Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

§ 99. Работа и мощность тока. Закон Джоуля — Ленца. Закон джоуля ленца реферат


Работа и мощность тока. Закон Джоуля — Ленца, реферат — allRefers.ru

Работа и мощность тока. Закон Джоуля — Ленца - раздел Электротехника, Закон сохранения электрического заряда

Рассмотрим однородный проводник, к кон­цам которого приложено напряжение U. За время At через сечение проводника перено­сится заряд dq = Idt. Так как ток пред­ставляет собой перемещение заряда dq под действием электрического поля, то, по формуле (84.6), работа тока

dA=Udq=IUdt. (99.1)

Если сопротивление проводника R, то, ис­пользуя закон Ома (98.1), получим

dA=I2Rdt=(U2/r)dt. (99.2)

Из (99.1) и (99.2) следует, что мощ­ность тока

P=dA/dt=UI=I2R=U2/R. (99.3)

Если сила тока выражается в амперах, напряжение — в вольтах, сопротивле­ние — в омах, то работа тока выражается в джоулях, а мощность — в ваттах. На практике применяются также внесистем­ные единицы работы тока: ватт-час (Вт•ч) и киловатт-час (кВт•ч). 1 Вт•ч — работа тока мощностью в 1 Вт в течение 1 ч: 1 Вт•ч = 3600 Вт•с = 3,6•103 Дж; 1 кВт•ч=103 Вт•ч = 3,6•106 Дж.

Если ток проходит по неподвижному металлическому проводнику, то вся работа тока идет на его нагревание и, по закону сохранения энергии,

dQ=dA. (99.4)

Таким образом, используя выражения (99.4), (99.1) и (99.2), получим

Выражение (99.5) представляет собой за­кон Джоуля — Ленца,экспериментально установленный независимо друг от друга Дж. Джоулем и Э. X. Ленцем.

Выделим в проводнике элементарный цилиндрический объем dV=dSdl (ось ци­линдра совпадает с направлением тока),

сопротивление которого R= r(dl/dS). По закону Джоуля — Ленца, за время dt в этом объеме выделится теплота

Количество теплоты, выделяющееся за единицу времени в единице объема, на­зывается удельной тепловой мощностью тока.Она равна

w=rj2. (99.6)

Используя дифференциальную форму за­кона Ома (j =gE) и соотношение r=1/g, получим

w =jE =gE2. (99.7)

Формулы (99.6) и (99.7) являются обоб­щенным выражением закона Джоуля — Ленца в дифференциальной форме,при­годным для любого проводника.

Тепловое действие тока находит широ­кое применение в технике, которое нача­лось с открытия в 1873 г. русским инжене­ром А. Н. Лодыгиным (1847—1923) лам­пы накаливания. На нагревании, про­водников электрическим током основано действие электрических муфельных печей, электрической дуги (открыта русским ин­женером В. В. Петровым (1761 — 1834)), контактной электросварки, бытовых элек­тронагревательных приборов и т. д.

 

 

Все темы данного раздела:

Закон сохранения электрического заряда Еще в глубокой древности было известно, что янтарь, потертый о шерсть, притягива­ет легкие предметы. Англий

Закон Кулона Закон взаимодействия неподвижных то­чечных электрических зарядов установлен в 1785 г. Ш. Кулоном с помощ

Электростатическое поле. Напряженность электростатического поля Если в пространство, окружающее элек­трический заряд, внести другой заряд, то на него будет действовать кул

Принцип суперпозиции электростатических полей Рассмотрим метод определения значения и направления вектора напряженности Е в каждой точке элект

Поток вектора напряженности. Теорема Гаусса для электростатического поля в вакууме Вычисление напряженности поля системы электрических зарядов с помощью при­нципа суперпозиции электроста

Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме 1. Поле равномерно заряженной бесконечной плоскости.Бесконечная плоскость (рис. 126) заряжена с пост

Работа электрического поля. Циркуляция вектора напряженности электростатического поля Если в электростатическом поле точечного заряда Q из точки 1 в точку 2 вдоль про­извольной траект

Потенциал электростатического поля. Разность потенциалов. Тело, находящееся в потенциальном поле сил (а электростатическое поле является потенциальным), обладает по

Напряженность как градиент потенциала. Эквипотенциальные поверхности Найдем взаимосвязь между напряженно­стью электростатического поля, являю­щейся его силовой характерист

Вычисление разности потенциалов по напряженности поля Установленная выше связь между напря­женностью поля и потенциалом позволяет по известной напряженности п

Типы диэлектриков. Виды поляризации Диэлектрик (как и всякое вещество) со­стоит из атомов и молекул. Так как поло­жительный заряд всех ядер моле

Поляризованность. Напряженность поля в диэлектрике. Свободные и связанные заряды. Диэлектрическая проницаемость среды При помещении диэлектрика во внешнее электростатическое поле он поляризуется, т. е. приобретает отличный о

Электрическое смещение. Теорема Гаусса для электростатического поля в диэлектрике Напряженность электростатического поля, согласно (88.5), зависит от свойств среды: в однородной изотропной ср

Проводники в электростатическом поле Если поместить проводник во внешнее электростатическое поле или его зарядить, то на заряды проводника буде

Электрическая емкость уединенного проводника Рассмотрим уединенный проводник,т. е. проводник, который удален от других проводников, тел и заряд

Конденсаторы Как видно из § 93, для того чтобы про­водник обладал большой емкостью, он дол­жен иметь очень большие размеры

Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля 1. Энергия системы неподвижных точеч­ных зарядов.Электростатические силы взаимодействия консерв

Энергия электростатического поля. Преобразуем формулу (95.4), выражаю­щую энергию плоского конденсатора по­средством зарядов и потенциалов, во

Электрический ток, сила и плотность тока В электродинамике— разделе учения об электри

Сторонние силы. Электродвижущая сила и напряжение Если в цепи на носители тока действуют только силы электростатического поля, то происходит перемещение нос

Закон Ома. Сопротивление проводников Немецкий физик Г. Ом (1787—1854) эк­спериментально установил, что сила то­ка I, текущего по однородному мета

Закон Ома для неоднородного участка цепи Рассмот­рим неоднородный участок цепи,где дей­ствующую э.д.с. на участке 1—2 обозна­чим че

Правила Кирхгофа для разветвленных цепей Обобщенный закон Ома (см. (100.3)) по­зволяет рассчитать практически любую сложную цепь. Однако непосредственн

Работа выхода электронов из металла Как показывает опыт, свободные электро­ны при обычных температурах практиче­ски не, покидают металл. Следо

Эмиссионные явления и их применение Если сообщить электронам в металлах энергию, необходимую для преодоления работы выхода, то часть электроно

Ионизация газов. Несамостоятельный газовый разряд Газы при не слишком высоких температу­рах и при давлениях, близких к атмосфер­ному, являются хорошими изол

Самостоятельный газовый разряд и его типы Разрядв газе, сохраняющийся после прекращения действия внешнего иониза­тора, называется самостоятель

Плазма и ее свойства Плазмойназывается сильно ионизован­ный газ, в котором концентрации положи­тельных и отрицательн

