Реферат на тему Что такое звёзды. Звезды реферат


Реферат Астрономия Звезды

Реферат по теме Что такое звезды? Содержание: Введение 3 Основные звездные характеристики 3 Светимость и расстояние до звезд 3 Спектры звезд и их химический состав 4 Температура и масса звезд 5 Связь основных звездных величин 5 Рождение звезд 6 Межзвездный газ 6 Межзвездная пыль 6 Разнообразие физических условий 7 Почему должны рождаться новые звезды? 7 Газово-пылевые комплексы - колыбель звезд 8 Звездные ассоциации 9 Кратко о всем процессе рождения 9 Эволюция и виды звезд 10 БЕЛЫЕ КАРЛИКИ. 10 СВЕРХНОВЫЕ. 15 НЕЙТРОННЫЕ. 20 ЧЁРНЫЕ ДЫРЫ 22 Список использованной литературы: 29 Как и все тела в природе, звёзды не остаются неизменными, они рождаются, эволюционируют, и, наконец "умирают". Чтобы проследить жизненный путь звёзд и понять, как они стареют, необходимо знать, как они возникают. В прошлом это представлялось большой загадкой; современные астрономы уже могут с большой уверенностью подробно описать пути, ведущие к появлению ярких звёзд на нашем ночном небосводе. Не так давно астрономы считали, что на образование звезды из межзвёздных газа и пыли требуются миллионы лет. Но в последние годы были получены поразительные фотографии области неба, входящей в состав Большой Туманности Ориона, где в течение нескольких лет появилось небольшое скопление звёзд. На снимках 1947г. в этом месте была видна группа из трёх звездоподобных объектов. К 1954г. некоторые из них стали продолговатыми, а к 1959г. эти продолговатые образования распались на отдельные звёзды - впервые в истории человечества люди наблюдали, рождение звёзд буквально на глазах этот беспрецедентный случай показал астрономам, что звёзды могут рождаться за короткий интервал времени, и казавшиеся ранее странными рассуждения о том, что звёзды обычно возникают в группах, или звёздных скоплениях, оказались справедливыми. Прежде всего надо понять, что звезды, за редчайшим исключением, наблюдаются как "точечные" источники излучения. Это означает, что их угловые размеры очень малы. Даже в самые большие телескопы нельзя увидеть звезды в виде "реальных" дисков. Подчеркиваю слово "реальных", так как благодаря чисто инструментальным эффектам, а главным образом неспокойностью атмосферы, в фокальной плоскости телескопов получается "ложное" изображение звезды в виде диска. Угловые размеры этого диска редко бывают меньше одной секунды дуги, между тем как даже для ближайших звезд они должны быть меньше одной сотой доли секунды дуги. Итак, звезда даже в самый большой телескоп не может быть, как говорят астрономы, "разрешена". Это означает, что мы можем измерять только потоки излучения от звезд в разных спектральных участках. Мерой величины потока является звездная величина. Светимость определяется, если известны видимая величина и расстояние до звезды. Если для определения видимой величины астрономия располагает вполне надежными методами, то расстояние до звезд определить не так просто. Для сравнительно близких звезд, удаленных на расстояние, не превышающие нескольких десятков парсек, расстояние определяется известным еще с начала прошлого столетия тригонометрическим методом, заключающимся в измерении ничтожно малых угловых смещений звезд при их наблюдении с разных точек земной орбиты, то есть в разное время года. Этот метод имеет довольно большую точность и достаточно надежен. Однако для большинства других более удаленных звезд он уже не годится: слишком малые смещения положения звезд надо измерять - меньше одной сотой доли секунды дуги! На помощь приходят другие методы, значительно менее точные, но тем не менее достаточно надежные. В ряде случаев абсолютную величину звезд можно определить и непосредственно, без измерения расстояния до них, по некоторым наблюдаемым особенностям их излучения. Исключительно богатую информацию дает изучение спектров звезд. Уже давно спектры подавляющего большинства звезд разделены на классы. Последовательность спектральных классов обозначается буквами O, B, A, F, G, K, M. Существующая система классификации звездных спектров настолько точна, что позволяет определить спектр с точностью до одной десятой класса. Например, часть последовательности звездных спектров между классами B и А обозначается как В0, В1 . . . В9, А0 и так далее. Спектр звезд в первом приближении похож на спектр излучающего "черного" тела с некоторой температурой Т. Эти температуры плавно меняются от 40-50 тысяч градусов у звезд спектрального класса О до 3000 градусов у звезд спектрального класса М. В соответствии с этим основная часть излучения звезд спектральных классов О и В приходиться на ультрафиолетовую часть спектра, недоступную для наблюдения с поверхности земли. Однако в последние десятилетия были запущены специализированные искусственные спутники земли; на их борту были установлены телескопы, с помощью которых оказалось возможным исследовать и ультрафиолетовое излучение. Характерной особенностью звездных спектров является еще наличие у них огромного количества линий поглощения, принадлежащих различным элементам. Тонкий анализ этих линий позволил получить особенно ценную информацию о природе наружных слоев звезд. Химический состав наружных слоев звезд, откуда к нам "непосредственно" приходит их излучение, характеризуется полным преобладанием водорода. На втором месте находится гелий, а обилие остальных элементов достаточно невелико. Приблизительно га каждые десять тысяч атомов водорода приходиться тысячи атомов гелия, около 10 атомов кислорода, немного меньше углерода и азота и всего лишь один атом железа. Обилие остальных элементов совершенно ничтожно. Без преувеличения можно сказать, что наружные слои звезд - это гигантские водородно-гелиевые плазмы с небольшой примесью более тяжелых элементов. Хорошим индикатором температуры наружных слоев звезды является ее цвет. Горячие звезды спектральных классов О и В имеют голубой цвет; звезды, сходные с нашим Солнцем (спектральный класс которого G2), представляются желтыми, звезды же спектральных классов К и М - красные. В астрофизике имеется тщательно разработанная и вполне объективная система цветов. Она основана на сравнении наблюдаемых звездных величин, полученных через различные строго эталонированные светофильтры. Количественно цвет звезд характеризуется разностью двух величин, полученных через два фильтра, один из которых пропускает преимущественно синие лучи ("В"), а другой имеет кривую спектральной чувствительности, сходную с человеческим глазом("V"). Техника измерений цвета звезд настолько высока, что по измеренному значению B-V можно определить спектр звезды с точностью до подкласса. Для слабых звезд анализ цветов - единственная возможность их спектральной классификации. Знание спектрального класса или цвета звезды сразу же дает температуру ее поверхности. Так как звезды излучают приблизительно как абсолютно черные тела соответствующей температуры, то мощность, излученная единицей их поверхности, определяется из закона Стефана Больцмана: - постоянная Больцмана Мощность излучения всей поверхности звезды, или ее светимость, очевидно будет равна ( * ), где R - радиус звезды. Таким образом, для определения радиуса звезды надо знать ее светимость и температуру поверхности. Нам остается определить еще одну, едва ли не самую важную характеристику звезды - ее массу. Надо сказать, что это сделать не так то просто. А главное существует не так уж много звезд, для которых имеются надежные определения их масс. Последние легче всего определить, если звезды образуют двойную систему, для которой большая полуось орбиты а и период обращения Р известны. В этом случае массы определяются из третьего закона Кеплера, который может быть записан в следующем виде: , здесь М1 и М2 - массы компонент системы, G - постоянная в законе всемирного тяготения Ньютона. Уравнение дает сумму масс компонент системы. Если к тому же известно отношение орбитальных скоростей, то их массы можно определить отдельно. К сожаления, только для сравнительно небольшого количества двойных систем можно таким образом определить массу каждой из звезд. В сущности говоря, астрономия не располагала и не располагает в настоящее время методом прямого и независимого определения массы (то есть не входящей в состав кратных систем) изолированной звезды. И это достаточно серьезный недостаток нашей науки о Вселенной. Если бы такой метод существовал, прогресс наших знаний был бы значительно более быстрым. В такой ситуации астрономы молчаливо принимаю, что звезды с одинаковой светимостью и цветом имеют одинаковые массы. Последние же определяются только для двойных систем. Утверждение, что одиночная звезда с той же светимостью и цветом имеет такую же массу, как и ее "сестра", входящая в состав двойной системы, всегда следует принимать с некоторой осторожностью. Итак, современная астрономия располагает методами определения основных звездных характеристик: светимости, поверхностной температуры (цвета), радиуса, химического состава и массы. Возникает важный вопрос: являются ли эти характеристики независимыми? Оказывается, нет. Прежде всего имеется функциональная зависимость, связывающая радиус звезды, ее болометрическую светимость и поверхностную температуру. Эта зависимость представляется простой формулой ( * ) и является тривиальной. Наряду с этим, однако, давно уже была обнаружена зависимость между светимостью звезд и их спектральным классом (или, что фактически одно и то же,- цветом). Эту зависимость эмпирически установили (независимо) на большом статистическом материале еще в начале нашего столетия выдающиеся астрономы датчанин Герцшпрунг и американец Рассел. Потребовалось, однако, тысячелетнее развитие науки, чтобы человечество осознало простой и вместе с тем величественный факт, что звезды - это объекты, более или менее похожие на Солнце, но только отстоящие от нас на несравненно большие расстояния. Ньютон был первым, кто правильно оценил расстояния до звезд. Два столетия после великого английского ученого почти всеми молчаливо принималось, что чудовищно больших размеров пространство, в котором находятся звезды, есть абсолютная пустота. Лишь отдельные астрономы время от времени поднимали вопрос о возможном поглощении света в межзвездной среде. Только в самом начале XX столетия немецкий астроном Гартман убедительно доказал, что пространство между звездами представляет собой отнюдь не мифическую пустоту. Оно заполнено газом, правда, с очень малой, но вполне определенной плотностью. Это выдающиеся открытие, так же как и многие другие, было сделано с помощью спектрального анализа. Почти половину столетия межзвездный газ исследовался главным образом путем анализа образующихся в нем линий поглощения. Выяснилось, например, что довольно часто эти линии имеют сложную структуру, то есть состоят из нескольких близко расположенных друг к другу компонент. Каждая такая компонента возникает при поглощении света звезды в каком-нибудь определенном облаке межзвездной среды, причем облака движутся друг относительно друга со скоростью, близкой к 10 км/сек. Это и приводит благодаря эффекту Доплера к незначительному смещению длин волн линий поглощения. Химический состав межзвездного газа в первом приближении оказался довольно близким к химическому составу Солнца и звезд. Преобладающими элементами являются водород и гелий, между тем как остальные элементы мы можем рассматривать как "примеси". До сих пор, говоря о межзвездной среде, мы имели ввиду только межзвездный газ. но имеется и другая компонента. Речь идет о межзвездной пыли. Мы уже упоминали выше, что еще в прошлом столетии дебатировался вопрос о прозрачности межзвездного пространства. Только около 1930 года с несомненностью было доказано, что межзведное пространство действительно не совсем прозрачно. Поглощающая свет субстанция сосредоточена в довольно тонком слое около галактической плоскости. Сильнее всего поглощаются синие и фиолетовые лучи, между тем как поглощение в красных лучах сравнительно невелико. Что же это за субстанция? Сейчас уже представляется доказанным, что поглощение света обусловленно межзвездной пылью, то есть твердыми микроскопическими частицами вещества, размерами меньше микрона. Эти пылинки имеют сложный химический состав. Установлено, что пылинки имеют довольно вытянутую форму и в какой-то степени "ориентируются", то есть направления их вытянутости имеют тенденцию "выстраиваться" в данном облаке более или менее параллельно. По этой причине проходящий через тонкую среду звездный свет становится частично поляризованным. Характернейшей особенностью межзвездной среды является большое разнообразие имеющихся в ней физических условий. Там имеются, во-первых, зоны, кинетическая температура которых различается на два порядка. Имеются сравнительно плотные облака с концентрацией частиц газа, превышающей несколько тысяч на кубический сантиметр, и весьма разряженная среда между облаками, где концентрация не превышает 0,1 частицы на кубический сантиметр. имеются, наконец, огромные области, где распространяются ударные волны от взрывов звезд. Наряду с отдельными облаками как ионизированного так и неионизированного газа в Галактике наблюдаются значительно большие по своим размерам, массе и плотности агрегаты холодного межзвездного вещества, получившие название "газово-пылевых комплексов". Для нас самым существенным является то, что в таких газово-пылевых комплексах происходит важнейший процесс конденсации звезд из диффузной межзвездной среды. Значение газово-пылевых комплексов в современной астрофизике очень велико. Дело в том, что уже давно астрономы, в значительной степени интуитивно, связывали образования конденсации в межзвездной среде с важнейшим процессом образования звезд из "диффузной" сравнительно разряженной газово-пылевой среды. Какие же основания существуют для предположения о связи между газово- пылевыми комплексами и процессом звездообразоания? Прежде всего следует подчеркнуть, что уже по крайней мере с сороковых годов нашего столетия астрономам ясно, что звезды в Галактике должны непрерывно (то есть буквально "на наших глазах") образовываться из какой-то качественно другой субстанции. Дело в том, что к 1939 году было установлено, что источником звездной энергии является происходящий в недрах звезд термоядерный синтез. Грубо говоря, подавляющие большинство звезд излучают потому, что в их недрах четыре протона соединяются через ряд промежуточных этапов в одну альфа-частицу. Так как масса одного протона (в атомных единицах) равна 1,0081, а масса ядра гелия (альфа-частицы) равна 4,0039, то избыток массы, равный 0,007 атомной единицы на протон, должен выделиться как энергия. Тем самым определяется запас ядерной энергии в звезде, которая постоянно тратится на излучение. В самом благоприятном случае чисто водородной звезды запаса ядерной энергии хватит не более, чем на 100 миллионов лет, в то время как в реальных условиях эволюции время жизни звезды оказывается на порядок меньше этой явно завышенной оценки. Но десяток миллионов лет - ничтожный срок для эволюции нашей Галактики, возраст которой никак не меньше чем 10 миллиардов лет. Возраст массивных звезд уже соизмерим с возрастом человечества на Земле! Значит звезды (по крайней мере, массивные с высокой светимостью) никак не могут быть в Галактике "изначально", то есть с момента ее образования. Оказывается, что ежегодно в Галактике "умирает" по меньшей мере одна звезда. Значит, для того, чтобы "звездное племя" не "выродилось", необходимо, чтобы столько же звезд в среднем образовывалось в нашей Галактике каждый год. Для того, чтобы в течении длительного времени (исчисляемыми миллиардами лет) Галактика сохраняла бы неизменными свои основные особенности (например, распределение звезд по классам, или, что практически одно и тоже, по спектральным классам), необходимо, чтобы в ней автоматически поддерживалось динамическое равновесие между рождающимися и "гибнущими" звездами. В этом отношении Галактика похожа на первобытный лес, состоящий из деревьев различных видов и возрастов, причем возраст деревьев гораздо меньше возраста леса. Имеется, правда, одно важное различие между Галактикой и лесом. В Галактике время жизни звезд с массой меньше солнечной превышает ее возраст. Поэтому следует ожидать постепенного увеличения числа звезд со сравнительно небольшой массой, так как они пока еще "не успели" умереть, а рождаться продолжают. Но для более массивных звезд упомянутое выше динамическое равновесие неизбежно должно выполняться. Откуда же берутся в нашей Галактике молодые и "сверхмолодые" звезды? С давних пор, по установившейся традиции, восходящей к гипотезе Канта и Лапласа о происхождении Солнечной системы, астрономы предполагали, что звезды образуются из рассеянной диффузной газово-пылевой среды. Было только одно строгое теоретическое основание такого убеждения - гравитационная неустойчивость первоначально однородной диффузной среды. Дело в том, что в такой среде неизбежны малые возмущения плотности, то есть отклонения от строгой однородности. в дальнейшем, однако, если массы этих конденсаций превосходят некоторый предел, под влиянием силы всемирного тяготения малые возмущения будут нарастать и первоначально однородная среда разобьется на несколько конденсаций. Под действием силы гравитации эти конденсации будут продолжать сжиматься и, как можно полагать, в конце концов превратятся в звезды. Характерное время сжатия облака до размеров протозвезды можно оценить по простой формуле механики, описывающей свободное падение тела под влиянием некоторого ускорения. Так, к примеру, облако с массой, равной солнечной, сожмется за миллион лет. В процессе только что описанной первой стадии конденсации газово-пылевого облака в звезду, которая называется "стадией свободного падения", освобождается определенное количество гравитационной энергии. Половина освободившейся при сжатии облака энергии должна покинуть облако в виде инфракрасного излучения, а половина пойти на нагрев вещества. Как только сжимающееся облако станет непрозрачным для своего инфракрасного излучения, светимость его резко упадет. Оно будет продолжать сжиматься, но уже не по закону свободного падения, а гораздо медленнее. Температура его внутренних областей , после того как процесс диссоциации молекулярного водорода закончится, будет непременно повышаться, так как половина освобождающейся при сжатии гравитационной энергии будет идти на нагрев облака. Впрочем, такой объект назвать облаком уже нельзя. Это уже самая настоящая протозвезда. Таким образом, из простых законов физики следует ожидать, что может иметь место единственный и закономерный процесс эволюции газово-пылевых комплексов сначала в протозвезды, а потом и в звезды. Однако возможность - это еще не есть действительность. Первейшей задачей наблюдательной астрономии является, во-первых, изучить реальные облака межзвездной среды и проанализировать, способны ли они сжиматься под действием собственной гравитации. Для этого надо знать их размеры, плотность и температуру. Во-вторых, очень важно получить дополнительные аргументы в пользу "генетической близости облаков и звезд (например, тонкие детали их химического и даже изотопного состава, генетическая связь звезд и облаков и прочее). В-третьих, очень важно получить из наблюдений неопровержимые свидетельства существования самых ранних этапов развития протозвезд (например, вспышки инфракрасного излучения в конце стадии свободного падения). Кроме того, здесь могут наблюдаться, и, по-видимому, наблюдаются совершенно неожиданные явления. Наконец, следует детально изучать протозвезды. Но для этого прежде всего надо уметь отличать их от "нормальных" звезд. Эмпирическим подтверждением процесса образования звезд из облаков межзвездной среды является то давно известное обстоятельство, что массивные звезды классов О и В распределены в Галактике не однородно, а группируются в отдельные обширные скопления, которые позже получили название "ассоциации". Но такие звезды должны быть молодыми объектами. Таким образом, сама практика астрономических наблюдений подсказывала, что звезды рождаются не поодиночке, а как бы гнездами, что качественно согласуется с представлениями теории гравитационной неустойчивости. Молодые ассоциации звезд (состоящие не только из одних горячих массивных гигантов, но и из других примечательных, заведомо молодых объектов) тесно связаны с большими газово-пылевыми комплексами межзвездной среды. Естественно считать, что такая связь должна быть генетической, то есть эти звезды образуются путем конденсации облаков газово- пылевой среды. Процесс рождения звезд, как правило, не заметен, потому что скрыт от нас пеленой поглощающей свет космической пыли. Только радиоастромония, как можно теперь с большой уверенностью считать, внесла радикальное изменение в проблему изучения рождения звезд. Во-первых, межзвездная пыль не поглощает радиоволны. Во- вторых, радиоастрономия открыла совершенно неожиданные явления в газово-пылевых комплексах межзвездой среды, которые имеют прямое отношение к процессу звездообразования. Мы довольно подробно рассматривали вопрос о конденсации в протозвезды плотных холодных молекулярных облаков, на которые из-за гравитационной неустойчивости распадается газово-пылевой комплекс межзвездной среды. Здесь важно еще раз подчеркнуть, что этот процесс является закономерным, то есть неизбежным. В самом деле, тепловая неустойчивость межзвездной среды неизбежно ведет к ее фрагментации, то есть к разделению на отдельные, сравнительно плотные облака и межоблачную среду. Однако собственная сила тяжести не может сжать облака - для этого они недостаточно плотны и велики. Но тут "вступает в игру" межзвездное магнитное поле. В системе силовых линий этого поля неизбежно образуются довольно глубокие "ямы", куда "стекаются" облака межзвездной среды. Это приводит к образованию огромных газово-пылевых комплексов. В таких комплексах образуется слой холодного газа, так как ионизирующее межзвездный углерод ультрафиолетовое излучение звезд сильно поглощается находящейся в плотном комплексе космической пылью, а нейтральные атомы углерода сильно охлаждают межзвездный газ и "термостатируют" его при очень низкой температуре - порядка 5-10 градусов Кельвина. Так как в холодном слое давление газа равно внешнему давлению окружающего более нагретого газа, то плотность в этом слое значительно выше и достигает нескольких тысяч атомов на кубический сантиметр. Под влиянием собственной гравитации холодный слой, после того как он достигнет толщины около одного парсека, начнет "фрагментировать" на отдельные, еще более плотные сгустки, которые под воздействием собственной гравитации будут продолжать сжиматься. Таким вполне естественным образом в межзвездной среде возникают ассоциации протозвезд. Каждая такая протозвезда эволюционирует со скоростью, зависящей от ее массы. Когда существенная часть массы газа превратиться в звезды, межзвездное магнитное поле, которое своим давлением поддерживало газово-пылевой комплекс, естественно, не будет оказывать воздействия на звезды и молодые протозвезды. Под влиянием гравитационного притяжения Галактики они начнут падать к галактической плоскости. Таким образом, молодые звездные ассоциации всегда должны приближаться к галактической плоскости. Продолжительность жизни звезды зависит от её массы. Звёзды с массой меньшей, чем у Солнца, очень экономно тратят запасы своего ядерного "топлива" и могут светить десятки миллиардов лет. Внешние слои звёзд, подобных нашему Солнцу, с массами не большими 1,2 масс Солнца, постепенно расширяются и, в конце концов, совсем покидают ядро звезды. На месте гиганта остаётся маленький и горячий белый карлик. Белые карлики - одна из увлекательнейших тем в истории астрономии: впервые были открыты небесные тела, обладающие свойствами, весьма далёкими от тех, с которыми мы имеем дело в земных условиях. И, по всей вероятности, разрешение загадки белых карликов положило начало исследованиям таинственной природы вещества, запрятанного где-то в разных уголках Вселенной. Во Вселенной много белых карликов. Одно время они считались редкостью, но внимательное изучение фотопластинок, полученных в обсерватории Маунт-Паломар (США), показало, что их количество превышает 1500. Удалось оценить пространственную плотность белых карликов: оказывается, в сфере с радиусом в 30 световых лет должно находиться около 100 таких звёзд. История открытия белых карликов восходит к началу 19в, когда Фридрих Вильгельм Бессель, прослеживая движение наиболее яркой звезды Сириус, открыл, что её путь является не прямой линией, а имеет волнообразный характер. Собственное движение звезды происходило не по прямой линии; казалось, что она едва заметно смещалась из стороны в сторону. К 1844г., спустя примерно десять лет после первых наблюдений Сириуса, Бессель пришёл к выводу, что рядом с Сириусом находится вторая звезда, которая, будучи невидимой, оказывает на Сириус гравитационное воздействие; оно обнаруживается по колебаниям в движении Сириуса. Ещё более интересным оказалось то обстоятельство, что если тёмный компонент действительно существует, то период обращения обеих звёзд относительно их общего центра тяжести равен приблизительно 50 годам. Перенесёмся в 1862г. и из Германии в Кембридж, штат Массачусетс (США). Алвану Кларку, крупнейшему строителю телескопов в США, Университетам штата Миссисипи было поручено сконструировать телескоп с объективом диаметром 18,5 дюйма (46 см), который должен был стать самым большим телескопом в мире. После того как Кларк закончил обработку линзы телескопа, нужно было проверить, обеспечена ли необходимая точность формы её поверхности. С этой целью линзу установили в подвижной трубе и направили на Сириус - самую яркую звезду, являющуюся лучшим объектом для проверки линз и выявления их дефектов. Зафиксировав положение трубы телескопа, Алван Кларк увидел слабый «призрак», который появился на восточном краю поля зрения телескопа в отблеске Сириуса. Затем, по мере движения небосвода, в поле зрения попал и сам Сириус. Его изображение было искажено - казалось, что «призрак» представляет собой дефект линзы, который следовало бы устранить, прежде чем сдать линзу в эксплуатацию. Однако эта возникшая в поле зрения телескопа слабая звёздочка оказалась компонентом Сириуса, предсказанным Бесселем. В заключение следует добавить, что из-за начавшейся первой мировой войны телескоп Кларка так никогда и не был отправлен в Миссисипи - его установили в Дирбоновской обсерватории, вблизи Чикаго, а линзу используют, по сей день, но на другой установке. Таким образом, Сириус стал предметом всеобщего интереса и многих исследований, ибо физические характеристики двойной системы заинтриговали астрономов. С учётом особенностей движения Сириуса, его расстояние до Земли и амплитуды отклонений от прямолинейного движения астрономам удалось определить характеристики обеих звёзд системы, названых Сириус А и Сириус В. Суммарная масса обеих звёзд оказалась в 3,4 раза больше массы Солнца. Было найдено, что расстояние между звёздами почти в 20 раз превышает расстояние между Солнцем и Землёй, то есть примерно равно расстоянию между Солнцем и Ураном; полученная на основании измерения параметров орбиты масса Сириуса А оказалась в 2,5 раза больше массы Солнца, а масса Сириуса В составила 95% массы Солнца. После того как были определены светимости обеих звёзд, обнаружилось, что Сириус А почти в 10 000 раз ярче, чем Сириус В. По абсолютной величине Сириуса А мы знаем, что он примерно в 35,5 раза светит сильнее Солнца. Отсюда следует, что светимость Солнца в 300 раз превышает светимость Сириуса В. Светимость любой звезды зависит от температуры поверхности звезды и её размеров, то есть диаметра. Близость второго компонента к более яркому Сириусу А чрезвычайно осложняет определение его спектра, что необходимо для установки температуры звезды. В 1915г. с использованием всех технических средств, которыми располагала крупнейшая обсерватория того времени Маунт- Вилсон (США), были получены удачные фотографии спектра Сириуса. Это привело к неожиданному открытию: температура спутника составляла 8000 К, тогда как Солнце имеет температуру 5700 К. Таким образом, спутник в действительности оказался горячее Солнца, а это означало, что светимость единицы его поверхности также больше. В самом деле, простой расчёт показывает, что каждый сантиметр этой звезды излучает в четыре раза больше энергии, чем квадратный сантиметр поверхности Солнца. Отсюда следует, что поверхность спутника должна быть в 300´4 раз меньше, чем поверхность Солнца, и Сириус В должен иметь диаметр около 40 000 км. Однако масса этой звезды составляет 95% от массы Солнца. Этот значит, что огромное количество вещества должно быть упаковано в чрезвычайно малом объёме, иначе говоря, звезда должна быть плотной. В результате несложных арифметических действий получаем, что плотность спутника почти в 100 000 раз превышает плотность воды. Кубический сантиметр этого вещества на Земле весил бы 100 кг, а 0,5 л такого вещества - около 50 т. Такова история открытия первого белого карлика. А теперь зададимся вопросом, каким образом вещество можно сжать так, чтобы один кубический сантиметр его весил 100 кг? Когда в результате высокого давления вещество сжато до больших плотностей, как в белых карликах, то вступает в действие другой тип давления, так называемое «вырожденное давление». Оно появляется при сильнейшем сжатии вещества в недрах звезды. Именно сжатие, а не высокие температуры является причиной вырожденного давления. Вследствие сильного сжатия атомы оказываются настолько плотно упакованными, что электронные оболочки начинают проникать одна в другую. Гравитационное сжатие белого карлика происходит в течение длительного времени, и электронные оболочки продолжают проникать друг в друга до тех пор, пока расстояние между ядрами не станет порядка радиуса наименьшей электронной оболочки. Внутренние электронные оболочки представляют собой непроницаемый барьер, препятствующий дальнейшему сжатию. При максимальном сжатии электроны уже не связаны с отдельными ядрами, а свободно движутся относительно них. Процесс отделения электронов от ядер происходит в результате ионизации давлением. Когда ионизация становится полной, облако электронов движется относительно решётки из более тяжёлых ядер, так что вещество белого карлика приобретает определённые физические свойства, характерные для металлов. В таком веществе энергия переносится к поверхности электронами, подобно тому, как тепло распространяется по железному пруту, нагреваемому с одного конца. Но электронный газ проявляет и необычные свойства. По мере сжатия электронов их скорость всё больше возрастает, потому что, как мы знаем, согласно фундаментальному физическому принципу, два электрона, находящиеся в одном элементе фазового объёма, не могут иметь одинаковые энергии. Следовательно, чтобы не занимать один и тот же элемент объёма, они должны двигаться с огромными скоростями. Наименьший размер допустимого объёма зависит от диапазона скоростей электронов. Однако в среднем, чем ниже скорость электронов, тем больше тот минимальный объём, который они могут занимать. Иными словами, самые быстрые электроны занимают наименьший объём. Хотя отдельные электроны носятся со скоростями, соответствующими внутренней температуре порядка миллионов градусов, температура полного ансамбля электронов в целом остаётся низкой. Установлено, что атомы газа обычного белого карлика образуют решётку плотно упакованных тяжёлых ядер, сквозь которую движется вырожденный электронный газ. Ближе к поверхности звезды вырождение ослабевает, и на поверхности атомы ионизированы не полностью, так что часть вещества находится в обычном газообразном состоянии. Зная физические характеристики белых карликов, мы можем сконструировать их наглядную модель. Начнём с того, что белые карлики имеют атмосферу. Анализ спектров карликов приводит к выводу, что толщина их атмосферы составляет всего несколько сотен метров. В этой атмосфере астрономы обнаруживают различные знакомые химические элементы. Известны белые карлики двух типов - холодные и горячие. В атмосферах более горячих белых карликов содержится некоторый запас водорода, хотя, вероятно, он не превышает 0,05%. Тем не менее, по линиям в спектрах этих звёзд были обнаружены водород, гелий, кальций, железо, углерод и даже окись титана. Атмосферы холодных белых карликов состоят почти целиком из гелия; на водород, возможно, приходится меньше, чем один атом из миллиона. Температуры поверхности белых карликов меняются от 5000 К у "холодных" звёзд до 50 000 К у "горячих". Под атмосферой белого карлика лежит область невырожденного вещества, в котором содержится небольшое число свободных электронов. Толщина этого слоя 160 км, что составляет примерно 1% радиуса звезды. Слой этот может меняться со временем, но диаметр белого карлика остаётся постоянным и равным примерно 40 000 км. Как правило, белые карлики не уменьшаются в размерах после того, как достигли этого состояния. Они ведут себя подобно пушечному ядру, нагретому до большой температуры; ядро может менять температуру, излучая энергию, но его размеры остаются неизменными. Чем же определяется окончательный диаметр белого карлика ? Оказывается его массой. Чем больше масса белого карлика, тем меньше его радиус; минимально возможный радиус составляет 10 000 км. Теоретически, если масса белого карлика превышает массу Солнца в 1,2 раза, его радиус может быть неограниченно малым. Именно давление вырожденного электронного газа предохраняет звезду от всяческого дальнейшего сжатия, и, хотя температура может меняться от миллионов градусов в ядре звезды до нуля на поверхности, диаметр её не меняется. Со временем звезда становится тёмным телом с тем же диаметром, который она имела, вступив в стадию белого карлика. Под верхним слоем звезды вырожденный газ практически изотермичен, то есть температура почти постоянна вплоть до самого центра звезды; она составляет несколько миллионов градусов - наиболее реальная цифра 6 млн. К. Теперь, когда мы имеем некоторые представления о строении белого карлика, возникает вопрос: почему он светится? Очевидно одно: термоядерные реакции исключаются. Внутри белого карлика отсутствует водород, который поддерживал бы этот механизм генерации энергии. Единственный вид энергии, которым располагает белый карлик, - это тепловая энергия. Ядра атомов находятся в беспорядочном движении, так как они рассеиваются вырожденным электронным газом. Со временем движение ядер замедляется, что эквивалентно процессу охлаждения. Электронный газ, который не похож не на один из известных на Земле газов, отличается исключительной теплопроводностью, и электроны проводят тепловую энергию к поверхности, где через атмосферу эта энергия излучается в космическое пространство. Астрономы сравнивают процесс остывания горячего белого карлика с остыванием железного прута, вынутого из огня. Сначала белый карлик охлаждается быстро, но по мере падения температуры внутри него охлаждение замедляется. Согласно оценкам, за первые сотни миллионов лет светимость белого карлика падает на 1% от светимости Солнца. В конце концов, белый карлик должен исчезнуть и стать чёрным карликом, однако на это могут понадобиться триллионы лет, и, по мнению многих учёных, представляется весьма сомнительным, чтобы возраст Вселенной был достаточно велик для появления в ней чёрных карликов. Другие астрономы считают, что и в начальной фазе, когда белый карлик ещё довольно горяч, скорость охлаждения невелика. А когда температура его поверхности падает до величины порядка температуры Солнца, скорость охлаждения увеличивается и угасание происходит очень быстро. Когда недра белого карлика достаточно остынут, они затвердеют. Так или иначе, если принять, что возраст Вселенной превышает 10 млрд. лет, красных карликов в ней должно быть намного больше, чем белых. Зная это, астрономы предпринимают поиски красных карликов. Пока они безуспешны. Массы белых карликов определены недостаточно точно. Надёжно их можно установить для компонентов двойных систем, как в случае Сириуса. Но лишь немногие белые карлики входят в состав двойных звёзд. В трёх наиболее хорошо изученных случаях массы белых карликов, измеренные, с точностью свыше 10% оказались меньше массы Солнца и составляли примерно половину её. Теоретически предельная масса для полностью вырожденной не вращающейся звезды должна быть в 1,2 раза больше массы Солнца. Однако если звёзды вращаются, а по всей вероятности, так оно и есть, то вполне возможны массы, в несколько раз превышающие солнечную. Сила тяжести на поверхности белых карликов примерно в 60-70 раз больше, чем на Солнце. Если человек весит на Земле 75 кг, то на Солнце он весил бы 2тонны, а на поверхности белого карлика его вес составлял бы 120-140 тонн. С учётом того, что радиусы белых карликов мало отличаются и их массы почти совпадают, можно заключить, что сила тяжести на поверхности любого белого карлика приблизительно одна и та же. Во Вселенной много белых карликов. Одно время они считались редкостью, но внимательное изучение фотопластинок, полученных в обсерватории Маунт-Паломар, показало, что их количество превышает 1500. Астрономы полагают, что частота возникновения белых карликов постоянна, по крайней мере, в течение последних 5 млрд. лет. Возможно, белые карлики составляют наиболее многочисленный класс объектов на небе. Удалось оценить пространственную плотность белых карликов: оказывается, в сфере с радиусом в 30 световых лет должно находиться около 100 таких звёзд. Возникает вопрос: все ли звёзды становятся белыми карликами в конце своего эволюционного пути? Если нет, то какая часть звёзд переходит в стадию белого карлика? Важнейший шаг в решении проблемы был сделан, когда астрономы нанесли положение центральных звёзд планетарных туманностей на диаграмму температура - светимость. Чтобы разобраться в свойствах звёзд, расположенных в центре планетарных туманностей, рассмотрим эти небесные тела. На фотографиях планетарная туманность выглядит как протяжённая масса газов эллипсоидной формы со слабой, но горячей звездой в центре. В действительности эта масса представляет собой сложную турбулентную, концентрическую оболочку, которая расширяется со скоростями 15-50 км/с. Хотя эти образования выглядят как кольца, на деле они являются оболочками, и скорость турбулентного движения газа в них достигает примерно 120 км/с. Оказалось, что диаметры нескольких планетарных туманностей, до которых удалось измерить расстояние, составляют порядка 1 светового года, или около 10 триллионов километров. Расширяясь с указанными выше скоростями, газ в оболочках становится очень разряженным и не может возбуждаться, а следовательно, его нельзя увидеть спустя 100 000 лет. Многие планетарные туманности, наблюдаемые нами сегодня, родились в последние 50000 лет, а типичный их возраст близок к 20 000 лет. Центральные звёзды таких туманностей - наиболее горячие объекты среди известных в природе. Температура их поверхности меняется от 50 000 до 1млн. К. Из-за необычайно высоких температур большая часть излучения звезды приходится на далёкую ультрафиолетовую область электромагнит иного спектра. Это ультрафиолетовое излучение поглощается, преобразуется и переизлучается газом оболочки в видимой области спектра, что и позволяет нам наблюдать оболочку. Это означает, что оболочки значительно ярче, нежели центральные звёзды, - которые на самом деле являются источником энергии, - так как огромное количество излучения звезды приходится на невидимую часть спектра. Из анализа характеристик центральных звёзд планетарных туманностей следует, что типичное значение их массы заключено в интервале 0,6-1 масса Солнца. А для синтеза тяжёлых элементов в недрах звезды необходимы большие массы. Количество водорода в этих звёздах незначительно. Однако газовые оболочки богаты водородом и гелием. Некоторые астрономы считают, что 50-95 % всех белых карликов возникли не из планетарных туманностей. Таким образом, хотя часть белых карликов целиком связана с планетарными туманностями, по крайней мере, половина или более из них произошли от нормальных звёзд главной последовательности, не проходящих через стадию планетарной туманности. Полная картина образования белых карликов туманна и неопределенна. Отсутствует так много деталей, что в лучшем случае описание эволюционного процесса можно строить лишь путём логических умозаключений. И, тем не менее, общий вывод таков: многие звёзды теряют часть вещества на пути к своему финалу, подобному стадии белого карлика, и затем скрываются на небесных «кладбищах» в виде чёрных, невидимых карликов. Если масса звезды примерно вдвое превышает массу Солнца, то такие звёзды на последних этапах своей эволюции теряют устойчивость. Такие звёзды могут взорваться как сверхновые, а затем сжаться до размеров шаров радиусом несколько километров, т.