, чем неактивные.
1.2. Различные случаи программированных количественных изменений ДНК. Примером регуляции, обусловленной транспозицией, служит феномен смены фаз (типа жгутиков) у сальмонелл. Действующий в клетках сальмонелл переключатель содержит промотор, который может изменять свою пространственную ориентацию. В одной ориентации промотор обеспечивает транскрипцию гена Н2, кодирующего синтез жгутиков одного типа, с одновременной репрессией гена h2, кодирующего синтез жгутиков другого типа, и наоборот.
1.3. Сплайсинг ДНК. Регуляция, связанная со сплайсингом ДНК, изучена на примере генов, кодирующих синтез антител.
Известно, что разнообразные чужеродные вещества – антигены, попадающие в наш организм, – связываются особыми белками – антителами, или иммуноглобулинами. Млекопитающие могут продуцировать до миллиона различных антител, которые вырабатываются Т- и В-лимфоцитами иммунной системы. Существует особый раздел генетики – иммуногенетика,– который изучает генетический контроль иммунного ответа. Основу молекул иммуноглобулинов составляет сложный белок, состоящий из четырех полипептидных цепей – двух тяжелых (Н) и двух легких (L), – связанных дисульфидными мостиками. Оба типа цепей имеют константные (С) и вариабельные (V) участки. Доказано, что у эмбрионов фрагменты ДНК, кодирующие V- и С-участки, пространственно разделены. При развитии системы иммунитета у позвоночных животных и человека происходит дифференцировка лимфоцитов, в ходе которой гены, кодирующие V- и С-участки, перестраиваются таким образом, что в итоге они оказываются частями одного и того же гена, транскрибируемого как целое. Таким образом, сплайсинг ДНК обеспечивает сшивание консервативных (т.е. постоянно присутствующих) районов этих генов с различными варьирующими. В результате появляется большое число типов антител, поскольку любая консервативная область может быть присоединена к любой варьирующей.
1.4. Диминуция хроматина. У некоторых организмов (у аскарид, циклопов) в соматических клетках происходит необратимая утрата части генетического материала (от 20 до 80% ДНК). В полном объеме исходная генетическая информация сохраняется только в клетках зародышевого пути, т. е. в клетках, которые дадут в дальнейшем начало половым клеткам. Именно гаметы содержат всю полноту генетической информации данного вида и составляют непрерывный, потенциально бессмертный зародышевый путь. А. Вайсман считал диминуцию хроматина универсальным механизмом дифференцировки клеток и тканей, однако в дальнейшем было показано, что этот способ дифференцировки встречается довольно редко. Например, подобное явление наблюдается у инфузорий: в диплоидном микронуклеусе полностью сохраняется исходный набор генов, а в полиплоидном макронуклеусе ~10% генов (правда, за счет полиплоидизации оставшаяся информация многократно дублируется).
1.5. Изменение активности целых хромосом.
Известно, что у самок млекопитающих в кариотипе присутствует две X-хромосомы, а у самцов одна X- и одна Y-хромосома. Несмотря на то, что женские особи млекопитающих имеют две Х-хромосомы, а мужские – только одну, экспрессия генов Х-хромосомы происходит на одном и том же уровне у обоих полов. Это объясняется тем, что у самок в каждой клетке полностью инактивирована одна Х-хромосома. Эту хромосому можно видеть в интерфазе в форме гетерохроматинового тельца, названного тельцем Барра. Х-хромосома инактивируется на ранней стадии эмбрионального развития, соответствующей времени имплантации. При этом в разных клетках отцовская и материнская Х-хромосомы выключаются случайно. Состояние инактивации данной Х-хромосомы наследуется в ряду клеточных делений. Таким образом, женские особи, гетерозиготные по генам половых хромосом, представляют собой мозаики.
2. Регуляция на уровне транскрипции
Во многих случаях дифференцировка происходит путем регуляции транскрипции мРНК. Интенсивное функционирование отдельных генов или их блоков соответствует определенным этапам развития и дифференцировки.
При изучении гигантских политенных хромосом (в слюнных железах личинок дрозофил) и петель в хромосомах типа «ламповых щеток» (в ооцитах на стадии профазы I) было установлено, что мРНК синтезируется с разной скоростью в разных участках хромосом, в частности, образование пуфов и петель связано с повышением интенсивности синтеза мРНК.
В гигантских политенных хромосомах часто наблюдаются вздутия определенных районов хромосом, обусловленные декомпактизацией отдельных дисков и интенсивным синтезом в них РНК. Эти вздутия называются пуфы (или кольца Бальбиани). Пуфы представляют собой места интенсивного синтеза мРНК. Формирование комплексов пуфов, характерных для клеток отдельных тканей и органов дифференцированного организма, является показателем общего уровня наиболее интенсивно протекающих метаболических процессов в данных клетках. При снижении синтетической активности петли синтезированная мРНК отделяется от хромосомы и пуфы политенных хромосом исчезают.