Магнитное поле и его характеристики Опыт показывает, что, подобно тому, как в пространстве, окружающем электриче­ские заряды, возникает электро

Закон Био — Савара — Лапласа и его применение к расчету магнитного поля Магнитное поле постоянных токов различ­ной формы изучалось французскими уче­ными Ж. Био (1774—1862) и Ф. Саваро

Закон Ампера. Взаимодействие параллельных токов Магнитное поле (см. § 109) оказывает на рамку с током ориентирующее действие. Следовательно, вращающий момент,

Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля Если два параллельных проводника с то­ком находятся в вакууме (m=1), то сила взаимодействия на единицу длины

Магнитное поле движущегося заряда Каждый проводник с током создает в ок­ружающем простра

Действие магнитного поля на движущийся заряд Опыт показывает, что магнитное поле дей­ствует не только на проводники с током (см. §111), но и на отдельные за

Движение заряженных частиц в магнитном поле Выражение для силы Лоренца (114.1) по­зволяет найти ряд закономерностей дви­жения заряженных частиц в магнит

Ускорители заряженных частиц Ускорителямизаряженных частиц назы­ваются устройства, в которых под дей­ствием электрических и

Эффект Холла Эффект Холла (1879) — это возникнове­ние в металле (или полупроводнике) с то­ком плотностью j

Циркуляция вектора В для магнитного поля в вакууме Аналогично циркуляции вектора напря­женности электростатического поля (см. § 83) введем циркуляцию вектора

Магнитное поле соленоида и тороида Рассчитаем, применяя теорему о циркуля­ции, индукцию магнитного поля внутри соленоида.Рассмотрим

Поток вектора магнитной индукции. Теорема Гаусса для поля В Потоком вектора магнитной индукции (магнитным потоком)через площадку dS называется скалярна

Работа по перемещению проводника и контура с током в магнитном поле На проводник с током в магнитном поле действуют силы, определяемые законом Ампера (см. §111). Если проводник н

Магнитные моменты электронов и атомов Рассматривая действие магнитного поля на проводники с током и на движущиеся заряды, мы не интересовались п

Диа- и парамагнетизм Всякое вещество является магнетиком,т. е. оно способно под действием магнитно­го поля приобретать

Намагниченность. Магнитное поле в веществе Подобно тому, как для количественного описания поляризации диэлектриков вво­дилась поляризованность (см.

Ферромагнетики и их свойства Помимо рассмотренных двух классов ве­ществ — диа- и парамагнетиков, называе­мых слабомагнитными веще

Природа ферромагнетизма Рассматривая магнитные свойства ферро­магнетиков, мы не вскрывали физическую природу этого явления. Описа

Закон Фарадея и его вывод из закона сохранения энергии Обобщая результаты своих многочислен­ных опытов, Фарадей пришел к количе­ственному закону электромагнитн

Вращение рамки в магнитном поле Явление электромагнитной индукции при­меняется для преобразования механиче­ской энергии в энергию элект

Индуктивность контура. Самоиндукция Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное по­ле, индукция которого, по

Токи при размыкании и замыкании цепи При всяком изменении силы тока в про­водящем контуре возникает э.д.с. само­индукции, в результате чего в кон

Взаимная индукция Рассмотрим два неподвижных контура (1 к 2), расположенных достаточно близко друг от друга (рис. 184). Если в

Трансформаторы Принцип действия трансформаторов, при­меняемых для повышения или понижения напряжения переменного тока, о

Энергия магнитного поля Проводник, по которому протекает элек­трический ток, всегда окружен магнитным полем, причем магнитное поле

Вихревое электрическое поле Из закона Фарадея ξ=dФ/dt следует, что любое изменение сцепленного с контуром потока магнитной

Ток смещения Согласно Максвеллу, если всякое пере­менное магнитное поле возбуждает в окру­жающем пространстве вихрево

Уравнения Максвелла для электромагнитного поля Введение Максвеллом понятия тока сме­щения привело его к завершению создан­ной им единой макроскопическо

Экспериментальное получение электромагнитных волн Существование электромагнитных волн — переменного электромагнитного поля, рас­пространяющ

Дифференциальное уравнение электромагнитной волны Как уже указывалось (см. §161), одним из важнейших следствий уравнений Мак­свелла (см. § 139) является существов

Энергия электромагнитных волн. Импульс электромагнитного поля Возможность обнаружения электромаг­нитных волн указывает на то, что они переносят энергию. Объемная плотн

Излучение диполя. Применение электромагнитных волн Простейшим излучателем электромагнит­ных волн является электрический диполь, электрический момент котор

allrefers.ru

Закон Джоуля-Ленца

Закон Джоуля-Ленца

Рассмотpим цепь постоянного тока с точки зpения закона сохpанения энеpгии. Ясно, что пpи пpотекании тока наблюдаются пpевpащения энеpгии . Энеpгия источника в конечном счете пpевpащается в теплоту, выделяющуюся в пpоводниках цепи. Возникают два вопpоса, качественный и количественный: какие пpевpащения энеpгии наблюдаются в цепи пpи пpотекании тока и какой вид имеет выpажение для энеpгии, пpевpащаемой в теплоту за опpеделенное вpемя? Остановимся сначала на пеpвом вопpосе. Когда в цепи течет ток, то носители тока беpут энеpгию непосpедственно от поля. Поэтому энеpгия источника сначала идет на "поддеpжание" поля, т.е. пpевpащается в энеpгию поля. Затем поле будет отдавать энеpгию заpядам, движущимся в пpоводниках цепи. Энеpгия движения носителей тока (энеpгия тока) будет пpевpащаться во внутpеннюю (тепловую) энеpгию пpоводников, после чего возможны два исхода. Если пpоводники теплоизолиpованы (адиабатные), то энеpгия никуда не пеpедается, а накапливается в пpоводниках, что пpиводит к pосту темпеpатуpы. Если же пpоводники откpыты , то после некотоpого увеличения их темпеpатуpы вся выделяемая энеpгия pассеивается в окpужающей сpеде. Когда говоpят о выделении теплоты согласно закону Джоуля-Ленца, то имеют в виду именно этот, последний случай. Таким обpазом, цепь пpевpащений энеpгии следует пpедставить в следующем виде:

WистWполяWдв.зарWвнутрQWокр.ср

Обpатимся тепеpь ко втоpому вопpосу. Сколько энеpгии выделяется за вpемя t? Допустим, что она выделяется в виде теплоты. Источник тока, пpопуская чеpез себя заpяд в один кулон, отдает энеpгию , пpопуская q кулонов, - энеpгию q . Следовательно, количество теплоты, выделившейся в цепи, опpеделяется из соотношения

(2.25)

На участке цепи выделяется теплота

(2.26)

Таким обpазом, выделившуюся электpическую энеpгию можно выpазить тpемя фоpмулами:

   или на участке цепи  

(2.27)

Пеpвой фоpмулой удобно пользоваться, когда измеpяются напpяжение и сила тока одновpеменно (напpимеp, пpи измеpении pасхода электpоэнеpгии электpическим счетчиком). Втоpой фоpмулой - пpи pасчете сопpотивления полезной нагpузки цепи, т.к. в этом случае пpи ваpьиpовании сопpотивления напpяжение остается постоянным (напpимеp, 220 В). Последней фоpмулой пользуются пpи pасчете потеpь в подводящих пpоводах, т.к. в этом случае пpи ваpьиpовании сопpотивления пpоводов ток остается постоянным. Фоpмулы (2.27) позволяют опpеделять электpическую энеpгию выделившуюся во всей цепи и на ее участке. Поэтому они выpажают интегpальный закон Джоуля-Ленца. Найдем фоpмулу, пpедставляющую тот же закон в локальной фоpме, когда необходимо знать, сколько энеpгии выделяется в опpеделенном месте пpоводника (вблизи опpеделенной точки). Введем понятие плотности выделения энеpгии (плотность мощности). Допустим, что за вpемя dt в объеме пpоводника вблизи данной точки dV выделяется энеpгия dW. Плотностью выделения энеpгии W называется энеpгия, выделившаяся в секунду в единице объема, т.е.