е. превратиться в нейтронные звёзды. Около семи тысяч лет назад в отдалённом уголке космического пространства внезапно взорвалась звезда, сбросив с себя наружные слои вещества. Сравнительно большая и массивная звезда вдруг столкнулась с серьёзной энергетической проблемой - её физическая целостность оказалась под угрозой. Когда была пройдена граница устойчивости, разразился захватывающий, чрезвычайно мощный, один из самых катастрофических во всей Вселенной взрывов, породивший сверхновую звезду. Шесть тысяч лет мчался по космическим просторам свет от этой звезды из созвездия Тельца и достиг, наконец, Земли. Это случилось в 1054г. В Европе наука была тогда погружена в дрему, и у арабов она переживала период застоя, но в другой части Земли наблюдатели заметили объект, величественно сверкающий на небе перед восходом Солнца. Четвёртого июля 1054г. китайские астрономы, вглядываясь в небо, увидели светящийся небесный объект, который был много ярче Венеры. Его наблюдали в Пекине и Кайфыне и назвали "звездой-гостьей". Это был самый яркий после Солнца объект на небе. В течение 23 дней, вплоть до 27 июля 1054г., он был виден даже днём. Постепенно объект становился слабее, но всё же оставался видимым для невооружённого глаза ещё 627 дней и наконец исчез 17 апреля 1056г. Это была ярчайшая из всех зарегистрированных сверхновых - она сияла как 500 млн. Солнц. Если бы она находила от нас на таком расстоянии, как ближайшая к нам звезда альфа Центавра, то даже самой тёмной ночью при её свете мы могли бы свободно читать газету - она светила бы значительно ярче, чем полная Луна. В европейских хрониках тех лет нет никаких упоминаний о данном событии, но не следует забывать, что-то были годы средневековья, когда на европейском континенте почти угас свет науки. Один интересный момент в истории открытия этой звезды. В 1955г. Уильям Миллер и Гельмут Абт из обсерваторий Маунт-Вилсон и Маунт-Паломар обнаружили доисторические пиктограммы на стене одной пещеры в скале каньона Навахо в Аризоне. В каньоне изображение было высечено на камне, а в пещере - нарисовано куском гематита - красного железняка. На обоих рисунках изображён кружок и полумесяц. Миллер истолковывает эти фигуры как изображение лунного серпа и звезды; по его мнению, они, возможно, отображают появление сверхновой в 1054г. Для такого заключения есть два основания: во-первых, в 1054г., когда вспыхнула сверхновая, фаза Луны и её расположение относительно сверхновой были именно такими, как показано на рисунке. Во-вторых, по найденным в тех местах глиняным черепкам установлено, что около тысячи лет назад в этой местности обитали индейцы. Таким образом, рисунки, по-видимому, являются художественным изображением сверхновой, сделанным древними индейцами. После фотографирования и тщательного исследования участка неба, где находилась сверхновая, было обнаружено, что остатки сверхновой образуют сложную хаотическую расширяющуюся газовую оболочку, заключающую несколько звёзд. Весь этот комплекс из газа и звёзд был назван Крабовидной туманностью. Источником вещества туманности является одна из центральных звёзд, та самая, которая взорвалась семь тысяч лет назад. Это нейтронная звезда. Она имеет температуру 6-7 млн. К и чрезвычайно малый диаметр. По фотографиям и спектрограммам можно определить физические характеристики звезды. В результате исследования выяснилось, что в Крабовидной туманности различаются два типа излучающих областей. Во-первых, это волокнистая сетка, состоящая из газа, нагретого до нескольких десятков тысяч градусов и ионизированного под действием интенсивного ультрафиолетового излучения центральной звезды; газ включает в себя водород, гелий, кислород, неон, серу. И, во-вторых, большая светящаяся аморфная область, на фоне которой мы видим газовые волокна. По фотографиям, сделанным около двенадцати лет назад, обнаружено, что некоторые из волокон туманности движутся от её центра наружу. Зная угловые размеры, а также приблизительно расстояние и скорость расширения, учёные определили, что около девяти столетий назад на месте туманности был точечный источник. Таким образом, удалось установить прямую связь между крабовидной туманностью и тем взрывом сверхновой, который почти тысячу лет назад наблюдали китайские и японские астрономы. Вопрос о причинах взрывов сверхновых по-прежнему остаётся предметом дискуссий и служит поводом для выдвижения противоречивых гипотез. Звезда с массой, превосходящей солнечную примерно на 20%, может со временем стать неустойчивой. Это показал в своём блестящем теоретическом исследовании, сделанном в конце 30-х годов нашего столетия, астроном Чандрасекар. Он установил, что подобные звёзды на склоне жизни порой подвергаются катастрофическим изменениям, в результате чего достигается некоторое равновесное состояние, позволяющее звезде достойно завершить свой жизненный путь. Многие астрономы занимались изучением последних стадий звёздной эволюции и исследованием зависимости эволюции звезды от её массы. Все они пришли к одному выводу: если масса звезды превышает предел Чандрасекара, её ожидают невероятные изменения. Как мы видели, устойчивость звезды определяется соотношением между силами гравитации, стремящимися сжать звезду, и силами давления, расширяющими её изнутри. Мы также знаем, что на последних стадиях звёздной эволюции, когда истощаются запасы ядерного горючего, это соотношение обеспечивается за счёт эффекта вырождения, которое может привести звезду к стадии белого карлика, и позволит ей провести остаток жизни в таком состоянии. Став белым карликом, звезда постепенно остывает и заканчивает свою жизнь, превратившись в холодный, безжизненный, невидимый звёздный шлак. Если масса звезды превосходит предел Чандрасекара, эффект вырождения уже не в состоянии обеспечить необходимое соотношение давлений. Перед звездой остаётся только один путь для сохранения равновесия - поддерживать высокую температуру. Но для этого требуется внутренний источник энергии. В процессе обычной эволюции звезда постепенно использует для этого ядерное горючее. Однако как может звезда добыть энергию на последних стадиях звёздной эволюции, когда ядерное топливо, регулярно поставляющее энергию, на исходе? Конечно она ещё не энергетический «банкрот», она большой, массивный объект, значительная часть массы которого находится на большом расстоянии от центра, и у неё в запасе ещё есть гравитационная энергия. Она подобна камню, лежащему на вершине высокой горы, и благодаря своему местоположению обладающему потенциальной энергией. Энергия, заключённая во внешних слоях звезды, как бы находится в огромной кладовой, из которой в нужный момент её можно извлечь. Итак, чтобы поддерживать давление, звезда теперь начинает сжиматься, пополняя, таким образом, запас своей внутренней энергии. Как долго продолжается это сжатие? Фред Хойл и его коллеги тщательно исследовали подобную ситуацию и пришли к выводу, что в действительности происходит катастрофическое сжатие, за которым следует катастрофический взрыв. Толчком взрыву, избавляющему звезду от избытка массы, является значение плотности, создаваемое при сжатии. Избавившись от избыточной массы, звезда тут же возвращается на путь обычного угасания. Наибольший интерес для учёных представляет процесс, в ходе которого шаг за шагом осуществляется постепенное выгорание ядерного топлива. Для расчёта этого процесса используется информация, полученная из лабораторных опытов; огромную роль при этом играют современные быстродействующие вычислительные машины. Хойл и Фаулер смоделировали с помощью ЭВМ процесс энерговыделения в звезде и проследили её ход. В качестве примера они взяли звезду, масса которой втрое превосходит солнечную, то есть звезду, находящуюся далеко за пределом Чандрасекара. Звезда с такой массой должна иметь светимость, в 60 раз превышающую светимость Солнца, и время жизни около 600 млн. лет. Мы уже знаем, что в ходе обычных термоядерных реакций, протекающих в недрах звезды почти в течение всей её жизни, водород превращается в гелий. После того как значительная часть вещества звезды превратится в гелий, температура в её центре возрастает. При увеличении температуры примерно до 200 млн. К ядерным горючим становится гелий, который затем превращается в кислород и неон. Таким образом, гелиевое ядро начинает порождать более тяжёлое ядро, состоящее из двух этих химических элементов. Теперь звезда становится многослойной энергопроводящей системой. В тонкой оболочке, по одну сторону от которой находится водород, а по другую гелий, происходит превращение водорода в гелий; эта реакция идёт с выделением энергии. Поэтому, пока такая реакция осуществляется, температура ядра звезды неуклонно растёт. Сжатие звезды ведёт к уплотнению её ядра и росту температуры в центре до 200-300 млн. К. Но даже при столь высоких температурах кислород и неон вполне устойчивы и не вступают в ядерные реакции. Однако через некоторое время ядро становится ещё плотнее, температура удваивается, теперь она уже равняется 600 млн. К. И тогда ядерным топливом становится неон, который в ходе реакций превращается, а магний и кремний. Образование магния сопровождается выходом свободных нейтронов. Когда звезда родилась из праматерии, она уже содержала некоторые металлы группы железа. Свободные нейтроны, вступая в реакцию с этими металлами, создают атомы более тяжёлых металлов - вплоть до урана - самого тяжёлого из природных элементов. Но вот израсходован весь неон в ядре. Ядро начинает сжиматься, и снова сжатие сопровождается ростом температуры. Наступает следующий этап, когда каждые два атома кислорода, соединяясь, порождают атом кремния и атом гелия. Атомы кремния, соединяясь попарно, образуют атомы никеля, которые вскоре превращаются в атомы железа. В ядерные реакции, сопровождающиеся возникновением новых химических элементов, вступают не только нейтроны, но также протоны и атомы гелия. Появляются такие элементы, как сера, алюминий, кальций, аргон, фосфор, хлор, калий. Температура ядра поднимается до полутора миллиардов градусов. По-прежнему продолжается образование более тяжёлых элементов с использованием свободных нейтронов, но на этой стадии из-за большой температуры происходят некоторые новые явления. Хойл считает, что при температурах порядка миллиарда градусов возникает мощное гамма-излучение, способное разрушать ядра атомов. Нейтроны и протоны отрываются от ядер, но этот процесс обратимый: частицы вновь соединяются, создавая устойчивые комбинации. Когда температура превысит 1,5 млрд. К, более вероятными становятся процессы распада ядер. Любопытным и неожиданным оказался следующий результат: при дальнейшем увеличении температуры и усилении процессов разрушения и соединения ядра в итоге присоединяют всё больше и больше частиц и, как следствие этого, возникают более тяжёлые химические элементы. Так, при температурах 2-5 млрд. К рождаются титан, ванадий, хром, железо, кобальт, цинк, и др. Но из всех этих элементов наиболее представлено железо. Как и прежде, при превращении лёгких элементов в тяжёлые вырабатывается энергия, удерживающая звезду от коллапса. Своим внутренним строением звезда теперь напоминает луковицу, каждый слой которой заполнен преимущественно каким-либо одним элементом. Как отмечает Хойл, с образованием группы железа звезда оказывается накануне драматического взрыва. Ядерные реакции, протекающие в железном ядре звезды, приводят к превращению протонов в нейтроны. При этом испускаются потоки нейтрино, уносящие с собой в космическое пространство значительное количество энергии звезды. Если температура в ядре звезды велика, то эти энергетические потери могут иметь серьёзные последствия, так как они приводят к снижению давления излучения, необходимого для поддержания устойчивости звезды. И как следствие этого, в действие опять вступают гравитационные силы, призванные доставить звезде необходимую энергию. Силы гравитации всё быстрее сжимают звезду, восполняя энергию, унесённую нейтрино. Как и прежде сжатие звезды сопровождается ростом температуры, которая, в конце концов, достигает 4-5 млрд. К. Теперь события развиваются несколько иначе. Ядро, состоящее из элементов группы железа, подвергается серьёзным изменениям: элементы этой группы уже не вступают в реакции с образованием более тяжёлых элементов, а начинают снова превращаться в гелий, испуская при этом колоссальный поток нейтронов. Большая часть этих нейтронов захватывается веществом внешних слоёв звезды и участвует в создании тяжёлых элементов. На этом этапе, как указывает Хойл, звезда достигает критического состояния. Когда создавались тяжёлые химические элементы, энергия высвобождалась в результате слияния лёгких ядер. Тем самым огромные её количества звезда выделяла на протяжении сотен миллионов лет. Теперь же конечные продукты ядерных реакций вновь распадаются, образуя гелий: звезда оказывается вынужденной восполнить утраченную ранее энергию. Остаётся последнее её достояние - гравитация. Но чтобы звезда могла воспользоваться этим резервом, плотность её ядра должна увеличиваться крайне быстро, то есть ядро должно резко сжаться; происходит «взрыв внутрь», отрывающий ядро звезды от её внешних слоёв. Он должен произойти за считанные секунды. Это и есть начало конца массивной звезды. Имплозия, или взрыв внутрь, устраняет давление, поддерживавшее внешние слои звезды, её оболочку, и с этого момента оболочка, сжимаясь, начинает падать на ядро. Падение сопровождается выделением колоссального количества энергии - так ещё раз проявляет себя гравитация. Выделение энергии приводит в свою очередь к резкому повышению температуры (примерно 3 млрд. К), и падающая оболочка звезды оказывается в необычных для неё температурных условиях. Для звезды с температурой ядра, равной 2,5 млрд. К, лёгкие элементы оболочки служат потенциальным ядерным топливом. Но чтобы обеспечить свечение во время взрыва, температура должна подняться выше этого значения - до 3 млрд. К. В течение секунды кинетическая энергия звезды превращается в тепловую, и вещество оболочки нагревается. При такой высокой температуре более лёгкие элементы - в основном кислород - проявляют взрывную неустойчивость и начинают взаимодействовать. Подсчитано, что за время меньше секунды в ходе этих ядерных реакций выделяется энергия, равная энергии, которую Солнце излучает за миллиард лет! Внезапно освободившаяся энергия срывает со звезды её наружные слои и выбрасывает их в космическое пространство со скоростью, достигающей нескольких тысяч километров в секунду. На эти слои приходится значительная часть массы звезды. Газовая оболочка удаляется от звезды образуя туманность, которая простирается на многие миллионы миллионов километров. Газ по инерции продолжает удаляться от звезды до тех пор, пока, возможно через 100 000 лет, вещество туманности не станет настолько разряженным и диффузным, что больше уже не сможет возбуждаться коротковолновым излучением очень горячей материнской звезды; тогда мы перестанем его видеть. Но самое главное: как в взорвавшемся веществе, так и в межзвездном газе присутствует магнитное поле. Сжатие газа за фронтом ударной волны вызывает сжатие силовых линий и повышение напряжённости межзвёздного магнитного поля, что в свою очередь приводит к увеличению энергии электронов, и их ускорению. В результате остаётся сверхгорячая звезда, масса которой уменьшилась именно настолько, чтобы она могла достойно угаснуть и умереть. По всей вероятности она станет нейтронной звездой, масса которой в 1,2-2 массы Солнца. Если же её масса более, чем вдвое превышает массу Солнца, то она, в конечном счете, может превратиться в чёрную дыру. Сверхновые - очень редкие объекты. История засвидетельствовала лишь несколько случаев появления сверхновых. Первая - это, конечно, Крабовидная туманность, вторая - Сверхновая Тихо Браге, обнаруженная в 1572г., и третья - Сверхновая Кеплера, открытая им в 1604 г. Недавно стало известно о сверхновой в созвездии Волка. Астрономы вычислили, что каждая звёздная система, галактика, в среднем раз в сто-триста лет рождает сверхновую. В настоящее время астрономами открыто около 150 сверхновых. Только три из них оказались в нашей Галактике, хотя существует много объектов, такие, как Петля в Лебеде и Кассиопея А, которые, как предполагают, могут оказаться остатками взрывов сверхновых Млечного Пути. Точное время взрыва для Петли в Лебеде почти невозможно установить, но полагают, что если это действительно остатки взрыва сверхновой, то Петля в Лебеде начала своё расширение около 60 тысяч лет назад. Кассиопея А - самая молодая сверхновая на небе, так как её расширение началось примерно в 1700г. Почему природа создаёт такие диковинные объекты? Как они возникают? Каков механизм вспышек, которые по своей яркости могут соперничать с сиянием десятков миллиардов звёзд? Каков конечный продукт звёздного взрыва? Это только часть вопросов, которые возникают у астронома, наблюдающего за грандиознейшими взрывами в том или ином уголке неба. Чтобы ответить хотя бы на некоторые из них, необходимо исследовать историю жизни звезды. Профессор Джон А. Уиллер заметил: «Одно дело изучать почти стационарную звезду, как, например, Солнце, другое дело - когда мы берёмся предсказывать причудливую динамику сверхновой. Мы умеем в подробностях предсказывать и ход ядерных реакций, идущих в недрах Солнца и других звёзд, и выход энергии излучения с поверхности звезды. Однако можем ли мы с такой же уверенностью говорить о звёздах, испытывающих мощные внутренние движения?» Недавно учёные предприняли попытку применить математическую теорию атомного взрыва для описания гидродинамики сверхновых. Это позволило тщательно исследовать гидродинамику сверхновых с помощью теории, которая заведомо не слишком далека от истины. Некоторые астрономы различают пять типов сверхновых; два из них главные - это сверхновые типа 1 и сверхновые типа 2. Они отличаются друг от друга светимостями, характером изменения светимости, спектрами, а также количеством и местоположением в конкретной галактике либо в различных типах галактик. Характер изменения светимости со временем у сверхновых обоих основных типов практически одинаков. Звёзды, у которых масса в 1,5-3 раза больше, чем у Солнца не смогут в конце жизни остановить своё сжатие на стадии белого карлика. Мощные силы гравитации сожмут их до такой плотности, при которой произойдёт «нейтрализация» вещества: взаимодействие электронов с протонами привёдёт к тому, что почти вся масса звезды будет заключена в нейтронах. Образуется нейтронная звезда. Наиболее массивные звёзды могут обраться в нейтронные, после того как они взорвутся как сверхновые. Концепция нейтронных звёзд не нова: первое предположение о возможности их существования было сделано талантливыми астрономами Фрицем Цвикки и Вальтером Баарде из Калифорнии в 1934г. (несколько раньше в 1932г. возможность существования нейтронных звёзд была предсказана известным советским учёным Л. Д. Ландау.) В конце 30-х годов она стала предметом исследований других американских учёных Оппенгеймера и Волкова. Интерес этих физиков к данной проблеме был вызван стремлением, определить конечную стадию эволюции массивной сжимающейся звезды. Так как роль и значение сверхновых вскрылись примерно в то же время, было высказано предположение, что, нейтронная звезда может оказаться остатком взрыва сверхновой. К несчастью, с началом второй мировой войны внимание учёных переключилось на военные нужды и детальное изучение этих новых и в высшей степени загадочных объектов было приостановлено. Затем, в 50-х годах, изучение нейтронных звёзд возобновили чисто теоретически с целью установить, имеют ли они отношение к проблеме рождения химических элементов в центральных областях звёзд. Нейтронные звёзды остаются единственным астрофизическим объектом, существование и свойства которых были предсказаны задолго до их открытия. В начале 60-х годов открытие космических источников рентгеновского излучения весьма обнадёжило тех, кто рассматривал нейтронные звёзды как возможные источники небесного рентгеновского излучения. К концу 1967г. был обнаружен новый класс небесных объектов - пульсары, что привело учёных в замешательство. Это открытие явилось наиболее важным событием в изучении нейтронных звёзд, так как оно вновь подняло вопрос о происхождении космического рентгеновского излучения. Говоря о нейтронных звёздах, следует учитывать, что их физические характеристики установлены теоретически и весьма гипотетичны, так как физические условия, существующие в этих телах, не могут быть воспроизведены в лабораторных экспериментах. Решающее значение на свойства нейтронных звёзд оказывают гравитационные силы. По различным оценкам, диаметры нейтронных звёзд составляют 10-200 км. И этот незначительный по космическим понятиям объём «набит» таким количеством вещества, которое может составить небесное тело, подобное Солнцу, диаметром около 1,5 млн. км, а по массе почти в треть миллиона раз тяжелее Земли! Естественное следствие такой концентрации вещества - невероятно высокая плотность нейтронной звезды. Фактически она оказывается настолько плотной, что может быть даже твёрдой. Сила тяжести нейтронной звезды столь велика, что человек весил бы там, около миллиона тонн. Расчёты показывают, что нейтронные звёзды сильно намагничены. Согласно оценкам, магнитное поле нейтронной звезды может достигать 1млн. млн. гаусс, тогда как на Земле оно составляет 1 гаусс. Радиус нейтронной звезды принимается порядка 15 км, а масса - около 0,6 - 0,7 массы Солнца. Наружный слой представляет собой магнитосферу, состоящую из разрежённой электронной и ядерной плазмы, которая пронизана мощным магнитным полем звезды. Именно здесь зарождаются радиосигналы, которые являются отличительным признаком пульсаров. Сверхбыстрые заряженные частицы, двигаясь по спиралям вдоль магнитных силовых линий, дают начало разного рода излучениям. В одних случаях возникает излучение в радиодиапазоне электромагнитного спектра, в иных - излучение на высоких частотах. Почти сразу же под магнитосферой плотность вещества достигает 1 т/см3, что в 100 000 раз больше плотности железа. Следующий за наружным слой имеет характеристики металла. Этот слой «сверхтвёрдого» вещества, находящегося в кристаллической форме. Кристаллы состоят из ядер атомов с атомной массой 26 - 39 и 58 - 133. Эти кристаллы чрезвычайно малы: чтобы покрыть расстояние в 1 см, нужно выстроить в одну линию около 10 млрд. кристалликов. Плотность в этом слое более чем в 1 млн. раз выше, чем в наружном, или иначе, в 400 млрд. раз превышает плотность железа. Двигаясь дальше к центру звезды, мы пересекаем третий слой. Он включает в себя область тяжёлых ядер типа кадмия, но также богат нейтронами и электронами. Плотность третьего слоя в 1 000 раз больше, чем предыдущего. Глубже проникая в нейтронную звезду, мы достигаем четвёртого слоя, плотность при этом возрастает незначительно - примерно в пять раз. Тем не менее, при такой плотности ядра уже не могут поддерживать свою физическую целостность: они распадаются на нейтроны, протоны и электроны. Большая часть вещества пребывает в виде нейтронов. На каждый электрон и протон приходится по 8 нейтронов. Этот слой, по существу, можно рассматривать как нейтронную жидкость, «загрязнённую» электронами и протонами. Ниже этого слоя находится ядро нейтронной звезды. Здесь плотность примерно в 1,5 раза больше, чем в вышележащем слое. И, тем не менее, даже такое небольшое увеличение плотности приводит к тому, что частицы в ядре движутся много быстрее, чем в любом другом слое. Кинетическая энергия движения нейтронов, смешанных с небольшим количеством протонов и электронов, столь велика, что постоянно происходят неупругие столкновения частиц. В процессах столкновения рождаются все известные в ядерной физике частицы и резонансы, которых насчитывается более тысячи. По всей вероятности, присутствует большое число ещё не известных нам частиц. Температуры нейтронных звёзд сравнительно высоки. Этого и следует ожидать, если учесть, как они возникают. За первые 10 - 100 тыс. лет существования звезды температура ядра уменьшается до нескольких сотен миллионов градусов. Затем наступает новая фаза, когда температура ядра звезды медленно уменьшается вследствие испускания электромагнитного излучения. Если масса звезды в два раза превышает солнечную, то к концу своей жизни звезда может взорваться как сверхновая, но если масса вещества оставшегося после взрыва, всё ещё превосходит две солнечные, то звезда должна сжаться в плотное крошечное тело, так как гравитационные силы всецело подавляют всякое внутреннее сопротивление сжатию. Учёные полагают, что именно в этот момент катастрофический гравитационный коллапс приводит к возникновению чёрной дыры. Они считают, что с окончанием термоядерных реакций звезда уже не может находиться в устойчивом состоянии. Тогда для массивной звезды остаётся один неизбежный путь - путь всеобщего и полного сжатия (коллапса), превращающего её в невидимую чёрную дыру. В 1939г. Р. Оппенгеймер и его аспирант Снайдер в Калифорнийском университете (Беркли) занимались выяснением окончательной судьбы большой массы холодного вещества. Одним из наиболее впечатляющих следствий общей теории относительности Эйнштейна оказалось следующее: когда большая масса начинает коллапсировать, этот процесс не может быть остановлен и масса сжимается в чёрную дыру. Если, например, не вращающаяся симметричная звезда начинает сжиматься до критического размера, известного как гравитационный радиус, или радиус Шварцшильда (назван так в честь Карла Шварцшильда, которой первым указал на его существование). Если звезда достигает этого радиуса, то уже не что не может воспрепятствовать ей завершить коллапс, то есть буквально замкнуться в себе. Чему же равен гравитационный радиус? Строгое математическое уравнение показывает, что для тела с массой Солнца гравитационный радиус равен почти 3 км, тогда как для системы, включающей миллиард звёзд, - галактики - этот радиус оказывается равным расстоянию от Солнца до орбиты планеты Уран, то есть составляет около 3 млрд. км. Каковы же физические свойства «чёрных дыр» и как учёные предполагают обнаружить эти объекты? Многие учёные раздумывали над этими вопросами; получены кое-какие ответы, которые способны помочь в поисках таких объектов. Само название - чёрные дыры - говорит о том, что это класс объектов, которые нельзя увидеть. Их гравитационное поле настолько сильно, что если бы каким-то путём удалось оказаться вблизи чёрной дыры и направить в сторону от её поверхности луч самого мощного прожектора, то увидеть этот прожектор было бы нельзя даже с расстояния, не превышающего расстояние от Земли до Солнца. Действительно, даже если бы мы смогли сконцентрировать весь свет Солнца в этом мощном прожекторе, мы не увидели бы его, так как свет не смог бы преодолеть воздействие на него гравитационного поля чёрной дыры и покинуть её поверхность. Именно поэтому такая поверхность называется абсолютным горизонтом событий. Она представляет собой границу чёрной дыры. Учёные отмечают, что эти необычные объекты нелегко понять, оставаясь в рамках законов тяготения Ньютона. Вблизи поверхности чёрной дыры гравитация столь сильна, что привычные ньютоновские законы перестают здесь действовать. Их следует заменить законами общей теории относительности Эйнштейна. Согласно одному из трёх следствий теории Эйнштейна, покидая массивное тело, свет должен испытывать красное смещение, так как он должен испытывать красное смещение, так как он теряет энергию на преодоление гравитационного поля звезды. Излучение, приходящее от плотной звезды, подобной белому карлику - спутнику Сириуса А, - лишь слегка смещается в красную область спектра. Чем плотнее звезда, тем больше это смещение, так что от сверхплотной звезды совсем не будет приходить излучения в видимой области спектра. Но если гравитационное действие звезды увеличивается в результате её сжатия, то силы тяготения оказываются настолько велики, что свет вообще не может покинуть звезду. Таким образом, для любого наблюдателя возможность увидеть чёрную дыру полностью исключена! Но тогда естественно возникает вопрос: если она невидима, то, как же мы можем её обнаружить? Чтобы ответить на этот вопрос, учёные прибегают к искусным уловкам. Руффини и Уиллер досконально изучили эту проблему и предложили несколько способов пусть не увидеть, но хотя бы обнаружить чёрную дыру. Начнём с того, что, когда чёрная дыра рождается в процессе гравитационного коллапса, она должна излучать гравитационные волны, которые могли бы пересекать пространство со скоростью света и на короткое время искажать геометрию пространства вблизи Земли. Это искажение проявилось бы в виде гравитационных волн, действующих одновременно на одинаковые инструменты, установленные на земной поверхности на значительных расстояниях друг от друга. Гравитационное излучение могло бы приходить от звёзд, испытывающих гравитационный коллапс. Если в течение обычной жизни звезда вращалась, то, сжимаясь и становясь, всё меньше и меньше, она будет вращаться всё быстрее, сохраняя свой момент количества движения. Наконец она может достигнуть такой стадии, когда скорость движения на её экваторе приблизится к скорости света, то есть к предельно возможной скорости. В этом случае звезда оказалась бы сильно деформированной и могла бы выбросить часть вещества. При такой деформации энергия могла бы уходить от звезды в виде гравитационных волн с частотой порядка тысячи колебаний в секунду (1000 Гц). Дж. Вебер установил ловушки гравитационных волн в Аргоннской национальной лаборатории вблизи Чикаго и в Мэрилендском университете. Они состояли из массивных алюминиевых цилиндров, которые должны были колебаться, когда гравитационные волны достигнут Земли. Используемые Вебером детекторы гравитационного излучения реагируют на высокие (1660 Гц), так и на очень низкие (1 колебание в час) частоты. Для детектирования последней частоты используется чувствительный гравиметр, а детектором является сама Земля. Собственная частота квадрупольных колебаний Земли равна одному колебанию за 54 мин. Все эти устройства должны были срабатывать одновременно в момент, когда гравитационные волны достигнут Земли. Действительно они срабатывали одновременно. Но, к сожалению, ловушки включались слишком часто - примерно раз в месяц, что выглядело весьма странно. Некоторые учёные считают, что хотя опыты Вебера и полученные им результаты интересны, но они недостаточно надёжны. По этой причине многие относятся весьма скептически к идее детектирования гравитационных волн (эксперименты по детектированию гравитационных волн, аналогичные опытам Вебера, позднее были проверены в ряде других лабораторий и не подтвердили результатов Вебера. В настоящее время считается, что опыты Вебера ошибочны). Роджер Пенроуз, профессор математики Биркбекского колледжа Лондонского университета, рассмотрел любопытный случай коллапса и образования чёрной дыры. Он также допускает, что чёрная дыра исчезает, а затем проявляется в другое время в какой-то иной вселенной. Кроме того, он утверждает, что рождение чёрной дыры во время гравитационного коллапса является важным указанием на то, что с геометрией пространства-времени происходит нечто необычное. Исследования Пенроуза показывают, что коллапс заканчивается образованием сингулярности, то есть он должен продолжаться до нулевых размеров и бесконечной плотности объекта. Последние условие даёт возможность другой вселенной приблизиться к нашей сингулярности, и не исключено, что сингулярность перейдёт в эту новую вселенную. Она даже может появиться в каком-либо другом месте нашей собственной Вселенной. Некоторые учёные рассматривают образование чёрной дыры как маленькую модель того, что, согласно предсказаниям общей теории относительности, в конечном счете, может случиться с Вселенной. Общепризнанно, что мы живём в неизменно расширяющейся Вселенной, и один из наиболее важных и насущных вопросов науки касается природы Вселенной, её прошлого и будущего. Без сомнения, все современные результаты наблюдений указывают на расширение Вселенной. однако на сегодня один из самых каверзных вопросов таков: замедляется ли скорость этого расширения, и если да, то не сожмётся ли Вселенная через десятки миллиардов лет, образуя сингулярность. По-видимому, когда-нибудь мы сможем выяснить, по какому пути следует Вселенная, но, быть может, много раньше, изучая информацию, которая просачивается при рождении чёрных дыр, и те физические законы, которые управляют их судьбой, мы сможем предсказать окончательную судьбу Вселенной. Почти всю свою жизнь звезда сохраняет температуру и размер практически постоянными. Значение главной последовательности заключается в том, что большинство обычных звёзд оказываются нормальными, то есть лишёнными каких- либо особенностей. Мы вправе ожидать, что эти звёзды подчиняются определённым зависимостям, подобным, например, упомянутой главной последовательности. Большинство звёзд оказываются на этой наклонной линии - главной последовательности, потому, что звезда может прийти на эту линию всего лишь за несколько сотен тысяч лет, а, покинув её, прожить ещё несколько сотен миллионов лет, большинство звёзд заведомо остаётся на главной последовательности в течение миллиардов лет. Рождение и смерть - ничтожно малые мгновенья в жизни звезды. Наше Солнце, являющееся обычной звездой, находится на этой последовательности уже в течение 5-6 млрд. лет и, по- видимому, проведёт на ней ещё столько же времени, так как звёзды с такой массой и таким химическим составом, как у Солнца, живут 10-12 млрд. лет. Звёзды много меньшей массы находятся на главной последовательности примерно 50 млрд. лет. Если же масса звезды в 30 раз превосходит солнечную, то время её пребывания на главной последовательности составит всего около 1 млн. лет. Вернёмся к рассмотрению процессов, происходящих при рождении звезды: она продолжает сжиматься, сжатие сопровождается возрастанием температуры. Температура ползёт вверх, и вот огромный газовый шар начинает светиться, его уже можно наблюдать на фоне тёмного ночного неба как тусклый красноватый диск. Значительная доля энергии его излучения по-прежнему приходится на инфракрасную область спектра. Но это ещё не звезда. По мере того как вещество протозвезды уплотняется, оно всё быстрее падает к центру, разогревая ядро звезды до более высоких температур. Наконец температура достигает 10 млн. К, и тогда начинают протекать термоядерные реакции - источник энергии всех звёзд во Вселенной. Как только термоядерные процессы включаются в действие, космическое тело превращается в полноценную звезду. Сжимаясь, пыль и газ образуют протозвезду; её вещество представляет собой типичный образец вещества окружающей нас части космического пространства. Говоря об образце вещества Вселенной, мы подразумеваем, что этот кусочек межзвездной среды на 89% состоит из водорода, на 10%-из гелия; такие элементы, как кислород, азот, углерод, неон и т. п. составляют в нём менее 1%, а все металлы, вместе взятые, - не более 0,25%. Таким образом, звезда в основном состоит из тех элементов, которые чаще всего встречаются во Вселенной. И поскольку богаче всего во Вселенной представлен водород, то, конечно, любые термоядерные реакции должны протекать с его участием. Кое-где встречаются уголки космического пространства с повышенным содержанием тяжёлых элементов, но это лишь местные аномалии - остатки давних звёздных взрывов, разбросавших и рассеявших в окрестности тяжёлые элементы. Мы не будем останавливаться на таких аномальных областях с повышенной концентрацией тяжёлых элементов, а сосредоточим внимание на звёздах, состоящих в основном из водорода. Когда температура в центре протозвезды достигает 10 млн. К, начинаются сложные (но детально изученные) термоядерные реакции, в ходе которых из ядер водорода (протонов) образуются ядра гелия; каждые четыре протона, объединяясь, создают атом гелия. Сначала, когда соединяются друг с другом два протона, возникает атом тяжёлого водорода, или дейтерия. Затем последний сталкивается с третьим протоном, и в результате реакции рождается лёгкий изотоп гелия, содержащий два протона и один нейтрон. В сумятице, которая царит в ядре звезды, быстро движущиеся атомы лёгкого гелия иногда сталкиваются друг с другом, в результате чего появляется атом обычного гелия, состоящий из двух протонов и двух нейтронов. Два лишних протона возвращаются обратно в горячую смесь, чтобы когда-нибудь опять вступить в реакцию, порождающую гелий. В этом процессе около 0,7% массы превращается в энергию. Описанная цепочка реакций - один из важных термоядерных циклов, протекающих в ядрах звёзд при температуре около 10 млн. К. Некоторые астрономы считают, что при более низких температурах могут протекать другие реакции, в которых участвуют литий, бериллий и бор. Но они тут же делают оговорку, что если такие реакции и имеют место, то их относительный вклад в генерацию энергии незначителен. Когда температура в недрах звезды снова увеличивается, в действие вступает ещё одна важная реакция, в которой в качестве катализатора участвует углерод. Начавшись с водорода и углерода-12, такая реакция приводит к образованию азота-13, который спонтанно распадается на углерод-13 - изотоп углерода, более тяжёлый, чем тот, с которого реакция начиналась. Углерод-13 захватывает ещё один протон, превращаясь в азот-14. Последний подобным же путём становится кислородом-15. Этот элемент также неустойчив и в результате спонтанного распада превращается в азот-15. И, наконец, азот-15, присоединив к себе четвёртый протон, распадается на углерод-12 и гелий. Таким образом, побочным продуктом этих термоядерных реакций является углерод- 12, который может вновь положить начало реакциям данного типа. Объединение четырёх протонов приводит к образованию одного атома гелия, а разница в массе четырёх протонов и одного атома гелия, составляющая около 0,7% от первоначальной массы, проявляется в виде энергии излучения звезды. На Солнце каждую секунду 564 млн. т водорода превращается в 560 млн. т гелия, а разница - 4 млн. т вещества - превращается в энергию и излучается в пространство. Важно, что механизм генерации энергии в звезде зависит от температуры. Именно температура ядра звезды определяет скорость процессов. Астрономы считают, что при температуре около 13 млн. К углеродный цикл относительно несущественен. Следовательно, при такой температуре преобладает протон - протонный цикл. При увеличении температуры до 16 млн. К, вероятно, оба цикла дают равный вклад в процесс генерации энергии. Когда же температура ядра поднимается выше 20 млн. К, преобладающим становится углеродный цикл. Как только энергия звезды начинает обеспечиваться за счёт ядерных реакций, гравитационное сжатие, с которого начался весь процесс, прекращается. Теперь самоподдерживающаяся реакция может продолжаться в течение времени, длительность которого зависит от начальной массы звезды и составляет примерно от 1 млн. лет до 100 млрд. лет и больше. Именно в этот период звезда достигает главной последовательности и начинает свою долгую жизнь, протекающую почти без изменений. Целую вечность проводит звезда в этой стадии. Ничего особенного с ней не происходит, она не привлекает к себе пристального внимания. Теперь это всего-навсего полноценный член звёздной колонии, затерянный среди множества собратьев. Однако процессы, протекающие в ядре звезды, несут в себе зародыши её грядущего разрушения. Когда дерево или уголь сгорают в камине, выделяется тепло, а в качестве продуктов отхода образуются дым и зола. В "камине" звёздного ядра водород - это уголь, а гелий - зола. Если из камина время от времени не удалять золу, то она может забить его и огонь потухнет. Если в ядре звезды вещество не перемешивается, в термоядерных реакциях начинают принимать участие слои, непосредственно примыкающие к гелиевому ядру, что обеспечивает звезду энергией. Однако со временем запасы водорода в этих слоях иссякают, и ядро разрастается всё больше и больше. Наконец достигается состояние, когда в ядре совсем не остаётся водорода. Обычные реакции превращения водорода в гелий прекращаются; звезда покидает главную последовательность и вступает в сравнительно короткий (но интересный) отрезок своего жизненного пути, отмеченный необычайно бурными реакциями. Когда водорода становится мало, и он больше не может участвовать в реакциях, источник энергии иссякает. Но, как мы уже знаем, звезда представляет собой тонко сбалансированный механизм, в котором давление, раздувающее звезду изнутри, полностью уравновешено гравитационным притяжением. Следовательно, когда генерация энергии ослабевает, давление излучения резко падает, и силы тяготения начинают сжимать звезду. Снова происходит падение вещества к её центру, во многом напоминающее то, с которого началось рождение протозвезды. Энергия, возникающая при гравитационном сжатии, намного больше энергии, выделяемой теперь в ядерных реакциях, а раз так, то звезда начинает быстро сжиматься. В результате верхние слои звезды нагреваются, она снова расширяется и растёт в размерах до тех пор, пока внешние слои не станут достаточно разреженными, лучше пропускающими излучение звезды. Полагают, что звезда типа Солнца может увеличиться настолько, что заполнит орбиту Меркурия. После того как звезда начинает расширяться, она покидает главную последовательность и, как мы уже видели, дни её теперь сочтены. С этого момента жизнь звезды начинает клониться к закату. Когда звезда сжимается, за счёт работы сил тяготения выделяется огромная энергия, которая раздувает звезду. Казалось бы, это должно привести к падению температуры в ядре. Но это не так. Против ожидания температура в ядре звезды резко возрастает. В относительно тонком слое вокруг ядра всё ещё происходит обычное ядерное выгорание водорода, что приводит к увеличению содержания гелия в ядре. Когда в ядре концентрируется около половины массы звезды, последняя расширяется до своего максимального размера и её цвет из белого становится жёлтым, а затем красным, так как температура поверхности звезды уменьшается. Теперь звезда вступает в новую фазу. Температура ядра растёт до тех пор, пока не превысит 200 млн. К. При такой температуре начинает выгорать гелий, в результате чего образуется углерод. Три ядра гелия, сливаясь, превращаются в ядро углерода, который оказывается более лёгким, чем три исходных ядра гелия, поэтому такая реакция также идёт с выделением энергии. Снова давление радиации, которое играло столь важную роль, когда звезда находилась на главной последовательности, начинает противодействовать тяготению, и ядро звезды опять удерживается от дальнейшего сжатия. Звезда возвращается к обычным размерам; по мере того как это происходит, температура её поверхности растет, и она из красной становится белой. В этот момент по некоторым загадочным причинам звезда оказывается неустойчивой. Астрономы полагают, что переменные звёзды, то есть звёзды, периодически меняющие свою светимость, возникают на этой стадии звёздной эволюции, так как процесс сжатия происходит не гладко, и на некоторых его этапах возникают ритмические колебания звезды. На этой стадии звезда может пройти через фазу новой, в течение которой она внезапно выбрасывает в межзвёздное пространство значительное количество вещества; оно, принимая вид расширяющейся оболочки, может содержать значительную часть массы звезды. Вспышки некоторых новых многократно повторяются, и это означает, что одной вспышки недостаточно, чтобы звезда достигла устойчивости. Но со временем она приобретает устойчивость, колебания исчезают, звезда начинает свой длинный путь к звёздному кладбищу. Даже на этой стадии звезда ещё способна к активности. Она может стать сверхновой. Причина, по которой звезда оказывается способной на такую активность, обусловлена количеством вещества, оставшимся у неё к этой стадии. Когда мы обсуждали процессы, протекающие в недрах звезды, мы говорили, что основным продуктом ядерных реакций является гелий. По мере того как перерабатывается всё больше и больше водорода, растёт гелиевое ядро звезды. Водород исчезает, следовательно, энерговыделение за счёт этого источника также прекращается. Но при температуре около 200 млн. К открывается ещё один путь, следуя которому гелий порождает более тяжёлые элементы, и в этом процессе выделяется энергия. Два атома гелия соединяются, образуя атом бериллия, который обычно вновь распадается на атомы гелия. Однако температуры и скорости реакций столь высоки, что, прежде чем происходит распад бериллия, к нему присоединяется третий атом гелия и образуется атом углерода. Но процесс не останавливается, так как теперь атомы гелия, бомбардируя углерод, порождают кислород, бомбардируя кислород, дают неон, а, бомбардируя неон, производят магний. На этой стадии температура ядра ещё слишком низка для образования более тяжёлых элементов. Ядро опять сжимается, и так продолжается до тех пор, пока температура не достигнет величины порядка миллиарда градусов и не начнётся синтез более тяжёлых элементов. Если в результате дальнейшего сжатия ядра температура поднимается до 3 млрд. К, тяжёлые ядра взаимодействуют друг с другом до тех пор, пока не образуется железо. Процесс останавливается. Если атомы гелия будут бомбардировать ядра железа, то вместо образования более тяжёлых элементов произойдёт распад ядер железа. На этой стадии жизни звезды её ядро состоит из железа, окружённого слоями ядер более лёгких элементов вплоть до гелия, а тонкий наружный слой образован водородом, который ещё обеспечивает некоторое количество энергии. Наконец наступает время, когда водород оказывается полностью израсходованным и этот источник энергии иссякает. Перестают также действовать и другие механизмы генерации энергии; звезда лишается всяких средств для воспроизводства своих энергетических запасов. Это означает, что она должна умереть. Теперь, исчерпав запасы ядерной энергии, звезда может только сжиматься и использовать гравитационную энергию, чтобы поддержать своё свечение. Звезда будет сжиматься и ярко светиться. Когда же и эта энергия иссякнет, звезда начинает изменять свой цвет от белого к жёлтому, затем к красному; наконец она перестаёт излучать и начинает непрерывное путешествие в необозримом космическом пространстве в виде маленького тёмного безжизненного объекта. Но на пути к угасанию обычная звезда проходит стадию белого карлика. 1. И. С. Шкловский. Звезды: их рождение, жизнь и смерть 2. П. И. Бакулин. Курс общей астрономии 3. Ю. Н. Ефремов. В глубины Вселенной 4. Справочник по астрономии. Под ред. Зимина.

works.tarefer.ru

Доклад - Что такое звёзды

Испокон веков Человек старался дать название предметам и явлениям, которые его окружали. Это относится и к небесным телам. Сначала названия получили самые яркие, хорошо видимые звёзды, с течением времени – и другие.