Последовательность образования пуфов изменяется при воздействиях различными химическими агентами, стероидами, температурными условиями. Некоторые антибиотики, влияющие на обмен РНК (например, актиномицин), подавляют образование пуфов, а антибиотики, ингибирующие синтез белка (например, пуромицин), не влияют на этот процесс. Следовательно, активность пуфов находится под контролем гормональных факторов (закодированных в генотипе) и факторов внешней среды.
Особенно велика роль стероидных гормонов в регуляции генной активности у животных. Однако отдельные гормоны активируют гены не во всех клетках, а только в клетках-мишенях, которые содержат специальные рецепторные белки, с которыми специфически связываются молекулы гормона. Это связывание происходит в цитоплазме, а затем образовавшийся комплекс проникает в ядро, где он взаимодействует с определенными негистоновыми белками хромосом. В отсутствие гормонов эти белки блокируют либо промоторные, либо иные, пока неизвестные регуляторные участки определенных генов. Комплекс «гормон – рецепторный белок» снимает блокирующее действие негистонового белка-репрессора, следствием чего являются транскрипция данного гена, созревание мРНК, транспорт ее в цитоплазму и синтез белка.
Связь синтетической активности с морфологическими преобразованиями хромосом была установлена при изучении оогенеза у амфибий, в ходе которого образуются хромосомы типа «ламповых щеток». Эти хромосомы получили свое название за сходство со щетками, которыми когда-то чистили керосиновые лампы. Они имеют отчетливо выраженное хромомерное (узелковое) строение. Из хромомеров в виде петель вытянуты ДНК-вые оси хромосом. Поскольку хромосомы типа ламповых щеток существуют в диплотене и состоят из четырех хроматид, каждый участок таких хромосом представлен четырьмя хромомерами и четырьмя петлями. Окружение петель представляет собой гранулы и фибриллы, состоящие из вновь синтезированной РНК и белков. Таким образом, петли – это участки хромомера с интенсивной транскрипцией. Обычно в них легко различают тонкий конец, где начинает свое движение РНК-полимераза, и толстый конец, где транскрипция заканчивается. При снижении синтетической активности петли синтезированная РНК отделяется от хромосомы и петля спадает.
Число петель близко к числу типов РНК, присутствующих в цитоплазме. Эта РНК частично используется для синтеза рибосом и белков цитоплазмы яйца. Однако большая часть молекул мРНК, синтезированных хромосомами типа ламповых щеток, используется позже во время раннего эмбриогенеза.
Цитохимическое изучение хромосом типа «ламповых щеток» выявило их функциональное сходство с политенными хромосомами.
3. Регуляция на посттранскрипционном уровне: модификации (сплайсинг) мРНК
Регуляция на уровне процессинга РНК обеспечивает возможность образования различных типов зрелой, функционально активной мРНК. Процессинг РНК регулируется с помощью рибозимов (катализаторов рибонуклеиновой природы) и ферментов матураз.
Одной из форм сплайсинга является альтернативный сплайсинг, при котором одному участку ДНК и одному первичному транскрипту (пре-мРНК) может соответствовать несколько типов зрелой мРНК и, соответственно, несколько изотипов (т.е. разных форм) одного и того же белка, например, мышечного белка тропонина. Твердо установлено, что некоторые генетические заболевания человека (фенилкетонурия, некоторые гемоглобинопатии) обусловлены нарушением сплайсинга.
Сплайсинг РНК открыт сравнительно недавно, поэтому достоверных данных по регуляции активности генов на этом уровне недостаточно.
4. Регуляция на уровне трансляции
Регуляция на уровне трансляции обусловлена различной активностью разных типов мРНК. Например, у прокариот некоторые мРНК транслируются только в присутствии эритромицина. У эукариот регуляция генной активности на уровне трансляции хорошо прослежена на примере морского ежа. Его неоплодотворенные яйца содержат большое количество «замаскированной» (нетранслируемой) мРНК. У дрозофилы подобные мРНК, кодирующие белки оболочки яйцеклетки, накапливаются в цитоплазме.
5. Регуляция на уровне посттрансляционной модификации белков.
Экспрессия генов на уровне посттрансляционной модификации полипептидов регулируется путем посттрансляционной модификацией белков (фосфорилированием, ацетилированием, расщеплением исходной полипептидной цепи на более мелкие фрагменты и т.д.). Например, белковый гормон инсулин, синтезирующийся в клетках поджелудочной железы, образуется в форме препроинсулина, из которого затем путем отщепления «лишних» пептидов образуется проинсулин. Из проинсулина вырезаются две субъединицы, представляющие собой А- и В-цепи инсулина. Эти две цепи сшиваются между собой с помощью дисульфидных мостиков. Четыре образовавшиеся АВ-структуры соединяются в белковый тетрамер, который присоединяет два иона Zn2+, и в результате образуется зрелый инсулин.