(2.28)

Найдем эту величину, исходя из фоpмулы

 Допустим, что участок цепи пpедставлен одноpодным пpоводом длиной l, сечением S и объемом V=lS. Тогда имеем следующую очевидную цепь pавенств:

(2.29)

где

=El    

 Таким обpазом, плотность выделения энеpгии в секунду опpеделяется из фоpмулы

w=E2

(2.30)

Энеpгия, выделяющаяся в данном месте пpоводника в секунду, пpопоpциональна квадpату напpяженности поля.

studfiles.net

Реферат: Закон Ленца

Ян Шнейберг

В развитии современных средств связи основополагающую роль сыграли открытия в области электромагнетизма, сделанные в XIX в. учеными разных стран – М. Фарадеем, Д.К. Максвеллом, Г. Герцем.

После открытия Фарадея многие явления, связанные с электромагнитной индукцией, оставались недостаточно ясными.

Не существовало точных приборов и методов измерения электрических и магнитных величин,  в частности индуктированных токов. Не было закона о направлении этих токов, не были установлены и количественные характеристики явления электромагнитной индукции.

Эти и другие сложные физические проблемы были успешно разрешены выдающимся отечественным физиком, петербургским академиком Э.Х. Ленцем.

Имя Э.Х. Ленца, как и имена выдающихся ученых М. Фарадея, А.М. Ампера, Г.С. Ома, известно каждому образованному человеку еще со школьной скамьи. Фундаментальные исследования Ленца в области физики и электромагнетизма принесли ему мировую славу. Он по праву считается одним из основателей учения об электрических и магнитных явлениях.

Открытие закона Ленца

Несмотря на то что первые научные исследования Ленца относились в основном к области геофизики, его наиболее выдающиеся открытия связаны с изучением электромагнитных явлений. Особый интерес к этим явлениям объясняется, видимо, заметной активизацией научных исследований в области электромагнетизма, связанной с обнаружением электродинамических явлений, открытием важнейших законов Ампером и Омом. Будучи незаурядным экспериментатором, Ленц не мог не убедиться в справедливости открытых законов, тем более что еще не существовало точных приборов и методов измерений электрических и магнитных величин, не было также общепризнанных единиц измерения и эталонов и даже закон Ома многими физиками ставился под сомнение.

Имея немалый опыт работы с крутильными весами Кулона, которые использовались в процессе экспериментов, уже в ноябре 1832 года Ленц подтвердил справедливость закона Ома, что способствовало признанию этого закона физиками разных стран.

Первым важнейшим изобретением Ленца была разработка баллистического метода измерений для изучения законов индукции. В 1832 г., узнав об открытии Фарадеем явления электромагнитной индукции, Ленц приступил к экспериментам с целью установления количественных законов индукции. Он считал, что «сила мгновенного тока индукции» действует подобно удару, причем сила этого удара может быть измерена по скорости, сообщаемой стрелке мультипликатора – единственного в то время индикатора электрического тока.

Схема установки Ленца состояла в следующем. На столе укреплялся постоянный магнит М с якорем А, имеющим обмотку, электрически соединенную с мультипликатором В. Показания мультипликатора можно было наблюдать через оптическую трубу Т с помощью зеркала С (рис. 1).

Баллистический метод измерения Ленца лежит в основе современного баллистического гальванометра. Вочного прибора для измерения переменных токов – электродинамометра Вебера, что позволило Ленцу еще в 30-х годах сделать ряд важнейших открытий.

В результате тщательного анализа экспериментов Ленц сделал ряд обобщений и выводов, которые позднее получили всеобщее признание и дальнейшее развитие, в частности в трудах Максвелла.

Он установил, что возникновение индуктированного тока зависит от скорости «отрывания» катушки от магнита; что электродвижущая сила, возбуждаемая в катушке, пропорциональна числу витков и равна сумме электродвижущих сил, возбуждаемых в каждом витке; при этом она не зависит от материала и диаметра обмотки якоря. Закономерности, впервые установленные Ленцем, явились важными количественными характеристиками явления электромагнитной индукции. Он первым использовал свои выводы для практических целей: вывел формулу для расчета обмотки электромагнитного генератора.

Заметим, что издатель известного в те годы журнала «Poggеndorff’s Annalen» не рискнул опубликовать столь необычные и смелые выводы Ленца, они были напечатаны в мемуарах Академии наук (1833).

Но наиболее выдающимся открытием Ленца стал закон о направлении индуктированного тока, носящий его имя (именно «закон», а не «правило», как иногда его называют).

После открытия М. Фарадеем явления электромагнитной индукции он и ряд других ученых предложили мнемонические и довольно сложные «правила», позволяющие в частных случаях определять направление индуктированного тока.

Внимательно изучив все работы в этой области, Ленц в 1832 г. поставил ряд оригинальных опытов, а в ноябре 1833-го выступил в Академии наук с докладом «Об определении направления гальванических токов, возбуждаемых электродинамической индукцией». Поскольку в литературе нередко неточно, а иногда и ошибочно формулируется закон Ленца, приводим первоначальный текст из его доклада. «Если металлический проводник движется вблизи электрического тока или магнита, то в нем возбуждается гальванический ток такого направления, что он мог бы обусловить, в случае неподвижности данного проводника, его перемещение в противоположную сторону» (курсив наш – Я.Ш., рис. 2).

В этой работе Ленц писал: «По прочтении статьи Фарадея я пришел к мысли, что все опыты по электродинамической индукции могут быть легко сведены к законам электродинамических движений, так что если эти последние считать известными, то будут определены и первые; это мое представление оправдалось на ряде опытов».

Заслуга Ленца заключается не только в том, что он сформулировал общий закон о направлении индуктированного тока, но и – что не менее важно – убедительно доказал справедливость закона сохранения и превращения энергии при взаимных превращениях механической и электромагнитной энергии. (Термин «энергия» впервые был введен в 1853 г. английским ученым Ренкиным.)

Действительно, если перемещать под действием внешней силы магнит или проводник с током вблизи замкнутого проводникаическая энергия перемещения магнита или проводника с током превращается в электромагнитную энергию тока индукции.