Некоторые звёзды получили названия в соответствии с положением, которое они занимают в созвездии. Например, находящаяся в созвездии Лебедя звезда Денеб (слово переводится как «хвост») действительно дислоцируется в этой части тела воображаемого лебедя. Ещё один пример. Звезда Омикрон, она больше известна под названием Мира, что переводится с латинского как «удивительная», находится в созвездии Кита. Мира обладает способностью изменять свою яркость. На длительные периоды она вообще исчезает из поля зрения, имеются в виду наблюдения невооружённым глазом. Название звезды и объясняется её спецификой. В основном звёзды получили названия в эпоху античности, поэтому нет ничего удивительного в том, что большинство названий имеет латинские, греческие, а позже и арабские корни.

Открытие звёзд, видимый блеск которых со временем меняется, привело к специальным обозначениям. Они обозначаются прописными латинскими буквами, за которыми следует название созвездия в родительном падеже. Но первая переменная звезда, обнаруженная в каком-то созвездии, обозначается не буквой A. Отсчёт ведётся от буквы R. Следующая звезда обозначается буквой S и так далее. Когда все буквы алфавита исчерпаны, начинается новый круг, то есть после Z снова используется A. При этом буквы могут удваиваться, например «RR». «R Льва» означает, что это первая открытая переменная звезда в созвездии Льва.

КАК РОЖДАЕТСЯ ЗВЕЗДА.

Звёзды рождаются, когда облако, состоящее в основном из межзвёздного газа и пыли, сжимается и уплотняется под действием собственной гравитации. Считается, что именно этот процесс приводит к образованию звёзд. С помощью оптических телескопов астрономы могут увидеть эти зоны, они похожи на тёмные пятна на ярком фоне. Их называют «гигантскими комплексами молекулярных облаков», потому что водород входит в их состав в форме молекул. Эти комплексы, или системы, наряду с шаровыми звёздными скоплениями, представляют собой самые крупные структуры в галактике, их диаметр иногда достигает 1300 световых лет.

Более молодые звёзды, их называют «звёздное население I», образовались из остатков, получившихся в результате вспышек старых звёзд, их называют «звёздное население II». Вспышка взрывного характера вызывает ударную волну, которая доходит до ближайшей туманности и провоцирует её сжатие.

Глобулы Бока .

Итак, происходит сжатие части туманности. Одновременно с этим процессом начинается образование плотных тёмных газопылевых облаков круглой формы. Их называют «глобулы Бока». Бок – американский астроном голландского происхождения (1906-1983) – впервые описал глобулы. Масса глобул примерно в 200 раз превышает массу нашего Солнца.

По мере того как глобула Бока продолжает сгущаться, её масса увеличивается, притягивая к себе благодаря гравитации материю из соседних областей. В связи с тем, что внутренняя часть глобулы сгущается быстрее, чем внешняя, глобула начинает разогреваться и вращаться. Через несколько сотен тысяч лет, во время которых происходит сжатие, образуется протозвезда.

Эволюция протозвезды.

Благодаря увеличению массы к центру протозвезды притягивается всё больше материи. Энергия, высвободившаяся из сжимающегося внутри газа, трансформируется в тепло. Давление, плотность и температура протозвезды повышаются. Из-за повышения температуры звезда начинает светиться тёмно-красным светом.

Протозвезда имеет очень большие размеры, и, хотя тепловая энергия распределяется по всей её поверхности, она всё равно остаётся относительно холодной. В ядре температура растёт и достигает нескольких миллионов градусов по Цельсию. Вращение и круглая форма протозвезды несколько видоизменяются, она становится более плоской. Этот процесс длится миллионы лет.

Увидеть молодые звёзды трудно, так как они ещё окружены тёмным пылевым облаком, из-за которого практически не виден блеск звезды. Но их можно рассмотреть при помощи специальных инфракрасных телескопов. Горячее ядро протозвезды окружено вращающимся диском из материи, обладающей большой силой притяжения. Ядро настолько разогревается, что начинает выбрасывать материю с двух полюсов, где сопротивляемость минимальна. Когда эти выбросы сталкиваются с межзвездной средой, они замедляют движение и рассеиваются по обеим сторонам, образуя каплевидную или аркообразную структуру, известную под названием «объект Хербика-Харо».

Звезда или планета?

Температура протозвезды доходит до нескольких тысяч градусов. Дальнейшее развитие событий зависит от габаритов этого небесного тела; если масса небольшая и составляет менее 10% от массы Солнца, это значит, что нет условий для прохождения ядерных реакций. Такая протозвезда не сможет превратиться в настоящую звезду.

Учёные рассчитали, что для превращения сжимающегося небесного тела в звезду его минимальная масса должна составлять не менее 0,08 от массы нашего Солнца. Газосодержащее облако меньших размеров, сгущаясь, будет постепенно охлаждаться и превратится в переходный объект, нечто среднее между звездой и планетой, это так называемый «коричневый карлик».

Планета Юпитер представляет собой небесный объект слишком малых размеров, чтобы стать звездой. Если бы он был больше, возможно, в его недрах начались бы ядерные реакции, и он наряду с Солнцем способствовал бы появлению системы двойных звёзд.

Ядерные реакции.

Если масса протозвезды большая, она продолжает сгущаться под действием собственной гравитации. Давление и температура в ядре растут, температура постепенно доходит до 10 миллионов градусов. Этого достаточно для соединения атомов водорода и гелия.

Далее активизируется «ядерный реактор» протозвезды, и она превращается в обычную звезду. Затем выделяется сильный ветер, который разгоняет окружающую оболочку из пыли. После этого можно видеть свет, исходящий из образовавшейся звезды. Эта стадия называется «фаза Т-Тельцы», она может длиться 30 миллионов лет. Из остатков газа и пыли, окружающих звезду, возможно образование планет.

Рождение новой звезды может вызвать ударную волну. Дойдя до туманности, она провоцирует конденсацию новой материи, и процесс звёздообразования продолжится посредством газопылевых облаков. Небольшие по размеру звезды слабые и холодные, крупные же – горячие и яркие. Большую часть своего существования звезда балансирует в стадии равновесия.

ХАРАКТЕРИСТИКА ЗВЁЗД.

Наблюдая за небом даже невооружённым глазом, можно сразу отметить такую особенность звёзд, как яркость. Одни звёзды очень яркие, другие – более слабые. Без специальных приборов в идеальных условиях видимости можно рассмотреть около 6000 звёзд. Благодаря биноклю или телескопу наши возможности значительно возрастают, мы можем любоваться миллионами звёзд Млечного пути и внешних галактик.

Птолемей и «Альмагест».

Первую попытку составить каталог звёзд, основываясь на принципе степени их светимости, предпринял эллинский астроном Гиппарх из Никеи во II веке до н.э. Среди его многочисленных трудов фигурировал и «Звёздный каталог», содержащий описание 850 звёзд, классифицированных по координатам и светимости. Данные, собранные Гиппархом, а он, кроме этого, открыл и явление прецессии, были проработаны и получили дальнейшее развитие благодаря Клавдию Птолемею из Александрии во II в. н.э. Он создал фундаментальный опус «Альмагест» в тринадцати книгах. Птолемей собрал все астрономические знания того времени, классифицировал их и изложил в доступной и понятной форме. В «Альмагест» вошёл и «Звёздный каталог». В его основу были положены наблюдения Гиппарха, сделанные четыре столетия назад. Но «Звёздный каталог» Птолемея содержал примерно на тысячу звёзд больше.

Каталогом Птолемея пользовались практически везде в течение тысячелетия. Он разделил звёзды на шесть классов по степени светимости: самые яркие были отнесены к первому классу, менее яркие – ко второму и так далее.

К шестому классу относятся звёзды, едва различимые невооруженным глазом. Термин «сила свечения небесных тел», используется и в настоящее время для определения меры блеска небесных тел, причём не только звёзд, но также туманностей, галактик и других небесных явлений.

Звёздная величина в современной науке.

В середине XIX в. английский астроном Норман Погсон усовершенствовал метод классификации звёзд по принципу светимости, существовавший со времён Гиппарха и Птолемея. Погсон учёл, что разница в плане светимости между двумя классами 2,5. Погсон ввёл новую шкалу, по которой разница между звёздами первого и шестого классов составляет 100 а.е. То есть отношение блеска звезд первой звёздной величины составляет 100. Это отношение соответствует интервалу в 5 звёздных величин.

Относительная и абсолютная звёздная величина.

Звёздная величина, измеренная при помощи специальных приборов, вмонтированных в телескоп, указывает, какое количество света звезды доходит до наблюдателя на Земле. Свет преодолевает расстояние от звезды до нас, и, соответственно, чем дальше расположена звезда, тем более слабой она кажется. То есть при определении звёздной величины необходимо принимать во внимание расстояние до звезды. В данном случае речь идёт об относительной звёздной величине. Она зависит от расстояния.

Есть звёзды очень яркие и очень слабые. Для сравнения яркости звёзд независимо от их расстояния идо Земли было введено понятие «абсолютная звёздная величина». Она характеризует блеск звезды на определённом расстоянии в 10 парсек (10 парсек = 3,26 светового года). Для определения абсолютной звёздной величины необходимо знать расстояние до звезды.

Цвет звёзд.

Следующей важной характеристикой звезды является её цвет. Рассматривая звёзды даже невооружённым глазом, можно заметить, что не все они одинаковы.

Есть голубые, жёлтые, оранжевые, красные звёзды, а не только белые. Цвет звёзд многое говорит астрономам, прежде всего он зависит от температуры поверхности звезды. Красные звёзды – самые холодные, их температура составляет примерно 2000-3000 о С. Жёлтые звёзды, как наше Солнце, имеют среднюю температуру 5000-6000 о С. Самые горячие – белые и голубые звёзды, их температура составляет 50000-60000 о С и выше.

Загадочные линии.

Если пропустить свет звезды через призму, мы получим так называемый спектр, он будет пересекаться линиями. Эти линии являются своего рода «идентификационной картой» звезды, так как по ним астрономы могут определить химический состав поверхностных слоёв звёзд. Линии принадлежат различным химическим элементам.

Сравнивая линии в звёздном спектре с линиями, выполненными в лабораторных условиях, можно определить, какие химические элементы входят в состав звёзд. В спектрах основными являются линии водорода и гелия, именно эти элементы составляют основную часть звезды. Но встречаются и элементы группы металлов – железо, кальций, натрий и др. В солнечном ярком спектре видны линии почти всех химических элементов.

ДИАГРАММА ГЕРЦШПРУНГА-РЕССЕЛЛА.

Среди параметров, характеризующих звезду, существуют два самых главных – это температуры и абсолютная звёздная величина. Температурные показатели тесно связаны с цветом звезды, а абсолютная звёздная величина – со спектральным классом. Имеется в виду классификация звёзд по интенсивности линий в их спектрах. Согласно используемой в настоящее время классификации, звёзды в соответствии с их спектрами делятся на семь основных спектральных классов. Они обозначены латинскими буквами O, B, A, F, G, K, M. Именно в этой последовательности температура звёзд понижается от нескольких десятков тысяч градусов класса O до 2000-3000 градусов звёзд типа M.

Абсолютная звёздная величина, т.е. мера блеска, указывает количество энергии, излучаемой звездой. Её можно вычислить теоретически, зная расстояние звезды.

Выдающаяся идея.

Идея связать между собой два основных параметра звезды пришла в голову двум учёным в 1913 году, причём они вели работы независимо друг от друга.

Речь идёт о голландском астрономе Эйнаре Герцшпрунге и американском астрофизике Генри Норрисе Ресселле. Учёные творили на расстоянии тысяч километров друг от друга. Они составили график, связавший воедино два основных параметра. Горизонтальная ось отражает температуру, вертикальная – абсолютную звёздную величину. В результате получилась диаграмма, которой были присвоены имена двух астрономов – диаграмма Герцшпрунга-Ресселла, или, проще, диаграмма Г-Р.

Звезда – критерий.

Посмотрим, как составляется диаграмма Г-Р. Прежде всего, необходимо выбрать звезду-критерий. Для этого подходит звезда, расстояние до которой известно, или другая – с уже вычисленной абсолютной звёздной величиной.

Следует иметь в виду, что интенсивность светимости любого источника, будь то свеча, лампочка или звезда, изменяется в зависимости от расстояния. Математически это выражается так: интенсивность светимости «I» на определённом расстоянии «d» от источника обратно пропорциональна «d2». Практически это означает, что если расстояние увеличивается вдвое, то интенсивность светимости уменьшается в четыре раза.

Затем следует определить температуру выбранных звёзд. Для этого надо идентифицировать их спектральный класс, цвет и после этого определить температуру. В настоящее время вместо спектрального типа используется другой эквивалентный ему показатель – «индекс цвета».

Далее надо измерить звёздную величину звезды с двумя разными по длине волнами (например, использовать два фильтра, пропускающих только синий и жёлтый цвета). Подсчитать разницу.

Эти два параметра наносятся на одну плоскость с температурой, понижающейся слева направо, на абсциссе. Абсолютная светимость фиксируется на ординате, повышение отмечается снизу вверх.

Главная последовательность.

На диаграмме Г-Р звёзды располагаются вдоль диагональной линии, идущей снизу вверх и слева направо. Эта полоса называется Главная последовательность. Звёзды, входящие в её состав, называются звёздами Главной последовательности. Солнце относится именно к этой группе. Это группа жёлтых звёзд с поверхностной температурой примерно 5600 градусов. Звёзды Главной последовательности находятся в наиболее «спокойной фазе» своего существования. В недрах их ядер атомы водорода перемешиваются, образуется гелий. Фаза Главной последовательности составляет 90% времени существования звезды. Из 100 звёзд 90 находятся именно в этой фазе, хотя распределяются по разным позициям в зависимости от температуры и светимости.

Главная последовательность представляет собой «узкую область», это свидетельствует о том, что звёзды с трудом сохраняют баланс между силой притяжения, которая тянет внутрь, и силой, образующейся в результате ядерных реакций, она тянет к внешней стороне зоны. Звезда, подобная Солнцу, равная 5600 градусов, для поддержания баланса должна иметь абсолютную звёздную величину порядка +4,7. Это следует из диаграммы Г-Р.

Красные гиганты и белые карлики.

Красные гиганты находятся в верхней зоне справа, расположенной с внешней стороны Главной последовательности. Характерной чертой этих звёзд является очень низкая температура (примерно 3000 градусов), но при этом они ярче звёзд, имеющих идентичную температуру и расположенных в Главной последовательности.

Естественно, возникает вопрос: если энергия, излучаемая звездой, зависит от температуры, то почему же звёзды с одинаковой температурой имеют разную степень светимости. Объяснение следует искать в размере звёзд. Красные гиганты более яркие потому, что их излучающая поверхность намного больше, чем у звёзд из Главной последовательности.

Неслучайно этот тип звёзд получил название «гиганты». Действительно, их диаметр может превышать диаметр Солнца в 200 раз, эти звёзды могут занимать пространство в 300 миллионов км, что вдвое больше расстояния от Земли до Солнца! С помощью положения о влиянии размера звезды попробуем объяснить некоторые моменты в существовании других звёзд – белых карликов. Они расположены внизу слева в диаграмме Г-Р.

Белые карлики – очень горячие, но совсем неяркие звёзды. При одинаковой температуре с крупными и горячими бело-голубыми звёздами Главной последовательности белые карлики намного меньше по размерам. Это очень плотные и компактные звёзды, они в 100 раз меньше Солнца, их диаметр примерно такой же, как земной. Можно привести яркий пример высокой плотности белых карликов – один кубический сантиметр материи, из которой они состоят, должен весить около одной тонны!

Шаровые звёздные скопления.

При составлении диаграмм Г-Р шаровых звёздных скоплений, а в них находятся в основном старые звёзды, очень сложно определить Главную последовательность. Её следы фиксируются в основном в нижней зоне, где концентрируются более холодные звёзды. Это связано с тем, что горячие и яркие звёзды уже прошли стабильную фазу своего существования и перемещаются вправо, в зону красных гигантов, а если миновали её, то в зону белых карликов. Если бы люди были в состоянии проследить за свою жизнь все эволюционные стадии звезды, они смогли бы увидеть, как она изменяет свои характеристики.

Например, когда водород в ядре звезды прекращает гореть, температура во внешнем слое звезды понижается, сам слой расширяется. Звезда выходит из фазы Главной последовательности и направляется в правую часть диаграммы. Это касается в первую очередь крупных по массе звёзд, наиболее ярких, — именно этот тип эволюционирует быстрее.

С течением времени звёзды выходят из Главной последовательности. На диаграмме фиксируется «turning point» — «поворотная точка», благодаря ней, возможно, довольно точно вычислить возраст звёзд скоплений. Чем выше на диаграмме находится «поворотная точка», тем моложе скопление, и, соответственно, чем ниже на диаграмме она находится, тем старше по возрасту звёздное скопление.

Значение диаграммы.

Диаграмма Герцшпрунга-Ресселла оказывает огромную помощь в изучении эволюции звёзд на протяжении их существования. За это время звёзды претерпевают изменения, трансформации, в какие-то периоды они очень глубокие. Нам уже известно, что звёзды отличаются не по собственным характеристикам, а по типам фаз, в которых они пребывают в то или иное время.

С помощью этой диаграммы можно вычислить расстояние до звёзд. Можно выбрать любую звезду, находящуюся в Главной последовательности, с уже определённой температурой и посмотреть её продвижения на диаграмме.

РАССОЯНИЕ ДО ЗВЁЗД.

Когда мы смотрим на небо невооружённым глазом, звёзды, даже самые яркие, кажутся нам блестящими точками, расположенными на одинаковом от нас расстоянии. Небесный свод раскинулся над нами как ковёр. Неслучайно позиции звёзд выражены только в двух координатах (прямое восхождение и склонение), а не в трёх, словно они расположены на поверхности, а не трёхмерном пространстве. С помощью телескопов мы не можем получить всю информацию о звёздах, например по фотографиям космического телескопа «Хаббл» мы не можем точно определить, на каком расстоянии находятся звёзды.

Глубина пространства.

О том, что Вселенная имеет и третье измерение – глубину, — люди узнали относительно недавно. Только в начале XIX века благодаря совершенствованию астрономического оборудования и инструментов учёные смогли измерить расстояние до некоторых звёзд. Первой была звезда 61 Лебедя. Астрономом Ф.В. Бессель установил, что она находится на расстоянии 10 световых лет. Бессель был одним из первых астрономов, измеривших «годичный параллакс». До настоящего времени метод «годичного параллакса» лежит в основе измерения расстояния до звёзд. Это чисто геометрический метод – достаточно измерить угол и вычислить результат.

Но простота метода не всегда соответствует результативности. Из-за большой удалённости звёзд углы очень маленькие. Их можно измерить с помощью телескопов. Угол параллакса звезды Проксима Центавра, ближайшей из тройной системы Альфа Центавра, маленький (0.76 точный вариант), но под таким углом можно рассмотреть монету в сто лир на расстоянии десятка километров. Разумеется, чем дальше расстояние, тем меньшим становится угол.

Неизбежные неточности.

Ошибки в плане определения параллакса вполне возможны, причём их число увеличивается по мере удаления объекта. Хотя, с помощью современных телескопов, можно измерить углы с точностью до тысячной, ошибки всё равно будут: на расстоянии 30 световых лет они составят примерно 7%, 150 св. лет – 35%, а 350 св. лет – до 70%. Разумеется, большие неточности делают измерения бесполезными. Используя «метод параллакса», можно успешно определить расстояния до нескольких тысяч звёзд, расположенных в районе примерно 100 световых лет. Но в нашей галактике находятся более 100 миллиардов звёзд, диаметр которых составляет 100 000 световых лет!

Существует несколько вариантов метода «годичного параллакса», например «вековой параллакс». Метод учитывает движение Солнца и всей Солнечной системы в направлении созвездия Геракла, со скоростью 20км/сек. При таком движении учёные имеют возможность собрать нужную базу данных для проведения успешного расчёта параллакса. За десять лет получено информации в 40 раз больше, чем это было возможно ранее.

Затем с помощью тригонометрических вычислений определяется расстояние до определённой звезды.

Расстояние до звёздных скоплений.

Проще вычислить расстояние до звёздных скоплений, особенно рассеянных. Звёзды расположены относительно близко друг от друга, поэтому, вычислив расстояние до одной звезды, можно определить и расстояние до всего звёздного скопления.

Кроме того, в этом случае можно использовать статистические методы, позволяющие сократить число неточностей. Например, метод «сходящихся точек», он часто применяется астрономами. Он основывается на том, что при длительном наблюдении за звёздами рассеянного скопления выделяются движущиеся к общей точке, она и называется сходящейся точкой. Измерив, углы и радиальные скорости (то есть скорости приближения к Земле и удаления от неё), можно определить расстояние до звёздного скопления. При использовании этого метода возможно 15% неточностей при расстоянии в 1500 световых лет. Он используется и при расстояниях в 15 000 световых лет, что вполне подходит для небесных тел в нашей Галактике.

Main Sequence Fitting – установление Главной последовательности.

Для определения расстояния до далёких звёздных скоплений, например до Плеяд, можно действовать следующим образом: построить диаграмму Г-Р, на вертикальной оси отметить видимую звёздную величину (а не абсолютную, т.к. она зависит от расстояния), зависящую от температуры.

Затем следует сравнить полученную картину с диаграммой Г-Р Иад, у неё много общих черт в плане Главных последовательностей. Совместив две диаграммы как можно плотнее, можно определить Главную последовательность звёздного скопления, расстояние до которого надо измерить.

Затем следует использовать уравнение:

m-M=5log(d)-5, где

m – видимая звёздная величина;

M – абсолютная звёздная величина;

d – расстояние.

По-английски этот метод называется «Main Sequence Fitting». Его можно использовать к таким рассеянным звёздным скоплениям, как NGC 2362, Альфа Персея, III Цефея, NGC 6611.астрономы предпринимали попытки определить расстояние до известного двойного рассеянного звёздного скопления в созвездии Персея («h» и «chi»), где находится много звёзд-сверхгигантов. Но данные получились противоречивые. С помощью метода «Main Sequence Fitting» возможно определить расстояние до 20000-25000 световых лет, это пятая часть нашей Галактики.

Интенсивность света и расстояние.

Чем дальше расположено какое-либо небесное тело, тем его свет кажется слабее. Это положение согласуется с оптическим законом, в соответствии с которым интенсивность света «I» обратно пропорциональна расстоянию, возведённому в квадрат «d».

[I ~ 1/d2 ]

Например, если какая-либо галактика находится на расстоянии 10 миллионов световых лет, то другая галактика, расположенная в 20 миллионах световых лет, имеет блеск в четыре раза меньший по сравнению с первой. То есть с математической точки зрения связь между двумя величинами «I» и «d» точная и измеряемая. Говоря языком астрофизики, интенсивность света является абсолютной величиной звёздной величиной М какого-либо небесного объекта, расстояние до которого следует измерить.

Используя уравнение m-M=5log(d)-5 (оно отражает закон об изменении блеска) и зная, что m всегда можно определить при помощи фотометра, а М известна, измеряется расстояние «d». Итак, зная абсолютную звёздную величину, при помощи расчётов определить расстояние не сложно.

Межзвёздное поглощение.

Одна из главных проблем, связанных с методами измерения расстояния – проблема поглощения света. По пути на Землю свет преодолевает огромные расстояния, он проходит через межзвёздную пыль и газ. Соответственно часть света адсорбируется, и когда он доходит до установленных на Земле телескопов, уже имеет непервоначальную силу. Учёные называют это «экстинкцией», ослаблением света. Очень важно вычислить количество экстинкции при использовании ряда методов, например, канделы. При этом должны быть известны точно абсолютные звёздные величины.

Несложно определить экстинкцию для нашей Галактики – достаточно принять во внимание пыль и газ Млечного Пути. Труднее определить экстинкцию света от объекта из другой галактики. К экстинкции по пути следования в нашей Галактике надо прибавит и часть поглощённого света из другой.

ЭВОЛЮЦИЯ ЗВЁЗД.

Внутренняя жизнь звезды регулируется воздействием двух сил: силы притяжения, которая противодействует звезде, удерживает её, и силы, освобождающейся при происходящих в ядре ядерных реакциях. Она, наоборот, стремится «вытолкнуть» звезду в дальнее пространство. Во время стадии формирования плотная и сжатая звезда находится под сильным воздействием гравитации. В результате происходит сильное нагревание, температура достигает 10-20 миллионов градусов. Этого достаточно для начала ядерных реакций, в результате которых водород превращается в гелий.

Затем в течение длительного периода две силы уравновешивают друг друга, звезда находится в стабильном состоянии. Когда ядерное горючее ядра понемногу иссякает, звезда вступает в фазу нестабильности, две силы противоборствуют. Для звезды наступает критический момент, в действие вступают самые разные факторы – температура, плотность, химический состав. На первое место выступает масса звезды, именно от неё зависит будущее этого небесного тела – или звезда вспыхнет, как сверхновая, или превратится в белого карлика, нейтронную звезду или в чёрную дыру.

Как иссякает водород.

Только очень крупные среди небесных тел становятся звёздами, меньшие становятся планетами. Есть и тела средней массы, они слишком крупные, чтобы относиться к классу планет, и слишком маленькие и холодные для того, чтобы в из недрах происходили ядерные реакции, характерные для звёзд.

Итак, звезда формируется из облаков, состоящих из межзвёздного газа. Как уже отмечалось, довольно длительное время звезда пребывает в уравновешенном состоянии. Затем наступает период нестабильности. Дальнейшая судьба звезды зависит от различных факторов. Рассмотрим гипотетическую звезду небольшого размера, масса которой составляет от 0,1 до 4 солнечных масс. Характерной чертой звёзд, имеющих малую массу, является отсутствие конвекции во внутренних слоях, т.е. вещества, входящие в состав звезды, не смешиваются, как это происходит у звёзд, обладающих большой массой.

Это означает, что, когда водород в ядре заканчивается, новых запасов этого элемента во внешних слоях нет. Водород, сгорая, превращается в гелий. Понемногу ядро разогревается, поверхностные слои дестабилизируют собственную структуру, и звезда, как можно видеть по диаграмме Г-Р, медленно выходит из Главной последовательности. В новой фазе плотность материи внутри звезды повышается, состав ядра «дегенерирует», в результате появляется особая консистенция. Она отличается от нормальной материи.

Видоизменение материи.

Когда материя видоизменяется, давление зависит только от плотности газов, а не от температуры.

На диаграмме Герцшпрунга-Ресселла звезда сдвигается вправо, а затем вверх, приближаясь к области красных гигантов. Её размеры значительно увеличиваются, и из-за этого температура внешних слоёв падает. Диаметр красного гиганта может достигать сотни миллионов километров. Когда наше солнце войдёт в эту фазу, оно «проглотит» и Меркурий и Венеру, а если не сможет захватить и Землю, то разогреет её до такой степени, что жизнь на нашей планете перестанет существовать.

За время эволюции звезды температура её ядра повышается. Сначала происходят ядерные реакции, затем по достижении оптимальной температуры начинается плавление гелия. Когда это происходит, внезапное повышение температуры ядра вызывает вспышку, и звезда быстро перемещается в левую часть диаграммы Г-Р. это так называемый «helium flash». В это время ядро, содержащее гелий, сгорает вместе с водородом, который входит в состав оболочки, окружающей ядро. На диаграмме Г-Р эта стадия фиксируется продвижением вправо по горизонтальной линии.

Последние фазы эволюции.

При трансформации гелия в углеводород ядро видоизменяется. Его температура повышается до тех пор, пока углерод не начнёт гореть. Происходит новая вспышка. В любом случае во время последних фаз эволюции звезды отмечается значительная потеря её массы. Это может происходить постепенно или резко, во время вспышки, когда внешние слои звезды лопаются, как большой пузырь. В последнем случае образуется планетарная туманность – оболочка сферической формы, распространяющаяся в космическом пространстве со скоростью в несколько десятков или даже сотен км/сек.

Конечная судьба звезды зависит от массы, оставшейся после всего происходящего с ней. Если она во время всех превращений и вспышек выбросила много материи и её масса не превышает 1,44 солнечной массы, звезда превращается в белого карлика. Эта носит название «лимит Чандрасекара» в честь пакистанского астрофизика Субрахманьяна Чандрасекара. Это максимальная масса звезды, при которой катастрофический конец может не состоятся из-за давления электронов в ядре.

После вспышки внешних слоёв ядро звезды остаётся, и его поверхностная температура очень высока – порядка 100 000 о К. Звезда двигается к левому краю диаграммы Г-Р и спускается вниз. Её светимость уменьшается, так как уменьшаются размеры.

Звезда медленно доходит до зоны белых карликов. Это звёзды небольшого диаметра, но отличающиеся очень высокой плотности, в полтора миллиона раз больше плотности воды.

Белый карлик представляет собой конечную стадию эволюции звезды, без вспышек. Она понемногу остывает. Учёные полагают, что конец белого карлика проходит очень медленно, во всяком случае, с начала существования Вселенной, похоже, ни один белый карлик не пострадал от «термической смерти».

Если же звезда крупная, и её масса больше Солнца, она вспыхнет, как сверхновая. Во время вспышки звезда может разрушиться полностью или частично. В первом случае от неё останется облако газа с остаточными веществами звезды. Во втором – останется небесное тело высочайшей плотности – нейтронная звезда или чёрная дыра.

ПЕРЕМЕННЫЕ ЗВЁЗДЫ.

Согласно концепции Аристотеля, небесные тела Вселенной являются вечными и постоянными. Но эта теория претерпела значительные изменения с появлением в XVII в. первых биноклей. Наблюдения, проводившиеся в течение последующих веков, продемонстрировали, что в действительности кажущееся постоянство небесных тел объясняется отсутствием техники для наблюдения или её несовершенством. Учёные пришли к выводу, что переменчивость является общей характеристикой всех видов звёзд. В течение эволюции звезда проходит несколько стадий, во время которых её основные характеристики – цвет и светимость – претерпевают глубокие изменения. Они происходят в течение существования звезды, а это десятки или сотни миллионов лет, поэтому человек не может быть очевидцем происходящего. У некоторых классов звёзд происходящие изменения фиксируются в короткие промежутки времени, например в течение нескольких месяцев, дней или части суток. Происходящие изменения звезды, её световые потоки можно многократно измерить в течение последующих ночей.

Измерения.

На самом деле эта проблема не так проста, как кажется на первый взгляд. При проведении измерений необходимо учитывать атмосферные условия, а они меняются, причём иногда значительно в течение одной ночи. В связи с этим данные о световых потоках звёзд существенно разнятся.

Очень важно уметь отличить настоящие изменения светового потока, а они непосредственно связаны с блеском звезды, от кажущихся, они объясняются изменением атмосферных условий.

Для этого рекомендуется провести сравнение световых потоков наблюдаемой звезды с другими звёздами – ориентирами, видимыми в телескоп. Если изменения кажущиеся, т.е. связаны с изменением атмосферных условий, они коснуться всех наблюдаемых звёзд.

Получить верные данные о состоянии звезды на коком-то этапе – это первая ступень. Далее следует составить «кривую блеска» для фиксирования возможных изменений блеска. Она будет показывать изменение звёздной величины.

Переменные или нет.

Звёзды, звёздная величина которых непостоянна, называют переменными. У некоторых из них переменчивость лишь кажущаяся. В основном это звёзды, относящиеся к системе двойных. При этом, когда орбитальная плоскость системы более или менее совпадает с лучом зрения наблюдателя, ему может казаться, что одна из двух звёзд полностью или частично затмевается другой и является менее яркой. В этих случаях изменения периодичны, периоды изменения блеска затменных звёзд повторяются с интервалом, совпадающим с орбитальным периодом двойной системы звёзд. Эти звёзды называются «затменные переменные».

Следующий класс переменных звёзд – «внутренние переменные». Амплитуды колебаний блеска этих звёзд зависят от физических параметров звезды, например от радиуса и температуры. В течение долгих лет астрономы вели наблюдения за изменчивостью переменных звёзд. Только в нашей Галактике зафиксировано 30000 переменных звёзд. Их разделили на две группы. К первой относятся «эруптивные переменные звёзды». Им свойственны однократные или повторяющиеся вспышки. Изменения звёздных величин эпизодичны. К классу «эруптивных переменных», или взрывных, относятся также новые и сверхновые. Ко второй группе – все остальные.

Цефеиды.

Существуют переменные звёзды, блеск которых меняется строго периодически. Изменения происходят через определённые промежутки времени. Если составить кривую блеска, она чётко зафиксирует регулярность изменений, при этом форма кривой отметит максимальные и минимальные характеристики. Разница между максимальным и минимальным колебаниями определяет большое пространство между двумя характеристиками. Звёзды такого типа относятся к «переменным пульсирующим». По кривой блеска можно сделать вывод, что блеск звезды возрастает быстрее, чем убывает.

Переменные звёзды подразделяются на классы. За критерий берётся звезда-прототип, именно она даёт название классу. В качестве примера можно привести Цефеиды. Это название происходит от звезды Цефея. Это наиболее простой критерий. Есть и другой – звёзды подразделяются по спектрам.

Переменные звёзды можно разделить на подгруппы по разным критериям.

ДВОЙНЫЕ ЗВЁЗДЫ.

Звёзды на небесном своде существуют в виде скоплений, ассоциация, а не как единичные тела. Звёздные скопления могут быть усеяны звёздами очень густо или нет.

Между звёздами могут существовать и более тесные связи, речь идёт о двойных системах, как их называют астрономы. В паре звёзд эволюция одной непосредственно влияет и на вторую.

Открытие.

Открытие двойных звёзд, в настоящее время их именно так называют, стало одним из первых открытий, осуществлённых при помощи астрономического бинокля. Первой парой этого типа звёзд стала Мицар из созвездия Большой Медведицы. Открытие сделал итальянский астроном Риччоли. Учитывая огромное количество звёзд во Вселенной, учёные пришли к выводу, что Мицар среди них не единственная двойная система, и оказались правы, вскоре наблюдения подтвердили эту гипотезу. В 1804 году известный астроном Вильям Гершель, посвятивший 24 года научным наблюдениям, опубликовал каталог, содержащий описание примерно 700 двойных звёзд. Вначале учёные не знали точно, связаны ли физически друг с другом компоненты двойной системы.

Некоторые светлые умы полагали, что на двойные звёзды действует звёздная ассоциация в целом, тем более в паре блеск составляющих был неодинаков. В связи с этим создавалось впечатление, что они находятся не рядом. Для выяснения истинного положения тел было необходимо измерить параллактические смещения звёзд. Этим и занялся Гершель. К величайшему удивлению, параллактическое смещение одной звезды по отношению к другой при измерении дало неожиданный результат. Гершель заметил, что вместо симметрического колебания с периодом в 6 месяцев каждая звезда следует по сложному эллипсоидному пути. В соответствии с законами небесной механики два тела, связанных силой притяжения, двигаются по эллиптической орбите. Наблюдения Гершеля подтвердили тезис о том, что двойные звёзды связаны физически, то есть силами тяготения.

Классификация двойных звёзд.

Различают три основных класса двойных звёзд: визуально-двойные, двойные фотометрические и спектрально-двойственные. Эта классификация не отражает в полной мере внутренние различия классов, но даёт представление о звёздной ассоциации.

Двойственность визуально-двойных звёзд хорошо видна в телескоп по мере их движения. В настоящее время идентифицировано около 70000 визуально-двойных, но только у 1% из них была точно определена орбита.

Такая цифра (1%) не должна удивлять. Дело в том, что орбитальные периоды могут составлять несколько десятков лет, если не целые века. А выстроить путь по орбите – очень кропотливый труд, требующий проведения многочисленных расчётов и наблюдений из разных обсерваторий. Очень часто учёные располагают лишь фрагментами движения по орбите, остальной путь они восстанавливают дедуктивным методом, используя имеющиеся данные. Следует иметь в виду, что орбитальная плоскость системы может быть наклонена к лучу зрения. В таком случае воссозданная орбита (видимая) будет значительно отличаться от истинной.

Если определена истинная орбита, известны период обращения и угловое расстояние между двумя звёздами, можно, применив третий закон Кеплера, определив сумму масс компонентов системы. Расстояние двойной звезды до нас при этом тоже должно быть известно.

Двойные фотометрические звёзды.

О двойственности этой системы звёзд можно судить лишь по периодическим колебаниям блеска. При движении такие звёзды переменно загораживают друг друга. Их также называют «затменно-двойные звёзды». У этих звёзд плоскости орбит близки к направлению луча зрения. Чем большую площадь занимает затмение, тем более выражен блеск. Если проанализировать кривую блеска двойных фотометрических звёзд, можно определить наклон орбитальной плоскости.

С помощью кривой блеска можно определить и орбитальный период системы. Если зафиксированы, например, два затмения, кривая блеска будет иметь два снижения (минимума). Период времени, за который фиксируются три последовательных снижения по кривой блеска, соответствует орбитальному периоду.

Периоды двойных фотометрических звёзд значительно короче по сравнению с периодами визуально-двойных звёзд и составляют срок несколько часов или несколько дней.

Спектрально-двойственные звёзды.

С помощью спектроскопии можно подметить расщепление спектральных линий вследствие эффекта Доплера. Если один из компонентов представляет собой слабую звезду, то наблюдается только периодическое колебание положений одиночных линий. Этот способ используют в случае, когда компоненты двойной звезды очень близки между собой и их сложно идентифицировать при помощи телескопа как визуально-двойные звёзды. Двойные звёзды, определяемые с помощью спектроскопа и эффекта Доплера, называются спектрально-двойственные. Не все двойные звёзды являются спектральными. Два компонента двойных звёзд могут отдаляться и приближаться в радиальном направлении.

Наблюдения свидетельствуют о том, что двойные звёзды встречаются в основном в нашей Галактике. Сложно определить процентное соотношение двойных и одинарных звёзд. Если действовать методом вычитания и из всего звёздного населения вычесть число идентифицированных двойных звёзд, можно сделать вывод, что они составляют меньшинство. Этот вывод может быть ошибочным. В астрономии есть понятие «эффект отбора». Для определения двойственности звёзд надо идентифицировать их основные характеристики. Для этого необходимо хорошее оборудование. Иногда бывает сложно определить двойные звёзды. Например, визуально-двойные звёзды не всегда можно увидеть на большом удалении от наблюдателя. Иногда угловое расстояние между компонентами не фиксируется телескопом. Для того чтобы зафиксировать фотометрические и спектрально-двойственные звёзды, их блеск должен быть достаточно сильным для сбора модуляций светового потока и тщательного измерения длины волн в спектральных линиях.

Число звёзд, подходящих по всем параметрам для исследований, не так велико. По данным теоретических разработок, можно предположить, что двойные звёзды составляют от 30% до 70% звёздного населения.

НОВЫЕ ЗВЁДЫ.

Переменные взрывные звёзды состоят из белого карлика и звезды Главной последовательности, как Солнце, или постпоследовательности, как красный гигант. Обе звезды следуют по узкой орбите с периодичностью в несколько часов. Они находятся на близком расстоянии друг от друга, в связи с чем они тесно взаимодействуют и вызывают эффектные явления.

С середины XIX века учёные фиксируют на оптической полосе переменных взрывных звёзд преобладание фиолетового цвета в определённое время, это явление совпадает с наличием пиков на кривой блеска. По этому принципу звёзды разделили на несколько групп.

Классические новые звёзды.

Классические новые звёзды отличаются от переменных взрывных тем, что их оптические вспышки не имеют повторяющегося характера. Амплитуда кривой их блеска выражена чётче, и подъём к максимальной точке происходит значительно быстрее. Обычно они достигают максимального блеска за несколько часов, за этот период времени новая звезда приобретает звёздную величину равную примерно 12, то есть световой поток увеличивается на 60000 единиц.

Чем медленнее происходит процесс подъёма к максимуму, тем менее заметно и изменение блеска. Новая звезда недолго остаётся в положении «максимум», обычно этот период занимает время от нескольких дней до нескольких месяцев. Затем блеск начинает уменьшаться, сначала быстро, затем медленнее до обычного уровня. Длительность этой фазы зависит от разных обстоятельств, но её продолжительность составляет не менее нескольких лет.