Широко распространен механизм регуляции активности ферментов, основанный на присоединении к ним молекул-эффекторов. Чаще всего в роли эффекторов выступают конечные продукты цепей биосинтеза, которые связываются с первым или с одним из первых ферментов данного метаболического пути и подавляют его активность, тем самым выключая всю цепь синтеза. Это ингибирование конечным продуктом, благодаря которому регулируются сразу несколько этапов метаболизма. Конечный продукт связывается с ферментом не в его активном центре, а в аллостерическом центре, и такое взаимодействие индуцирует изменение (инактивацию) активного центра фермента.ВыводГенетическая теория гласит, что признаки особей каждого поколения передаются следующему поколению через единицы наследственности, называемые генами. Крупные сложные молекулы ДНК состоят из четырех типов субъединиц, называемых нуклеотидами, и имеют структуру двойной спирали. Информация, содержащаяся в каждом гене, закодирована особым порядком расположения этих субъединиц. Поскольку каждый ген состоит примерно из 10 000 нуклеотидов, выстроенных в определенной последовательности, существует великое множество комбинаций нуклеотидов, а соответственно и множество различных последовательностей, являющихся единицами генетической информации.
Определение последовательности нуклеотидов, образующих определенный ген, стало теперь не только возможным, но даже довольно обычным делом. Более того, ген можно синтезировать, а затем клонировать, получив таким образом миллионы копий. Если какое-то заболевание человека вызвано мутацией гена, который в результате не функционирует надлежащим образом, в клетку может быть введен нормальный синтезированный ген, и он будет выполнять необходимую функцию. Эта процедура называется генной терапией. Грандиозный проект «Геном человека» призван выяснить нуклеотидные последовательности, образующие все гены человеческого генома.
Одно из важнейших обобщений современной биологии, формулируемое иногда как правило «один ген – один фермент – одна метаболическая реакция», было выдвинуто в 1941 американскими генетиками Дж.Бидлом и Э.Тейтемом. Согласно этой гипотезе, любая биохимическая реакция – как в развивающемся, так и в зрелом организме – контролируется определенным ферментом, а фермент этот в свою очередь контролируется одним геном. Информация, заложенная в каждом гене, передается от одного поколения другому специальным генетическим кодом, который определяется линейной последовательностью нуклеотидов. При образовании новых клеток каждый ген реплицируется, и в процессе деления каждая из дочерних клеток получает точную копию всего кода. В каждом поколении клеток происходит транскрипция генетического кода, что позволяет использовать наследственную информацию для регуляции синтеза специфических ферментов и других белков, существующих в клетках.
В 1953 американский биолог Дж.Уотсон и британский биохимик Ф.Крик сформулировали теорию, объясняющую, каким образом структура молекулы ДНК обеспечивает основные свойства генов – способность к репликации, к передаче информации и мутированию. На основании этой теории оказалось возможным сделать определенные предсказания о генетической регуляции синтеза белка и подтвердить их экспериментально.
Развитие с середины 1970-х годов генной инженерии, т.е. технологии получения рекомбинантных ДНК, значительно изменило характер исследований, проводимых в области генетики, биологии развития и эволюции. Разработка методов клонирования ДНК и проведения полимеразной цепной реакции позволяют получать в достаточном количестве необходимый генетический материал, включая рекомбинантные (гибридные) ДНК. Эти методы используются для выяснения тонкой структуры генетического аппарата и отношений между генами и их специфическими продуктами – полипептидами. Вводя в клетки рекомбинантную ДНК, удалось получить штаммы бактерий, способные синтезировать важные для медицины белки, например человеческий инсулин, гормон роста человека и многие другие соединения.
Значительный прогресс был достигнут в области изучения генетики человека. В частности, проведены исследования таких наследственных болезней, как серповидноклеточная анемия и муковисцидоз. Изучение раковых клеток привело к открытию онкогенов, превращающих нормальные клетки в злокачественные. Исследования, проводимые на вирусах, бактериях, дрожжах, плодовых мушках и мышах, позволили получить обширную информацию, касающуюся молекулярных механизмов наследственности. Теперь гены одних организмов могут быть перенесены в клетки других высокоразвитых организмов, например мышей, которые после такой процедуры называются трансгенными. Чтобы осуществить операцию по внедрению чужеродных генов в генетический аппарат млекопитающих, разработан целый ряд специальных методов.
Одно из наиболее удивительных открытий в генетике – это обнаружение двух типов входящих в состав генов полинуклеотидов: интронов и экзонов. Генетическая информация кодируется и передается только экзонами, функции же интронов до конца не выяснены.
bukvasha.ru