И главное: по закону Ленца направление индуктированного тока таково, что вызываемая им сила препятствует движению, которым он был вызван, т. е. в присутствии магнита или проводника с током требуется бо’льшая затрата энергии, чем в их отсутствие. И эта часть механической энергии переходит в электромагнитную энергию индуктированного тока.

Закон Ленца был установлен за восемь лет до опубликования первой работы немецкого ученого Р. Майера, который считается одним из основоположников закона сохранения и превращения энергии. Поэтому Ленцу принадлежит заслуга в закладке основ этого фундаментального закона природы. В 1845 г.  немецкий физик Ф. Нейман впервые математически сформулировал теорию индукции и предложил выражение для электродвижущей силы индукции, подтверждающее закон Ленца.

В истории науки и техники не так уж часто встречаются примеры, когда одному ученому удается осуществить не только фундаментальные теоретические исследования,  но и указать пути их практического применения.

Таким ученым был Э.Х. Ленц. На основе открытого закона он впервые формулирует принцип обратимости электрических машин (1833), а в 1838 г. экспериментально подтверждает его с помощью генератора, обращенного им в двигатель.

Только четверть века спустя это открытие Ленца получило практическое применение и явилось одним из поворотных этапов в развитии электротехники и электромеханики. Заметим, что в отдельных источниках неверно указывается, будто обратимость электрических машин Ленц установил при совместной работе с  Б.С. Якоби. Это удалось сделать еще за четыре года до приезда Якоби в Петербург.

Выдающиеся заслуги Э.Х. Ленца в области геофизики и электродинамики получили всеобщее признание и высокую оценку Академии наук: в сентябре 1834 года он избирается в число ординарных академиков по физике.

Труды Ленца, печатавшиеся в отечественных и зарубежных изданиях, были широко известны среди физиков всего мира. С ними был хорошо знаком и Б.С. Якоби, еще до приезда в Россию построивший оригинальную модель электродвигателя.

По предложению Ленца и других русских ученых Б.С. Якоби получил правительственное приглашение в Петербург для продолжения исследований в области электромагнетизма и практического применения изобретенного им электродвигателя. Ленц помог опубликовать сообщение о работах Якоби в трудах Академии наук.

Юный путешественник и изобретатель

Эмилий Христианович Ленц родился  (12) 24 февраля 1804 г. в семье обер-секретаря магистрата г. Тарту (Эстония). Этот город был основан в 1030 г. русским князем Ярославом Мудрым и назывался Юрьевом. После захвата прибалтийских земель немецкими крестоносцами город переименовали в Дерпт. Так он назывался почти до конца XIX в. (хотя и был возвращен России), а затем – как и в нотца семья оказалась в тяжелом материальном положении и матери Ленца пришлось приложить немало усилий, чтобы дать двум сыновьям высшее образование.

По окончании с отличием гимназии в 1820 г., где Э.Х. Ленц серьезно увлекся естественными науками и математикой, он поступает на естественный факультет Дерптского университета – одного из старейших научных центров России. В университете благодаря усилиям его первого ректора, профессора физики Е.И. Паррота был создан один из лучших в стране физических кабинетов. Паррот привлек Ленца к работе в этом кабинете, чем в значительной степени определил будущую деятельность способного студента.

В 1823 г. по счастливой случайности Ленцу удалось заняться любимым делом.

Адмиралтейство обратилось к профессору Парроту с просьбой подобрать способных студентов для проведения научных наблюдений в области «физики, геологии и астрономии» на шлюпе, отправлявшемся в кругосветное плавание под командованием контр-адмирала Крузенштерна. Ленц был назначен физиком экспедиции и должен был производить наблюдения на море и на суше (измерять глубины и температуру моря, изучать свойства морской воды, определять влажность воздуха, наблюдать за атмосферными явлениями, извержением вулканов, исследовать магнитное склонение и т. д.).

При поддержке Паррота Ленц конструирует специально для экспедиции два прибора – глубомер и батометр (для взятия проб воды и измерения температур на разных глубинах). Отметим, что преимущества батометра Ленца были по достоинству оценены лишь во второй половине XIX в. А известный адмирал С.О.

Макаров писал в 1894 г., что из всех «...способов доставления воды с больших глубин я признаю самым лучшим тот способ, который употреблял Ленц в 1824–26 гг.».

В течение трех лет экспедиции почти все измерения Ленц производил лично и вручную, но он сумел получить точные и интересные данные. Ему удавалось даже находить время для занятий физикой и математикой, изучить их в объеме университетских курсов.

По возвращении из путешествия в июле 1826 г. Ленц готовил отчет о наблюдениях. Доклад о результатах экспериментов во время экспедиции, продемонстрировавший его незаурядные способности физика-экспериментатора, притом активно использовавшего математический аппарат для анализа и обобщений, был представлен в Академию наук в 1828 г. и получил высочайшую оценку специальной комиссии. Ленц был избран адъюнктом Академии по физике (в постановлении отмечалось, что он, будучи «российским уроженцем», во всех отношениях «заслужил такого избрания»).

Весной 1829 г. Ленц снова предпринимает интересное путешествие. На этот раз в составе научной экспедиции Академии наук на Эльбрус. Ему были поручены магнитные и гравитационные наблюдения. В июне 1829 г. Ленц участвовал в восхождении на вершину Эльбруса и, не дойдя до нее лишь 600 футов, впервые произвел с помощью барометра метеорологические наблюдения, позволившие определить высоту Эльбруса.

По возвращении с о моря, в Баку и Астрахани. В частности, он наблюдал выходящие на поверхность горючие газы, взял их образцы, а также образцы нефти. Результаты наблюдений, в особенности описания нефтяных богатств Апшеронского полуострова, были отмечены Академией наук. Небезынтересно отметить, что еще за два месяца до возвращения экспедиции Э.Х. Ленц в 1830 г. заочно избирается экстраординарным академиком. Ему было всего 26 лет!

Большой вклад в теорию электрических машин внесли исследования Ленца (1845–47 гг.), доказавшего зависимость генерируемого тока от скорости вращения якоря. Он открыл явление «реакции якоря» и не только объяснил его, но и предложил практический способ ослабления этого явления путем сдвига щеток с нейтральной линии машины.

В современной электроизмерительной технике широкое применение получил осциллограф. Но далеко не всем известно, что задолго до изобретения этого прибора Ленц сконструировал специальный коммутатор, с помощью которого впервые снял фазовые кривые тока намагничивания, изображенные им в виде синусоид.

Совместно с академиком Б.С. Якоби Ленц провел важные для практической электротехники исследования законов намагничивания железа, стремясь получить «более глубокое представление о скорости, с которой железо воспринимает магнетизм». Высокую оценку современников получили работы Ленца и Якоби «О законах электромагнитов» и «О притяжении электромагнитов». Только через 30 с лишним лет были опубликованы результаты исследований А.Г. Столетова, развивавшие работы Якоби и Ленца по магнетизму и давшие более точные методы расчета магнитных цепей.