У новых классических звёзд все эти явления сопровождаются неконтролируемыми термоядерными реакциями, происходящими в поверхностных слоях белого карлика, именно там находится «позаимствованный» водород от второго компонента звезды. Новые звёзды всегда двойные, один из компонентов обязательно – белый карлик. Когда масса компонента звезды перетекает к белому карлику, слой водорода начинает сжиматься и разогревается, соответственно температура повышается, гелий разогревается. Всё это происходит быстро, резко, в результате имеет место вспышка. Излучающая поверхность увеличивается, блеск звезды становится ярким, на кривой блеска фиксируется всплеск.

Во время активной фазы вспышки новая звезда достигает максимального блеска. Максимальная абсолютная звёздная величина составляет порядка от -6 до -9. у новых звёзд эта цифра достигается медленнее, у переменных взрывных звёзд – быстрее.

Новые звёзды существуют и в других галактиках. Но то, что мы наблюдаем, это лишь их видимая звёздная величина, абсолютную определить нельзя, так как неизвестно их точное расстояние до Земли. Хотя в принципе можно узнать абсолютную звёздную величину новой, если она находится в максимальной близости от другой новой звезды, расстояние до которой известно. Максимальная абсолютная величина высчитывается по уравнению:

M=-10.9+2.3log (t).

t – это время, за которое кривая блеска новой звезды падает до 3 звёздных величин.

Карликовые новые звёзды и повторяющиеся новые.

Ближайшими родственниками новых звёзд являются карликовые новые звёзды, их прототип «U Близнецов». Их оптические вспышки практически аналогичны вспышкам новых звёзд, но имеются различия в кривых блесках: их амплитуды меньше. Отмечаются различия и в повторяемости вспышек – у новых карликовых звёзд они случаются более или менее регулярно. В среднем раз в 120 дней, но иногда и через несколько лет. Оптические вспышки новых длятся от нескольких часов до нескольких дней, после чего за несколько недель блеск уменьшается и, наконец, достигает обычного уровня.

Существующую разницу можно объяснить различными физическими механизмами, провоцирующими оптическую вспышку. В «U Близнецов» вспышки происходят из-за внезапного изменения процентного соотношения материи на белом карлике – её увеличения. В результате имеет место огромный выброс энергии. Наблюдения за карликовыми новыми звёздами в фазе затмения, то есть когда белый карлик и диск, окружающий его, закрываются звездой – компонентом системы, точно свидетельствуют о том, что именно белый карлик, вернее, его диск является источником света.

Повторяющиеся новые звёзды представляют собой нечто среднее между классическими новыми и карликовыми новыми звёздами. Как следует из названия, их оптические вспышки повторяются регулярно, что роднит их с новыми карликовыми звёздами, но происходит это через несколько десятков лет. Усиление блеска во время вспышки более выражено и составляет около 8 звёздных величин, эта черта приближает их к классическим новым звёздам.

РАССЕЯНЫЕ ЗВЁЗДНЫЕ СКОПЛЕНИЯ.

Рассеянные звёздные скопления найти несложно. Их называют галактическими скоплениями. Речь идёт об образованиях, включающих от нескольких десятков до нескольких тысяч звёзд, большая часть которых видна невооружённым глазом. Звёздные скопления предстают перед наблюдателем как участок неба, густо усеянный звёздами. Как правило, такие области концентрации звёзд хорошо заметны на небе, но бывает, причём довольно редко, что скопление практически неразличимо. Для того чтобы определить, является какой-либо участок неба звёздным скоплением или речь идёт о звёздах, просто близко расположенных друг к другу, следует изучить их движение и определить расстояние до Земли. Звёзды, составляющие скопления, движутся в одном направлении. Кроме того, если звезды, находящиеся не далеко друг от друга, расположены на одинаковом расстоянии от Солнечной системы, они, конечно, связаны между собой силами притяжения и составляют рассеянное скопление.

Классификация звёздных скоплений.

Протяжённость этих звёздных систем варьируется от 6 до 30 световых лет, средняя протяжённость составляет примерно двенадцать световых лет. Внутри звёздных скоплений звёзды сконцентрированы хаотично, бессистемно. Скопление не имеет чётко выраженной формы. При классификации звёздных скоплений следует принимать во внимание угловые измерения, приблизительное общее количество звёзд, степень их концентрации в скоплении и разницу в блеске.

В 1930 году американский астроном Роберт Трамплер предложил классифицировать скопления по следующим параметрам. Все скопления подразделялись на четыре класса по принципу концентрации звёзд и обозначались римскими цифрами от I до IV. Каждый из четырёх классов делится на три подкласса по однородности блеска звёзд. К первому подклассу относятся скопления, в которых звёзды имеют примерно одну степень светимости, к третьему – с существенной разницей в этом плане. Затем американский астроном ввёл ещё три категории классификации звёздных скоплений по числу звёзд, входящих в скопление. К первой категории «p» относятся системы, в которых менее 50 звёзд. Ко второй «m» — скопление, имеющие от 50 до 100 звёзд. К третьей – имеющие более 100 звёзд. Например, в соответствии с этой классификацией, звёздное скопление, обозначенное в каталоге как «I 3p», представляет собой систему, состоящую менее чем из 50 звёзд, густо сконцентрированных в небе и обладающих разной степенью блеска.

Однородность звёзд.

Все звёзды, относящиеся к какому-либо рассеянному звёздному скоплению, имеют характерную черту – однородность. Это значит, что они образовались из одного и того же газового облака и сначала существования имеют одинаковый химический состав. Кроме того, есть предположение, что все они появились в одно время, то есть имеют одинаковый возраст. Существующие между ними различия можно объяснить разным ходом развития, а это определяется массой звезды с момента её образования. Учёным известно, что крупные звёзды имеют меньший срок существования по сравнения с малыми звёздами. Крупные эволюционируют значительно быстрее. В основном рассеянные звёздные скопления представляют собой небесные системы, состоящие из относительно молодых звёзд. Этот вид звёздных скоплений дислоцируется в основном в спиральных ветвях Млечного Пути. Именно эти участки являлись в недавнем прошлом активными зонами звёздообразования. Исключения составляют скопления NGC 2244, NGC 2264 и NGC6530, их возраст равен нескольким десяткам миллионов лет. Это небольшой срок для звёзд.

Возраст и химический состав.

Звёзды рассеянных звёздных скоплений связаны между собой силой притяжения. Но из-за того, что эта связь недостаточно крепкая, рассеянные скопления могут распадаться. Это происходит за длительное время. Процесс расформирования связан с влиянием гравитации одиночных звёзд, расположенных недалеко от скопления.

Старых звёзд в составе рассеянных звёздных скоплений практически нет. Хотя имеются исключения. В первую очередь это относится к крупным скоплениям, в которых связь между звёздами значительно сильнее. Соответственно, и возраст таких систем больше. Среди них можно отметить NGC 6791. В состав этого звёздного скопления входят примерно 10000 звёзд, его возраст составляет около 10 миллиардов лет. Орбиты крупных звёздных скоплений уносят их на длительный период времени далеко от плоскости галактики. Соответственно, у них меньше возможностей встретиться с большими молекулярными облаками, что могло бы повлечь за собой расформирование звёздного скопления.

Звёзды рассеянных звёздных скоплений сходны по химическому составу с Солнцем и другими звёздами галактического диска. Разница в химическом составе зависит от расстояния от центра Галактики. Чем дальше от центра расположено звёздное скопление, тем меньше элементов из группы металлов оно содержит. Химический состав также зависит от возраста звёздного скопления. Это относится и к одиночным звёздам.

ШАРОВЫЕ ЗВЁЗДНЫЕ СКОПЛЕНИЯ.

Шаровые звёздные скопления, насчитывающие сотни тысяч звёзд, имеют очень необычный вид: у них сферическая форма, и звёзды концентрируются в них настолько плотно, что даже с помощью мощнейших телескопов невозможно различить одиночные объекты. Отмечается сильная концентрация звёзд к центру.

Исследования шаровых скоплений имеет важное значение в астрофизике в плане изучения эволюции звёзд, процесса формирования галактик, изучения структуры нашей Галактики и определения возраста Вселенной.

Форма Млечного Пути.

Учёные установили, что шаровые скопления образовались на начальном этапе формирования нашей Галактики – протогалактический газ имел сферическую форму. Во время гравитационного взаимодействия до завершения сжатия, что привело к образованию диска, за его пределами оказались сгустки материи, газа и пыли. Именно из них образовались шаровые звёздные скопления. Причём они сформировались до появления диска и остались там же, где и образовались. Они имеют сферическую структуру, гало, вокруг которого позже расположилась плоскость галактики. Вот почему шаровые скопления дислоцируются симметрично в Млечном Пути.

Изучение проблемы расположения шаровых скоплений, а также проведённые измерения расстояния от них до Солнца, позволили определить их протяжённость нашей Галактики до центра – оно составляет 30000 световых лет.

Шаровые звёздные скопления по времени происхождения очень старые. Их возраст составляет 10-20 миллиардов лет. Они представляют собой важнейший элемент Вселенной, и, несомненно, знания об этих образованиях окажут немалую помощь в объяснении явлений Вселенной. По мнению учёных, возраст этих звёздных скоплений идентичен возрасту нашей Галактики, а так как все галактики сформировались примерно в одно время, значит, можно определить и возраст Вселенной. Для этого к возрасту шаровых звёздных скоплений следует прибавить время от появления Вселенной до начала образования галактик. По сравнению с возрастом шаровых звёздных скоплений это совсем небольшой отрезок времени.

Внутри ядер шаровых скоплений.

Для центральных областей этого вида скоплений характерна высокая степень концентрации звёзд, примерно в тысячи раз больше, чем в ближайших к Солнцу зонах. Только за последнее десятилетие стало возможным рассмотреть ядра шаровых звёздных скоплений, вернее, те небесные объекты, которые находятся в самом центре. Это имеет большое значение в области изучения динамики входящих в ядро звёзд, в плане получения информации о системах небесных тел, связанных силами притяжения, — звёздные скопления относятся именно к этой категории, — а также в плане изучения взаимодействия между звёздами скоплений посредством наблюдений или обработки данных на компьютере.

Из-за высокой степени концентрации звёзд происходят самые настоящие столкновения, формируются новые объекты, например звёзды, имеющие свои особенности. Могут появляться и двойные системы, это случается, когда столкновение двух звёзд не приводит к их разрушению, а происходит взаимозахват из-за гравитации.

Семейства шаровых звёздных скоплений.

Шаровые звёздные скопления нашей Галактики представляют собой неоднородные образования. Различают четыре динамичных семейства по принципу удаления от центра Галактики и по химическому составу. Некоторые шаровые скопления имеют больше химических элементов группы металлов, другие – меньше. Степень наличия металлов зависит от химического состава межзвёздной среды, из которой небесные объекты образовались. Шаровые скопления с меньшим количеством металлов – более старые, они располагаются в гало Галактики. Больший состав металла характерен для более молодых звёзд, они сформировались из среды, уже обогащённой металлами вследствие вспышек сверхновых звёзд, — к этому семейству относятся «дисковые скопления», находящиеся на галактическом диске.

В гало находятся «звёздные скопления внутренней части гало» и «звёздные скопления внешней части гало». Имеются и «звёздные скопления периферической части гало», расстояние от которых до центра Галактики наибольшее.

Влияние окружающей среды.

Звёздные скопления изучаются и подразделяются на семейства не ради классификации как самоцели. Классификация играет большую роль и при исследовании влияния окружающей звёздные скопления среды на его эволюцию. В данном случае речь идёт о нашей Галактике.

Несомненно, на звёздное скопление оказывает огромное влияние гравитационное поле диска Галактики. Шаровые звёздные скопления двигаются вокруг галактического центра по эллиптическим орбитам и периодически пересекают диск Галактики. Это происходит раз примерно в 100 миллионов лет.

Гравитационное поле и приливные выступы, исходящие от галактической плоскости, настолько интенсивно действуют на звёздное скопление, что оно постепенно начинает распадаться. Учёные полагают, что некоторые старые звёзды, в настоящее время дислоцирующиеся в Галактике, некогда входили в состав шаровых звёздных скоплений. Сейчас они уже разрушились. Считается, что за миллиард лет распадаются примерно 5 звёздных скоплений. Это пример влияния галактической окружающей среды на динамичную эволюцию шарового звёздного скопления.

Под действием гравитационного влияния галактического диска на звёздное скопление происходит и изменение протяжённости скопления. Речь идёт о звёздах, расположенных далеко от центра скопления, на них в большей степени воздействует сила притяжения галактического диска, а не самого звёздного скопления. Происходит «испарение» звёзд, размеры скопления уменьшаются.

СВЕРХНОВЫЕ ЗВЁЗДЫ.

Звёзды тоже рождаются, растут и умирают. Их конец может быть медленным и постепенным или резким и катастрофическим. Это характерно для звёзд очень крупных размеров, которые заканчивают существование вспышкой, это сверхновые звёзды.

Открытие сверхновых звёзд.

В течение веков сущность сверхновых звёзд была неизвестна учёным, но наблюдения за ними велись с незапамятных времён. Многие сверхновые звёзды настолько ярки, что их можно рассмотреть невооружённым глазом, причём иногда даже днём. Первые упоминания об этих звёздах появились в античных хрониках в 185 г. н.э. Впоследствии их наблюдали регулярно и скрупулёзно фиксировали все данные. Например, придворные астрономы императоров Древнего Китая зарегистрировали многие из открытых сверхновых звёзд через много лет.

Среди них следует отметить сверхновую звёзду, вспыхнувшую в 1054 г. н.э. в созвездии Тельца. Остаток этой сверхновой звезды носит название «Крабовидная туманность», из-за характерной формы. Систематические наблюдения за сверхновыми звёздами западные астрономы начали вести поздно. Только к концу XVI в. появились упоминания о них в научных документах. Первые наблюдения за сверхновыми звёздами силами европейских астрономов относятся к 1575 г. и 1604 г. В 1885 г. была открыта первая сверхновая звезда в галактике Андромеды. Сделала это баронесса Берта де Подманицкая.

С 20-х годов XX в. благодаря изобретению фотопластин открытия сверхновых следуют одно за другим. В настоящее время их открыто до тысячи. Поиск сверхновых требует большого терпения и постоянного наблюдения за небом. Звезда должна быть не просто очень яркой, её поведение должно быть необычным и непредсказуемым. «Охотников» за сверхновыми не так много, чуть более десяти астрономов могут похвалиться тем, что за свою жизнь открыли более 20 сверхновых. Пальма первенства в такой интересной классификации принадлежит Фреду Цвики – с 1936 г. он идентифицировал 123 звезды.

Что такое сверхновые звёзды?

Сверхновые звёзды – внезапно вспыхивающие звёзды. Эта вспышка – катастрофическое событие, конец эволюции звёзд крупных размеров. Во время вспышек мощность излучения достигает 1051 эрг, что сопоставимо с энергией, испускаемой звездой на протяжении всей своей жизни. Механизмы, вызывающие вспышки у двойных и одиночных звёзд, различны.

В первом случае вспышка происходит при условии, что вторая звезда в двойной системе – белый карлик. Белые карлики – относительно небольшие звёзды, их масса соответствует массе Солнца, в конце «жизненного пути» они имеют размеры планеты. Белый карлик взаимодействует со своей парой в гравитационном плане, он «ворует» вещество из её поверхностных слоёв. «Позаимствованное» вещество разогревается, начинаются ядерные реакции, происходит вспышка.

Во втором случае вспыхивает сама звезда, это происходит, когда в её недрах больше нет условий для термоядерных реакций. На этой стадии преобладает гравитация, и звезда начинает сжиматься быстрыми темпами. Из-за резкого разогревания в результате сжатия в ядре звезды начинают происходить неуправляемые ядерные реакции, энергия высвобождается в виде вспышки, вызывая разрушение звезды.

После вспышки остаётся облако газа, оно распространяется в пространстве. Это «остатки сверхновой» — то, что остаётся от поверхностных слоёв взорвавшейся звезды. Морфология остатков сверхновой различна и зависит от условий, в которых произошла вспышка звезды-«прародительницы», и от её характерных внутренних черт. Распространение облака происходит неодинаково по разным направлениям, что связано с взаимодействием с межзвёздным газом, он может значительно изменить форму облака за тысячи лет.

Характеристика сверхновых.

Сверхновые представляют собой вариацию эруптивных переменных звёзд. Как все переменные, сверхновые звёзды характеризуются кривой блеска и легко узнаваемыми признаками. Прежде всего, для сверхновой характерно быстрое увеличение блеска, оно длится несколько дней, пока не достигнет максимума, — этот период составляет примерно десять дней. Затем блеск начинает уменьшаться – сначала бессистемно, затем последовательно. Изучая кривую блеска, можно проследить динамику вспышки и изучить её эволюцию. Часть кривой блеска от начала подъёма до максимума соответствует вспышке звезды, последующий спуск означает распространение и охлаждение газовой оболочки.

БЕЛЫЕ КАРЛИКИ.

В «звёздном зоопарке» существует великое множество звёзд, разных по размерам, цвету и блеску. Среди них особенно впечатляют «мёртвые» звёзды, их внутренняя структура значительно отличается от структуры обычных звёзд. К категории мёртвых звёзд относятся звёзды крупных размеров, белые карлики, нейтронные звёзды и чёрные дыры. Из-за высокой плотности этих звёзд их относят к категории «кризисных».

Открытие.

Вначале сущность белых карликов представляла собой полную загадку, было известно только то, что они по сравнению с обычными звёздами имеют высокую плотность.

Первым открытым и изучаемым белым карликом был Сириус B, пара Сириуса – очень яркой звезды. Применив третий закон Кеплера, астрономы вычислили массу Сириуса B: 0,75-0,95 солнечной массы. С другой стороны, его блеск был значительно ниже солнечного. Блеск звезды связан с квадратом радиуса. Проанализировав цифры, астрономы пришли к выводу, что размеры Сириуса небольшие. В 1914 году составили звёздный спектр Сириуса B, определили температуру. Зная температуру и блеск, вычислили радиус – 18800 километров.

Первые исследования.

Полученный результат ознаменовал открытие нового класса звёзд. В 1925 году Адамс измерил длину волны некоторых линий излучения в спектре Сириуса B и определил, что она больше, чем предполагалось. Красное смещение вписывается в рамки теории относительности, за несколько лет до происходящих событий открытой Эйнштейном. Применяя теорию относительности, Адамс смог вычислить радиус звезды. После открытия ещё двух похожих на Сириус B звёзд Артур Эддингтон сделал вывод, что во Вселенной таких звёзд много.

Итак, существование карликов было установлено, но их природа по-прежнему оставалась тайной. В частности, учёные никак не могли понять, каким образом масса, похожая на солнечную, может умещаться в таком маленьком по объёму теле. Эддингтон приходит к выводу, что «при такой высокой плотности газ теряет свои свойства. Вероятнее всего, белые карлики состоят из вырожденного газа».

Сущность белых карликов.

В августе 1926 года Энрико Ферми и Поль Дирак разработали теорию, описывающую состояние газа в условиях очень высокой плотности. Используя её, Фаулер в этом же году нашёл объяснение устойчивой структуры белых карликов. По его мнению, из-за большой плотности, газ в недрах белого карлика находится в вырожденном состоянии, причём давление газа практически не зависит от температуры. Устойчивость белого карлика поддерживается тем, что силе тяготения противостоит давление газа в недрах карлика. Изучение белых карликов продолжил индийский физик Чандрасекар.

В одной из своих работ, опубликованной в 1931 году, он делает важное открытие – масса белых карликов не может превышать определённый лимит, это связанно с их химическим составом. Этот лимит составляет 1,4 массы Солнца и носит название «лимит Чандрасекара» в честь учёного.

Почти тонна в см3 !

Как и следует из названия, белые карлики являются звёздами малых размеров. Даже если их масса равна массе Солнца, всё равно по размерам они похожи на планету типа Земля. Их радиус равен примерно 6000 км – 1/100 от радиуса Солнца. Учитывая массу белых карликов и их размеры, можно сделать только один вывод – их плотность очень высока. Кубический сантиметр материи белого карлика весит почти тонну по земным меркам.

Столь высокая плотность приводит к тому, что гравитационное поле звезды очень сильное – примерно в 100 раз превышает солнечное, причём при одинаковой массе.

Основные характеристики.

Хотя в ядре белых карликов больше не происходят ядерные реакции, его температура очень высока. Тепло устремляется к поверхности звезды, а затем распространяется в космическом пространстве. Сами звёзды медленно остывают до тех пор, пока не становятся невидимыми. Поверхностная температура «молодых» белых карликов составляет порядка 20000-30000 градусов. Белые карлики бывают не только белого цвета, есть и жёлтые. Несмотря на высокую температуру поверхности, из-за небольших размеров светимость низкая, абсолютная звёздная величина может составлять 12-16. Белые карлики остывают очень медленно, поэтому мы видим их в таких больших количествах. Учёные имеют возможность изучать их основные характеристики. Белые карлики включены в диаграмму Г-Р, они занимают немного места под Главной последовательностью.

НЕЙТРОННЫЕ ЗВЁЗДЫ И ПУЛЬСАРЫ.

Название «пульсар» происходит от английского сочетания «pulsating star» — «пульсирующая звезда». Характерной особенностью пульсаров в отличие от других звёзд является не постоянное излучение, а регулярное импульсное радиоизлучение. Импульсы очень быстрые, продолжительность одного импульса длится от тысячных долей секунды до, максимально, нескольких секунд. Форма импульса и периоды у разных пульсаров неодинаковы. Из-за строгой периодичности радиоизлучения пульсары можно рассматривать как космические хронометры. Со временем периоды уменьшаются до 10-14 s/s. Каждую секунду период меняется на 10-14 секунды, то есть уменьшение происходит около 3 миллионов лет.

Регулярные сигналы.

История открытия пульсаров довольно интересна. Первый пульсар PSR 1919+21 был зафиксирован в 1967 году Беллом и Энтони Хьюшем из Кембриджского университета. Белл, молодой физик, проводил исследования в области радиоастрономии для подтверждения выдвинутых им тезисов. Вдруг он обнаружил радиосигнал умеренной интенсивности в области, близкой к галактической плоскости. Странность заключалась в том, что сигнал был прерывающимся – он исчезал и возникал вновь через регулярные интервалы в 1,377 сек. Говорят, что Белл бегом отправился к своему профессору, чтобы известить его об открытии, но последний не придал этому должного внимания, полагая, что речь идёт о радиосигнале с Земли.

Тем не менее сигнал продолжал проявляться независимо от земной радиоактивности. Это свидетельствовало о том, что источник его появления до сих пор не был установлен. Как только были опубликованы данные о состоявшемся открытии, возникли многочисленные предположения о том, что сигналы идут от призрачной внеземной цивилизации. Но учёные смогли понять сущность пульсаров без помощи инопланетных миров.

Сущность пульсаров.

После первого было открыто ещё много пульсаров. Астрономы пришли к выводу, что эти небесные тела относятся к источникам импульсного излучения. Наиболее многочисленными объектами Вселенной являются звёзды, поэтому учёные решили, что эти небесные тела, скорее всего, относятся к классу звёзд.

Быстрое движение звезды вокруг своей оси является, скорее всего, причиной пульсаций. Учёные измерили периоды и попытались определить сущность этих небесных тел. Если тело вращается со скоростью, превышающей некую максимальную скорость, оно распадается под воздействием центробежных сил. Значит, должна существовать минимальная величина периода вращения.

Из проведённых расчётов следовало, что для вращения звезды с периодом, измеряемым тысячными долями секунды, её плотность должна составлять порядка 1014 г/см3, как у ядер атомов. Для наглядности можно привести такой пример – представьте массу, равную Эвересту, в объёме кусочка сахара.

Нейтронные звёзды.

С тридцатых годов учёные предполагали, что в небе существует нечто подобное. Нейтронные звёзды – очень маленькие, сверхплотные небесные тела. Их масса примерно равна 1,5 массы Солнца, сконцентрированной в радиусе примерно в 10 км.

Нейтронные звёзды состоят в основном из нейтронов – частиц, лишённых электрического заряда, которые вместе с протонами составляют ядро атома. Из-за высокой температуры в недрах звезды вещество ионизировано, электроны существуют отдельно от ядер. При столь высокой плотности все ядра распадаются на составляющие их нейтроны и протоны. Нейтронные звёзды представляют собой конечный результат эволюции звезды крупной массы. После исчерпания источников термоядерной энергии в её недрах, она резко взрывается, как сверхновая. Внешние слои звезды сбрасываются в пространство, в ядре происходит гравитационный коллапс, образуется горячая нейтронная звезда. Процесс коллапса занимает доли секунды. В результате коллапса она начинает вращаться очень быстро, с периодами в тысячные доли секунды, что характерно для пульсара.

Излучение пульсаций.

В нейтронной звезде нет источников термоядерных реакций, т.е. они неактивны. Излучение пульсаций происходит не из недр звезды, а извне, из зон, окружающих поверхность звезды.

Магнитное поле нейтронных звёзд очень сильное, в миллионы раз превышающее магнитное поле Солнца, оно пресекает пространство, создавая магнитосферу.

Нейтронная звезда испускает в магнитосферу потоки электронов и позитронов, они вращаются со скоростью, близкой к скорости света. Магнитное поле оказывает влияние на движение этих элементарных частиц, они движутся вдоль силовых линий, следуя спиралевидной траектории. Таким образом, происходит выделение ими кинетической энергии в форме электромагнитного излучения.

Период вращения увеличивается из-за уменьшения вращательной энергии. У старых пульсаров период пульсаций более длительный. Кстати, не всегда период пульсаций является строго периодичным. Иногда он резко замедляется, это связано с феноменами, носящими название «glitches», — это результат «микрозвездотрясений».

ЧЁРНЫЕ ДЫРЫ.

Изображение небесного свода поражает разнообразием форм и цветов небесных тел. Чего только нет во Вселенной: звёзды любых цветов и размеров, спиральные галактики, туманности необычных форм и цветовых гамм. Но в этом «космическом зоопарке» есть «экземпляры», возбуждающие особый интерес. Это ещё более загадочные небесные тела, так как за ними трудно наблюдать. Кроме того, их природа до конца не выяснена. Среди них особое место принадлежит «чёрным дырам».

Скорость движения.

В обыденной речи выражение «чёрная дыра» означает нечто бездонное, куда вещь проваливается, и никто никогда не узнает, что произошло с ней в дальнейшем. Что же представляют собой чёрные дыры в действительности? Чтобы понять это, вернёмся в историю на два века назад. В XVIII век французский математик Пьер Симон де Лаплас ввёл впервые этот термин при изучении теории гравитации. Как известно, любое тело, имеющее определённую массу – Земля, например, — имеет и гравитационное поле, оно притягивает к себе окружающие тела.

Вот почему подброшенный вверх предмет падает на Землю. Если этот же предмет с силой бросить вперёд, он преодолеет на какое-то время притяжение Земли и пролетит какое-то расстояние. Минимальная необходимая скорость называется «скорость движения», у Земли она составляет 11 км/с. Скорость движения зависит от плотности небесного тела, которая создаёт гравитационное поле. Чем больше плотность, тем больше должна быть скорость. Соответственно, можно выдвинуть предположение, как это сделал два столетия назад Лаплас, что во Вселенной существуют тела с такой высокой плотностью, что скорость их движения превышает скорость света, то есть 300000 км/с.

В этом случае даже свет мог бы поддаться силе притяжения подобного тела. Подобное тело не могло бы излучать свет, и в связи с этим оно оставалось бы невидимым. Мы можем представить его как огромную дыру, на рисунке – чёрного цвета. Несомненно, теория, сформулированная Лапласом, несёт не себе отпечаток времени и представляется слишком упрощённой. Впрочем, во времена Лапласа ещё не была сформулирована квантовая теория, и с концептуальной точки зрения рассмотрение света как материального тела казалось нонсенсом. В самом начале XX века с появлением и развитием квантовой механики стало известно, что свет в некоторых условиях выступает и как материальное излучение.

Это положение получило развитие в теории относительности Альберта Эйнштейна, опубликованной в 1915 году, и в работах немецкого физика Карла Шварцшильда в 1916 году, он подвёл математическую базу под теорию о чёрных дырах. Свет тоже может быть подвержен действию силы притяжения. Два столетия назад Лаплас затронул очень важную проблему в плане развития физики как науки.

Как появляются чёрные дыры?

Явления, о которых мы говорим, получили название «чёрные дыры» в 1967 году благодаря американскому астрофизику Джону Уиллеру. Они являются конечным результатом эволюции крупных звёзд, масса которых выше пяти солнечных масс. Когда все резервы ядерного горючего исчерпаны и реакции больше не происходят, наступает смерть звезды. Далее её судьба зависит от её массы.

Если масса звезды меньше массы солнца, она продолжает сжиматься, пока не погаснет. Если масса значительна, звезды взрывается, тогда речь идёт о сверхновой звезде. Звезда оставляет после себя следы, — когда в ядре происходит гравитационный коллапс, вся масса собирается в шар компактных размеров с очень высокой плотность – в 10000 раз больше, чем у ядра атома.

Относительные эффекты.

Для учёных чёрные дыры являются великолепной естественной лабораторией, позволяющей проводить опыты по различным гипотезам в плане теоретической физики. Согласно теории относительности Эйнштейна, на законы физики оказывает воздействие локального поля притяжения. В принципе, время течёт по-разному рядом с гравитационными полями разной интенсивности.

Кроме того, чёрная дыра воздействует не только на время, но и на окружающее пространство, влияя на его структуру. Согласно теории относительности, присутствие сильного гравитационного поля, возникшего от такого мощного небесного тела, как чёрная дыра, искажает структуру окружающего пространства, и его геометрические данные изменяются. Это значит, что около чёрной дыры короткое расстояние, соединяющее две точки, будет не прямой линией, а кривой.

www.ronl.ru

Реферат на тему: Звёзды

Содержание:

Качественные характеристики звезд

Светимость

Температура

Спектры звезд

Химический состав звезд

Радиус звезд

Масса звезд

Диаграмма Герцшпрунга — Ресселла

Звезды — ядерные реакторы

Рождение звезд

Эволюция звезд

Конец звезды

Белые карлики

Черные карлики

Нейтронные звезды

Пульсары

Сверхновые

Черные дыры *

Список литературы

Качественные характеристики звезд 

Светимость

Светимость звезды L часто выражается в единицах светимости Солнца, которая равна 4*1^33 эрг/с. По своей светимости звезды очень сильно различаются. Есть звезды белые и голубые сверхгиганты (их, правда, сравнительно немного) , светимости которых превосходят светимость Солнца в десятки и даже сотни тысяч раз. Но большинство звезд составляют "карлики", светимости которых значительно меньше солнечной, зачастую в тысячи раз. Характеристикой светимости является так называемая "абсолютная величина" звезды. Видимая звездная величина зависит, с одной стороны, от ее светимости и цвета, с другой — от расстояния до нее. Звезды высокой светимость имеют отрицательные абсолютные величины, например -4, -6. Звезды низкой светимости характеризуются большими положительными значениями, например +8, +10.

Температура

Температура определяет цвет звезды и ее спектр. Так, например, если температура поверхности слоев звезд 3-4тыс. К., то ее цвет красноватый, 6-7 тыс. К. — желтоватый. Очень горячие звезды с температурой свыше 10-12 тыс. К. имеют белый или голубоватый цвет. В астрономии существуют вполне объективные методы измерения цвета звезд. Последний определяется так называемым "показателем цвета", равным разности фотографической и визуальной и визуальной звездной величины. Каждому значению показателя цвета соответствует определенный тип спектра.

У холодных красных звезд спектры характеризуются линиями поглощения нейтральных атомов металлов и полосами некоторых простейших соединений (например, CN, СП, Н20 и др.) . По мер увеличения температуры поверхности в спектрах звезд исчезают молекулярные полосы, слабеют многие линии нейтральных атомов, а также линии нейтрального гелия. Сам вид спектра радикально меняется. Например, у горячих звезд с температурой поверхностных слоев, превышающей 20 тыс. К, наблюдаются преимущественно линии нейтрального и ионизованного гелия, а непрерывный спектр очень интенсивен в ультрафиолетовой части. У звезд с температурой поверхностных слоев около 10 тыс. К наиболее интенсивны линии водорода, в то время как у звезд с температурой около 6 тыс. К. линии ионизированного кальция, расположенные на границе видимой и ультрафиолетовой части спектра. Заметим, что такой вид I имеет спектр нашего Солнца.

Спектры звезд

Исключительно богатую информацию дает изучение спектров звезд. Уже давно спектры подавляющего большинства звезд разделены на классы. Последовательность спектральных классов обозначается буквами O, B, A, F, G, K, M. Существующая система классификации звездных спектров настолько точна, что позволяет определить спектр с точностью до одной десятой класса. Например, часть последовательности звездных спектров между классами B и А обозначается как В0, В1… В9, А0 и так далее. Спектр звезд в первом приближении похож на спектр излучающего "черного" тела с некоторой температурой Т. Эти температуры плавно меняются от 40-50 тысяч градусов у звезд спектрального класса О до 3000 градусов у звезд спектрального класса М. В соответствии с этим основная часть излучения звезд спектральных классов О и В приходиться на ультрафиолетовую часть спектра, недоступную для наблюдения с поверхности земли.

Характерной особенностью звездных спектров является еще наличие у них огромного количества линий поглощения, принадлежащих различным элементам. Тонкий анализ этих линий позволил получить особенно ценную информацию о природе наружных слоев звезд.

Химический состав звезд

Химический состав наружных слоев звезд, откуда к нам "непосредственно" приходит их излучение, характеризуется полным преобладанием водорода. На втором месте находится гелий, а обилие остальных элементов достаточно невелико. Приблизительно на каждые десять тысяч атомов водорода приходиться тысячи атомов гелия, около 10 атомов кислорода, немного меньше углерода и азота и всего лишь один атом железа. Обилие остальных элементов совершенно ничтожно. Без преувеличения можно сказать, что наружные слои звезд — это гигантские водородно-гелиевые плазмы с небольшой примесью более тяжелых элементов.

Хотя по числу атомов так называемые "тяжелые металлы" (т.е. элементы с атомной массой, большей, чем у гелия) занимают во Вселенной весьма скромное место, их роль очень велика. Прежде всего, они определяют характер эволюции звезд, т.к. непрозрачность звездных недр для излучений существенно зависит от ее непрозрачности.

Наличие во Вселенной (в частности в звездах) тяжелых элементов имеет важное значение. Совершенно очевидно, что живая субстанция может быть построена только при наличии тяжелых элементов и их соединений. Общеизвестна роль углерода в структуре живой материи. Не менее важны и другие элементы, например железо, фосфор. Царство живого — это сложнейшие сцепления тяжелых элементов. Мы можем, поэтому со всей определенностью сформулировать следующее положение: если бы не было тяжелых металлов, не было бы и жизни. Поэтому проблема химического состава космических объектов (звезд, туманностей, планет) имеет первостепенное значение для анализа условий возникновения жизни в тех или иных слоях Вселенной.

Радиус звезд

Энергия, испускаемая элементом поверхности звезды единичной площади в единицу времени, определяется законом Стефана-Больцмана. Поверхность звезды равна 4 R 2 . Отсюда светимость равна: Таким образом, если известны температура и светимость звезды, то мы можем вычислить ее радиус.

Масса звезд

В сущности говоря, астрономия не располагала и не располагает в настоящее время методом прямого и независимого определения массы (то есть не входящей в состав кратных систем) изолированной звезды. И это достаточно серьезный недостаток нашей науки о Вселенной. Если бы такой метод существовал, прогресс наших знаний был бы значительно более быстрым. Массы звезд изменяются в сравнительно узких пределах. Очень мало звезд, массы которых больше или меньше солнечной в 10 раз. В такой ситуации астрономы молчаливо принимают, что звезды с одинаковой светимостью и цветом имеют одинаковые массы. Они определяются только для двойных систем. Утверждение, что одиночная звезда с той же светимостью и цветом имеет такую же массу, как и ее "сестра", входящая в состав двойной системы, всегда следует принимать с некоторой осторожностью.

Считается, что объекты с массами меньшими 0,02 М уже не являются звездами. Они лишены внутренних источников энергии, и их светимость близка к нулю. Обычно эти объекты относят к планетам. Наибольшие непосредственно измеренные массы не превышают 60 М.

Диаграмма Герцшпрунга — Ресселла

Для понимания природы звезд важно выявить зависимости между их отдельными характеристиками. Такие связи находятся путем сопоставления соответствующих величин. Так, в начале XX в. датский астроном Э. Герцшпрунг и американский астрофизик Г. Ресселл установили одну из таких зависимостей и представили ее в виде диаграммы, носящей теперь их имена.

На горизонтальной оси диаграммы Герцшпрунга — Ресселла (диаграммы Г. — Р) откладывают температуру звезды, а на вертикальной — ее светимость в относительных единицах (по отношению к светимости Солнца). Каждой звезде на диаграмме отвечает вполне определенная точка. Обычно говорят, что место на диаграмме занимает звезда, а не соответствующая ей точка, и при обсуждении эволюции звезд пишут: “звезда движется по диаграмме”, подразумевая при этом, что в процессе эволюции звезды из-за изменения температуры и светимости звезды соответствующая ей точка на диаграмме Г. — Р. меняет свое положение.

Из этой диаграммы следует, что светимость звезды и ее спектральный класс связаны между собой определенной, хотя и не однозначной зависимостью. Большинство звезд расположено вдоль линии, идущей от горячих и ярких звезд к холодным и слабым (“тусклым”) звездам. Это и есть известная главная последовательность, а принадлежащие ей звезды — звездами главной последовательности. К этой последовательности принадлежит подавляющее большинство звезд, в том числе и наше Солнце (спектральный класс G2) . Главная последовательность в месте, отмеченном вертикальной чертой, делится на верхнюю и нижнюю части. Звезды нижней части главной последовательности называются желтыми или красными карликами (в зависимости от их температуры). Солнце — типичный желтый карлик.

Выше главной последовательности в области температур ниже 6000 К расположены звезды, образующие группу красных гигантов (их светимость порядка 10 2 —10 3 и радиус порядка 10—60 R) и группу красных сверхгигантов (L 10 L, R 200—300 R) . Звезды горячие (T ЗОООО К) и яркие (L 10 4 — 10 6 L, R 40 R) называются белыми сверхгигантами. Заметьте, что холодных и слабых звезд гораздо больше, чем горячих и ярких.

В левом нижнем углу диаграммы находятся белые карлики (T 10000 К, L 10- 4 L , R O, Ol R) .

Итак, мы видим, что светимость звезды и спектральный класс взаимосвязаны. Одна из первых задач теории — объяснить эту зависимость, найти физические явления, лежащие в ее основе. Как это сделала современная астрофизика, мы увидим позже. Здесь же только отметим, что сразу после построения этой диаграммы ей приписали эволюционное значение: предполагалось, что звезды эволюционируют вдоль главной последовательности от горячих и ярких звезд к холодным и слабым. Потом выяснилось, что эволюция звезд имеет более сложный характер, и до сих пор звезды, изображения которых находятся в левой верхней части диаграммы, называют "ранними", а звезды другого конца главной последовательности — "поздними".

Звезды — ядерные реакторы

В большинстве термоядерных реакций энергия освобождается при соединении четырех протонов в одно ядро гелия. Такое соединение протонов в ядро гелия может идти разными путями, но конечный результат будет один и тот же.

Опишем сначала протон-протонную реакцию.

Эта реакция начинается с таких столкновений между протонами, в результате которых получается ядро тяжелого водорода — дейтерия. Даже в условиях звездных недр это происходит очень редко. Как правило, столкновения между протонами являются упругими: после столкновения частицы просто разлетаются в разные стороны. Для того чтобы в результате столкновения два протона слились в одно ядро дейтерия, необходимо, чтобы при таком столкновении выполнялось два независимых условия. Во-первых, надо, чтобы у одного из сталкивающихся протонов кинетическая энергия раз в двадцать превосходила бы среднюю энергию тепловых движений при температуре звездных недр. Как уже говорилось выше, только одна стомиллионная часть протонов имеет такую относительно высокую энергию, необходимую для преодоления “кулоновского барьера” . Во-вторых, необходимо, чтобы за время столкновения один из двух протонов успел бы превратиться в нейтрон, испустив позитрон и нейтрино. Ибо только протон с нейтроном могут образовать ядро дейтерия! Заметим, что длительность столкновения всего лишь около 10 -21 секунды (оно порядка классического радиуса протона, поделенного на его скорость) . Если все это учесть, то получается, что каждый протон имеет реальные шансы превратиться таким способом в дейтерий только раз в несколько десятков миллиардов лет. Но так как протонов в недрах звезд достаточно много, такие реакции, и притом в нужном количестве, будут иметь место.