Диапазон научных интересов Ленца был поразителен. Один из изобретателей в области электромедицины столкнулся с трудностями при подключении нескольких больных в параллельные цепи источника. Узнав об этом, Ленц в 1844 г. вывел формулу для определения тока в любой из параллельно соединенных ветвей, содержащих источники электродвижущих сил. Он по праву является предшественником немецкого ученого Г. Кирхгофа, установившего в 1847 г. два закона электрических цепей, носящих его имя.

Закон теплового действия тока

Электромагнитное действие тока было не единственной сферой «электротехнических» интересов Ленца. Не менее значимые работы принадлежат ему и в исследованиях теплового действия электрического тока. К закону теплового действия тока Ленц пришел независимо от исследований английского физика

Д.П. Джоуля. Еще в 1832–1833 гг. ученый обратил внимание на то, что при нагревании металлических проводников их проводимость существенно изменяется. Это осложняло расчет электрических цепей. Определить количественную зависимость между током и выделяемой им теплотой было невозможно, так как не было ни точных приборов для измерения тока, ни источника постоянной электродвижущей силы, ни надежного метода измерения сопротивления. Ленц использовал свои собственные или усовершенствованные им измерительные приборы и особенно тщательноиографов ученого, его «схема была собрана по последнему слову техники того времени».

Ленц предложил «свои» единицы тока и напряжения. Он же сконструировал прибор-сосуд для измерения количества выделяемого в проволоке тепла. В сосуд заливался разбавленный спирт, обладающий значительно меньшей электропроводностью, чем вода, использованная в опытах Джоуля. Через платиновую проволоку пропускался ток. Ученый провел большую серию опытов, при которых измерялось время, необходимое для нагревания жидкости на 10С.

В 1843 г. Ленц опубликовал закон, сформулированный следующим образом: «Нагревание проволоки гальваническим током пропорционально квадрату служащего для нагревания тока».

Джоуль опубликовал открытый им аналогичный закон в 1841 г. Реакция Ленца была по-научному корректной. Он подчеркнул, что, хотя его результаты «в основном совпадают с результатами Джоуля, они свободны от тех обоснованных возражений, которые вызывают работы Джоуля». Джоуль выполнил значительно меньше измерений и пользовался прибором, дававшим ряд погрешностей. Поэтому закон о тепловом действии тока благодаря исключительной точности и обстоятельности измерений Ленца вошел в историю науки под названием «закон Джоуля–Ленца».

Мастерство Ленца как блестящего экспериментатора проявилось и при убедительной проверке справедливости экспериментов французского физика Пельтье, открывшего в 1834 г. новое явление, названное впоследствии «эффектом Пельтье». Если через спай двух разнородных металлов пропустить электрический ток, то в спае происходит либо выделение, либо поглощение тепла в зависимости от направления тока. Собственными экспериментами Ленц подтвердил выводы Пельтье. Пропустив ток через спай висмута и сурьмы, он заморозил воду, окружавшую спай.

Исследования Ленца затронули также электрохимические явления: он изучал, в частности, поляризацию электродов. Ему удалось установить зависимость ЭДС поляризации от материала электродов и соприкасающейся с ними жидкости.

Ученый и педагог

Почти 30 лет жизни Ленц посвятил педагогической работе в Петербургском университете, где благодаря его усилиям зародилась и получила мировое признание Петербургская физико-математическая школа. В 1856–1859 гг. он замещал должность ректора университета, а в 1863-м стал первым избранным ректором. Ему принадлежит заслуга в коренной реорганизации преподавания физико-математических дисциплин, способствовавшей их подлинному расцвету.

По отзывам многочисленных учеников, ставших крупными учеными и педагогами, лекции Ленца отличались высочайшим научным уровнем и педагогическим мастерством, четкостью формулировок и доступностью изложения сложных физических явлений.

По словам одного из его учеников, «...любимой же его специальностью было чтение курса об электричестве, магнетизме и гальванизме по собственным запискам, сопровождавшееся опытами, которые всегда были удачны».

Физичесал брать некоторые приборы для занятий дома, и «...вообще никому, кто действительно хотел работать, не отказывал ни в советах, ни в средствах». В те годы ни в одном европейском университете не практиковались лабораторные занятия студентов. Первенство в этом начинании принадлежит одному из самых талантливых учеников Ленца Ф.Ф. Петрушевскому, который ввел в 1866 г. в университете такие занятия.

Как писали биографы Ленца, «многочисленные ученики Ленца и ученики его учеников создали тот передовой отряд русских физиков, которые вместе с другими физиками прославили нашу Родину многочисленными выдающимися открытиями. Впоследствии они создали ядро Русского физического общества, организованного в 1872 г. при Петербургском университете».

Кроме университета, Ленц преподавал физику в Михайловском артиллерийском училище и в Главном педагогическом институте. Среди его учеников в пединституте был гениальный химик и физик Д.И. Менделеев. По свидетельству его биографов, Ленц как ученый и личность оказал заметное влияние на формирование мировоззрения Менделеева.

Выдающиеся заслуги Ленца получили высокую оценку в России и за рубежом. Уже в 1840 г. Гельсингфорский университет присвоил Ленцу ученую степень доктора философии, он был избран членом-корреспондентом Академии наук в Турине и Берлинской академии наук, почетным членом ряда научных обществ в странах Европы.

Наиболее известные ученики Ленца сыграли важную роль в распространении и дальнейшем развитии учения Фарадея–Ленца–Максвелла, в утверждении представлений о  неразрывном единстве электрических и магнитных полей.

Признанный основоположник ленинградской электротехнической школы ХХ в. академик В.Ф. Миткевич был одним из лучших учеников профессора Петрушевского и по праву может называться продолжателем традиций Э.Х. Ленца.

Своими трудами в области физики и электрических измерений Э.Х. Ленц навсегда прославил свое имя как одного из корифеев науки XIX в.

Список литературы

www.neuch.ru

Закон Ленца | Рефераты KM.RU

Закон Ленца

Ян Шнейберг

В развитии современных средств связи основополагающую роль сыграли открытия в области электромагнетизма, сделанные в XIX в. учеными разных стран – М. Фарадеем, Д.К. Максвеллом, Г. Герцем.

После открытия Фарадея многие явления, связанные с электромагнитной индукцией, оставались недостаточно ясными.

Не существовало точных приборов и методов измерения электрических и магнитных величин,  в частности индуктированных токов. Не было закона о направлении этих токов, не были установлены и количественные характеристики явления электромагнитной индукции.

Эти и другие сложные физические проблемы были успешно разрешены выдающимся отечественным физиком, петербургским академиком Э.Х. Ленцем.

Имя Э.Х. Ленца, как и имена выдающихся ученых М. Фарадея, А.М. Ампера, Г.С. Ома, известно каждому образованному человеку еще со школьной скамьи. Фундаментальные исследования Ленца в области физики и электромагнетизма принесли ему мировую славу. Он по праву считается одним из основателей учения об электрических и магнитных явлениях.