По-другому складывается судьба вновь образовавшихся ядер дейтерия. Они "жадно", всего лишь через несколько секунд, "заглатывают" какой-нибудь близкий протон, превращаясь в изотоп гелия 3 Не. После этого возможны три пути (ветви) ядерных реакций. Чаще всего изотоп гелия будет взаимодействовать с подобным себе ядром, в результате чего образуется ядро "обыкновенного" гелия и два протона. Так как концентрация изотопа Не чрезвычайно мала, это произойдет через несколько миллионов лет. Напишем теперь последовательность этих реакций и выделяющуюся при них энергию.

Здесь буква v означает нейтрино, а у — гамма-квант. Не вся освободившаяся в результате этой цепи реакций энергия передается звезде, так как часть энергии уносится нейтрино. С учетом этого обстоятельства энергия, выделяемая при образовании одного ядра гелия, равна 26,2 МэВ или 4,2 •10 -5 эрг.

Вторая ветвь протон-протонной реакции начинается с соединения ядра Не с ядром "обыкновенного" гелия 4 Не, после чего образуется ядро бериллия 7 Be. Ядро бериллия в свою очередь может захватить протон, после чего образуется ядро бора 8 В, или захватить электрон и превратиться в ядро лития. В первом случае образовавшийся радиоактивный изотоп 8 В претерпевает бета-распад: Заметим, что нейтрино, образовавшиеся при этой реакции, как раз и обнаружили при помощи уникальной, дорогостоящей установки. Радиоактивный бериллий Ве весьма неустойчив и быстро распадается на две альфа-частицы. Наконец, последняя, третья ветвь протон-протонной реакции включает в себя следующие звенья: 7 Ве после захвата электрона превращается в 7 li, который, захватив протон, превращается в неустойчивый изотоп 8 Be, распадающийся, как и во второй цепи, на две альфа-частицы.

Еще раз отметим, что подавляющее большинство реакций идет по первой цепи, но роль "побочных" цепей отнюдь не мала.

Перейдем теперь к рассмотрению углеродно-азотного цикла. Этот цикл состоит из шести реакций.

Поясним содержание этой таблицы. Протон, сталкиваясь с ядром углерода, превращается в радиоактивный изотоп азота 13 N. При этой реакции излучается -квант. Изотоп 13 N, претерпевая — распад с испусканием позитрона и нейтрино, превращается в изотоп углерода 13 С. Последний, сталкиваясь с протоном, превращается в обычное ядро азота 14 N. При этой реакции также испускается -квант. Далее, ядро азота сталкивается с протоном, после чего образуется радиоактивный изотоп кислорода 15 О и -квант. Затем этот изотоп путем -распада превращается в изотоп азота 15 N. Наконец, последний, присоединив к себе во время столкновения протон, распадается на обычный углерод и гелий. Вся цепь реакций представляет собой последовательное "утяжеление" ядра углерода путем присоединения протонов с последующими -распадами. Последним звеном этой цепи является восстановление первоначального ядра углерода и образование нового ядра гелия за счет четырех протонов, которые в разное время один за другим присоединились к 12 С и образующимся из него изотопам. Как видно, никакого изменения числа ядер 12 С в веществе, в котором протекает эта реакция, не происходит. Углерод служит здесь "катализатором" реакции.

Во втором столбце приводится энергия, выделяющаяся на каждом этапе углеродно-азотной реакции. Часть этой энергии выделяется в форме нейтрино, возникающих при распаде радиоактивных изотопов 13 N и 15 О. Нейтрино свободно выходят из звездных недр наружу, следовательно, их энергия не идет на нагрев вещества звезды. Например, при распаде 15 О энергия образующегося нейтрино составляет в среднем около 1 МэВ. Окончательно при образовании одного ядра гелия путем углеродно-азотной реакции выделяется (без учета нейтрино) 25 МэВ энергии, а нейтрино уносят около 5% этой величины.

В третьем столбце таблицы II приведены значения скорости различных звеньев углеродно-азотной реакции. Для — процессов это просто период полураспада. Значительно труднее определить скорость реакции, когда происходит утяжеление ядра путем присоединения протона. В этом случае надо знать вероятности проникновения протона через кулоновский барьер, а также вероятности соответствующих ядерных взаимодействий, так как само по себе проникновение протона в ядро еще не обеспечивает интересующего нас ядерного превращения. Вероятности ядерных реакций получаются из лабораторных экспериментов либо вычисляются теоретически. Для их надежного определения потребовались годы напряженной работы физиков-ядерщиков, как теоретиков, так и экспериментаторов. Числа в третьем столбце дают "время жизни" различных ядер для центральных областей звезды с температурой в 13 миллионов Кельвинов и плотностью водорода 100 г/см 3 . Например, для того чтобы при таких условиях ядро 12 С, захватив протон, превратилось в радиоактивный изотоп углерода, надо "подождать" 13 миллионов лет! Следовательно, для каждого "активного" (т.е. участвующего в цикле) ядра реакции протекают чрезвычайно медленно, но все дело в том, что ядер достаточно.

Основным источником энергии Солнца, температура центральных областей которого близка к 14 миллионам кельвинов, является протон- протонная реакция. Для более массивных, а следовательно, и более горячих звезд существенна углеродно-азотная реакция, зависимость которой от температуры значительно более сильная.

Непрерывно идущие в центральных областях звезд ядерные реакции “медленно, но верно” меняют химический состав звездных недр. Главная тенденция этой химической эволюции—превращение водорода в гелий. Помимо этого в процессе углеродно-азотного цикла меняется относительная концентрация различных изотопов углерода и азота до тех пор, пока не установится некоторое определенное равновесие. При таком равновесии количество реакций за единицу времени, приводящих к образованию какого-нибудь изотопа, равно количеству реакций, которые его "разрушают". Однако время установления такого равновесия может быть очень большим. А пока равновесие не установится, относительные концентрации различных изотопов могут меняться в самых широких пределах.

Ядерные процессы играют, как мы видели в этом параграфе, фундаментальную роль в длительной, спокойной эволюции звезд, находящихся на главной последовательности. Но, кроме того, их роль является определяющей при быстро протекающих нестационарных процессах взрывного характера, являющихся поворотными этапами в эволюции звезд. Наконец, даже, казалось бы, для такой в высшей степени тривиальной и очень "спокойной" звезды, какой является наше Солнце, ядерные реакции открывают возможность объяснения явлений, которые представляются очень далекими от ядерной физики.

Рождение звезд 

Современная астрономия располагает большим количеством аргументов в пользу утверждения, что звезды образуются путем конденсации облаков газово-пылевой межзвездной среды. Процесс образования звезд из этой среды продолжается и в настоящее время. Выяснение этого обстоятельства является одним из крупнейших достижений современной астрономии. Еще сравнительно недавно считали, что все звезды образовались почти одновременно много миллиардов лет назад. Крушению этих метафизических представлений способствовал, прежде всего, прогресс наблюдательной астрономии и развитие теории строения и эволюции звезд. В результате стало ясно, что многие наблюдаемые звезды являются сравнительно молодыми объектами, а некоторые из них возникли тогда, когда на Земле уже был человек.

Важным аргументом в пользу вывода о том, что звезды образуются из межзвездной газово-пылевой среды, служит расположение групп заведомо молодых звезд (так называемых “ассоциаций”) в спиральных ветвях Галактики. Дело в том, что согласно радиоастрономическим наблюдениям межзвездный газ концентрируется преимущественно в спиральных рукавах галактик. В частности, это имеет место и в нашей Галактике. Более того, из детальных “радио изображений” некоторых близких к нам галактик следует, что наибольшая плотность межзвездного газа наблюдается на внутренних (по отношению к центру соответствующей галактики) краях спирали, что находит естественное объяснение, на деталях которого мы здесь останавливаться не будем. Но именно в этих частях спиралей наблюдаются методами оптической астрономии “зоны Н Н”, т.е. облака ионизованного межзвездного газа. Причиной ионизации таких облаков может быть только ультрафиолетовое излучение массивных горячих звезд — объектов заведомо молодых.

Центральным в проблеме эволюции звезд является вопрос об источниках их энергии. В прошлом веке и в начале этого века предлагались различные гипотезы о природе источников энергии Солнца и звезд. Некоторые ученые, например, считали, что источником солнечной энергии является непрерывное выпадение на его поверхность метеоров, другие искали источник в непрерывном сжатии Солнца. Освобождающаяся при таком процессе потенциальная энергия могла бы, при некоторых условиях” перейти в излучение. Как мы увидим, ниже, этот источник на раннем этапе эволюции звезды может быть довольно эффективным, но он никак не может обеспечить излучение Солнца в течение требуемого времени.

Успехи ядерной физики позволили решить проблему источников звездной энергии еще в конце тридцатых годов нашего столетия. Таким источником являются термоядерные реакции синтеза, происходящие в недрах звезд при господствующей там очень высокой температуре (порядка десяти миллионов градусов) .

В результате этих реакций, скорость которых сильно зависит от температуры, протоны превращаются в ядра гелия, а освобождающаяся энергия медленно "просачивается" сквозь недра звезд и в конце концов, значительно трансформированная, излучается в мировое пространство. Это исключительно мощный источник. Если предположить, что первоначально Солнце состояло только из водорода, который в результате термоядерных реакций целиком превратится в гелий, то выделившееся количество энергии составит примерно 10 52 эрг. Таким образом, для поддержания излучения на наблюдаемом уровне в течение миллиардов лет достаточно, чтобы Солнце "израсходовало" не свыше 10% своего первоначального запаса водорода.

Теперь мы можем представить картину эволюции какой-нибудь звезды следующим образом. По некоторым причинам (их можно указать несколько) начало конденсироваться облако межзвездной газово-пылевой среды. Довольно скоро (разумеется, по астрономическим масштабам!) под влиянием сил всемирного тяготения из этого облака образуется сравнительно плотный непрозрачный газовый шар. Строго говоря, этот шар еще нельзя назвать звездой, так как в его центральных областях температура недостаточна для того, чтобы начались термоядерные реакции. Давление газа внутри шара не в состоянии пока уравновесить силы притяжения отдельных его частей, поэтому он будет непрерывно сжиматься. Некоторые астрономы раньше считали, что такие протозвезды наблюдаются в отдельных туманностях в виде очень темных компактных образований, так называемых глобул. Успехи радиоастрономии, однако, заставили отказаться от такой довольно наивной точки зрения. Обычно одновременно образуется не одна протозвезда, а более или менее многочисленная группа их. В дальнейшем эти группы становятся звездными ассоциациями и скоплениями, хорошо известными астрономам. Весьма вероятно, (что на этом самом раннем этапе эволюции звезды вокруг нее образуются сгустки с меньшей массой, которые затем постепенно превращаются в планеты.

При сжатии протозвезды температура ее повышается и значительная часть освобождающейся потенциальной энергии излучается в окружающее пространство. Так как размеры сжимающегося газового шара очень велики, то излучение с единицы его поверхности будет незначительным. Коль скоро поток излучения с единицы поверхности пропорционален четвертой степени температуры (закон Стефана — Больцмана), температура поверхностных слоев звезды сравнительно низка, между тем как ее светимость почти такая же, как у обычной звезды с той же массой. Поэтому на диаграмме "спектр — светимость" такие звезды расположатся вправо от главной последовательности, т.е. попадут в область красных гигантов или красных карликов, в зависимости от значений их первоначальных масс.

В дальнейшем протозвезда продолжает сжиматься. Ее размеры становятся меньше, а поверхностная температура растет вследствие чего спектр становится все более ранним. Таким образом, двигаясь по диаграмме "спектр — светимость", протозвезда довольно быстро "сядет" на главную последовательность. В этот период температура звездных недр уже оказывается достаточной для тою, чтобы там начались термоядерные реакции. При этом давление газа внутри будущей звезды уравновешивает притяжение и газовый шар перестает сжиматься. Протозвезда становится звездой.

Эволюция звезд

Чтобы пройти самую раннюю стадию своей эволюции, протозвездам нужно сравнительно немного времени. Если, например, масса протозвезды больше солнечной, нужно всего лишь несколько миллионов лет, если меньше — несколько сот миллионов лет. Так как время эволюции протозвезд сравнительно невелико, эту самую раннюю фазу развития звезды обнаружить трудно. Все же звезды в такой стадии, по-видимому, наблюдаются. Мы имеем в виду очень интересные звезды типа Т Тельца, обычно погруженные в темные туманности.

Б 5966 г. совершенно неожиданно выявилась возможность наблюдать протозвезды на ранних стадиях их эволюции. Велико же было удивление радиоастрономов, когда при обзоре неба на волне 18 см, соответствующей радиолинии ОН, были обнаружены яркие, чрезвычайно компактные (т.е. имеющие малые угловые размеры) источники. Это было настолько неожиданно, что первое время отказывались даже верить, что столь яркие радиолинии могут принадлежать молекуле гидроксила. Была высказана гипотеза, что эти линии принадлежат какой-то неизвестной субстанции, которой сразу же дали "подходящее" имя "мистериум". Однако "мистериум" очень скоро разделил судьбу своих оптических "братьев" — "небулия" и "короння". Дело в том, что многие десятилетия яркие линии туманностей и солнечной короны не поддавались отождествлению с какими бы то ни было известными спектральными линиями. Поэтому их приписывали неким, неизвестным на земле, гипотетическим элементам — "небулию" и "коронию". В 1939—1941 гг. было убедительно показано, что загадочные линии "корония" принадлежат многократно ионизованным атомам железа, никеля и кальция.

Если для "развенчания" "небулия" и "корония" потребовались десятилетия, то уже через несколько недель после открытия стало ясно, что линии "мистериума" принадлежат обыкновенному гидроксилу, но только находящемуся в необыкновенных условиях.

Итак, источники "мистериума" — это гигантские, природные космические мазеры, работающие на волне линии гидроксила, длина которой 18 см. Именно в мазерах (а на оптических и инфракрасных частотах — в лазерах) достигается огромная яркость в линии, причем спектральная ширина ее мала. Как известно, усиление излучения в линиях благодаря такому эффекту возможно тогда, когда среда, в которой распространяется излучение, каким-либо способом "активирована". Это означает, что некоторый "сторонний" источник энергии (так называемая "накачка") делает концентрацию атомов или молекул на исходном (верхнем) уровне аномально высокой. Без постоянно действующей "накачки" мазер или лазер невозможны. Вопрос о природе механизма "накачки" космических мазеров, пока еде окончательно не решен. Однако скорее всего "накачкой" служит достаточно мощное инфракрасное излучение. Другим возможным механизмом “накачки” могут быть некоторые химические реакции.

Механизм "накачки" этих мазеров пока еще не совсем ясен, все же можно составить себе грубое представление о физических условиях в облаках, излучающих мазерным механизмом линию 18 см. Прежде всего, оказывается, что эти облака довольно плотны: в кубическом сантиметре там имеется по крайней мере 10 8 —10 9 частиц, причем существенная (а может быть и большая) часть их — молекулы. Температура вряд ли превышает две тысячи градусов, скорее всего она порядка 1000 градусов. Эти свойства резко отличны от свойств даже самых плотных облаков межзвездного газа. Учитывая еще сравнительно небольшие размеры облаков, мы невольно приходим к выводу, что они скорее напоминают протяженные, довольно холодные атмосферы звезд — сверхгигантов. Очень похоже, что эти облака есть не что иное, как ранняя стадия развития протозвезд, следующая сразу за их конденсацией из межзвездной среды. В пользу этого утверждения (которое автор этой книги высказал еще в 1966 г.) говорят и другие факты. В туманностях, где наблюдаются космические мазеры, видны молодые горячие звезды. Следовательно, там недавно закончился и, скорее всего, продолжается и в настоящее время, процесс звездообразования. Пожалуй, самое любопытное это то, что, как показывают радиоастрономические наблюдения, космические мазеры этого типа как бы "погружены" в небольшие, очень плотные облака ионизованного водорода. В этих облаках имеется много космической пыли, что делает их ненаблюдаемыми в оптическом диапазоне. Такие "коконы" ионизуются молодой, горячей звездой, находящейся внутри них. При исследовании процессов звездообразования весьма полезной оказалась инфракрасная астрономия. Ведь для инфракрасных лучей межзвездное поглощение света не так существенно.

Мы можем теперь представить следующую картину: из облака межзвездной среды, путем его конденсации, образуются несколько сгустков разной массы, эволюционирующих в протозвезды. Скорость эволюции различна: для более массивных сгустков она будет больше. Поэтому раньше всего превратится в горячую звезду наиболее массивный сгусток, между тем как остальные будут более или менее долго задерживаться на стадии протозвезды. Их-то мы и наблюдаем как источники мазерного излучения в непосредственной близости от "новорожденной" горячей звезды, ионизующей не сконденсировавший в сгустки водород "кокона". Разумеется, эта грубая схема будет в дальнейшем уточняться, причем, конечно, в нее будут внесены существенные изменения. Но факт остается фактом: неожиданно оказалось, что некоторое время (скорее всего — сравнительно короткое) новорожденные протозвезды, образно выражаясь, "кричат" о своем появлении на свет, пользуясь новейшими методами квантовой радиофизики (т.е. мазерами) .

Оказавшись на главной последовательности и перестав сжигаться, звезда длительно излучает практически не меняя своего положения на диаграмме "спектр — светимость". Ее излучение поддерживается термоядерными реакциями, идущими в центральных областях. Таким образом, главная последовательность представляет собой как бы геометрическое место точек на диаграмме "спектр — светимость", где звезда (в зависимости от ее массы) может длительно и устойчиво излучать благодаря термоядерным реакциям. Место звезды на главной последовательности определяется ее массой. Следует заметить, что имеется еще один параметр, определяющий положение равновесной излучающей звезды на диаграмме "спектр- светимость". Таким параметром является первоначальный химический состав звезды. Если относительное содержание тяжелых элементов уменьшится, звезда "ляжет" на диаграмме ниже. Именно этим обстоятельством объясняется наличие последовательности субкарликов. Как уже говорилось выше, относительное содержание тяжелых элементов у этих звезд в десятки раз меньше, чем у звезд главной последовательности.

Время пребывания звезды на главной последовательности определяется ее первоначальной массой. Если масса велика, излучение звезды имеет огромную мощность и она довольно быстро расходует запасы своего водородного "горючего". Так, например, звезды главной последовательности с массой, превышающей солнечную в несколько десятков раз (это горячие голубые гиганты спектрального класса О), могут устойчиво излучать, находясь на этой последовательности всего лишь несколько миллионов лет, в то время как звезды с массой, близкой к солнечной, находятся на главной последовательности 10—15 млрд. лет.

"Выгорание" водорода (т.е. превращение его в гелий при термоядерных реакциях) происходит только в центральных областях звезды. Это объясняется тем, что звездное вещество перемешивается лишь в центральных областях звезды, где идут ядерные реакции, в то время как наружные слон сохраняют относительное содержание водорода неизменным. Так как количество водорода в центральных областях звезды ограниченно, рано или поздно (в зависимости от массы звезды) он там практически весь "выгорит". Расчеты показывают, что масса и радиус центральной ее области, в которой идут ядерные реакции, постепенно уменьшаются, при этом звезда медленно перемещается на диаграмме "спектр — светимость" вправо. Этот процесс происходит значительно быстрее у сравнительно массивных звезд.

Что же произойдет со звездой, когда весь (или почти весь) водород в ее ядре "выгорит"? Так как выделение энергии в центральных областях звезды прекращается, температура и давление не могут поддерживаться там на уровне, необходимом для противодействия силе тяготения, сжимающей звезду. Ядро звезды начнет сжиматься, а температура его будет повышаться. Образуется очень плотная горячая область, состоящая из гелия (в который превратился водород) с небольшой примесью более тяжелых элементов. Газ в таком состоянии носит название "вырожденного". Он обладает рядом интересных свойств. В этой плотной горячей области ядерные реакции происходить не будут, но они будут довольно интенсивно протекать на периферии ядра, в сравнительно тонком слое. Звезда как бы "разбухает", и начнет "сходить" с главной последовательности, переходя в области красных гигантов. Далее, оказывается, что звезды гиганты с меньшим содержанием тяжелых элементов будут иметь при одинаковых размерах более высокую светимость.

Конец звезды 

Что произойдет со звездами, когда реакция "гелий — углерод" в центральных областях исчерпает себя, так же как и водородная реакция в тонком слое, окружающем горячее плотное ядро? Какая стадия эволюции наступит вслед за стадией красного гиганта?

Белые карлики

Совокупность данных наблюдений, а также ряд теоретических соображений говорят о том, что на этом этапе эволюции звезды, масса которых меньше, чем 1,2 массы Солнца, существенную часть своей массы, образующую их наружную оболочку, "сбрасывают". Такой процесс мы наблюдаем, по-видимому, как образование так называемых "планетарных туманностей". После того как от звезды отделится со сравнительно небольшой скоростью наружная оболочка, "обнажатся" ее внутренние, очень горячие слои. При этом отделившаяся оболочка будет расширяться, все дальше и дальше отходя от звезды.

Мощное ультрафиолетовое излучение звезды — ядра планетарной туманности — будет ионизовать атомы в оболочке, возбуждая их свечение. Через несколько десятков тысяч лет оболочка рассеется и останется только небольшая очень горячая плотная звезда. Постепенно, довольно медленно остывая, она превратится в белый карлик.

Таким образом белые карлики как бы "вызревают" внутри звезд — красных гигантов — и "появляются на свет" после отделения наружных слоев гигантских звезд. В других случаях сбрасывание наружных слоев может происходить не путем образования планетарных туманностей, а путем постепенного истечения атомов. Так или иначе белые карлики, в которых весь водород "выгорел" и ядерные реакции прекратились, по-видимому, представляют собой заключительный этап эволюции большинства звезд. Логическим выводом отсюда является признание генетической связи между самыми поздними этапами эволюции звезд и белыми карликами.

Черные карлики

Постепенно остывая, они все меньше и меньше излучают, переходя в невидимые "черные" карлики. Это мертвые, холодные звезды очень большой плотности, в миллионы раз плотнее воды. Их размеры меньше размеров земного шара, хотя массы сравнимы с солнечной. Процесс остывания белых карликов длится много сотен миллионов лет. Так кончает свое существование большинство звезд. Однако финал жизни сравнительно массивных звезд может быть значительно, более драматическим.

Нейтронные звезды

Если масса сжимающейся звезды превосходит массу Солнца более чем в 1,4 раза, то такая звезда, достигнув стадии белого карлика, на том не остановится. Гравитационные силы в этом случае очень велики, что электроны вдавливаются внутрь атомных ядер. В результате изотопы превращаются в нейтроны способные прилетать друг к другу без всяких промежутков. Плотность нейтронных звезд превосходит даже плотность белых карликов; но если масса материала не превосходит 3 солнечных масс, нейтроны, как и электроны, способны сами предотвратить дальнейшее сжатие. Типичная нейтронная звезда имеет в поперечнике всего лишь от 10 до 15 км, а один кубический сантиметр ее вещества весит около миллиарда тонн. Помимо неслыханно громадной плотности, нейтронные звезды обладают еще двумя особыми свойствами, которые позволяют их обнаружить, невзирая на столь малые размеры: это быстрое вращение и сильное магнитное поле. В общем, вращаются все звезды, но когда звезда сжимается, скорость ее вращения возрастает — точно так же, как фигурист на льду вращается гораздо быстрее, когда прижимает к себе руки. Нейтронная звезда совершает несколько оборотов в секунду. Наряду с этим исключительно быстрым вращением, нейтронные звезды имеют магнитное поле, в миллионы раз более сильное, чем у Земли.

Пульсары

Первые пульсары были открыты в 1968 г., когда радиоастрономы обнаружили регулярные сигналы, идущие к нам из четырех точек Галактики. Ученые были поражены тем фактом, что какие-то природные объекты могут излучать радиоимпульсы в таком правильном и быстром ритме. В начале правда, ненадолго астрономы заподозрили участие неких мыслящих существ, обитающих в глубинах Галактики. Но вскоре было найдено естественное объяснение. В мощном магнитном поле нейтронной звезды движущиеся по спирали электроны генерируют радиоволны, которые излучаются узким пучком, как луч прожектора. Звезда быстро вращается, и радиолуч пересекает линию нашего наблюдения, словно маяк. Некоторые пульсары излучают не только радиоволны, но и световые, рентгеновские и гамма-лучи. Период самых медленных пульсаров около четырех секунд, а самых быстрых — тысячные доли секунды. Вращение этих нейтронных звезд было по каким-то причинам еще более ускорено; возможно, они входят в двойные системы.

Сверхновые

Звезды, массы которых не достигают 1,4 солнечной, умирают тихо и безмятежно. А что происходит с более массивными звездами? Как возникают нейтронные звезды и черные дыры? Катастрофический взрыв, которым заканчивается жизнь массивной звезды, — это воистину впечатляющее событие. Это самое мощное из природных явлений, совершающихся в звездах. В мгновение высвобождается больше энергии, чем излучает ее наше Солнце за 10 миллиардов лет. Световой поток, посылаемый одной гибнущей звездой, эквивалентен целой галактике, а ведь видимый свет составляет лишь малую долю полной энергии. Остатки взорвавшейся звезды разлетаются прочь со скоростями до 20 000 км в секунду.

Такие грандиозные звездные взрывы называются сверхновыми. Сверхновые — довольно редкое явление. Каждый год и других галактиках обнаруживают от 20 до 30 сверхновых, главным образом в результате систематического поиска. За столетие в каждой галактике их может быть от одной до четырех. Однако в нашей собственной Галактике сверхновых не наблюдали с 1604 г. Может быть, они и были, но остались невидимыми из-за большого количества пыли в Млечном Пути.

Черные дыры

ОТ звезды, имеющей массу больше, чем три солнечных, и радиус больше 8,85километра, свет уже не сможет уйти от нее в пространство. Уходящий от поверхности луч искривляется в поле силы тяжести так сильно, что возвращается обратно на поверхность. Кванты света — фотоны — излучаемые телом, возвращаются обратно, как брошенные вверх на земле камни. Никакое излучение не прорывается во внешний мир, чтобы донести весть о печальной судьбе звезды.

Превратившись в черную дыру, небесное тело не исчезает из Вселенной. Оно дает о себе знать внешнему миру благодаря своей гравитации. Черная дыра поглощает световые лучи, идущие от нее на более значительное расстояние. Черная дыра может вступать в гравитационное взаимодействие с другими телами: она может удерживать около себя планеты или образовывать с другой звездой двойную систему.

Мы неоднократно подчеркивали, что скорость эволюции звезд определяется их первоначальной массой. Так как по ряду признаков со времени образования нашей звездной системы — Галактики — прошло около 15—20 млрд. лет, то за это конечное (хотя и огромное) время весь описанный эволюционный путь прошли только те звезды, массы которых превышают некоторую величину. По-видимому, эта "критическая" масса всего лишь на 10—20% превышает массу Солнца. С другой стороны, как уже подчеркивалось, процесс образования звезд из межзвездной газово-пылевой среды происходил в нашей Галактике непрерывно. Он происходит и сейчас. Именно поэтому мы наблюдаем горячие массивные звезды в левой верхней части главной последовательности. Но даже звезды, образовавшиеся в самом начале формирования Галактики, если их масса их меньше чем 1,2 солнечной, еще не успели сойти с главной последовательности. Заметим, кстати, что темп звездообразования в настоящее время значительно ниже, чем много миллиардов лет назад. Солнце образовалось около 5 млрд. лет назад, когда Галактика уже давно сформировалась и в основных чертах была сходна с "современной". Вот уже, по крайней мере, 4,5 млрд. лет оно "сидит" на главной последовательности, устойчиво излучая благодаря ядерным реакциям превращения водорода в гелий, протекающим в его центральных областях. Сколько еще времени это будет продолжаться? Расчеты показывают, что наше Солнце станет красным гигантом через 8 млрд. лет. При этом его светимость увеличится в сотни раз, а радиус — в десятки. Эта стадия эволюции нашего светила займет несколько сот миллионов лет. Наконец, тем или иным способом разбухшее Солнце сбросит свою оболочку и превратится в белый карлик. Вообще говоря, нам, конечно, небезразлична судьба Солнца, так как с нею тесно связано развитие жизни на Земле.

Список литературы 

1. Каплан С. А. Физика звезд.

2. Киппенханн. Сто миллиардов солнц.

3. Порфирьев В.В. Астрономия.

4. Шкловский И. С. Звезды: их рождение, жизнь и смерть.

referati-besplatno.ru

Реферат на тему Звезды

3везды бывают новорожденными, молодыми, среднего возраста и старыми. Новые звезды постоянно образуются, а старые постоянно умирают.

Самые молодые, которые называются звездами типа Т Тельца (по одной из звезд в созвездии Тельца), похожи на Солнце, но гораздо моложе его. Фактически они все еще находятся в процессе формирования и являются примерами протозвезд (первичных звезд).

Это переменные звезды, их светимость меняется, поскольку они еще не вышли на стационарный режим существования. Вокруг многих звезд типа Т Тельца имеются вращающиеся диски вещества; от таких звезд исходят мощные ветры>. Энергия вещества, которое падает на протозвезду под действием силы тяготения, превращается в тепло. В результате температура внутри протозвезды все время повышается. Когда центральная ее часть становится настолько горячей, что начинается ядерный синтез, протозвезда превращается в нормальную звезду. Как только начинаются ядерные реакции, 'у звезды появляется источник энергии, способный поддерживать ее существование в течение очень долгого времени. Насколько долгого - это зависит от размера звезды в начале этого процесса, но у звезды размером с наше Солнце топлива хватит па стабильное существование в течение примерно 10 миллиардов лет.

Однако случается, что звезды, гораздо более массивные, чем Солнце, существуют всего несколько миллионов лет; причина в том, что они сжимают свое ядерное топливо с гораздо большей скоростью.

Нормальные звезды

Все звезды в основе своей похожи на наше Солнце: это огромные шары очень горячего светящегося газа, в самой глубине которых вырабатывается ядерная энергия. Но не все звезды в точности такие, как Солнце. Самое явное различие - это цвет. Есть звезды красноватые или голубоватые, а не желтые.

Кроме того, звезды различаются и по яркости, и по блеску. Насколько яркой выглядит звезда в небе, зависит не только от ее истинной светимости, но также и от расстояния, отделяющего ее от нас. С учетом расстояний, яркость звезд меняется в широком диапазоне: от одной десятитысячной яркости Солнца до яркости более чем Е миллиона Солнц. Подавляющее большинство звезд, как оказалось, располагается ближе к тусклому краю этой шкалы. Солнце, которое во многих отношениях является типичной звездой, обладает гораздо большей светимостью, чем большинство других звезд. Невооруженным глазом можно увидеть очень небольшое количество слабых по своей природе звезд. В созвездиях нашего неба главное внимание привлекают к себе “сигнальные огни” необычных звезд, тех, что обладают очень большой светимостью.

Почему же звезды так сильно различаются по своей яркости ? Оказывается, тут нге ~явисит от массы звезды.

Количество вещества, содержащееся в конкретной звезде, определяет ее цвет и блеск, а также то, как блеск меняется во времени. Минимальная величина массы, необходимая, чтобы звезда была звездой, составляет около одной две Вставить из листика

Гиганты и карлики

Самые массивные звезды одновременно и самые горячие, и самые яркие. Выглядят они белыми или голубоватыми. Несмотря на свои огромные размеры, эти звезды производят такое колоссальное количество энергии, что все их запасы ядерного топлива перегорают за какие-нибудь несколько миллионов лет.

В противоположность им эвезды, обладающие небольшой массой, всегда неярки, а цвет их - красноватый. Они могут существовать в течение долгих миллиардов лет.

Однако среди очень ярких звезд в нашем небе есть красные и оранжевые. К ним относятся и Альдебаран - глаз быка в созвездии Телец, и Антарес в Скорпионе. Как же могут эти холодные эвезды со слабо светящимися поверхностями соперничать с раскаленными добела звездами типа Сириуса и Веги?

Ответ состоит в том, что эти эвезды очень сильно расширились и теперь по размеру намного превосходят нормальные красные звезды. По этой причине их называют гигантами, или даже сверхгигантами.

Благодаря огромной площади поверхности, гиганты излучают неизмеримо больше энергии, чем нормальные звезды вроде Солнца, несмотря на то что температура их поверхности значительно ниже. Диаметр красного сверхгиганта - например, Бетельгейзе в Орионе - в несколько сот раз превосходит диаметр Солнца. Напротив, размер нормальной красной звезды, как правило, не превосходит одной десятой размера

Солнца. По контрасту с гигантами их называют “карликами”. Гигантами и карликами звезды бывают на разцых стадиях своей жизни, и гигант может в конце концов превратиться в карлика, достигнув “пожилого возраста”.

Жизненный цикл звезды

Обычиая звсзда, такая, как Солнце, вы деляст знергию за счет превращения во лорола н гелий в ядерной печи, нахо дягцейся и самой ее сердцевине. Солн пе с<)псржит огромное количество во дородь, однаио запасы его не бесконеч иы. За ~юследние 5 миллиардов лет Со лнцс уже израсходовало половипу во дородного топлива и сможет поддер живать свое существование в течение еп~е 5 миллиардов лет, прежде чем за пасы водорода в его ядре иссякнут. А _ что потом7

Послс того как звезда израсходует водорол, содержащийся в центральной ее части, виутри звезды происходят крупные перемены. Водород начинает псрс~орать не в центре, а в оболочке, которая увеличивается в размере, раз бухаст. В результате размер самой звез ды резко возрастает, а температура ее иовсрхпости надает. Именно этот процесс и рождает красных гигаитов и сверх-гигантов. Оп является частыо той иослсдовательиости измеиений, которая называется звездной эволюцией и которую ироходят все звезды. В конечном итоге все звезды стареюг и умирают, по продолжительность каждой отдельной звезды определяется ее массой. Массивные звезды про носятся черсз свой жизиенный цикл, за канчивая его эффектным взрывом.

Звезды более скромных размеров, включая и Солице, наоборот, в нонце жизпи сжимаются, превращаясь в белые карлики.

После чего они просто угасают.

В процессе превращеиия иэ красно го гиганта в белый карлик звезда может сбросить свои наружные слои, как легкую оболочку, обнажив лри этом ядро. Газовая оболочка ярко светится под действием мощного излучения звезды, температура которой на поверхпости может достигать 100 000"С. Когда такие светящиеся газовые пузыри были впервые обнаружены,  они были названы планетарными туманностями, посколку они часто выглядят как круги типа планетного диска, если пользоваться маленьким телескопом. На самом же деле они, конечно, ничего общего с планетами не имеют!

Звездные скопления

По-видимому, почти все звезды рождаются группами, а не по отдельности. Поэтому нет ничего удивительного в том, что звездные скопления - вещь весьма распространенная. Астрономы любят изучать звездные скопления, лотому что им известно, что все звезды, входяшие в скопление, образовались примерно в одно и то же время и приблизительно на одинаковом расстоянии от нас. Любые заметные различия в блеске между такими звездами являются истинными различиями. Какие бы коллосальные изменения ни претерпели эти звезды с течением времени, начинали они все одновременно. Особенно полезно изучение звездных скоплений с точки зрения зависимости их свойств от массы - ведь возраст этих звезд и их расстояние от Земли примерно одинаковы, так что отличаются они друг от друга только своей массой.

Звездные скопления интересны не только для научного изучения - они исключительно красивы как объекты для фотографирования и для наблюдения астрономами-любителями. Есть два типа звеэдных скоплений: открытые и шаровые. Эти названия связаны с их внешним видом. В открытом скоплении каждая звезда видна отдельно, они распределены на некотором участке неба более или менее равномерно. А шаровые скопления, наоборот, представляют собой как бы сферу, столь плотно заполненную звездами, что в ее центре отдельные звезды неразличимы. ]

Открытые звездные  скопления

Наверное, самым знаменитым открытым звездным скоплением являются Плеяды, или Семь сестер, в созвездии Тельца. Несмотря на такое название, большинство людей может разглядеть без помощи телескопа лишь шесть звезд. Общее количество звезд в этом скоплении - где-то между 300 и 500, и все они находятся на участке размером в 30 световых лет в поперечнике и на расстоянии 400 световых лет от нас.

Возраст этого скопления - всего 50 миллионов лет, что по астрономическим стандартам совсем немного, и содержит оно очень массивные светящиеся звезды, которые не успели еще превратиться в гиганты. Плеяды - это типичное открытое звездное скопление; обычно в такое скопление входит от нескольких сотен до нескольких тысяч звезд.

Среди открытых звездных скоплений гораздо больше молодых, чем старых, а самые старые едва ли насчитывают более 100 миллионов лет. Считается, что скорость, с которой они образуют- ся, с течением времени не меняется.

Деело в Том, что в более старых скоплениях звезды постепенно отдаляются друг от друга, пока не смешаются с основным множеством звезд - тех самых, тысячи которых предстаьот перед нами в ночном небе. Хотя тяготение до некоторой степени удерживает открытые скопления вместе, они все же довольно непрочиы, и тяготение другого объекта, например большого межзвездного облака, может их разорвать.

Некоторые звездные группы на столько слабо удерживаются вместе, что их называют не скоплениями, а звездными ассоциациями. Они сущес твуют не очень долго и обычно состо ят из очень молодых звезд вблизи меж звездных облаков, из которых они воз никли. В звездную ассоциаци~о входит от 10 до 100 звезд, разбросанных в об ласти размером в несколько сотен све товых лет.

Облака, в которых образуются звезды, сконцеитрированы в диске нашей Галактики, и именно там обнаруживают открытые звездные скопления. Если учесть, как много облаков содержится в Млечном Пути и какое огромное количество пыли находится в межзвездном пространстве, то станет очевидным, что те 1200 открытых звездных скоплений, о которых мы знаем, должны составлять лишь ничтожную часть всего их числа в Галактике. Возможно, их общее количество достигает 100 000.

Шаровые звездные скопления

В противоположность открытым, шаровые скопления представляют собой сферы, плотно заполненные звездами, которых там насчитываются сотни тысяч и даже миллионы. Звезды в этих скоплениях расположены так густо, что, если бы наше Солнце принадлежало к какому-нибудь шаровому скоплению, мы могли бы видеть в ночном небе невооруженным глазом более миллиона отдельных звезд. Размер типичного шарового скопления - от 20 до 400 световых лет.

В плотно набитых центрах этих скоплений звезды находятся в такой близости одна к другой, что взаимное тяготение связывает их друг с другом, образуя компактные двойные звезды.

Йногда происходит даже полное слияние звезд; при тесном сближении наружные слои звезды могут разрушиться, выставляя на прямое обозрение центральное ядро. В шаровых скоплениях дв'ойные звезды встречаются в 100 раз чаще, чем где-либо еще. Некоторые из этих двойняшек являются источниками рентгеновского излучения.

Вокруг нашей Галактики мы знаем около 200 шаровых звездных скоплений, которые распределены по всему огромному шарообразному гало, заключающему в себе Галактику. Все эти скопления очень стары, и возникли они более или менее в то же время, что и сама Галактика: от 10 до 15 миллиардов лет назад. Похоже на то, что скопления образовались, когда части облака, из которого была создана Галактика, разделились на более мелкие фрагменты. Шаровые скопления не расходятся, потому что звезды в них сидят очень тесно, и их мощные взаимные силы тяготения связывают скопление в плотное единое ц'елое.

Шаровые звездные скопления наблюдаются не только вокруг нашей Галактики, но и вокруг других галактик любого сорта, Самое яркое шаровое скопление, легко видимое невооруженным глазом, это Омега Кснтавра в южном созвездии Кентавр. Оно находится на расстоянии 16 500 световых лет от Солнца и является самым обширным из всех известных скоплений: его диаметр - 620 световых лет. Самым ярким шаровым скоплением северного полушария является М13 в Геркулесе, его с трудом, но все же можно различить невооруженным глазом.

В 1596 г. голландский наблюдатель звезд, любитель, по имени Давид Фабрициус (1564-1617), обнаружил довольно яркую звезду в созвездии Кита; звезда эта постепенно стала тускнеть и через несколько недель вообще исчезла из виду. Фабрициус был первым, кто описал наблюдение переменной звезды.

Эта звезда получила название Мира - ечудесная~. За период времени в 332 дня Мира изменяет свой блеск от приблизительно 2-й звездной величины (на уровне Полярной звезды) до 10-й звездной величины, когда она становится гораздо более слабой, чем необходимо для наблюдения невооруженным глазом. В наши дни известны многие тысячи переменных звезд, хотя большинство из них меняет свой блеск не столь драматично, как Мира.