Открытие закона Ленца

Несмотря на то что первые научные исследования Ленца относились в основном к области геофизики, его наиболее выдающиеся открытия связаны с изучением электромагнитных явлений. Особый интерес к этим явлениям объясняется, видимо, заметной активизацией научных исследований в области электромагнетизма, связанной с обнаружением электродинамических явлений, открытием важнейших законов Ампером и Омом. Будучи незаурядным экспериментатором, Ленц не мог не убедиться в справедливости открытых законов, тем более что еще не существовало точных приборов и методов измерений электрических и магнитных величин, не было также общепризнанных единиц измерения и эталонов и даже закон Ома многими физиками ставился под сомнение.

Имея немалый опыт работы с крутильными весами Кулона, которые использовались в процессе экспериментов, уже в ноябре 1832 года Ленц подтвердил справедливость закона Ома, что способствовало признанию этого закона физиками разных стран.

Первым важнейшим изобретением Ленца была разработка баллистического метода измерений для изучения законов индукции. В 1832 г., узнав об открытии Фарадеем явления электромагнитной индукции, Ленц приступил к экспериментам с целью установления количественных законов индукции. Он считал, что «сила мгновенного тока индукции» действует подобно удару, причем сила этого удара может быть измерена по скорости, сообщаемой стрелке мультипликатора – единственного в то время индикатора электрического тока.

Схема установки Ленца состояла в следующем. На столе укреплялся постоянный магнит М с якорем А, имеющим обмотку, электрически соединенную с мультипликатором В. Показания мультипликатора можно было наблюдать через оптическую трубу Т с помощью зеркала С (рис. 1).

Баллистический метод измерения Ленца лежит в основе современного баллистического гальванометра. Вочного прибора для измерения переменных токов – электродинамометра Вебера, что позволило Ленцу еще в 30-х годах сделать ряд важнейших открытий.

В результате тщательного анализа экспериментов Ленц сделал ряд обобщений и выводов, которые позднее получили всеобщее признание и дальнейшее развитие, в частности в трудах Максвелла.

Он установил, что возникновение индуктированного тока зависит от скорости «отрывания» катушки от магнита; что электродвижущая сила, возбуждаемая в катушке, пропорциональна числу витков и равна сумме электродвижущих сил, возбуждаемых в каждом витке; при этом она не зависит от материала и диаметра обмотки якоря. Закономерности, впервые установленные Ленцем, явились важными количественными характеристиками явления электромагнитной индукции. Он первым использовал свои выводы для практических целей: вывел формулу для расчета обмотки электромагнитного генератора.

Заметим, что издатель известного в те годы журнала «Poggеndorff’s Annalen» не рискнул опубликовать столь необычные и смелые выводы Ленца, они были напечатаны в мемуарах Академии наук (1833).

Но наиболее выдающимся открытием Ленца стал закон о направлении индуктированного тока, носящий его имя (именно «закон», а не «правило», как иногда его называют).

После открытия М. Фарадеем явления электромагнитной индукции он и ряд других ученых предложили мнемонические и довольно сложные «правила», позволяющие в частных случаях определять направление индуктированного тока.

Внимательно изучив все работы в этой области, Ленц в 1832 г. поставил ряд оригинальных опытов, а в ноябре 1833-го выступил в Академии наук с докладом «Об определении направления гальванических токов, возбуждаемых электродинамической индукцией». Поскольку в литературе нередко неточно, а иногда и ошибочно формулируется закон Ленца, приводим первоначальный текст из его доклада. «Если металлический проводник движется вблизи электрического тока или магнита, то в нем возбуждается гальванический ток такого направления, что он мог бы обусловить, в случае неподвижности данного проводника, его перемещение в противоположную сторону» (курсив наш – Я.Ш., рис. 2).

В этой работе Ленц писал: «По прочтении статьи Фарадея я пришел к мысли, что все опыты по электродинамической индукции могут быть легко сведены к законам электродинамических движений, так что если эти последние считать известными, то будут определены и первые; это мое представление оправдалось на ряде опытов».

Заслуга Ленца заключается не только в том, что он сформулировал общий закон о направлении индуктированного тока, но и – что не менее важно – убедительно доказал справедливость закона сохранения и превращения энергии при взаимных превращениях механической и электромагнитной энергии. (Термин «энергия» впервые был введен в 1853 г. английским ученым Ренкиным.)

Действительно, если перемещать под действием внешней силы магнит или проводник с током вблизи замкнутого проводникаическая энергия перемещения магнита или проводника с током превращается в электромагнитную энергию тока индукции.

И главное: по закону Ленца направление индуктированного тока таково, что вызываемая им сила препятствует движению, которым он был вызван, т. е. в присутствии магнита или проводника с током требуется бо’льшая затрата энергии, чем в их отсутствие. И эта часть механической энергии переходит в электромагнитную энергию индуктированного тока.

Закон Ленца был установлен за восемь лет до опубликования первой работы немецкого ученого Р. Майера, который считается одним из основоположников закона сохранения и превращения энергии. Поэтому Ленцу принадлежит заслуга в закладке основ этого фундаментального закона природы. В 1845 г.  немецкий физик Ф. Нейман впервые математически сформулировал теорию индукции и предложил выражение для электродвижущей силы индукции, подтверждающее закон Ленца.

В истории науки и техники не так уж часто встречаются примеры, когда одному ученому удается осуществить не только фундаментальные теоретические исследования,  но и указать пути их практического применения.

Таким ученым был Э.Х. Ленц. На основе открытого закона он впервые формулирует принцип обратимости электрических машин (1833), а в 1838 г. экспериментально подтверждает его с помощью генератора, обращенного им в двигатель.

Только четверть века спустя это открытие Ленца получило практическое применение и явилось одним из поворотных этапов в развитии электротехники и электромеханики. Заметим, что в отдельных источниках неверно указывается, будто обратимость электрических машин Ленц установил при совместной работе с  Б.С. Якоби. Это удалось сделать еще за четыре года до приезда Якоби в Петербург.

Выдающиеся заслуги Э.Х. Ленца в области геофизики и электродинамики получили всеобщее признание и высокую оценку Академии наук: в сентябре 1834 года он избирается в число ординарных академиков по физике.

Труды Ленца, печатавшиеся в отечественных и зарубежных изданиях, были широко известны среди физиков всего мира. С ними был хорошо знаком и Б.С. Якоби, еще до приезда в Россию построивший оригинальную модель электродвигателя.

По предложению Ленца и других русских ученых Б.С. Якоби получил правительственное приглашение в Петербург для продолжения исследований в области электромагнетизма и практического применения изобретенного им электродвигателя. Ленц помог опубликовать сообщение о работах Якоби в трудах Академии наук.

Юный путешественник и изобретатель

Эмилий Христианович Ленц родился  (12) 24 февраля 1804 г. в семье обер-секретаря магистрата г. Тарту (Эстония). Этот город был основан в 1030 г. русским князем Ярославом Мудрым и назывался Юрьевом. После захвата прибалтийских земель немецкими крестоносцами город переименовали в Дерпт. Так он назывался почти до конца XIX в. (хотя и был возвращен России), а затем – как и в нотца семья оказалась в тяжелом материальном положении и матери Ленца пришлось приложить немало усилий, чтобы дать двум сыновьям высшее образование.

По окончании с отличием гимназии в 1820 г., где Э.Х. Ленц серьезно увлекся естественными науками и математикой, он поступает на естественный факультет Дерптского университета – одного из старейших научных центров России. В университете благодаря усилиям его первого ректора, профессора физики Е.И. Паррота был создан один из лучших в стране физических кабинетов. Паррот привлек Ленца к работе в этом кабинете, чем в значительной степени определил будущую деятельность способного студента.

В 1823 г. по счастливой случайности Ленцу удалось заняться любимым делом.

Адмиралтейство обратилось к профессору Парроту с просьбой подобрать способных студентов для проведения научных наблюдений в области «физики, геологии и астрономии» на шлюпе, отправлявшемся в кругосветное плавание под командованием контр-адмирала Крузенштерна. Ленц был назначен физиком экспедиции и должен был производить наблюдения на море и на суше (измерять глубины и температуру моря, изучать свойства морской воды, определять влажность воздуха, наблюдать за атмосферными явлениями, извержением вулканов, исследовать магнитное склонение и т. д.).

При поддержке Паррота Ленц конструирует специально для экспедиции два прибора – глубомер и батометр (для взятия проб воды и измерения температур на разных глубинах). Отметим, что преимущества батометра Ленца были по достоинству оценены лишь во второй половине XIX в. А известный адмирал С.О.

Макаров писал в 1894 г., что из всех «...способов доставления воды с больших глубин я признаю самым лучшим тот способ, который употреблял Ленц в 1824–26 гг.».

В течение трех лет экспедиции почти все измерения Ленц производил лично и вручную, но он сумел получить точные и интересные данные. Ему удавалось даже находить время для занятий физикой и математикой, изучить их в объеме университетских курсов.

По возвращении из путешествия в июле 1826 г. Ленц готовил отчет о наблюдениях. Доклад о результатах экспериментов во время экспедиции, продемонстрировавший его незаурядные способности физика-экспериментатора, притом активно использовавшего математический аппарат для анализа и обобщений, был представлен в Академию наук в 1828 г. и получил высочайшую оценку специальной комиссии. Ленц был избран адъюнктом Академии по физике (в постановлении отмечалось, что он, будучи «российским уроженцем», во всех отношениях «заслужил такого избрания»).

Весной 1829 г. Ленц снова предпринимает интересное путешествие. На этот раз в составе научной экспедиции Академии наук на Эльбрус. Ему были поручены магнитные и гравитационные наблюдения. В июне 1829 г. Ленц участвовал в восхождении на вершину Эльбруса и, не дойдя до нее лишь 600 футов, впервые произвел с помощью барометра метеорологические наблюдения, позволившие определить высоту Эльбруса.

По возвращении с о моря, в Баку и Астрахани. В частности, он наблюдал выходящие на поверхность горючие газы, взял их образцы, а также образцы нефти. Результаты наблюдений, в особенности описания нефтяных богатств Апшеронского полуострова, были отмечены Академией наук. Небезынтересно отметить, что еще за два месяца до возвращения экспедиции Э.Х. Ленц в 1830 г. заочно избирается экстраординарным академиком. Ему было всего 26 лет!

Большой вклад в теорию электрических машин внесли исследования Ленца (1845–47 гг.), доказавшего зависимость генерируемого тока от скорости вращения якоря. Он открыл явление «реакции якоря» и не только объяснил его, но и предложил практический способ ослабления этого явления путем сдвига щеток с нейтральной линии машины.

В современной электроизмерительной технике широкое применение получил осциллограф. Но далеко не всем известно, что задолго до изобретения этого прибора Ленц сконструировал специальный коммутатор, с помощью которого впервые снял фазовые кривые тока намагничивания, изображенные им в виде синусоид.

Совместно с академиком Б.С. Якоби Ленц провел важные для практической электротехники исследования законов намагничивания железа, стремясь получить «более глубокое представление о скорости, с которой железо воспринимает магнетизм». Высокую оценку современников получили работы Ленца и Якоби «О законах электромагнитов» и «О притяжении электромагнитов». Только через 30 с лишним лет были опубликованы результаты исследований А.Г. Столетова, развивавшие работы Якоби и Ленца по магнетизму и давшие более точные методы расчета магнитных цепей.

Диапазон научных интересов Ленца был поразителен. Один из изобретателей в области электромедицины столкнулся с трудностями при подключении нескольких больных в параллельные цепи источника. Узнав об этом, Ленц в 1844 г. вывел формулу для определения тока в любой из параллельно соединенных ветвей, содержащих источники электродвижущих сил. Он по праву является предшественником немецкого ученого Г. Кирхгофа, установившего в 1847 г. два закона электрических цепей, носящих его имя.

Закон теплового действия тока

Электромагнитное действие тока было не единственной сферой «электротехнических» интересов Ленца. Не менее значимые работы принадлежат ему и в исследованиях теплового действия электрического тока. К закону теплового действия тока Ленц пришел независимо от исследований английского физика

Д.П. Джоуля. Еще в 1832–1833 гг. ученый обратил внимание на то, что при нагревании металлических проводников их проводимость существенно изменяется. Это осложняло расчет электрических цепей. Определить количественную зависимость между током и выделяемой им теплотой было невозможно, так как не было ни точных приборов для измерения тока, ни источника постоянной электродвижущей силы, ни надежного метода измерения сопротивления. Ленц использовал свои собственные или усовершенствованные им измерительные приборы и особенно тщательноиографов ученого, его «схема была собрана по последнему слову техники того времени».

Ленц предложил «свои» единицы тока и напряжения. Он же сконструировал прибор-сосуд для измерения количества выделяемого в проволоке тепла. В сосуд заливался разбавленный спирт, обладающий значительно меньшей электропроводностью, чем вода, использованная в опытах Джоуля. Через платиновую проволоку пропускался ток. Ученый провел большую серию опытов, при которых измерялось время, необходимое для нагревания жидкости на 10С.

В 1843 г. Ленц опубликовал закон, сформулированный следующим образом: «Нагревание проволоки гальваническим током пропорционально квадрату служащего для нагревания тока».

Джоуль опубликовал открытый им аналогичный закон в 1841 г. Реакция Ленца была по-научному корректной. Он подчеркнул, что, хотя его результаты «в основном совпадают с результатами Джоуля, они свободны от тех обоснованных возражений, которые вызывают работы Джоуля». Джоуль выполнил значительно меньше измерений и пользовался прибором, дававшим ряд погрешностей. Поэтому закон о тепловом действии тока благодаря исключительной точности и обстоятельности измерений Ленца вошел в историю науки под названием «закон Джоуля–Ленца».

Мастерство Ленца как блестящего экспериментатора проявилось и при убедительной проверке справедливости экспериментов французского физика Пельтье, открывшего в 1834 г. новое явление, названное впоследствии «эффектом Пельтье». Если через спай двух разнородных металлов пропустить электрический ток, то в спае происходит либо выделение, либо поглощение тепла в зависимости от направления тока. Собственными экспериментами Ленц подтвердил выводы Пельтье. Пропустив ток через спай висмута и сурьмы, он заморозил воду, окружавшую спай.