Существуют различные причины, по которым звезды меняют свой блеск. Причем блеск иногда изменяется на много световых величин, а иногда так незначительно, что это изменение можно обнаружить лишь с помощью очень чувствительных приборов. Некоторые звезды меняются регулярным.

Другие - неожиданно гаснут или внезапно вспыхивают. Перемены могут происходить циклично, с периодом в нес~олько лет, а могут случаться в считанные секунды. Чтобы понять, почему та или иная звезда является переменной, необходимо сначала точно проследить, каким образом оиа меняется. График изменения звездной величины переменной звезды называется кривой блеска, Чтобы начертить кривую блеска, измерения блеска следует проводить регулярно. Для точного измерения звездных величии профессиональиые астрономы используют прибор, иазываемый фотометром, сщпако многочисленные наблюдеиия перемеипых звезд производятся астрономами-любителями. С помощыо специальио подготовленной карты и после иекоторой практики не так уж сложно судить о звездной величине перемеиной звезды лрямо на глаз, если сравиивать ее с постоянными звездами, расположенными рядом.

Графики блеска переменных звеэд показывают, что пекоторыс:>везды мсняю'гся регулярным (правильным) образом - участок их графика на отрезке времеии определенной длины (периоде) повторяется снова и сиова. Другие же звезды меняются совершенно непредсказуемо. К иравильным переменным звездам относят пульсирующие звезды и двойныс звезды. Количество света меняется оттого, что звезды пульсируют или выбрасывают облака вещества. Но есть другая группа переменных звезд, которые являются двойными (бинарными). Когда мы видим изменение блеска бицариых звезд, это означает, что произошло одно из нескольких возможпых явлений. Обе звезды могут оказаться на линии нашего зрения, так как, двигаясь по своим орбитам, опи могут проходить прямо одна перед другой. Подобные сисгемы пазываются затменно-двойными звездами. Самый знаменитый пример такого рода - звезда Алголь в созвездии Персея. В тесно расположенной паре материал может устремляться с одной звезды на другую, нередко вызывая драматические последствия.

Пульсирующие переменные  звезды

Некоторые из наиболее правильных переменных звезд пульсируют, сжимаясь и снова увеличиваясь - как бы вибрируют с определенной частотой, пример но так, как это происходит со струной музыкального инструмента. Наиболее известный тип подобных звезд - цефеиды, названные так но звезде Дельта Цефея, представляющей собой типичный пример. Это звеэды сверхгиганты, их масса превосходит массу Солнца в 3 - 10 раз, а светимость их в сотни и даже тысячи раз выше, чем у Солнца. Период пульсации цефеид измеряется днями. В процессе пульсации цефеиды как площадь, так и температура ее поверхности изменяются, что вызывает общее изменение ее блеска.

Мира, первая из описанных переменных звезд, и другие подобные ей звезды обязаны своей переменностью пульсациям. Это холод ные красные гиган ты в последней ста дии своего существо вания, они вот-вот полностыо сбросят, как скорлупу, свои наружные слои и создадут планетар ную туманность. Большинство красных сверхгигантов, подобных Бетельгейзе в Орионе, изменяются лишь в некоторых пределах.

Используя для наблюдений специальную технику, астрономы обнаружили на поверхности Бетельгейзе большие темные пятна.

Звезды типа RR Лиры представляют другую важную группу пульсирующих звезд. Это старые звезды примерно такой же массы, как Солнце. Многие из них находятся в шаровых звездных скоплениях. Как правило, они меняют свой блеск на одну звездную величину приблизительно за сутки, Их свойства, как и свойства цефеид, используют для вычисления астрономических расстояний.

Неправильные переменные  звезды

R Северной Короны и звезды, подобные ей, ведут себя совершенно непредсказуемым образом. Обычно эту звезду можно разглядеть невооруженным глазом. Каждые несколько лет ее блеск падает примерно до восьмой звездной величины, а затем постепенно растет, возвращаясь к ирежнему уровню. Повидимому, причина тут в том, что эта звезда-сверхгигант сбрасывает с себя облака углерода, который конденсируется в крупинки, образуя нечто вроде сажи. Если одно из этих густых черных облаков проходит между нами и звездой, оно заслоняет свет звезды, пока облако ие рассеется в пространстве.

Звезды этого типа производят густую пыль, что имеет немаловажное значение в областях, где образуются звезды.

Вспыхивающие звезды

Магнитные явления на Солнце являются причиной солнечных пятен и солнечных вспышек, но они не могут существепно повлиять на яркость Солнца. Для некоторых звезд - красных карликов - это не так: на них подобные вспышки достигают громадных масштабов, и в результате световое излучение может возрастать на целую звездную величину, а то и больше. Ближайшая к Солпцу звезда, Проксима Кентавра, является одной из таких вспыхивающих звезд. Эти световые выбросы нельзя предсказать заранее, а продолжаются они всего несколько минут.

Двойные звезды

Примерно половина всех звезд нашей Галактики принадлежит к двойным сис- темам, так что двойные звезды, вращающиеся по орбитам одна вокруг дру гой, явление весьма распространенное.

Принадлежность к двойной системе очень сильно влияет на всю жизнь звезды, особенно когда напарники находят- ся близко друг к другу. Потоки вещества, устремляющиеся от одной звезды на другую, приводят к драматическим вспышкам, таким, как взрывы новых и р сверхновых звезд.

Двойные звезды удерживаются вместе взаимным тяготением. Обе звезды двойной системы вращаются по эллиптическим орбитам вокруг некоторой точки, лежащей между ними и называемой центром гравитации этих звезд. Это можно представить себе как ТОЧК~ опоры, если вообразить звезды сидящими на детских качелях: каждая на своем конце доски, положенной на бревно. Чем дальше звезды друг от друга, тем дольше длятся их пути по орбитам. Большинство двойных звезд (или просто - двойных) слишком близки друг к другу, чтобы их можно было различить по отдельности даже в самые мощные телескопы. Если расстояние между партнерами достаточно велико, орбитальный период может измеряться годами, а иногда целым столетием или даже болыие. Двойные звезды, которые ты можешь увидеть раздельно, называются видимыми двойными.

Открытие двойных звезд

Чаще всего двойные звезды определяются либо по необычному движению более яркой из двух, либо по их совместиому спектру. Если какая-нибудь звезда совершает на небе регулярные колебания, это означает, что у нее есть невидимый партнер. Тогда говорят, что это астрометрическая двойная звезда, обнаруженная с помощью измерений ее положеп ия. Сиектроскопические двойные звезды обнаруживают по изменениям и особым характеристикам их спектров, Спектр обыкновенной звезды, вроде Сопнца, подобеп непрерывной радуге, пересечепной многочисленными узкими н~елями - так называемыми линиями иоглощепия. Точные цвета, на которых расположены эти линии, изменяются, если звезда движегся к нам или от пас. Это явление нжзивается эффектом Допплера. Когда эвезды двойной системы движутся ио своим орбитам, они поперемеппо то приближаются к нам, то удаляются. В результате лииии их спектров перемещаются на некотором участке радуги. Такие подвижные линии спектра говорят о том, что звезда двойпая. Если оба участника двойной системы имеют примерио одинаковый блеск, в спектре можно увидеть два набора линий. Если одна из звезд гораздо ярче другой, ее свет будет доминирова'гь, но регулярное смещение спектральных лииий всс равно выдаст ее истинную двойную природу.

Измеренне скоростей звезд двойной системы и лрименение зак нного тяготения представляют собой важный метод определения масс звезд. зучение двойных звезд - это единственный прямой способ вычислени я з вездных масс. Тем не менее в каждом конкретном случае не так просто получить точный ответ.

Тесные двойные звезды

В системе близко расположенных двойных звезд взаимные силы тяготения стремятся растянуть каждую из них, придать ей форму груши. Если тяготение достаточно сильно, наступает критический момент, когда вещество начинает утекать с одной звезды и падать на другую. Вокруг этих двух звезд имеется некоторая область в форме трехмерной восьмерки, поверхность которой представляет собой ыритическую границу. Эти две грушеобразные фигуры, каждая вокруг своей звезды, называются полостями Роша. Если одна из звезд вырастает настолько, что заполняет свою полость Роша, то вещество с нее устремляется на другую звезду в той точке, где полости соприкасаются. Часто звездный материал не опускается прямо на звезду, а сначала закручивается вихрем, образуя так называемый аккреционный диск. Если обе звезды настолько расширились, что эаполнили свои полости Роша, то возникает контактная двойная звезда. Материал обеих звезд перемешивается и сливается в шар вокруг двух звездных ядер. Поскольку в конечном счете все звеэды разбухмот, превращаясь в гиганты, а многие эвезды являются двойными, то взаимодействуюшие двойные систем ы - - явление нередкое.

Звезда переливается через  край

Одним из поразительных результатов переноса массы в двойных звездах является так называемая вспышка новой.

Одна звезда расширяется так, что заполняет свою полость Роша; это означает раздувание наружных слоев звезды до того момента, когда ее материал начнет захватываться другой звездой, подчиняясь ее тяготению. Эта вторая звезда - белый карлик. Внезапно блеск увеличивается примерно на десять звездных величин - вспыхивает новая. Происходит не что иное, как гигантский выброс энергии за очень короткое время, мощный ядерный взрыв на поверхности белого карлика. Когда материал с раздувшейся звезды устремляется к карлику, давление в низвергающемся потоке материи реэко возрастает, а температурд под новым слоем увеличивается до миллиона градусов. Наблюдались случаи, когда через десятки или сотни лет вспышки новых повторялись. Другие взрывы наблюдались лишь однжкды, но они могут повториться через тысячи лет. На звездах иного типа происходят менее драматические вспышки - карликовые новые, - повторяющиеся через дни и месяцы.

К огда ядерное топливо звезды оказывается израсходованным и в ее глубинах прекращается выработка энергии, звезда начинает сжиматься к центру. Сила тяготения, направленная внутрь, больше не уравновешивается выталкивающей силой горячего газа.

Дальнейшее развитие событий зависит от массы сжимающегося материала. Если эта масса не превосходит солнечную более чем в 1,4 раза, звезда стабилизируется, становясь белым карликом. Катастрофического сжатия не происходит благодаря основному свойству электронов. Существует такая степень сжатия, при которой они начинают отгалкиваться, хотя никакого источника тепловой энергии уже нет. Правда, это происходит лишь тогда, когда электроны и атомные ядра сжаты невероятно сильно, образуя чрезвычайно плотную материю.

Белый каплик с массой Солнца по объему приблизительно равен Земле.

Всего лишь чашка вещества белого карлика весила бы на Земле сотню тонн. Любопытно, что чем массивнее белые карлики, тем меньше их объем. Что представляет собой внутренность белого карлика, вообразить очень трудно. Скорее всего это нечто вроде единого гигантского кристалла, который постепенно остывает, становясь все более тусклым и красным. В действительности, хотя астрономы белыми карликами пазывают целую группу звезд, лишь самые горячие из них, с температурой поверхности около 10 000 С, на самом деле белые. В конечном итоге каждый белый карлик превратится в темный шар радиоактивного пепла абсолютно мертвые останки звезды. Белые карлики настолько малы, что даже наиболее горячие из них испускают совсем немного света, и обнаружить их бывает нелегко. Тем не менее иоличество известных белых карликов сейчас исчисляется сотнями; по оценкам асгрономов, не менее лесятой части вссх звезд Галактики - белые карлики. Сириус, самая яркая звезда нашего пеба, является членом двойной системы, и сго иапарник - белый карлик под пазванием Сириус В.

Нейтронные звезды

Если масса сжимающейся звезды превосходит массу Солпиа более чем в 1,4 раза, то такая звезда, достигнув стадии бслого карлика, на атом ие остановится. Гранитациоишые силы в этом случае стсиь велики, что электроны вдавливаются внутрь атомных ядер. В результатс иротопы лревращаются в нейтроны (см. с. 20 - 21), способные прилега'гь друг к другу без всяких промежуткпв. Плотность иейтронных звезд превосходит даже плотпость белых карликов; ио если масса материала не превосходит 3 солпечпых масс, нейтроны, как и электроны, способиы сами предотвратить далынейшее сжатие. Типичная иисйтроиная звезда имеет в поперечникс всего лишь от 10 до 15 км, а один кубический сантиметр ее вещества весит около миллиарда тонн. Помимо исслыханно громадной плотиости, псйтроиные звезды обладают сще двумя особыми свойствами, которые позволяют их обнаружить, невзирая на столь малые размеры: это быстрос вращение и сильное магнитное поле. В общем, вращаются все звезды, но когда звезда сжимается, скорость ее вращения возрастает - точно так же, как фигурист на льду вращается гораздо быстрес, когда лрижимает к себе руки. Нейтропная звезда совершает несколы<о оборотов в секунду. Наряду с атим исключитепьно быстрьтм вращеиием, нейтроппые звезды имеют магнитиос полс, в миллионы раз более сильиое, чем у Земли.

Пульсары

Первыс пульсары были открыты в 1968 г., когда радиоастрономы обнаружили регулярные сигналы, идущие к нам из четырех точек Галактики. Ученые были поражсиы тем фактом, что какие-то природные объекты могут иэлучать радиоимпульсы в таком правильном и быстром ритме. Вначале (правда, пенадолго) астрономы дике заподоэрили участие неких мыслящих сущесгв, обитаюших в глубинах Галак'гики. Но вскоре было иайдено естественнсэс объясиепие. В мощном магнитпом иоле пейтронной звезды движущиеся по сиирали электроиы генерируют рщиоволиы, которые излучаются узким пучком, как луч прожектора. Звезда быстро вра~цается, и радиолуч пересекает лииию нашего наблюдения, словно маяк. Некоторые пульсары излучают не только радиоволны, но и световые, рентгеновские и гамма-лучи. Период самых медленных пульсаров около четырех секунд, а самых быстрых - тысячные доли секунды. Вращение этих нейтронных звезд было по каким-то причинам еще более ускорено; возможно, они входят в двойные системы.

Рентгеновские двойные звезды

В Галактике найдено, по крайней мере, 100 мощных источников рентгеновского излучения. Рентгеновские лучи обладают настолько большой энергией, что для возникновения их источника должно произойти нечто из ряда вон выходящее. По мнению астрономов, причиной рентгеновского излучения могла бы служить материя, падающая на поверхность маленькой нейтронной звезды.

Возможно, рсптгеновские ислйчники представляют собой двойные звезды, одла из которых очень малснькая, но массив~ия; это может быть нейтроцная звезда, белый карлик или черная дыра. Звезда-компаньон может быть либо массивиой звездой, масса которой превосходит солнечиую в 10 - 20 раз, либо иметь массу, превосходящу~о массу Солица не более чем вдвое. Промежуточные варианты представляются крайне маловероятными. К таким ситуациям приводит сложпая история эволюции и обмен массами в двойных системах, Финальный результат зависит от начальных масс и начального расстояпия между звездами.

В двойпых системах с небольшими массами вокруг пейтронной звезды образуется газовый диск, В случае же систем с болыыими массами материал устремллется примо ~и нейтронную з.везду - ее магнитпое поле засасывает его, как в воронку. Имен~ш такие системы часто оказываготся рентгеновскими пульсарами.

Черные дыры

В одной из рентгеновских двойных систем, пазываемой А0620-00 удалос оч ень точно измерить массу компактной звезды (для этого испоз!ъзовились данные разных видов наблюдений). Она оказалась равной 16 массам Солнца, что намного превышает возможн'ости нейтронных звезд. В другом двойном рентгеновском источнике, У404 Лебедя, есть черная дыра с массой не менее б,З солнечной. Кроме черных дыр с массами, типичными для звезд, почти наверняка существуют и сверхмассивные черные дыры, расположенные в центрах галактик. Лишь падение вещества в черную дыру может быть источником колоссальной энергии, исходящей из ядер активных галактик.

Сверхновые

Звезды, массы которых не достигают 1,4 солнечной, умирают тихо и безмятежно. А что происходит с более массивными звездами? Как возникают нейтронные звезды и черные дыры? Катастрофический взрыв, которым заканчивается жизнь массивной звезды, - это воистину впечатляющее событие. Это самое мощное из природных явлений, совершающихся в звездах. В мгновение ока высвобождается больше энергии, чем излучает ее наше

Солнце за 10 миллиардов лет. Сыетовой поток, посылаемый одной гибнущей звездой, эквивалентен целой галактике, а ведь видимый свет составляет лишь малую долю полной энергии. Остатки взорвавшейся звезды разлетаются прочь со скоростями до 20 000 км в секунду.

Такие грандиозные звездные взрьгвы называются сверхновыми. Сверхновые - довольно редкое явление. Каждый год и других галактиках обнаруживают от 20 до 30 сверхновых, главным образом в результате систематического поиска. За столетие в кюкдой галактике их может быть от одной до четырех. Однако в нашей собственной Галактике сверхиовых не наблюдали с 1604 ~. Может быть, они и были, но остались невидимыми из-за большого количсства пьши в Млечном Пути. Радиоастрономы обнаружили кольцо газа, остав~ыегося ог сверхновой в созвездии Кассиопеи, и вычислили дату взрыва - 1658 г. В то время никто не зарегистрировы! необычно яркой звезды, хотя од~-и довольио скромная звездочка, которую впоследствии уже не видели, была отмсчена в этом же месте на звездной карте 1680 г.

Сверхновая - смертъ звезды

Чтобы разобраться в том, что приводит к взрыву сверхновой, нам придется рассмотреть последние стадии эволюции массивной звезды. Когда весь водород в центральиом ядре превращается в гелий, начинаются новые ядерные процессы, преобразуюшие гелий в углерод. Но дальше от центра, в оболочке, водород все еще соединяется, обрюуя гслий. Когда гелий использован, горючим стаиовится углерод. В слоях, расположенных вокруг ядра, протекает весь ряд последовательных ядсрных реакций, так что звезда приобрстает структуру, напоминающую луковицу.

В последпей стадии ядро звезды состоит уже из жслеза и пикеля, а в слоях вок г нег ру го идет ядерное горение  кремния, неона, кислорода углеро даи это ведет к образованию в центре звезды белого карлика , пока б, солнечной. А за этим преде е превышает критического РУ бежа в 14 лом наступает катастрофическое сжатие - коллапс ядра, Менее чем за секунду ядро уменьшается от раэмеров Земли до 100 км в поперечнике. Его плотность становится такой к ак у атомного а (примерно в 100 миллион миллион миллионов раз больше, чем плотность воды). Вещество сливается в нечто подобное гигантскому атомному ядру - образуется нейтронная звезда. В тот момент, когда нейтроны во вн утреннеи части ядра оказываются способными предотвратить дальней шее сжатие п роцесс внезапно останавливается. Немедленно на еще падающий к центру материал обрушиваются встречные ударные волны, и в звезду вливастся оп<ргия огромного количествя чягтиц, называемых нейтрино. В результате звезда сбрасывает свои наружные слои, открывая взгляду скрывавшееся под ними нейтронное ядро. По мнению астрономов, большая часть нейтронных звезд, если не все они, родились во взрывах сверхновых. При определенных условиях ядро может оказаться достаточно массивным, чтобы вместо нейтронной звезды образовалась черная дыра. У нас есть ясная картина того, как массивные звезды заканчивают свое существование взрывами свеухновых. Но это не единственный способ запуска подобных взрывов. Лишь около четверти всех сверхновых появляется таким путем. Оии отличаются своими спектрами и специфической картиной возгорания и затухания. Как действуют другие сверхновые, пока не вполне ясно. Наиболее достоверная теория предполагает, что они начинаются с белых карликов в двойных сис;емах. Вешество перетекает на белый карлик с его партнера до тех пор, иока масса карлика не превысит 1,4 солнечной. Затем следует взрыв сверхновой, и вся звезда, повидимому, навсегда разрушается. Сверхновая сохраняет свою макси- ~~~~~~ ядкость лишь около месяца, а затем непрерывно угасает. В это время источником световой энергии является р~иоагл~вный распад вещества, образовавшегося при взрыве. Еше долгое время после взрыва можно наблюдать вещество сброшенной оболочки, постепенно расходящееся в окружающем пространстве. Такие туманности называют остатками сверхновых. В созвездии Тельца имеется Крабовидная туманность, представляющая собой остаток сверхновой, вспыхнувшей в 1054 г. Обширное тонкое кольцо вещества в Лебеде, так называемая Петля Лебедя, осталась от вспышки сверхновой, произошедшей около 30 000 лет назад, Остатки сверхновых - одни из сильнейших источников радиоволн в иашем небе.

Происхождение элементов

Наш обычный мир - скалистая Земля с ее океанами, атмосферой, растительной и животной жизнью - 'состоит примерно из 100 различных химических элементов. Во Вселенной некоторые из них гораздо более распространены, чем другие. Сочетаясь между собой, элементы образуют бесчисленное множество различных веществ. Но откуда взялись сами элементы, эти основные строительные кирпичики мироздания? Сегодня астрономы в состоянии дать полную картину того, как образовались и как распределились по Вселенной различные элементы (см. также с. 20 - 21). Простейший из всех элементов - водород. Ядро атома водорода состоит из единственного протона, а добавление к нему одного электрона заверша~ конструкцию атома. Ядра других элементов содержат различные количества протонов, а также нейтронов, которые входят в состав всех элементов, кроме водорода. В ходе ядерных реакций отдель ные ядра могут сливаться с элементарными частицами, вроде нейтрона, и образовывать новые элементы. Для протекания ядерных реакций нужны очень высоние температуры. Такие температуры существовали на ранних стадиях развития Вселенной, а сейчас они встречаются внутри звеэд, во взрывах сверхновых, а также при падении вещества на очень плотные звезды типа белых карликов. Весь водород во Вселенной, да и значительная часть гелия, появились на свет в течение нескольких первых минут после начала мира. Первые из сформировавшихся звезд состояли почти целиком из водорода и гелия. Но мы уже видели, как знезды получают свою энергию путем слияния ядер водорода, приводящего к образованию гелия, а затем - слияиия гелия с более тяжелыми элеме~ггами, когда получается все остальное, включая углерод, кислород, кремний, железо и так далее. Когда звезда сбрасывает оболочку, как сверхновая,

большая часть материала выносится в космическое пространство. Тепловая энергия взрыва способствует созданию еще большего числа элементов. После того как произошло достаточно много вспьп.пек сверхновых, межзвсздное вещество уже содержит значительное количестио веществ, нроизведенных в звездах - паряду с водородом и гелием, когорые были здесь с самого начала. Звещы, которые обходятся без взрыва, также вносят свою лепту, когда они постепенно освобождаются от своих впетних слоев, выэывая появление звездиых ветров> или планетарной тумаиности.

Теперь самое время иапомнить, что звездьт формируются из облаков межзвездного материала. Звезды, которые сегодня рождаются в нашей Галактике, образуются из гораздо более разнообразиой смеси химических элеме~ггов, чем самыс лериые звезды. Даже паше Солние уже пе принадлежит к первому звездному иоиолсиию. Оно сформировалось из облака, в котором было немало углерода, кислорода, кремния, железа и др., - по крайпей мере, этих элеме~ггов оказалось достаточно, чтобы собрать их воедино во вра~цающейся туманности, ставшей затсм Солиечной систсмой, и образовать нашу планету. Это может показкгься сгранным, но большинство атомов в т~зоем собственном теле было создаио н ненрах давно умерших звезд.

СВЕРХНОВЫЕ

Когда 24 февраля 1987 г. была открыта 5М 1987А, астрономы были очень взволнованы: ведь это была самая яркая сверхновая с 1604 г. Хотя на этот раз сверхновая вспыхнула не в наыей Галактике, а в соседней Большом Магелла~ювом облаке, ее звездная величина в максимуме блеска достигла 2,9, что позволяло легко наблюдать сверхновую в южном лолушарии невооруженным глазом.

Впервые развитие сверхновой стало доступно наблюдению с помощыо современной аппаратуры. Ислользуя фотографии, снятые до вслышки, удалось даже определить, какая именио звезда нэорвя лягк Ято оказллгя голубой сверхгигант с массой примерно в 17 солнечных; согласно расчетам, его возраст составлял около 20 миллионов лет. ВАЯ 1987А

На самом деле взрл~в произошел примерпо за деиь до его обнаруже ния. Э'го было установлепо по 6олее ранней фотографии, а исследователи, изучаюи~ие иотоки космических пей трипо, 23 фсвраля зарегистрировали иеожиданно большое их количество. 1 Нсйтрино - это элемеитарные час тицы, вряд ли имеющие массу. Их очень трудно регистрировать, Йо га кая работа чрезвычайно важна, так как пейтриио упосят большое количество энсргии и целом ряде ядерных реак ций. Обнаружение пейтриио показа ло, что нан~а теория возникновеиия сверхиовой в основиом верна. Одна ко иа мсстс испышки м-ой сиерхно вой ие упы~ось обиаружить пульсар или ~>сйтроииую звезду.

КРАБОВИДНАЯ ТММАННОСТЬ

Один из самых известных остатков сверхновой, Крафбовидная туманность, обязана своим названием Уильяму Парсонсу, третьему графу Россу, который первым наблюдал ее в 1844 г. Ее впечатляю~цее имя не совсем соответствует этому страниому объекгу. Теперь мы знаем, что ма туманность - остаток сверхновой, которую наблюдали и описали в 1054 г. китайские астрономы. Ее возраст бьи установлен в 1928 г. Здвином Хабблом, измерившим скорость ее расширеиия и обратившим внимание ти совт~адение ее положения на небе со стариниыми китайскими записями. Она имеет форму овала с неровными краями; красповатые и зелеиоватые нити сиетящегося газа видны на ~эоне тусклого белого пятна. НИТИ СВГГЯЩСГОСЯ гклд напоминают сеть, иаброшенную на отверстие. Белый свет исходит от электронов, несущихся ио спиралям в сильном магнитном иоле. Туманность является также интснсивным источником радиоволн и рен ггсиовских лучей. Когда аетрономы осознали, что пульсары - зто нейтрон сверхпоных, им стало ясно, что искать иульсары иадо иыенио в таких остатках типа Крабонидной туманности. В 1969 г. 6ыло обиаружено, что одна из звезд вблизи центра туманности периодически излучаег радиоимпульсы, а также с~зсговыс и рентгеновские сигнаЛЫ ЧСф7СЗ КЖКДЫС 33 ТЫСЯ%ИЫХ ДОЛИ ССкунды. Это очень высокая частота даже для пульсара, но оиа поетепенно пониЖается. Тс пульсары, которые вращаются гораздо медленнее, намного старые иульсара Крабовидной тумаиности.

КРАБОВИДНАЯ ТУМАННОСТЬ

Один из самых известных остатков сверхновой, Крабовидная туманиость, обязаца своим названием Уильяму Парсонсу, тре гьему графу Россу, который первым наблюдал ее в 1844 г. Ее впечатляющее имя ие совсем соответствует этому странпому объекту. Теперь мы знаем, что эта туманность - остаток сверхновой, которую наблюдали и описали в 1054 г. китайские астрономы. Ес возраст был установлен в 1928 г. Эдвином Хабблом, измерившим скорость ее расширения и обративы~им внимаиие на сов~!адение ее положения иа небе со сгариииыми китайскими записями.

Она имеет форму овала с церовными краями; красиоватые и зеленоватые нити светящегося газа видны на фоне тусююго белого пятна.

Ни'ги снегящегося газа напоминают сеть, наброи~енну~о на отверстие. Белый свет исходит от электронов, несущихся ло спиралям в сильном магнитном полс. Туманность является также интепсивиым источником радиоволн и рентгеиовских лучей. Когда астрономы оссхп~али, что пульсары - это пейтронные эвезды, возниказощие при взрывах сверхно~зых, им стало ясно, что искать иульсары иадо именио в таких остатках тиг~а Крабовидной туманности. В 1969 г. было обнаружено, что одна из звезд вблизи центра туманности периодически и:шучает радиоимпульсы, а такжс снстоьзые и рентгеновские сигналы чсрез кмщые 33 тысячных доли секунды. Э-ю очепь высокая частота даже для пульсара, но опа постепенно понижается. Те пульсары, которые вращаются гораздо медлейнее, намного старше пульсара Крабовидной туманности.

НАИМЕНОВАНИЕ СВЕРХНОВЫХ

Хотя совремепные астрономы пе были свидетелями сиерхновой в наи~ей Гыактикс, им удалось наблюдать по крайней мере второе по интересу событие - сверхновую в 1987 г. в Болыиом Магеллановом облаке, ближней галактике, видимой в южном иолу~парий. Сверхновой дали имя ЯХ 1987А. Свсрхновьте именуюгся гопом открытия, за которым следует заглавная латинская буква в алфавитиом порядке, соответетвенно последоватеньности находок, БХ это сокран~епие от ~сверхновая~. (Если за тд их открыто более 26, следуют обозначения АА, ВВ и т.д.)

alive-inter.net

Реферат на тему Звезды

Основные звездные характеристики

Светимость и расстояние до звезд

Прежде всего надо понять, что звезды, за редчайшим исключением, наблюдаются как "точечные" источники излучения. Это означает, что их угловые размеры очень малы. Даже в самые большие телескопы нельзя увидеть звезды в виде "реальных" дисков. Подчеркиваю слово "реальных", так как благодаря чисто инструментальным эффектам, а главным образом неспокойностью атмосферы, в фокальной плоскости телескопов получается "ложное" изображение звезды в виде диска. Угловые размеры этого диска редко бывают меньше одной секунды дуги, между тем как даже для ближайших звезд они должны быть меньше одной сотой доли секунды дуги.

Итак, звезда даже в самый большой телескоп не может быть, как говорят астрономы, "разрешена". Это означает, что мы можем измерять только потоки излучения от звезд в разных спектральных участках. Мерой величины потока является звездная величина.

Светимость определяется, если известны видимая величина и расстояние до звезды. Если для определения видимой величины астрономия располагает вполне надежными методами, то расстояние до звезд определить не так просто. Для сравнительно близких звезд, удаленных на расстояние, не превышающие нескольких десятков парсек, расстояние определяется известным еще с начала прошлого столетия тригонометрическим методом, заключающимся в измерении ничтожно малых угловых смещений звезд при их наблюдении с разных точек земной орбиты, то есть в разное время года. Этот метод имеет довольно большую точность и достаточно надежен. Однако для большинства других более удаленных звезд он уже не годится: слишком малые смещения положения звезд надо измерять - меньше одной сотой доли секунды дуги! На помощь приходят другие методы, значительно менее точные, но тем не менее достаточно надежные. В ряде случаев абсолютную величину звезд можно определить и непосредственно, без измерения расстояния до них, по некоторым наблюдаемым особенностям их излучения.

Спектры звезд и их химический состав

Исключительно богатую информацию дает изучение спектров звезд. Уже давно спектры подавляющего большинства звезд разделены на классы. Последовательность спектральных классов обозначается буквами O, B, A, F, G, K, M. Существующая система классификации звездных спектров настолько точна, что позволяет определить спектр с точностью до одной десятой класса. Например, часть последовательности звездных спектров между классами B и А обозначается как В0, В1 . . . В9, А0 и так далее. Спектр звезд в первом приближении похож на спектр излучающего "черного" тела с некоторой температурой Т. Эти температуры плавно меняются от 40-50 тысяч градусов у звезд спектрального класса О до 3000 градусов у звезд спектрального класса М. В соответствии с этим основная часть излучения звезд спектральных классов О и В приходиться на ультрафиолетовую часть спектра, недоступную для наблюдения с поверхности земли. Однако в последние десятилетия были запущены специализированные искусственные спутники земли; на их борту были установлены телескопы, с помощью которых оказалось возможным исследовать и ультрафиолетовое излучение.

Характерной особенностью звездных спектров является еще наличие у них огромного количества линий поглощения, принадлежащих различным элементам. Тонкий анализ этих линий позволил получить особенно ценную информацию о природе наружных слоев звезд.

Химический состав наружных слоев звезд, откуда к нам "непосредственно" приходит их излучение, характеризуется полным преобладанием водорода. На втором месте находится гелий, а обилие остальных элементов достаточно невелико. Приблизительно га каждые десять тысяч атомов водорода приходиться тысячи атомов гелия, около 10 атомов кислорода, немного меньше углерода и азота и всего лишь один атом железа. Обилие остальных элементов совершенно ничтожно. Без преувеличения можно сказать, что наружные слои звезд - это гигантские водородно-гелиевые плазмы с небольшой примесью более тяжелых элементов.

Хорошим индикатором температуры наружных слоев звезды является ее цвет. Горячие звезды спектральных классов О и В имеют голубой цвет; звезды, сходные с нашим Солнцем (спектральный класс которого G2), представляются желтыми, звезды же спектральных классов К и М - красные. В астрофизике имеется тщательно разработанная и вполне объективная система цветов. Она основана на сравнении наблюдаемых звездных величин, полученных через различные строго эталонированные светофильтры. Количественно цвет звезд характеризуется разностью двух величин, полученных через два фильтра, один из которых пропускает преимущественно синие лучи ("В"), а другой имеет кривую спектральной чувствительности, сходную с человеческим глазом("V"). Техника измерений цвета звезд настолько высока, что по измеренному значению B-V можно определить спектр звезды с точностью до подкласса. Для слабых звезд анализ цветов - единственная возможность их спектральной классификации.

Температура и масса звезд

Знание спектрального класса или цвета звезды сразу же дает температуру ее поверхности. Так как звезды излучают приблизительно как абсолютно черные тела соответствующей температуры, то мощность, излученная единицей их поверхности, определяется из закона Стефана Больцмана:

- постоянная Больцмана

Мощность излучения всей поверхности звезды, или ее светимость, очевидно будет равна

 ( * ), где R - радиус звезды. Таким образом, для определения радиуса звезды надо знать ее светимость и температуру поверхности.

Нам остается определить еще одну, едва ли не самую важную характеристику звезды - ее массу. Надо сказать, что это сделать не так то просто. А главное существует не так уж много звезд, для которых имеются надежные определения их масс. Последние легче всего определить, если звезды образуют двойную систему, для которой большая полуось орбиты а и период обращения Р известны. В этом случае массы определяются из третьего закона Кеплера, который может быть записан в следующем виде:

, здесь М1 и М2 - массы компонент системы, G - постоянная в законе всемирного тяготения Ньютона. Уравнение дает сумму масс компонент системы. Если к тому же известно отношение орбитальных скоростей, то их массы можно определить отдельно. К сожаления, только для сравнительно небольшого количества двойных систем можно таким образом определить массу каждой из звезд.

В сущности говоря, астрономия не располагала и не располагает в настоящее время методом прямого и независимого определения массы (то есть не входящей в состав кратных систем) изолированной звезды. И это достаточно серьезный недостаток нашей науки о Вселенной. Если бы такой метод существовал, прогресс наших знаний был бы значительно более быстрым. В такой ситуации астрономы молчаливо принимаю, что звезды с одинаковой светимостью и цветом имеют одинаковые массы. Последние же определяются только для двойных систем. Утверждение, что одиночная звезда с той же светимостью и цветом имеет такую же массу, как и ее "сестра", входящая в состав двойной системы, всегда следует принимать с некоторой осторожностью.

Связь основных звездных величин

Итак, современная астрономия располагает методами определения основных звездных характеристик: светимости, поверхностной температуры (цвета), радиуса, химического состава и массы. Возникает важный вопрос: являются ли эти характеристики независимыми? Оказывается, нет. Прежде всего имеется функциональная зависимость, связывающая радиус звезды, ее болометрическую светимость и поверхностную температуру. Эта зависимость представляется простой формулой ( * ) и является тривиальной. Наряду с этим, однако, давно уже была обнаружена зависимость между светимостью звезд и их спектральным классом (или, что фактически одно и то же,- цветом). Эту зависимость эмпирически установили (независимо) на большом статистическом материале еще в начале нашего столетия выдающиеся астрономы датчанин Герцшпрунг и американец Рассел.

Звезды рождаются

Межзвездный газ

Потребовалось, однако, тысячелетнее развитие науки, чтобы человечество осознало простой и вместе с тем величественный факт, что звезды - это объекты, более или менее похожие на Солнце, но только отстоящие от нас на несравненно большие расстояния. Ньютон был первым, кто правильно оценил расстояния до звезд. Два столетия после великого английского ученого почти всеми молчаливо принималось, что чудовищно больших размеров пространство, в котором находятся звезды, есть абсолютная пустота. Лишь отдельные астрономы время от времени поднимали вопрос о возможном поглощении света в межзвездной среде. Только в самом начале XX столетия немецкий астроном Гартман убедительно доказал, что пространство между звездами представляет собой отнюдь не мифическую пустоту. Оно заполнено газом, правда, с очень малой, но вполне определенной плотностью. Это выдающиеся открытие, так же как и многие другие, было сделано с помощью спектрального анализа.

Почти половину столетия межзвездный газ исследовался главным образом путем анализа образующихся в нем линий поглощения. Выяснилось, например, что довольно часто эти линии имеют сложную структуру, то есть состоят из нескольких близко расположенных друг к другу компонент. Каждая такая компонента возникает при поглощении света звезды в каком-нибудь определенном облаке межзвездной среды, причем облака движутся друг относительно друга со скоростью, близкой к 10 км/сек. Это и приводит благодаря эффекту Доплера к незначительному смещению длин волн линий поглощения.

Химический состав межзвездного газа в первом приближении оказался довольно близким к химическому составу Солнца и звезд. Преобладающими элементами являются водород и гелий, между тем как остальные элементы мы можем рассматривать как "примеси".

Межзвездная пыль

До сих пор, говоря о межзвездной среде, мы имели ввиду только межзвездный газ. но имеется и другая компонента. Речь идет о межзвездной пыли. Мы уже упоминали выше, что еще в прошлом столетии дебатировался вопрос о прозрачности межзвездного пространства. Только около 1930 года с несомненностью было доказано, что межзведное пространство действительно не совсем прозрачно. Поглощающая свет субстанция сосредоточена в довольно тонком слое около галактической плоскости. Сильнее всего поглощаются синие и фиолетовые лучи, между тем как поглощение в красных лучах сравнительно невелико.

Что же это за субстанция? Сейчас уже представляется доказанным, что поглощение света обусловленно межзвездной пылью, то есть твердыми микроскопическими частицами вещества, размерами меньше микрона. Эти пылинки имеют сложный химический состав. Установлено, что пылинки имеют довольно вытянутую форму и в какой-то степени "ориентируются", то есть направления их вытянутости имеют тенденцию "выстраиваться" в данном облаке более или менее параллельно. По этой причине проходящий через тонкую среду звездный свет становится частично поляризованным.

Разнообразие физических условий

Характернейшей особенностью межзвездной среды является большое разнообразие имеющихся в ней физических условий. Там имеются, во-первых, зоны, кинетическая температура которых различается на два порядка. Имеются сравнительно плотные облака с концентрацией частиц газа, превышающей несколько тысяч на кубический сантиметр, и весьма разряженная среда между облаками, где концентрация не превышает 0,1 частицы на кубический сантиметр. имеются, наконец, огромные области, где распространяются ударные волны от взрывов звезд.

Наряду с отдельными облаками как ионизированного так и неионизированного газа в Галактике наблюдаются значительно большие по своим размерам, массе и плотности агрегаты холодного межзвездного вещества, получившие название "газово-пылевых комплексов". Для нас самым существенным является то, что в таких газово-пылевых комплексах происходит важнейший процесс конденсации звезд из диффузной межзвездной среды.

Почему должны рождаться новые звезды?

Значение газово-пылевых комплексов в современной астрофизике очень велико. Дело в том, что уже давно астрономы, в значительной степени интуитивно, связывали образования конденсации в межзвездной среде с важнейшим процессом образования звезд из "диффузной" сравнительно разряженной газово-пылевой среды. Какие же основания существуют для предположения о связи между газово-пылевыми комплексами и процессом звездообразоания? Прежде всего следует подчеркнуть, что уже по крайней мере с сороковых годов нашего столетия астрономам ясно, что звезды в Галактике должны непрерывно (то есть буквально "на наших глазах") образовываться из какой-то качественно другой субстанции. Дело в том, что к 1939 году было установлено, что источником звездной энергии является происходящий в недрах звезд термоядерный синтез. Грубо говоря, подавляющие большинство звезд излучают потому, что в их недрах четыре протона соединяются через ряд промежуточных этапов в одну альфа-частицу. Так как масса одного протона (в атомных единицах) равна 1,0081, а масса ядра гелия (альфа-частицы) равна 4,0039, то избыток массы, равный 0,007 атомной единицы на протон, должен выделиться как энергия. Тем самым определяется запас ядерной энергии в звезде, которая постоянно тратится на излучение. В самом благоприятном случае чисто водородной звезды запаса ядерной энергии хватит не более, чем на 100 миллионов лет, в то время как в реальных условиях эволюции время жизни звезды оказывается на порядок меньше этой явно завышенной оценки. Но десяток миллионов лет - ничтожный срок для эволюции нашей Галактики, возраст которой никак не меньше чем 10 миллиардов лет. Возраст массивных звезд уже соизмерим с возрастом человечества на Земле! Значит звезды (по крайней мере, массивные с высокой светимостью) никак не могут быть в Галактике "изначально", то есть с момента ее образования. Оказывается, что ежегодно в Галактике "умирает" по меньшей мере одна звезда. Значит, для того, чтобы "звездное племя" не "выродилось", необходимо, чтобы столько же звезд в среднем образовывалось в нашей Галактике каждый год. Для того, чтобы в течении длительного времени (исчисляемыми миллиардами лет) Галактика сохраняла бы неизменными свои основные особенности (например, распределение звезд по классам, или, что практически одно и тоже, по спектральным классам), необходимо, чтобы в ней автоматически поддерживалось динамическое равновесие между рождающимися и "гибнущими" звездами. В этом отношении Галактика похожа на первобытный лес, состоящий из деревьев различных видов и возрастов, причем возраст деревьев гораздо меньше возраста леса. Имеется, правда, одно важное различие между Галактикой и лесом. В Галактике время жизни звезд с массой меньше солнечной превышает ее возраст. Поэтому следует ожидать постепенного увеличения числа звезд со сравнительно небольшой массой, так как они пока еще "не успели" умереть, а рождаться продолжают. Но для более массивных звезд упомянутое выше динамическое равновесие неизбежно должно выполняться.

Газово-пылевые комплексы - колыбель звезд

Откуда же берутся в нашей Галактике молодые и "сверхмолодые" звезды? С давних пор, по установившейся традиции, восходящей к гипотезе Канта и Лапласа о происхождении Солнечной системы, астрономы предполагали, что звезды образуются из рассеянной диффузной газово-пылевой среды. Было только одно строгое теоретическое основание такого убеждения - гравитационная неустойчивость первоначально однородной диффузной среды. Дело в том, что в такой среде неизбежны малые возмущения плотности, то есть отклонения от строгой однородности. в дальнейшем, однако, если массы этих конденсаций превосходят некоторый предел, под влиянием силы всемирного тяготения малые возмущения будут нарастать и первоначально однородная среда разобьется на несколько конденсаций. Под действием силы гравитации эти конденсации будут продолжать сжиматься и, как можно полагать, в конце концов превратятся в звезды.

Характерное время сжатия облака до размеров протозвезды можно оценить по простой формуле механики, описывающей свободное падение тела под влиянием некоторого ускорения. Так, к примеру, облако с массой, равной солнечной, сожмется за миллион лет.

В процессе только что описанной первой стадии конденсации газово-пылевого облака в звезду, которая называется "стадией свободного падения", освобождается определенное количество гравитационной энергии. Половина освободившейся при сжатии облака энергии должна покинуть облако в виде инфракрасного излучения, а половина пойти на нагрев вещества.

Как только сжимающееся облако станет непрозрачным для своего инфракрасного излучения, светимость его резко упадет. Оно будет продолжать сжиматься, но уже не по закону свободного падения, а гораздо медленнее. Температура его внутренних областей , после того как процесс диссоциации молекулярного водорода закончится, будет непременно повышаться, так как половина освобождающейся при сжатии гравитационной энергии будет идти на нагрев облака. Впрочем, такой объект назвать облаком уже нельзя. Это уже самая настоящая протозвезда.

Таким образом, из простых законов физики следует ожидать, что может иметь место единственный и закономерный процесс эволюции газово-пылевых комплексов сначала в протозвезды, а потом и в звезды. Однако возможность - это еще не есть действительность. Первейшей задачей наблюдательной астрономии является, во-первых, изучить реальные облака межзвездной среды и проанализировать, способны ли они сжиматься под действием собственной гравитации. Для этого надо знать их размеры, плотность и температуру. Во-вторых, очень важно получить дополнительные аргументы в пользу "генетической близости облаков и звезд (например, тонкие детали их химического и даже изотопного состава, генетическая связь звезд и облаков и прочее). В-третьих, очень важно получить из наблюдений неопровержимые свидетельства существования самых ранних этапов развития протозвезд (например, вспышки инфракрасного излучения в конце стадии свободного падения). Кроме того, здесь могут наблюдаться, и, по-видимому, наблюдаются совершенно неожиданные явления. Наконец, следует детально изучать протозвезды. Но для этого прежде всего надо уметь отличать их от "нормальных" звезд.

Звездные ассоциации

Эмпирическим подтверждением процесса образования звезд из облаков межзвездной среды является то давно известное обстоятельство, что массивные звезды классов О и В распределены в Галактике не однородно, а группируются в отдельные обширные скопления, которые позже получили название "ассоциации". Но такие звезды должны быть молодыми объектами. Таким образом, сама практика астрономических наблюдений подсказывала, что звезды рождаются не поодиночке, а как бы гнездами, что качественно согласуется с представлениями теории гравитационной неустойчивости. Молодые ассоциации звезд (состоящие не только из одних горячих массивных гигантов, но и из других примечательных, заведомо молодых объектов) тесно связаны с большими газово-пылевыми комплексами межзвездной среды. Естественно считать, что такая связь должна быть генетической, то есть эти звезды образуются путем конденсации облаков газово-пылевой среды.

Процесс рождения звезд, как правило, не заметен, потому что скрыт от нас пеленой поглощающей свет космической пыли. Только радиоастромония, как можно теперь с большой уверенностью считать, внесла радикальное изменение в проблему изучения рождения звезд. Во-первых, межзвездная пыль не поглощает радиоволны. Во- вторых, радиоастрономия открыла совершенно неожиданные явления в газово-пылевых комплексах межзвездой среды, которые имеют прямое отношение к процессу звездообразования.

Кратко о всем процессе рождения

Мы довольно подробно рассматривали вопрос о конденсации в протозвезды плотных холодных молекулярных облаков, на которые из-за гравитационной неустойчивости распадается газово-пылевой комплекс межзвездной среды. Здесь важно еще раз подчеркнуть, что этот процесс является закономерным, то есть неизбежным. В самом деле, тепловая неустойчивость межзвездной среды неизбежно ведет к ее фрагментации, то есть к разделению на отдельные, сравнительно плотные облака и межоблачную среду. Однако собственная сила тяжести не может сжать облака - для этого они недостаточно плотны и велики. Но тут "вступает в игру" межзвездное магнитное поле. В системе силовых линий этого поля неизбежно образуются довольно глубокие "ямы", куда "стекаются" облака межзвездной среды. Это приводит к образованию огромных газово-пылевых комплексов. В таких комплексах образуется слой холодного газа, так как ионизирующее межзвездный углерод ультрафиолетовое излучение звезд сильно поглощается находящейся в плотном комплексе космической пылью, а нейтральные атомы углерода сильно охлаждают межзвездный газ и "термостатируют" его при очень низкой температуре - порядка 5-10 градусов Кельвина. Так как в холодном слое давление газа равно внешнему давлению окружающего более нагретого газа, то плотность в этом слое значительно выше и достигает нескольких тысяч атомов на кубический сантиметр. Под влиянием собственной гравитации холодный слой, после того как он достигнет толщины около одного парсека, начнет "фрагментировать" на отдельные, еще более плотные сгустки, которые под воздействием собственной гравитации будут продолжать сжиматься. Таким вполне естественным образом в межзвездной среде возникают ассоциации протозвезд. Каждая такая протозвезда эволюционирует со скоростью, зависящей от ее массы.

Когда существенная часть массы газа превратиться в звезды, межзвездное магнитное поле, которое своим давлением поддерживало газово-пылевой комплекс, естественно, не будет оказывать воздействия на звезды и молодые протозвезды. Под влиянием гравитационного притяжения Галактики они начнут падать к галактической плоскости. Таким образом, молодые звездные ассоциации всегда должны приближаться к галактической плоскости.

Список литературы

1. И. С. Шкловский. Звезды: их рождение, жизнь и смерть

2. П. И. Бакулин. Курс общей астрономии

3. Ю. Н. Ефремов. В глубины Вселенной

Для подготовки данной работы были использованы материалы с сайта http://referat2000.bizforum.ru/

bukvasha.ru

Реферат на тему Что такое звёзды

ЧТО ТАКОЕ ЗВЕЗДЫ Звёзды - самосветящиеся небесные тела, состоящие из раскалённых газов, по своей природе сходные с Солнцем. Солнце кажется несравненно больше звезды только благодаря близости его к Земле: от Солнца до Земли свет идёт 81/3 мин, а от ближайшей звезды Центавра - 4 года 3 мес. Из-за больших расстояний от Земли звезды и в телескоп видны как точки, а не как диски (в отличие от планет). Число звёзд, видимых невооружённым глазом на обоих полушариях небесной сферы в безлунную ночь, составляет около 5 тыс. В мощные телескопы видны миллиарды звёзд. Изучение звёзд было вызвано потребностями материальной жизни общества (необходимость ориентировки при путешествиях, создание календаря, определение точного времени). Уже в глубокой древности звёздное небо было разделено на созвездия. Долгое время звёзды считались неподвижными точками, по отношению к которым наблюдались движения планет и комет. Со времён Аристотеля (IV в. до н. э.) в течение многих столетий господствовали взгляды, согласно которым звёздное небо считалось вечной и неизменной хрустальной сферой, за пределами которой находилось жилище богов. В конце 16 в. итальянский астроном Джордано Бруно учил, что звёзды – это далёкие тела, подобные нашему Солнцу. В 1596 немецким астрономом И. Фабрициусом была открыта первая переменная звезда, а в 1650 италийским учёным Дж. Риччоли – первая двойная звезда. В 1718 английский астроном Э. Галлей обнаружил собственные движения трёх звёзд. В середине и во 2-й половине XYIII в. русский учёный М. В. Ломоносов, немецкий учёный И. Кант, английские астрономы Т. Райт и В. Гершель и другие высказывали правильные идеи о той звёздной системе, в которую входит Солнце. В 1835-39 русский астроном В.Я. Струве, немецкий астроном Ф. Бессель и английский астроном Т. Гендерсон впервые определили расстояния до трёх близких звёзд. В 60-х гг. XIX в. для изучения звёзд применили спектроскоп, а в 80-х гг. стали пользоваться и фотографией. Русский астроном А.А. Белопольский в 1900г. экспериментально доказал для световых явлений справедливость принципа Доплера, на основании которого по смещению линий в спектре небесных светил можно определить их скорость движения вдоль луча зрения. Накопление наблюдений и развитие физики расширили представления о звёздах. Итак, более девяти десятых вещества нашей Галактики сосредоточено в звездах; есть галактики, в которых на звезды приходится 99,9% массы. Мир звезд многообразен, но все же большинство из них подобно нашему Солнцу. Большая часть вещества Вселенной «скрыта» в недрах звезд и имеет температуру порядка десятка миллионов градусов при очень высокой плотности и физических условиях, мало отличающихся от термодинамического равновесия. Основная эволюция вещества Вселенной происходила и происходит в недрах звезд. Именно там находился (и находится) тот «плавильный тигль», который обусловил химическую эволюцию вещества во Вселенной, обогатив его тяжелыми элементами. Именно там вещество по естественным законам природы превращается из идеального газа в очень плотный вырожденный газ и даже в «нейтронизированную» материю. Именно у некоторых звезд на поворотных этапах их эволюции может реализоваться пока еще далекое от ясности состояние «черной дыры». Вместе с тем, окружающие ядра галактик звезды (в среднем) занимают около 10^-25 объема Вселенной. Один из основателей современной теории звездной эволюции профессор М. Шварцшильд в своей известной монографии, посвященной строению и эволюции звезд, высказал очень глубокую мысль: «Если Вселенная управляется простыми универсальными законами, то разве чистое мышление оказалось бы не способным открыть эту совокупность законов? Тогда не нужно было бы опираться на наблюдения, которые приходится производить с таким трудом. Хотя законы, которые мы стремимся открыть, быть может, и совершенны, но человеческий разум далек от совершенства: представленный самому себе он склонен заблуждаться, чему мы видим печальное подтверждение среди бесчисленных примеров прошлого. Действительно, мы очень редко упускали возможность впасть в заблуждение; только новые, полученные из наблюдений данные, с трудом отвоеванные у природы, возвращали нас на правильный путь. В теории эволюции звезд они особенно необходимы, чтобы двигаться вперед, не впадая в серьезные ошибки…» Звезды, так же как Солнце, Луна и планеты, были известны человеку еще тогда, когда он человеком не был. По мнению И.С.Шкловского, самой примитивной астрономической информацией располагают животные, причем не только высшие. Потребовалось, однако, тысячелетнее развитие науки, чтобы человечество осознало простой и вместе с тем величественный факт, что звезды - это объекты, более или менее похожие на Солнце, но только отстоящие от нас на несравненно большие расстояния. Этого не понимали даже выдающиеся мыслители, как Кеплер. Ньютон был первым, кто правильно оценил расстояния до звезд. Два столетия после великого английского учёного почти всеми молчаливо принимались, что чудовищно больших размеров пространство, в котором находятся звезды, есть абсолютная пустота. И только в самом начале ХХ века немецкий астроном Гартман убедительно доказал, что пространство между звездами представляет отнюдь не мифическую пустоту. Оно заполнено газом, правда, с очень малой, но вполне определенной плотностью. Это выдающееся открытие было сделано с помощью спектрального анализа. Открытие немецкого ученого состояло в том, что он обнаружил в спектрах некоторых двойных звезд две линии поглощения, длины волн которых не менялись, в то время как у всех остальных спектральных линий длины волн периодически менялись. Эти «неподвижные» линии, принадлежащие ионизированному кальцию, получили название «станционарных ». Они образуются не в наружных слоях звезд, а где – то «по пути» между звездой и наблюдателем. Так впервые был обнаружен межзвездный газ, который в проходящем сквозь него звездном свете производит поглощение в узких спектральных участках. Почти половину столетия межзвездный газ исследовался главным образом путем анализа образующихся в нем линий поглощения. Выяснилось, например, что довольно часто эти линии имеют сложную структуру, то есть состоят из нескольких близко расположенных друг к другу компонент. Каждая такая компонента возникает при поглощении света звезды в каком-нибудь определенном облаке межзвездной среды, причем облака движутся друг относительно друга со скоростью, близкой к 10 км/сек. Это и приводит к незначительному смещению длин волн линий поглощения. По мнению И.С.Шкловского, звезды рождаются редко. В нашей весьма крупной Галактике за год формирования всего около дюжины новых светил. Как правило, небольшие группы возникших звезд прячутся в глубине непрозрачных газопылевых облаков, скрывая от астрономов первые, возможно, самые интересные, этапы своего развития. К счастью, звезды гибнут поодиночке, а рождаются вместе. Изредка появление звезд «в одном месте и в одно время» происходит столь интенсивно, что напоминает взрыв, разрушающий темное родительское облако и обнажающий начальный момент формирования звезд. Однако области взрывного звездообразования тоже встречаются не часто. Астрономам известны лишь две, расположенные в относительной близости от Солнца: звездногазовый комплекс NGC 3603 в нашей Галактике и комплекс Тарантул – в соседней, Большом Маггелановом Облаке. Их детальным исследованием астрономы Европейской южной обсерватории занялись сразу после того, как очень большой телескоп (VLT) открыл свой первый 8-метровый «глаз». Новый проект имел целью разрешить давно мучившую астрономов загадку. Дело в том, что звезды весьма значительно различаются по своей массе; у одних она в десятки раз больше, чем у Солнца, у других - во много раз меньше. Между тем от массы зависит мощность излучения, его спектральный состав, срок жизни звезды и сила ее влияния на окружающее вещество. К сожалению, до сих пор астрономы не понимают, от чего зависит масса рождающейся звезды. Известно только, что маленькие появляются гораздо чаще больших. Биолога такой факт ничуть бы не удивил: если больших будет больше, чем маленьких, нарушатся пищевые цепи. Однако звезды (за редкими исключениями) не «питаются» друг другом. Чтобы понять их распределение по массе, астрономы проверяют некоторые теоретические идеи. Одна, довольно популярная, заключается в том, что масса звезды зависит от условий формирования, прежде всего – от плотности и температуры исходного газа. А это значит, что в разных облаках должны формироваться звезды разной массы. Возможна и другая гипотеза: по мере изменения условий в облаке будет меняться и характерная масса формирующихся в нем звезд; следовательно, звезды разной массы в пределах одного очага звездообразования должны иметь разный возраст. Проверить эти предположения оказалось нелегко: близкие области звездообразования не содержат столь редко рождающихся массивных объектов, а те немногочисленные крупные очаги, где они появляются, находятся так далеко от Солнца, что нормальному телескопу не рассмотреть в них блеклые маломассивные звезды. Именно поэтому гигантский телескоп VLT Анту решено использовать для поиска слабых объектов в крупнейших очагах звездообразования. Комплекс NGC 3603- один из крупнейших в Галактике. Суммарная масса его наиболее массивных звезд спектральных классов О и В превышает 2 тысячи солнечных масс. Пятьдесят его самых ярких О-звезд дают ионизующий поток в 100 раз более мощный, чем хорошо известное скопление молодых звезд в нашей Галактике. Сравнимое с ним пока найдено только в соседней системе – туманности Тарантул. Находящееся в ее центре звездное скопление NGC 2070 удалено от нас в 8 раз дальше, чем комплекс NGC 3603 . Но во многом эти области схожи между собой. До сих пор излучение звездного скопления NGC 3603 было чрезвычайно затруднено сильным поглощением света межзвездной пылью: на огромном расстоянии от объекта до Земли пыль ослабляет излучение в оптическом диапазоне в 80 раз. Появление телескопа Анту с его «прибором ночного видения» - инфракрасной камерой-спектрометром ISAAC- сделало проблему разрешимой: в этом диапазоне поглощение пылью ослабляет излучение всего в 2 раза. Чтобы иметь возможность измерить по отдельности яркость каждой звезды в этом сверхплотном конгломерате, необходимо было получить предельно четкое изображение скопления. Чилийское небо и европейская техника дали такую возможность: диаметр изображений составил 0.4 угл. сек. Чтобы «вытянуть» слабые звезды и не получить «передержки» у ярких звезд, был использован хитроумный прием короткой многократной экспозиции с последующим сложением отдельных кадров в память компьютера. В результате этой работы удалось надежно измерить яркость и цвет около 7 тысяч звезд скопления NGC 3603. Впервые подсчитаны и измерены все звезды в активном очаге их формирования вплоть до карликов с массой в 1/10 солнечной. Для сравнения: в туманности Тарантул нижняя граница массы излученных звезд составляет 1 массу Солнца. Все это очень молодые звезды с возрастом от 300 тысяч до 1 миллиона лет; некоторые из них еще в процессе формирования. При этом большинство звезд имеет малую массу. Важнейший вывод работы международной команды астрономов таков: вопреки теоретическим прогнозам маломассивные звезды формируются вместе с массивными в едином эпизоде звездообразования. Вероятно, каждый хотя бы раз видел удивительное астрономическое явление – «падающие звезды». Они появляются неожиданно, почти мгновенно исчезают и обычно бывают не очень яркими. Но иногда даже дух захватывает, до чего красиво и ярко вспыхивает звезда. Она угасает не вмиг, а некоторое время оставляет за собой светящийся след. И уж совсем редко можно увидеть «звездный дождь» настоящий ливень из «падающих звезд». Так было, например, 12 ноября 1833 года, «звезды» падали, словно хлопья снега. Каждую секунду их появлялось по 20, за час – более 70 тысяч. Можно было подумать, что все звезды упали с неба. Но когда «звездный дождь» закончился, оказалось, что все 3000 звезд, которые мы обычно видим невооруженным глазом, остались на своих местах. Научное название «падающих звезд» - метеориты. Одно время ученые спорили, имеют ли метеориты вообще какое-либо отношение к астрономии. Астрономы выяснили, что метеориты возникают, когда крохотная космическая частичка или камушек, с большой скоростью врезаются в земную атмосферу, разогревается в ней и сгорает, вспыхнув на высоте около 100 километров. До встречи с Землей метеоритные тела долго носились в космическом пространстве. Эти частички, действительно, очень малы и весят не более чем несколько капель воды. Яркие метеориты порождаются частичками размером с кедровый орешек. Так, что «падающие звезды» совсем не похожи на настоящие звезды, многие из которых даже больше Солнца. А отчего же бывают «звездные дожди»? Происходят они, когда Земля встречается не с отдельными метеоритными частичками, а с их скоплением или роем. А чтобы понять, откуда эти скопления я расскажу одну историю… Средние скорости движения звезд нашей Галактики, как по вытянутым, так и по круговым орбитам составляют 100-300 км/с. В менее массивных галактиках они меньше, в более массивных больше, но всегда лежат в пределах от десятков до тысячи километров в секунду. В результате огромной работы, проделанной астрономами ряда стран в течение последних десятилетий, мы многое узнали о различных характеристиках звезд, природе их излучения и даже эволюции. Как это ни покажется парадоксальным, сейчас мы гораздо лучше представляем образование и эволюцию многих типов звезд, чем собственной планетной системы. В какой-то степени это понятно: астрономы наблюдают огромное множество звезд, находящихся на различных стадиях эволюции, в то время как непосредственно наблюдать другие планетные системы мы пока не можем. Мы упомянули о «характеристике» звезд. Под этим понимаются такие их основные свойства, как масса, полное количество энергии, излучаемой звездой в единицу времени (это величина называется «светимостью» и обычно обозначается буквой L), радиус и температура поверхностных слоев. Хаббл Выведенная на орбиту вокруг Земли в конце апреля 1990 года с борта американского челнока «Дискавери», эта крупнейшая орбитальная обсерватория в 12 тонн сразу стала «ньюсмейкером» №1 для астрономов и астрофизиков всего мира. Ведь Хабблу удалось зафиксировать «специфическое голубое сияние» в молодой и горячей – в буквальном смысле слова – спиральной галактике в созвездии Пегаса. Этот голубой свет донёс до нас информацию о катастрофических по своим масштабам событиях, которые происходили там 150 миллионов световых лет назад. Именно на таком расстоянии находится от Солнца нынешний объект исследований Хаббла. В чём уникальность новых данных? Фактически учёные получили в своё распоряжение бесценный экспериментальный материал, позволяющий разобраться в некоторых особенностях самых ранних этапов рождения звёзд. «Очень вероятно, что эти события демонстрируют нам собой тип формирования звезды, который имел место в ранней вселенной, - заявила Николь Омье, сотрудница Европейской южной обсерватории». В рассеянных голубоватых скоплениях заброшенной в умопомрачительную даль от Земли «изодранной» спиральной галактики NGC 7673 загораются прямо сейчас, в данный момент, миллионы молодых звёзд! Каждое из этих голубых скоплений состоит из тысячи звёзд-младенцев. Собственно, именно потому, что это молодые звёзды, свет от них смещён в синюю часть оптического спектра (по сравнению с более старыми красными звёздами). Мало того, эти «малютки» испускают в окружающее пространство неимоверно интенсивные потоки радиации. Каждое синее скопление выбрасывает в 100 раз более интенсивные потоки ультрафиолета, чем, например, известная на сегодняшний день ближайшая к Солнцу область звёздообразования в туманности Тарантула, по соседству с нашей галактикой Млечного Пути. Теоретики после получения этих данных выдвинули сразу несколько гипотез о причинах возникновения этого звёздного «роддома». Голубые кластеры в спиральной галактике NGC 7673 могли стать следствием её столкновения с другой, близлежащеё галактикой. Представить себе масштабы такого столкновения вряд ли возможно. Но недаром Лев Ландау ещё в 50-е годы прошлого века заметил, что физики могут объяснить даже то, что не могут уже представить. Другая гипотеза не менее экзотична. Рассеянный внутригалактический газ образовал гигантские кластеры - настоящие газовые глыбы, и направленный поток мощного излучения от какой-то внешней звезды буквально поджёг эти газовые айсберги галактики. Информационное CNN приводит слова Николь Омье: «С помощью наземных телескопов до сих пор мы могли наблюдать процесс звёздообразования только на объектах в виде нечётких областей (глыб) в космосе, но теперь, с Хабблом, мы можем изучать непосредственно процесс формирования звёзд в раннеё вселенной.»

Откуда произошли названия звёзд и созвездий??? Если вы посмотрите на звёздное небо, то при некотором воображении в россыпи более или менее ярких звёзд увидите различные фигуры. Эти фигуры можно составлять различными способами. Уже в древней Греции было выделено 48 таких фигур, заполнивших почти всё звёздное небо, они получили название «созвездий». Некоторые звёзды не входили в созвездия, а характеризовались тем, около какого созвездия они расположены. Ещё древние вавилоняне, астрономические знания которых оказали сильное влияние на греков, выделили 12 созвездий, расположенных вдоль большого круга небесной сферы, по которому совершает своё видимое годичное движение Солнце(этот круг называется эклиптикой, от греческого «затмение», так как затмения происходят, когда Луна попадает на этот круг). Число созвездий зодиака равно числу месяцев, и Солнце проходит каждое из них за месяц. Изображения и названия созвездий зодиака и соответствующих месяцев, сделанном на основе звёздного атласа известного астронома XYII века Яна Гевелия. Первоначально вступление Солнца в созвездие Овна приурочивалось ко дню весеннего равноденствия, но за две тысячи лет этот день несколько сдвинулся по отношению к созвездиям зодиака. (Заметим, что Овен и Телец – устаревшие названия барана и быка), Под Стрельцом, т.е. стрелком, понимали кентавра, вооружённого луком со стрелами, под Козерогом – козла с рыбьим хвостом, Рыб представляли в виде двух рыб, соединенных тесьмой. Слово зодиак, от греческого «животное», объясняется тем, что большинство созвездий зодиака имеют вид животных. Фигуры созвездий зодиака и их названия в настоящее время почти такие же, как у греков: разница состоит только в том, что греки называли созвездие Весов «Клешнями» и рассматривали как клешни Скорпиона. Севернее зодиака греки располагали 21 созвездие, а южнее – 15 созвездий: созвездия южного полушария греки знали хуже, так как в древности путешественники редко доходили даже до экватора. Уже в новое время были добавлены неизвестные грекам Южный Крест и другие южные созвездия. Названия созвездий объясняются теми фигурами, которые получались при соединении звёзд, образующих созвездие линиями. Разные народы по-разному истолковывали эти фигуры. Например, в ковше Большой Медведицы греки видели медведя, а арабы – погребальную процессию в виде гроба, перед которыми идут плакальщицы, возглавляемые «предводителем плакальщиц». Некоторые созвездия связаны между собой: Волопаса, т.е. пастуха, греки рассматривали как сторожа медведиц. Шесть северных созвездий – Цефея, Кассиопеи, Андромеды, Персея, Пегаса и Кита – также связаны общей легендарной об эфиопском царе Кефее (Цефей – латинская форма этого имени), его жене Кассиопее и дочери Андромеде. Согласно этой легенде, Кассиопея оскорбила морских нимф нереид, и в наказание за это морской бог Посейдон послал морское чудовище Кита (представлявшегося зверем с лапами и страшной пастью) опустошать берега Эфиопии. Для спасения страны Кефей должен был принести в жертву свою дочь, имя которой означает «не видевшая мужа». Девушка уже была прикована к скале, когда появился на крылатом коне Пегасе Персей – герой, убивший ужасную Медузу Горгону, взгляд которой обращал всех, кто встречался с ней, в камень. Сам Персей в борьбе с Медузой Горгоной смотрел не на неё, а на её отражение в своём щите. Персей отрубил голову Горгоны и явился к Андромеде с этой головой. Показав её Киту, он превратил его в камень, освободил Андромеду и женился на ней. Расположение указанных созвездий соответствует моменту прибытия Персея. Созвездие Ориона своим названием обязано имени мифического стрелка, убитого богиней Артемидой за то, что он вызвал её на состязание в метании диска. Созвездие Геркулеса получило своё название только в новое время, греки называли «Коленопреклоненный». Созвездие Эридана греки называли «Рекой». Эридан – древнее название реки По, а также одно из имён мифического сына Солнца Фаэтона, согласно легенде упавшего на землю и утонувшего в По. Известны и другие «преобразования» созвездий. Так, созвездие Корабля Арго впоследствии было разделено на Корму, Паруса, Компас и Киль. А из мелких звёзд, не входящих в известные раньше созвездия, были образованы новые созвездия: Горячие Псы, Щит Собесского, Ящерица, Рысь, Единорог и Секстант. Ещё более любопытны названия звёзд. Пожалуй, только название Полярной звезды – звезды L созвездия Малой Медведицы (яркие звёзды созвездий принято обозначать греческими буквами L, B, Y, … в порядке их убывающего блеска) – и звёзд, носящих собственные имена людей, понятны без обращения к словарю. Полярная звезда получила своё название потому, что она находится вблизи Северного Полюса мира, вокруг которого происходит видимое суточное вращение звёздного неба. Собственные имена имеют, например, звёзды L и B созвездия Близнецов. Это Кастор и Поллукс, они названы так по именам двух мифических близнецов – сыновей Зевса и Леды. Звезда L Гончих Псов получила своё название Сердце Карла уже в новое время. Очень немногие звёзды имеют греческие и латинские названия, большинство названий арабского происхождения. Это объясняется тем, что в средние века центр передовой науки находился на Ближнем и Среднем Востоке, где языком науки был арабский язык (как до этого в эллинистических странах – греческий, а позже в Европе – латинский). Важный вклад в науку того времени внесли учёные Средней Азии и Азербайджана: аль-Хорезми и аль-Бируни, Ибн Сина и Омар Хайям, Насир Ад-Дин ат-Туси и Улугбек. Много важных открытий было сделано также учёными Ирана, Ирака, Сирии, Египта, Северо-Западной Африки и мусульманской Испании. Труды этих учёных попадали в Западную Европу через Константинополь. Со многими трудами античной науки европейцы познакомились сначала по их арабским переводам и только потом – с греческими оригиналами. Большинство арабских названий возникло следующим образом. В знаменитом труде александрийского астронома Клавдия Птолемея (II век до н.э.), обычно называемом нами «Альмагестом», имелся каталог 10022 звёзд, положения которых были измерены астрономами того времени. (Европейцы познакомились с этим трудом по его арабскому переводу: одно из греческих названий этого сочинения – «Мегисте синтаксис», что значит «Величайшая система», - арабы переделали в «аль-Маджисти», откуда и получилось «Альмагест».) Каждую звезду Птолемей характеризовал небольшим описанием, указывающим место этой звезды в созвездии. Именно от этих описаний в арабском переводе и произошли наши названия. Некоторые названия, впрочем, восходят не к Птолемею, а к староарабским названиям звёзд. Заметим, что название Антареса объясняется тем, что эта звезда, как и Марс, красного цвета и является как бы заместителем Марса (наши названия планет – имена римских богов, соответствующих греческим богам Гермесу, Афродите, Аресу, Зевсу и Хроносу, именами которых называли планеты греки.) От названия звезды Регул происходит слово «регулировать», так как этой звездой пользовались при регулировании полевых работ в Древнем Египте. Названия Мира и Проксима были даны учёными сравнительно недавно: название Мира получила звезда созвездия Кита за её удивительные свойства (она является долгопериодической переменной звездой), название Проксима было присвоено звезде созвездия Центавра после того, как было обнаружено, что эта звезда расположена ближе всех звёзд к Солнечной системе.

 

Светимость

Светимость звезды L часто выражается в единицах светимости Солнца, которая равна 4*1^33 эрг/с. По своей светимости звезды очень сильно различаются. Есть звезды белые и голубые сверхгиганты (их, правда, сравнительно немного), светимости которых превосходят светимость Солнца в десятки и даже сотни тысяч раз. Но большинство звезд составляют "карлики", светимости которых значительно меньше солнечной, зачастую в тысячи раз. Характеристикой светимости является так называемая "абсолютная величина" звезды. Видимая звездная величина зависит, с одной стороны, от ее светимости и цвета, с другой - от расстояния до нее. Звезды высокой светимость имеют отрицательные абсолютные величины, например -4, -6. Звезды низкой светимости характеризуются большими положительными значениями, например +8,+10.

Температура

Температура определяет цвет звезды и ее спектр. Так, например, если температура поверхности слоев звезд 3-4тыс. К., то ее цвет красноватый, 6-7 тыс. К. - желтоватый. Очень горячие звезды с температурой свыше 10-12 тыс. К. имеют белый или голубоватый цвет. В астрономии существуют вполне объективные методы измерения цвета звезд. Последний определяется так называемым "показателем цвета", равным разности фотографической и визуальной и визуальной звездной величины. Каждому значению показателя цвета соответствует определенный тип спектра. У холодных красных звезд спектры характеризуются линиями поглощения нейтральных атомов металлов и полосами некоторых простейших соединений (например, CN, СП, Н20 и др.). По мере увеличения температуры поверхности в спектрах звезд исчезают молекулярные полосы, слабеют многие линии нейтральных атомов, а также линии нейтрального гелия. Сам вид спектра радикально меняется. Например, у горячих звезд с температурой поверхностных слоев, превышающей 20 тыс. К, наблюдаются преимущественно линии нейтрального и ионизованного гелия, а непрерывный спектр очень интенсивен в ультрафиолетовой части. У звезд с температурой поверхностных слоев около 10 тыс. К наиболее интенсивны линии водорода, в то время как у звезд с температурой около 6 тыс. К. линии ионизированного кальция, расположенные на границе видимой и ультрафиолетовой части спектра. Заметим, что такой вид I имеет спектр нашего Солнца. Последовательность спектров звёзд, получающихся при непрерывном изменении температуры их поверхностных слоёв, обозначается следующими буквами: O, B, A, F, G, K, M, от самых горячих к очень холодным. Каждая буква описывает спектральный класс. Спектры звезд Исключительно богатую информацию дает изучение спектров звезд. Уже давно спектры подавляющего большинства звезд разделены на классы. Последовательность спектральных классов обозначается буквами O, B, A, F, G, K, M. Существующая система классификации звездных спектров настолько точна, что позволяет определить спектр с точностью до одной десятой класса. Например, часть последовательности звездных спектров между классами B и А обозначается как В0, В1 . . . В9, А0 и так далее. Спектр звезд в первом приближении похож на спектр излучающего "черного" тела с некоторой температурой Т. Эти температуры плавно меняются от 40-50 тысяч градусов у звезд спектрального класса О до 3000 градусов у звезд спектрального класса М. В соответствии с этим основная часть излучения звезд спектральных классов О и В приходиться на ультрафиолетовую часть спектра, недоступную для наблюдения с поверхности земли. Характерной особенностью звездных спектров является еще наличие у них огромного количества линий поглощения, принадлежащих различным элементам. Тонкий анализ этих линий позволил получить особенно ценную информацию о природе наружных слоев звезд.

Химический состав звезд

Химический состав наружных слоев звезд, откуда к нам "непосредственно" приходит их излучение, характеризуется полным преобладанием водорода. На втором месте находится гелий, а обилие остальных элементов достаточно невелико. Приблизительно на каждые десять тысяч атомов водорода приходиться тысячи атомов гелия, около 10 атомов кислорода, немного меньше углерода и азота и всего лишь один атом железа. Обилие остальных элементов совершенно ничтожно. Без преувеличения можно сказать, что наружные слои звезд - это гигантские водородно-гелиевые плазмы с небольшой примесью более тяжелых элементов. Хотя по числу атомов так называемые "тяжелые металлы" (т.е. элементы с атомной массой, большей, чем у гелия) занимают во Вселенной весьма скромное место, их роль очень велика. Прежде всего, они определяют характер эволюции звезд, т.к. непрозрачность звездных недр для излучений существенно зависит от ее непрозрачности. Наличие во Вселенной (в частности в звездах) тяжелых элементов имеет важное значение. Совершенно очевидно, что живая субстанция может быть построена только при наличии тяжелых элементов и их соединений. Общеизвестна роль углерода в структуре живой материи. Не менее важны и другие элементы, например железо, фосфор. Царство живого - это сложнейшие сцепления тяжелых элементов. Мы можем, поэтому со всей определенностью сформулировать следующее положение: если бы не было тяжелых металлов, не было бы и жизни. Поэтому проблема химического состава космических объектов (звезд, туманностей, планет) имеет первостепенное значение для анализа условий возникновения жизни в тех или иных слоях Вселенной. Радиус звезд Энергия, испускаемая элементом поверхности звезды единичной площади в единицу времени, определяется законом Стефана-Больцмана. Поверхность звезды равна 4П^2Таким образом, если известны температура и светимость звезды, то мы можем вычислить ее радиус.

Масса звезд

В сущности, говоря, астрономия не располагала и не располагает в настоящее время методом прямого и независимого определения массы (есть не входящей в состав кратных систем) изолированной звезды. И это достаточно серьезный недостаток нашей науки о Вселенной. Если бы такой метод существовал, прогресс наших знаний был бы значительно более быстрым. Массы звезд изменяются в сравнительно узких пределах. Очень мало звезд, массы которых больше или меньше солнечной в 10 раз. В такой ситуации астрономы молчаливо принимают, что звезды с одинаковой светимостью и цветом имеют одинаковые массы. Они определяются только для двойных систем. Утверждение, что одиночная звезда с той же светимостью и цветом имеет такую же массу, как и ее "сестра", входящая в состав двойной системы, всегда следует принимать с некоторой осторожностью. Считается, что объекты с массами меньшими 0,02 М уже не являются звездами. Они лишены внутренних источников энергии, и их светимость близка к нулю. Обычно эти объекты относят к планетам. Наибольшие непосредственно измеренные массы не превышают 60М. Современная астрономия располагает большим количеством аргументов в пользу утверждения, что звезды образуются путем конденсации облаков газово-пылевой межзвездной среды. Процесс образования звезд из этой среды продолжается и в настоящее время. Выяснение этого обстоятельства является одним из крупнейших достижений современной астрономии. Еще сравнительно недавно считали, что все звезды образовались почти одновременно много миллиардов лет назад. Крушению этих метафизических представлений способствовал, прежде всего, прогресс наблюдательной астрономии и развитие теории строения и эволюции звезд. В результате стало ясно, что многие наблюдаемые звезды являются сравнительно молодыми объектами, а некоторые из них возникли тогда, когда на Земле уже был человек. Важным аргументом в пользу вывода о том, что звезды образуются из межзвездной газово-пылевой среды, служит расположение групп заведомо молодых звезд (так называемых «ассоциаций») в спиральных ветвях Галактики. Дело в том, что согласно радиоастрономическим наблюдениям межзвездный газ концентрируется преимущественно в спиральных рукавах галактик. В частности, это имеет место и в нашей Галактике. Более того, из детальных «радио изображений» некоторых близких к нам галактик следует, что наибольшая плотность межзвездного газа наблюдается на внутренних (по отношению к центру соответствующей галактики) краях спирали, что находит естественное объяснение, на деталях которого мы здесь останавливаться не будем. Но именно в этих частях спиралей наблюдаются методами оптической астрономии «зоны Н», т. е. облака ионизованного межзвездного газа. Причиной ионизации таких облаков может быть только ультрафиолетовое излучение массивных горячих звезд — объектов заведомо молодых. Центральным в проблеме эволюции звезд является вопрос об источниках их энергии. В прошлом веке и в начале этого века предлагались различные гипотезы о природе источников энергии Солнца и звезд. Некоторые ученые, например, считали, что источником солнечной энергии является непрерывное выпадение на его поверхность метеоров, другие искали источник в непрерывном сжатии Солнца. Освобождающаяся при таком процессе потенциальная энергия могла бы, при некоторых условиях» перейти в излучение. Как мы увидим, ниже, этот источник на раннем этапе эволюции звезды может быть довольно эффективным, но он никак не может обеспечить излучение Солнца в течение требуемого времени. Успехи ядерной физики позволили решить проблему источников звездной энергии еще в конце тридцатых годов нашего столетия. Таким источником являются термоядерные реакции синтеза, происходящие в недрах звезд при господствующей там очень высокой температуре (порядка десяти миллионов градусов). В результате этих реакций, скорость которых сильно зависит от температуры, протоны превращаются в ядра гелия, а освобождающаяся энергия медленно "просачивается" сквозь недра звезд и, в конце концов, значительно трансформированная, излучается в мировое пространство. Это исключительно мощный источник. Если предположить, что первоначально Солнце состояло только из водорода, который в результате термоядерных реакций целиком превратится в гелий, то выделившееся количество энергии составит примерно 1052 эрг. Таким образом, для поддержания излучения на наблюдаемом уровне в течение миллиардов лет достаточно, чтобы Солнце "израсходовало" не свыше 10% своего первоначального запаса водорода. Теперь можно представить картину эволюции какой-нибудь звезды следующим образом. По некоторым причинам (их можно указать несколько) начало конденсироваться облако межзвездной газово-пылевой среды. Довольно скоро (разумеется, по астрономическим масштабам!) под влиянием сил всемирного тяготения из этого облака образуется сравнительно плотный непрозрачный газовый шар. Строго говоря, этот шар еще нельзя назвать звездой, так как в его центральных областях температура недостаточна для того, чтобы начались термоядерные реакции. Давление газа внутри шара не в состоянии пока уравновесить силы притяжения отдельных его частей, поэтому он будет непрерывно сжиматься. Некоторые астрономы раньше считали, что такие протозвезды наблюдаются в отдельных туманностях в виде очень темных компактных образований, так называемых глобул. Успехи радиоастрономии, однако, заставили отказаться от такой довольно наивной точки зрения. Обычно одновременно образуется не одна протозвезда, а более или менее многочисленная группа их. В дальнейшем эти группы становятся звездными ассоциациями и скоплениями, хорошо известными астрономам. Весьма вероятно, что на этом самом раннем этапе эволюции звезды вокруг нее образуются сгустки с меньшей массой, которые затем постепенно превращаются в планеты.  При сжатии протозвезды температура ее повышается, и значительная часть освобождающейся потенциальной энергии излучается в окружающее пространство. Так как размеры сжимающегося газового шара очень велики, то излучение с единицы его поверхности будет незначительным. Коль скоро поток излучения с единицы поверхности пропорционален четвертой степени температуры (закон Стефана — Больцмана), температура поверхностных слоев звезды сравнительно низка, между тем как ее светимость почти такая же, как у обычной звезды с той же массой. Поэтому на диаграмме "спектр - светимость" такие звезды расположатся вправо от главной последовательности, т. е. попадут в область красных гигантов или красных карликов, в зависимости от значений их первоначальных масс. В дальнейшем протозвезда продолжает сжиматься. Ее размеры становятся меньше, а поверхностная температура растет вследствие чего спектр становится все более ранним. Таким образом, двигаясь по диаграмме "спектр — светимость", протозвезда довольно быстро "сядет" на главную последовательность. В этот период температура звездных недр уже оказывается достаточной для тою, чтобы там начались термоядерные реакции. При этом давление газа внутри будущей звезды уравновешивает притяжение, и газовый шар перестает сжиматься. Протозвезда становится звездой. Но что произойдет со звездами, когда реакция "гелий — углерод" в центральных областях исчерпает себя, так же как и водородная реакция в тонком слое, окружающем горячее плотное ядро? Какая стадия эволюции наступит вслед за стадией красного гиганта?

Белые карлики

Совокупность данных наблюдений, а также ряд теоретических соображений говорят о том, что на этом этапе эволюции звезды, масса которых меньше, чем 1,2 массы Солнца, существенную часть своей массы, образующую их наружную оболочку, "сбрасывают". Такой процесс мы наблюдаем, по-видимому, как образование так называемых "планетарных туманностей". После того как от звезды отделится со сравнительно небольшой скоростью наружная оболочка, "обнажатся" ее внутренние, очень горячие слои. При этом отделившаяся оболочка будет расширяться, все дальше и дальше отходя от звезды. Мощное ультрафиолетовое излучение звезды — ядра планетарной туманности — будет ионизовать атомы в оболочке, возбуждая их свечение. Через несколько десятков тысяч лет оболочка рассеется и останется только небольшая очень горячая плотная звезда. Постепенно, довольно медленно остывая, она превратится в белый карлик. Таким образом, белые карлики как бы "вызревают" внутри звезд — красных гигантов — и "появляются на свет" после отделения наружных слоев гигантских звезд. В других случаях сбрасывание наружных слоев может происходить не путем образования планетарных туманностей, а путем постепенного истечения атомов. Так или иначе, белые карлики, в которых весь водород "выгорел" и ядерные реакции прекратились, по-видимому, представляют собой заключительный этап эволюции большинства звезд. Логическим выводом отсюда является признание генетической связи между самыми поздними этапами эволюции звезд и белыми карликами.

Черные карлики

Постепенно остывая, они все меньше и меньше излучают, переходя в невидимые "черные" карлики. Это мертвые, холодные звезды очень большой плотности, в миллионы раз плотнее воды. Их размеры меньше размеров земного шара, хотя массы сравнимы с солнечной. Процесс остывания белых карликов длится много сотен миллионов лет. Так кончает свое существование большинство звезд. Однако финал жизни сравнительно массивных звезд может быть значительно, более драматическим.

Нейтронные звезды

Если масса сжимающейся звезды превосходит массу Солнца более чем в 1,4 раза, то такая звезда, достигнув стадии белого карлика, на том не остановится. Гравитационные силы в этом случае очень велики, что электроны вдавливаются внутрь атомных ядер. В результате изотопы превращаются в нейтроны способные прилетать друг к другу без всяких промежутков. Плотность нейтронных звезд превосходит даже плотность белых карликов; но если масса материала не превосходит 3 солнечных масс, нейтроны, как и электроны, способны сами предотвратить дальнейшее сжатие. Типичная нейтронная звезда имеет в поперечнике всего лишь от 10 до 15 км, а один кубический сантиметр ее вещества весит около миллиарда тонн. Помимо неслыханно громадной плотности, нейтронные звезды обладают еще двумя особыми свойствами, которые позволяют их обнаружить, невзирая на столь малые размеры: это быстрое вращение и сильное магнитное поле. В общем, вращаются все звезды, но когда звезда сжимается, скорость ее вращения возрастает - точно так же, как фигурист на льду вращается гораздо быстрее, когда прижимает к себе руки. Нейтронная звезда совершает несколько оборотов в секунду. Наряду с этим исключительно быстрым вращением, нейтронные звезды имеют магнитное поле, в миллионы раз более сильное, чем у Земли.

Пульсары

Первые пульсары были открыты в 1968 г., когда радиоастрономы обнаружили регулярные сигналы, идущие к нам из четырех точек Галактики. Ученые были поражены тем фактом, что какие-то природные объекты могут излучать радиоимпульсы в таком правильном и быстром ритме. Вначале, правда, ненадолго астрономы заподозрили участие неких мыслящих существ, обитающих в глубинах Галактики. Но вскоре было найдено естественное объяснение. В мощном магнитном поле нейтронной звезды, движущиеся по спирали электроны генерируют радиоволны, которые излучаются узким пучком, как луч прожектора. Звезда быстро вращается, и радиолуч пересекает линию нашего наблюдения, словно маяк. Некоторые пульсары излучают не только радиоволны, но и световые, рентгеновские и гамма-лучи. Период самых медленных пульсаров около четырех секунд, а самых быстрых - тысячные доли секунды. Вращение этих нейтронных звезд было по каким-то причинам еще более ускорено; возможно, они входят в двойные системы.

Сверхновые

Звезды, массы которых не достигают 1,4 солнечной, умирают тихо и безмятежно. А что происходит с более массивными звездами? Как возникают нейтронные звезды и черные дыры? Катастрофический взрыв, которым заканчивается жизнь массивной звезды, - это воистину впечатляющее событие. Это самое мощное из природных явлений, совершающихся в звездах. В мгновение высвобождается больше энергии, чем излучает ее наше Солнце за 10 миллиардов лет. Световой поток, посылаемый одной гибнущей звездой, эквивалентен целой галактике, а ведь видимый свет составляет лишь малую долю полной энергии. Остатки взорвавшейся звезды разлетаются прочь со скоростями до 20 000 км в секунду. Такие грандиозные звездные взрывы называются сверхновыми. Сверхновые - довольно редкое явление. Каждый год и других галактиках обнаруживают от 20 до 30 сверхновых, главным образом в результате систематического поиска. За столетие в каждой галактике их может быть от одной до четырех. Однако в нашей собственной Галактике сверхновых не наблюдали с 1604 г. Может быть, они и были, но остались невидимыми из-за большого количества пыли в Млечном Пути. Чёрные дыры От звезды, имеющей массу больше, чем три солнечных, и радиус больше 8,85километра, свет уже не сможет уйти от нее в пространство. Уходящий от поверхности луч искривляется в поле силы тяжести так сильно, что возвращается обратно на поверхность. Кванты света - фотоны - излучаемые телом, возвращаются обратно, как брошенные вверх на земле камни. Никакое излучение не прорывается во внешний мир, чтобы донести весть о печальной судьбе звезды. Превратившись в черную дыру, небесное тело не исчезает из Вселенной. Оно дает о себе знать внешнему миру благодаря своей гравитации. Черная дыра поглощает световые лучи, идущие от нее на более значительное расстояние. Черная дыра может вступать в гравитационное взаимодействие с другими телами: она может удерживать около себя планеты или образовывать с другой звездой двойную систему. Итак, скорость эволюции звезд определяется их первоначальной массой. Так как по ряду признаков со времени образования нашей звездной системы — Галактики — прошло около 15—20 млрд. лет, то за это конечное (хотя и огромное) время весь описанный эволюционный путь прошли только те звезды, массы которых превышают некоторую величину. По-видимому, эта "критическая" масса всего лишь на 10—20% превышает массу Солнца. С другой стороны, как уже подчеркивалось, процесс образования звезд из межзвездной газово-пылевой среды происходил в нашей Галактике непрерывно. Он происходит и сейчас. Именно поэтому мы наблюдаем горячие массивные звезды в левой верхней части главной последовательности. Но даже звезды, образовавшиеся в самом начале формирования Галактики, если их масса их меньше чем 1,2 солнечной, еще не успели сойти с главной последовательности. Заметим, кстати, что темп звездообразования в настоящее время значительно ниже, чем много миллиардов лет назад. Солнце образовалось около 5 млрд. лет назад, когда Галактика уже давно сформировалась и в основных чертах была сходна с "современной". Вот уже, по крайней мере, 4,5 млрд. лет оно "сидит" на главной последовательности, устойчиво излучая благодаря ядерным реакциям превращения водорода в гелий, протекающим в его центральных областях. Сколько еще времени это будет продолжаться? Расчеты показывают, что наше Солнце станет красным гигантом через 8 млрд. лет. При этом его светимость увеличится в сотни раз, а радиус — в десятки. Эта стадия эволюции нашего светила займет несколько сот миллионов лет. Наконец, тем или иным способом разбухшее Солнце сбросит свою оболочку и превратится в белый карлик. Вообще говоря, нам, конечно, небезразлична судьба Солнца, так как с нею тесно связано развитие жизни на Земле. Для понимания природы звезд важно выявить зависимости между их отдельными характеристиками. Такие связи находятся путем сопоставления соответствующих величин. Так, в начале XX в. датский астроном Э. Герцшпрунг и американский астрофизик Г. Ресселл установили одну из таких зависимостей и представили ее в виде диаграммы, носящей теперь их имена. На горизонтальной оси диаграммы Герцшпрунга — Ресселла (диаграммы Г. — Р) откладывают температуру звезды, а на вертикальной — ее светимость в относительных единицах (по отношению к светимости Солнца). Каждой звезде на диаграмме отвечает вполне определенная точка. Обычно говорят, что место на диаграмме занимает звезда, а не соответствующая ей точка, и при обсуждении эволюции звезд пишут: «звезда движется по диаграмме», подразумевая при этом, что в процессе эволюции звезды из-за изменения температуры и светимости звезды соответствующая ей точка на диаграмме Г. — Р. меняет свое положение. Из этой диаграммы следует, что светимость звезды и ее спектральный класс связаны между собой определенной, хотя и не однозначной зависимостью. Большинство звезд расположено вдоль линии, идущей от горячих и ярких звезд к холодным и слабым («тусклым») звездам. Это и есть известная главная последовательность, а принадлежащие ей звезды - звездами главной последовательности. К этой последовательности принадлежит подавляющее большинство звезд, в том числе и наше Солнце (спектральный класс G2). Главная последовательность в месте, отмеченном вертикальной чертой, делится на верхнюю и нижнюю части. Звезды нижней части главной последовательности называются желтыми или красными карликами (в зависимости от их температуры). Солнце — типичный желтый карлик. Выше главной последовательности в области температур ниже 6000 К расположены звезды, образующие группу красных гигантов (их светимость порядка 102—103 и радиус порядка 10—60 R) и группу красных сверхгигантов (L 10 L , R 200—300 R). Звезды горячие (T ЗОООО К) и яркие (L 104 — 106 L , R 40 R) называются белыми сверхгигантами. Заметьте, что холодных и неярких звезд гораздо больше, чем горячих и ярких. В левом нижнем углу диаграммы находятся белые карлики (T 10000 К, L 10-4 L , R O,Ol R). Итак, мы видим, что светимость звезды и спектральный класс взаимосвязаны. Одна из первых задач теории — объяснить эту зависимость, найти физические явления, лежащие в ее основе. Как это сделала современная астрофизика, мы увидим позже. Здесь же только отметим, что сразу после построения этой диаграммы ей приписали эволюционное значение: предполагалось, что звезды эволюционируют вдоль главной последовательности от горячих и ярких звезд к холодным и слабым. Потом выяснилось, что эволюция звезд имеет более сложный характер, и до сих пор звезды, изображения которых находятся в левой верхней части диаграммы, называют "ранними", а звезды другого конца главной последовательности — "поздними". Звёздные скопления По-видимому, почти все звезды рождаются группами, а не по отдельности. Поэтому нет ничего удивительного в том, что звездные скопления - вещь весьма распространенная. Астрономы любят изучать звездные скопления, потому что им известно, что все звезды, входящие в скопление, образовались примерно в одно и то же время и приблизительно на одинаковом расстоянии от нас. Любые заметные различия в блеске между такими звездами являются истинными различиями. Какие бы колоссальные изменения ни претерпели эти звезды с течением времени, начинали они все одновременно. Особенно полезно изучение звездных скоплений с точки зрения зависимости их свойств от массы - ведь возраст этих звезд и их расстояние от Земли примерно одинаковы, так что отличаются они друг от друга только своей массой. Звездные скопления интересны не только для научного изучения - они исключительно красивы как объекты для фотографирования и для наблюдения астрономами-любителями. Есть два типа звездных скоплений: открытые и шаровые. Эти названия связаны с их внешним видом. В открытом скоплении каждая звезда видна отдельно, они распределены на некотором участке неба более или менее равномерно. А шаровые скопления, наоборот, представляют собой как бы сферу, столь плотно заполненную звездами, что в ее центре отдельные звезды неразличимы. Открытые звездные скопления Наверное, самым знаменитым открытым звездным скоплением являются Плеяды, или Семь сестер, в созвездии Тельца. Несмотря на такое название, большинство людей может разглядеть без помощи телескопа лишь шесть звезд. Общее количество звезд в этом скоплении - где-то между 300 и 500, и все они находятся на участке размером в 30 световых лет в поперечнике и на расстоянии 400 световых лет от нас. Возраст этого скопления - всего 50 миллионов лет, что по астрономическим стандартам совсем немного, и содержит оно очень массивные светящиеся звезды, которые не успели еще превратиться в гиганты. Плеяды - это типичное открытое звездное скопление; обычно в такое скопление входит от нескольких сотен до нескольких тысяч звезд. Среди открытых звездных скоплений гораздо больше молодых, чем старых, а самые старые едва ли насчитывают более 100 миллионов лет. Считается, что скорость, с которой они образуются, с течением времени не меняется. Дело в том, что в более старых скоплениях звезды постепенно отдаляются друг от друга, пока не смешаются с основным множеством звезд - тех самых, тысячи которых предстают перед нами в ночном небе. Хотя тяготение до некоторой степени удерживает открытые скопления вместе, они все же довольно непрочны, и тяготение другого объекта, например, большого межзвездного облака, может их разорвать. Некоторые звездные группы на столько слабо удерживаются вместе, что их называют не скоплениями, а звездными ассоциациями. Они существуют не очень долго и обычно состоят из очень молодых звезд вблизи межзвездных облаков, из которых они возникли. В звездную ассоциацию входит от 10 до 100 звезд, разбросанных в области размером в несколько сотен световых лет. Облака, в которых образуются звезды, сконцентрированы в диске нашей Галактики, и именно там обнаруживают открытые звездные скопления. Если учесть, как много облаков содержится в Млечном Пути, и какое огромное количество пыли находится в межзвездном пространстве, то станет очевидным, что те 1200 открытых звездных скоплений, о которых мы знаем, должны составлять лишь ничтожную часть всего их числа в Галактике. Возможно, их общее количество достигает 100 000. Шаровые звездные скопления В противоположность открытым, шаровые скопления представляют собой сферы, плотно заполненные звездами, которых там насчитываются сотни тысяч и даже миллионы. Звезды в этих скоплениях расположены так густо, что, если бы наше Солнце принадлежало к какому-нибудь шаровому скоплению, мы могли бы видеть в ночном небе невооруженным глазом более миллиона отдельных звезд. Размер типичного шарового скопления - от 20 до 400 световых лет. В плотно набитых центрах этих скоплений звезды находятся в такой близости одна к другой, что взаимное тяготение связывает их друг с другом, образуя компактные двойные звезды. Иногда происходит даже полное слияние звезд; при тесном сближении наружные слои звезды могут разрушиться, выставляя на прямое обозрение центральное ядро. В шаровых скоплениях двойные звезды встречаются в 100 раз чаще, чем где-либо еще. Некоторые из этих двойняшек являются источниками рентгеновского излучения. Вокруг нашей Галактики мы знаем около 200 шаровых звездных скоплений, которые распределены по всему огромному шарообразному гало, заключающему в себе Галактику. Все эти скопления очень стары, и возникли они более или менее в то же время, что и сама Галактика: от 10 до 15 миллиардов лет назад. Похоже на то, что скопления образовались, когда части облака, из которого была создана Галактика, разделились на более мелкие фрагменты. Шаровые скопления не расходятся, потому что звезды в них сидят очень тесно, и их мощные взаимные силы тяготения связывают скопление в плотное единое целое. Шаровые звездные скопления наблюдаются не только вокруг нашей Галактики, но и вокруг других галактик любого сорта, Самое яркое шаровое скопление, легко видимое невооруженным глазом, это Омега Кентавра в южном созвездии Кентавр. Оно находится на расстоянии 16 500 световых лет от Солнца и является самым обширным из всех известных скоплений: его диаметр - 620 световых лет. Самым ярким шаровым скоплением северного полушария является М13 в Геркулесе, его с трудом, но все же можно различить невооруженным глазом. В 1596 г. голландский наблюдатель звезд, любитель, по имени Давид Фабрициус (1564-1617), обнаружил довольно яркую звезду в созвездии Кита; звезда эта постепенно стала тускнеть и через несколько недель вообще исчезла из виду. Фабрициус был первым, кто описал наблюдение переменной звезды. Эта звезда получила название Мира - Чудесная. За период времени в 332 дня Мира изменяет свой блеск от приблизительно 2-й звездной величины (на уровне Полярной звезды) до 10-й звездной величины, когда она становится гораздо более слабой, чем необходимо для наблюдения невооруженным глазом. В наши дни известны многие тысячи переменных звезд, хотя большинство из них меняет свой блеск не столь драматично, как Мира. Существуют различные причины, по которым звезды меняют свой блеск. Причем блеск иногда изменяется на много световых величин, а иногда так незначительно, что это изменение можно обнаружить лишь с помощью очень чувствительных приборов. Некоторые звезды меняются регулярно. Другие - неожиданно гаснут или внезапно вспыхивают. Перемены могут происходить циклично, с периодом в несколько лет, а могут случаться в считанные секунды. Чтобы понять, почему та или иная звезда является переменной, необходимо сначала точно проследить, каким образом она меняется. График изменения звездной величины переменной звезды называется кривой блеска, Чтобы начертить кривую блеска, измерения блеска следует проводить регулярно. Для точного измерения звездных величин профессиональные астрономы используют прибор, называемый фотометром, сейчас многочисленные наблюдения переменных звезд производятся астрономами-любителями. С помощыо специальной подготовленной карты и после некоторой практики не так уж сложно судить о звездной величине переменной звезды прямо на глаз, если сравнивать ее с постоянными звездами, расположенными рядом.  Графики блеска переменных звезд показывают, что некоторые звезды меняются регулярным (правильным) образом - участок их графика на отрезке времени определенной длины (периоде) повторяется снова и снова. Другие же звезды меняются совершенно непредсказуемо. К правильным переменным звездам относят пульсирующие звезды и двойные звезды. Количество света меняется оттого, что звезды пульсируют или выбрасывают облака вещества. Но есть другая группа переменных звезд, которые являются двойными (бинарными). Когда мы видим изменение блеска бинарных звезд, это означает, что произошло одно из нескольких возможных явлений. Обе звезды могут оказаться на линии нашего зрения, так как, двигаясь по своим орбитам, они могут проходить прямо одна перед другой. Подобные системы называются затменно-двойными звездами. Самый знаменитый пример такого рода - звезда Алголь в созвездии Персея. В тесно расположенной паре материал может устремляться с одной звезды на другую, нередко вызывая драматические последствия. Сверхновая Когда 24 февраля 1987 г. была открыта 5М 1987А, астрономы были очень взволнованы: ведь это была самая яркая сверхновая с 1604 г. Хотя на этот раз сверхновая вспыхнула не в нашей Галактике, а в соседней Большом Магеллановым облаке, ее звездная величина в максимуме блеска достигла 2,9, что позволяло легко наблюдать сверхновую в южном полушарии невооруженным глазом. Впервые развитие сверхновой стало доступно наблюдению с помощыо современной аппаратуры. Используя фотографии, снятые до вспышки, удалось даже определить, какая именно звезда новая. Это оказался голубой сверхгигант с массой примерно в 17 солнечных; согласно расчетам, его возраст составлял около 20 миллионов лет. На самом деле взрыв произошел примерно за день до его обнаружения. Это было установлено по более ранней фотографии, а исследователи, изучающие потоки космических нейтронов, 23 февраля зарегистрировали неожиданно большое их количество. Нейтрон - это элементарная частица, вряд ли имеющие массу. Их очень трудно регистрировать. Такая работа чрезвычайно важна, так как нейтроны уносят большое количество энергии и целом ряде ядерных реакций. Обнаружение нейтронов показало, что наша теория возникновения сверхновой в основном верна. Однако на месте вспышки сверхновой не удалось обнаружить пульсатор или нейтронную звезду. Крабовидная туманность Один из самых известных остатков сверхновой, Крабовидная туманность, обязана своим названием Уильяму Парсонсу, третьему графу Россу, который первым наблюдал ее в 1844 г. Ее впечатляющее имя не совсем соответствует этому странному объекту. Теперь мы знаем, что эта туманность - остаток сверхновой, которую наблюдали и описали в 1054 г. китайские астрономы. Ее возраст был установлен в 1928 г. Эдвином Хабблом, измерившим скорость ее расширения и обратившим внимание на совпадение ее положения на небе со старинными китайскими записями. Она имеет форму овала с неровными краями; красноватые и зеленоватые нити светящегося газа видны на фоне тусклого белого пятна. Светящиеся нити напоминают сеть, наброшенную на отверстие. Белый свет исходит от электронов, несущихся по спиралям в сильном магнитном иоле. Туманность является также интенсивным источником радиоволн и рентгеновских лучей. Когда астрономы осознали, что пульсары - это нейтрон сверхновых, им стало ясно, что искать пульсары надо именно в таких остатках типа Крабовидной туманности. В 1969 г. 6ыло обнаружено, что одна из звезд вблизи центра туманности периодически излучает радиоимпульсы, а также световые и рентгеновские сигналы через каждые 33 тысячных доли секунды. Это очень высокая частота даже для пульсара, но она постепенно понижается. Те пульсары, которые вращаются гораздо медленнее, намного старее пульсатора Крабовидной туманности. В начале 20 в., особенно после 1920, произошёл переворот в научных представлениях о звёздах. Их начали рассматривать как физические тела; стали изучаться структура звезды, условия равновесия их вещества, источники энергии. Этот переворот был связан с успехами атомной физики, которые привели к количественной теории звёздных спектров, и с достижениями ядерной физики, давшими возможность провести аналогичные расчёты источников энергии и внутреннего строения звезды (наиболее важные результаты были получены немецкими учёными Р. Эмденом, К. Шварцшильдом, Х. Бете, английскими учёными А. Эддингтоном, Э. Милном, Дж. Джинсом, американскими учёными Г. Ресселом, Р. Кристи, советским учёным С. А. Жевакиным. В середине 20 в. исследования звёзд приобрели ещё большую глубину в связи с расширением наблюдательных возможностей и применением электронных вычислительных машин (американские учёные М. Шварцшильд, А. Сандидж, английский учёный Ф. Хойл, японский учёный С. Хаяси и другие). Большие успехи были достигнуты также в изучении процессов переноса энергии в фотосферах звёзд (советские учёные Э. Р. Мустель, В. В. Соболев, американский учёный С. Чандрасекар) и в исследованиях структуры и динамики звёздных систем (голландский учёный Я. Оорт, советские учёные П. П. Паренаго, Б. В. Кукаркин и другие).

Заключение Итак, звёзды – это самосветящиеся, раскалённые газовые шары, этим они подобны Солнцу, температура которого на поверхности 6000°. Наряду со звёздами, в точности похожими на Солнце, есть звёзды больше и меньше его по размерам, более горячие и более холодные, более и менее яркие – мир звёзд чрезвычайно разнообразен. Вероятно, многие звёзды окружены планетами, и на некоторых из них должна быть жизнь. Звёзды движутся со скоростями, доходящими до сотен километров в секунду, но не сталкиваются, так как расстояния между ними громадны. Свет, пробегая за секунду 300 000 км, от ближайшей звезды до Земли идёт свыше 4 лет, а от Солнца – примерно 8 минут. Звёзды также бывают: двойными, переменными, кратными, оптически-двойными, спектрально-двойными, затменно-двойными, новыми, периодическими, неправильными и затменно-переменными. Многие звёзды образуют системы, состоящие из двух, трёх и более звёзд, а также звёздные скопления – от нескольких десятков до миллиона звёзд. Звёздные скопления бывают двух типов: рассеянные и шаровые. Звёзды и звёздные скопления образуют гигантскую систему, называемую Галактику. Луч света от одного её края до другого идёт около 100 000 лет. Установлено, что наша Галактика – не единственная звёздная система. Существует множество других подобных ей звёздных систем, называемых галактиками, например, галактика в созвездии Андромеды, в созвездии Гончих Псов и другие. Звёзды постоянно то тут, то там возникают, зарождаются, совершают долгий путь развития и , наконец, прекращают своё существование в этом виде с тем, чтобы образующая их материя приняла новую форму. Обоснование Я выбрала именно эту тему потому, что меня всегда привлекало и поражало звёздное небо, его красота, насыщенность и необычность. Впервые я задумалась об этом, когда была летом в деревне, и, проснувшись как-то ночью, я увидела необычайно прекрасное зрелище – звёздное небо, яркое и отчётливое, которое никогда не увидишь в городе. И после этого, когда мне надо было выбирать тему, я вспомнила и выбрала эту, т.к. мне многое было непонятно, например, что такое вообще звёзды, как они появляются, из чего состоят, почему образовываются звёздные скопления, какие имена имели звёзды в разных странах и у разных народов и т.д. Делав этот реферат, я узнала много интересного, узнала ответы на многие вопросы и открыла много нового для себя.

Список используемой литературы 1)                «Вокруг света», №7, 2003г. Ст. «Кривое зеркало земли» Автор-Николай Андреев, стр.132-140 2)                «Независимая газета», 2002г.,30 марта Ст. «Галактический роддом в созвездии Пегаса. Космический телескоп Хаббла впервые зафиксировал непосредственно момент возникновения новых звёзд» Автор-Морозов А. 3)                «Наука и жизнь», №1,2001г. Ст. «Орион и его «команда» - звезды и звёздные скопления» Автор-Остапенко А., председатель московского астрономического клуба, стр.104-110 4)                «Природа,№8,2000г. Ст. «Свет далёких планет и жизнь на Земле» Автор-Кузьмин 5)                «Наука и жизнь»,№6, 2000г. Ст. «Звёздная летопись цивилизации» Автор-Шишлова А. 6)                 «Природа», №3, 2000г. Ст. «Как рождаются звёзды» Автор-Сурдин 7)                «Природа», №5,1999г. Ст. «Тени звёзд» Автор-Гончаров 8)                «Наука и жизнь»,№12, 1999г. Ст. «Жизнь во вселенной» Автор-Николаев Г., стр.59-64 9)                «Звёзды, их рождение, жизнь и смерть», И.С. Шкловский, Издательство «Наука», Москва 1977г. 10)           Е.П.Левитан «Астрономия», Издательство «Просвещение», Москва 1994 г.

bukvasha.ru

Реферат по астрономии на тему «Что такое звёзды» Ученица 11 б класса Иконникова Екатерина Учитель: Шарова Светлана Владимировна

Реферат по астрономии на тему «Что такое звёзды»

1. Введение

2. Открытие Летом 1967 г. в Кембриджском университете (Англия) вошел в строй новый радиотелескоп, специально построенный Э. Хьюишем и его сотрудниками для одной наблюдательной задачи - изучения мерцаний космических радиоисточников. Новый радиотелескоп позволял производить наблюдения больших участков неба. Первые отчетливо различимые серии периодических импульсов были замечены 28 ноября 1967 г. аспиранткой кембриджской группы. Импульсы следовали один за другим с четко выдерживаемым периодом в 1,34 с. Возникло предположение о внеземной цивилизации - это оказалось невозможным. Становилось очевидным, что источники излучения являются естественными небесными телами. Первая публикация кембриджской группы появилась в феврале 1968 г.. и уже в ней в качестве вероятных кандидатов на роль источников пульсирующего излучения упоминаются нейтронные звезды. Имеются звезды, их называют цефеидами, со строго периодическими вариациями блеска. Но до пульсаров никогда еще не встречались звезды со столь коротким периодом, как у первого "кембриджского" пульсара.

3. Виды звёзд Звезды бывают новорожденными, молодыми, среднего возраста и старыми. Новые звезды постоянно образуются, а старые постоянно умирают. Самые молодые - это переменные звезды, их светимость меняется, поскольку они еще не вышли на стационарный режим существования. Когда начинается ядерный синтез, протозвезда превращается в нормальную звезду. а) Нормальные звёзды Все звезды в основе своей похожи на наше Солнце: это огромные шары очень горячего светящегося газа. Различие – это цвет. Есть звезды красноватые или голубоватые, а не желтые. Кроме того, звезды различаются и по яркости, и по блеску. Почему же звезды так сильно различаются по своей яркости? Оказывается, тут все зависит от массы звезды. Количество вещества, содержащееся в конкретной звезде, определяет ее цвет и блеск, а также то, как блеск меняется во времени. б) Гиганты и карлики Самые массивные звезды одновременно и самые горячие, и самые яркие. Выглядят они белыми или голубоватыми. В противоположность им звезды, обладающие небольшой массой, всегда неярки, а цвет их — красноватый.

Однако среди очень ярких звезд в нашем небе есть красные и оранжевые. Гигантами и карликами звезды бывают на разных стадиях своей жизни, и гигант может в конце концов превратиться в карлика, достигнув "пожилого возраста" . в) Жизненный цикл звезды Обычная звезда, такая, как Солнце, выделяет энергию за счет превращения водорода в гелий в ядерной печи, находящейся в самой ее сердцевине. После того как звезда израсходует водород, внутри звезды происходят крупные перемены. Водород начинает перегорать. В результате размер самой звезды резко возрастает. Звезды более скромных размеров, включая и Солнце, наоборот, в конце жизни сжимаются, превращаясь в белые карлики. После чего они просто угасают. г) Звёздные скопления По-видимому, почти все звезды рождаются группами, а не по отдельности. Звездные скопления интересны не только для научного изучения, они исключительно красивы как объекты для фотографирования. Есть два типа звездных скоплений: открытые и шаровые. В открытом скоплении каждая звезда видна: шаровые скопления представляют собой как бы сферу.

д) Открытые звёздные скопления Самым знаменитым открытым звездным скоплением являются Плеяды или Семь сестер, в созвездии Тельца. Общее количество звезд в этом скоплении — где-то между 300 и 500, и все они находятся на участке размером в 30 световых лет в поперечнике и на расстоянии 400 световых лет от нас. Плеяды — это типичное открытое звездное скопление. Среди открытых звездных скоплений гораздо больше молодых, чем старых. в более старых скоплениях звезды постепенно отдаляются друг от друга. Некоторые звездные группы на столько слабо удерживаются вместе, что их называют не скоплениями, а звездными ассоциациями. Облака, в которых образуются звезды, сконцентрированы в диске нашей Галактики. е) Шаровые звёздные скопления В противоположность открытым, шаровые скопления представляют собой сферы. плотно заполненные звездами. В плотно набитых центрах этих скоплений звезды находятся в такой близости одна к другой, что взаимное тяготение связывает их друг с другом, образуя компактные двойные звезды. Шаровые скопления не расходятся, потому что звезды в них сидят очень тесно. Шаровые звездные скопления наблюдаются не только вокруг нашей Галактики, но и вокруг других галактик любого сорта.

ж) Пульсирующие переменные звёзды Некоторые из наиболее правильных переменных звезд пульсируют, сжимаясь и снова увеличиваясь. Наиболее известный тип подобных звезд — цефеиды. Это звезды сверхгиганты. В процессе пульсации цефеиды как площадь и температура ее изменяются, что вызывает общее изменение ее блеска. з) Вспыхивающие звёзды Магнитные явления на Солнце являются причиной солнечных пятен и солнечных вспышек. Для некоторых звёзд подобные вспышки достигают громадных масштабов. Эти световые выбросы нельзя предсказать заранее, а продолжаются они всего несколько минут. и) Двойные звёзды Примерно половина всех звезд нашей Галактики принадлежит к двойным системам, так что двойные звезды, явление весьма распространенное. Двойные звезды удерживаются вместе взаимным тяготением. Обе звезды двойной системы вращаются по эллиптическим орбитам вокруг некоторой точки. Двойные звезды, которые можно увидеть раздельно, называются видимыми двойными.

к) Открытие двойных звёзд Чаще всего двойные звезды определяются либо по необычному движению более яркой из двух, либо по их совместному спектру. Если какая-нибудь звезда совершает на небе регулярные колебания, это означает, что у нее есть невидимый партнер. Тогда говорят, что это астрометрическая двойная звезда. Если одна из звезд гораздо ярче другой, ее свет будет доминировать. Изучение двойных звезд это единственный прямой способ вычисления звездных масс. л) Тесные двойные звёзды В системе близко расположенных двойных звезд взаимные силы тяготения стремятся растянуть каждую из них, придать ей форму груши. Если тяготение достаточно сильно, наступает критический момент, когда вещество начинает утекать с одной звезды и падать на другую. Материал обеих звезд перемешивается и сливается в шар вокруг двух звездных ядер. Одна звезда расширяется так, что заполняет свою полость , это означает раздувание наружных слоев звезды до того момента, когда ее материал начнет захватываться другой звездой, подчиняясь ее тяготению. Эта вторая звезда белый карлик. м) Нейтронные звёзды Плотность нейтронных звезд превосходит даже плотность белых карликов. Помимо неслыханно громадной плотности, нейтронные звезды обладают еще двумя особыми свойствами - это быстрое вращение и сильное магнитное поле.

н) Пульсары Первые пульсары были открыты в 1968г. Некоторые пульсары излучают не только радиоволны. но и световые, рентгеновские и гамма-лучи. о) Рентгеновские двойные звёзды В Галактике найдено, по крайней мере, 100 мощных источников рентгеновского излучения. По мнению астрономов, причиной рентгеновского излучения могла бы служить материя, падающая на поверхность маленькой нейтронной звезды. п) Сверхновые звёзды Катастрофический взрыв, которым заканчивается жизнь массивной звезды - это воистину впечатляющее событие. Остатки взорвавшейся звезды разлетаются прочь со скоростями до 20 000 км в секунду. Такие грандиозные звездные взрывы называются сверхновыми. Сверхновые - довольно редкое явление. р) Сверхновая – смерть звезды Массивные звезды заканчивают свое существование взрывами сверхновых. Но это не единственный способ запуска подобных взрывов. Лишь около четверти всех сверхновых появляется таким путем.

Как действуют другие сверхновые, пока не вполне ясно что они начинаются с белых карликов в двойных системах. Затем следует взрыв сверхновой, и вся звезда, по-видимому, навсегда разрушается. Сверхновая сохраняет свою максимальную яркость лишь около месяца, а затем непрерывно угасает. Остатки сверхновых — одни из сильнейших источников радиоволн в нашем небе. с) Крабовидная туманность Один из самых известных остатков сверхновой, Крабовидная туманность, эта туманность — остаток сверхновой, которую наблюдали и описали в 1054 г. китайские астрономы. Она имеет форму овала с неровными краями. Нити светящегося газа напоминают сеть, наброшенную на отверстие. Когда астрономы осознали, что пульсары — это нейтрон сверхновых, им стало ясно, что искать пульсары надо именно в таких остатках типа Крабовидной туманности.

4. Качественные характеристики звёзд а) Светимость По своей светимости звезды очень сильно различаются. Есть звезды белые и голубые сверхгиганты. Но большинство звезд составляют "карлики", светимости которых значительно меньше солнечной. б) Температура Температура определяет цвет звезды и ее спектр. Очень горячие звезды имеют белый или голубоватый цвет. в) Спектр звёзд Исключительно богатую информацию дает изучение спектров звезд. Характерной особенностью звездных спектров является еще наличие у них огромного количества линий поглощения, принадлежащих различным элементам. Тонкий анализ этих линий позволил получить особенно ценную информацию о природе наружных слоев звезд. г) Химический состав звёзд Химический состав наружных слоев звезд, характеризуется полным преобладанием водорода. На втором месте находится гелий, а обилие остальных элементов достаточно невелико.

д) Радиус звёзд Энергия, испускаемая элементом поверхности звезды единичной площади в единиц времени, определяется законом Стефана-Болышана. Поверхность звезды равна 4 R2. Отсюда светимость равна: Таким образом, если известны температура и светимость звезды, то мы можем вычислить ее радиус. е) Масса звёзд В сущности говоря, астрономия не располагала и не располагает в настоящее время методом прямого и независимого определения массы. И это достаточно серьезный недостаток нашей науки о Вселенной. 5. Рождение звёзд Современная астрономия располагает большим количеством аргументов в пользу утверждения, что звезды образуются путем конденсации облаков газово-пылевой межзвездной среды. Процесс образования звезд из этой среды продолжается и в настоящее время. Согласно радиоастрономическим наблюдениям межзвездный газ концентрируется преимущественно в спиральных рукавах галактик. Центральным в проблеме эволюции звезд является вопрос об источниках их энергии.

Успехи ядерной физики позволили решить проблему источников звездной энергии. Таким источником являются термоядерные реакции синтеза, происходящие в недрах звезд при господствующей там очень высокой температуре. 6. Эволюция звёзд Чтобы пройти самую раннюю стадию своей эволюции, протозвёздам нужно сравнительно немного времени. В 5966 г. совершенно неожиданно выявилась возможность наблюдать протозвёзды на ранних стадиях их эволюции. Были обнаружены яркие, чрезвычайно компактные источники. Была высказана гипотеза, что эти «подходящее» имя «мистериум». Источники «мистериума» — это гигантские, природные космические мазеры. Именно в мазерах (а на оптических и инфракрасных частотах- в лазерах) достигается огромная яркость в линии причем спектральная ширина ее мала. Усиление излучения возможно тогда, когда среда, в которой распространяется излучение, каким – либо способом "активирована". Это означает, что некоторый "сторонний" источник энергии (так называемая "накачка") делает концентрацию атомов или молекул на исходном уровне аномально высокой. Без постоянно действующей «накачки» или лазер невозможны. Скорее всего «накачкой» служит достаточно мощное инфракрасное излучение.

Оказавшись на главной последовательности и перестав сжигаться, звезда длительно излучает практически не меняя своего положения на диаграмме «спектр – светимость». Её излучение поддерживается термоядерными реакциями. Время пребывания звезды на главной последовательности определяется её первоначальной массой. «Выгорание» водорода происходит только в центральных областях звезды. Что же произойдёт со звездой, когда весь водород в её ядре «выгорит». Ядро звезды начнёт сжиматься, а температура его будет повышаться. Образуется очень плотная горячая область, состоящая из гелия. Звезда как бы «разбухает», и начнёт «сходить» с главной последовательности, переходя в области красных гигантов. Далее, оказывается, что звёзды гиганты с меньшим содержанием тяжёлых элементов будут иметь при одинаковых размерах более высокую светимость.

hnu.docdat.com


Смотрите также