Исследования Ленца затронули также электрохимические явления: он изучал, в частности, поляризацию электродов. Ему удалось установить зависимость ЭДС поляризации от материала электродов и соприкасающейся с ними жидкости.

Ученый и педагог

Почти 30 лет жизни Ленц посвятил педагогической работе в Петербургском университете, где благодаря его усилиям зародилась и получила мировое признание Петербургская физико-математическая школа. В 1856–1859 гг. он замещал должность ректора университета, а в 1863-м стал первым избранным ректором. Ему принадлежит заслуга в коренной реорганизации преподавания физико-математических дисциплин, способствовавшей их подлинному расцвету.

По отзывам многочисленных учеников, ставших крупными учеными и педагогами, лекции Ленца отличались высочайшим научным уровнем и педагогическим мастерством, четкостью формулировок и доступностью изложения сложных физических явлений.

По словам одного из его учеников, «...любимой же его специальностью было чтение курса об электричестве, магнетизме и гальванизме по собственным запискам, сопровождавшееся опытами, которые всегда были удачны».

Физичесал брать некоторые приборы для занятий дома, и «...вообще никому, кто действительно хотел работать, не отказывал ни в советах, ни в средствах». В те годы ни в одном европейском университете не практиковались лабораторные занятия студентов. Первенство в этом начинании принадлежит одному из самых талантливых учеников Ленца Ф.Ф. Петрушевскому, который ввел в 1866 г. в университете такие занятия.

Как писали биографы Ленца, «многочисленные ученики Ленца и ученики его учеников создали тот передовой отряд русских физиков, которые вместе с другими физиками прославили нашу Родину многочисленными выдающимися открытиями. Впоследствии они создали ядро Русского физического общества, организованного в 1872 г. при Петербургском университете».

Кроме университета, Ленц преподавал физику в Михайловском артиллерийском училище и в Главном педагогическом институте. Среди его учеников в пединституте был гениальный химик и физик Д.И. Менделеев. По свидетельству его биографов, Ленц как ученый и личность оказал заметное влияние на формирование мировоззрения Менделеева.

Выдающиеся заслуги Ленца получили высокую оценку в России и за рубежом. Уже в 1840 г. Гельсингфорский университет присвоил Ленцу ученую степень доктора философии, он был избран членом-корреспондентом Академии наук в Турине и Берлинской академии наук, почетным членом ряда научных обществ в странах Европы.

Наиболее известные ученики Ленца сыграли важную роль в распространении и дальнейшем развитии учения Фарадея–Ленца–Максвелла, в утверждении представлений о  неразрывном единстве электрических и магнитных полей.

Признанный основоположник ленинградской электротехнической школы ХХ в. академик В.Ф. Миткевич был одним из лучших учеников профессора Петрушевского и по праву может называться продолжателем традиций Э.Х. Ленца.

Своими трудами в области физики и электрических измерений Э.Х. Ленц навсегда прославил свое имя как одного из корифеев науки XIX в.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.connect.ru/

Дата добавления: 21.02.2007

www.km.ru

§ 99. Работа и мощность тока. Закон Джоуля — Ленца

Рассмотрим однородный проводник, к кон­цам которого приложено напряжение U. За время At через сечение проводника перено­сится заряд dq = Idt. Так как ток пред­ставляет собой перемещение заряда dq под действием электрического поля, то, по формуле (84.6), работа тока

dA=Udq=IUdt. (99.1)

Если сопротивление проводника R, то, ис­пользуя закон Ома (98.1), получим

dA=I2Rdt=(U2/r)dt. (99.2)

Из (99.1) и (99.2) следует, что мощ­ность тока

P=dA/dt=UI=I2R=U2/R. (99.3)

Если сила тока выражается в амперах, напряжение — в вольтах, сопротивле­ние — в омах, то работа тока выражается в джоулях, а мощность — в ваттах. На практике применяются также внесистем­ные единицы работы тока: ватт-час (Вт•ч) и киловатт-час (кВт•ч). 1 Вт•ч — работа тока мощностью в 1 Вт в течение 1 ч: 1 Вт•ч = 3600 Вт•с = 3,6•103 Дж; 1 кВт•ч=103 Вт•ч = 3,6•106 Дж.

Если ток проходит по неподвижному металлическому проводнику, то вся работа тока идет на его нагревание и, по закону сохранения энергии,

dQ=dA. (99.4)

Таким образом, используя выражения (99.4), (99.1) и (99.2), получим

Выражение (99.5) представляет собой за­кон Джоуля — Ленца, экспериментально установленный независимо друг от друга Дж. Джоулем и Э. X. Ленцем.

Выделим в проводнике элементарный цилиндрический объем dV=dSdl (ось ци­линдра совпадает с направлением тока),

сопротивление которого R= (dl/dS). По закону Джоуля — Ленца, за время dt в этом объеме выделится теплота

Количество теплоты, выделяющееся за единицу времени в единице объема, на­зывается удельной тепловой мощностью

159

тока. Она равна

w=j2. (99.6)

Используя дифференциальную форму за­кона Ома (j =E) и соотношение =1/, получим

w =jE =E2. (99.7)

Формулы (99.6) и (99.7) являются обоб­щенным выражением закона Джоуля — Ленца в дифференциальной форме, при­годным для любого проводника.

Тепловое действие тока находит широ­кое применение в технике, которое нача­лось с открытия в 1873 г. русским инжене­ром А. Н. Лодыгиным (1847—1923) лам­пы накаливания. На нагревании, про­водников электрическим током основано действие электрических муфельных печей, электрической дуги (открыта русским ин­женером В. В. Петровым (1761 — 1834)), контактной электросварки, бытовых элек­тронагревательных приборов и т. д.

§ 100. Закон Ома для неоднородного участка цепи

Мы рассматривали закон Ома (см. (98.1)) для однородного участка цепи, т. е. тако­го, в котором не действует э.д.с. (не дей­ствуют сторонние силы). Теперь рассмот­рим неоднородный участок цепи, где дей­ствующую э.д.с. на участке 1—2 обозна­чим через ξ12, а приложенную на концах участка разность потенциалов — через

1-2.

Если ток проходит по неподвижным проводникам, образующим участок 1—2, то работа A12 всех сил (сторонних и элек­тростатических), совершаемая над носите­лями тока, по закону сохранения и пре­вращения энергии равна теплоте, выделя­ющейся на участке. Работа сил, со­вершаемая при перемещении заряда Q0 на участке 1—2, согласно (97.4),

A12=Q0ξ12 + Q0(1-2). (100.1)

Э.д.с. ξ12, как и сила тока I,— величи­на скалярная. Ее необходимо брать либо с положительным, либо с отрицательным знаком в зависимости от знака работы, совершаемой сторонними силами. Если

э.д.с. способствует движению положитель­ных зарядов в выбранном направлении (в направлении 1—2), то ξ12>0. Если э.д.с. препятствует движению положитель­ных зарядов в данном направлении, то

ξ12<0.

За время t в проводнике выделяется теплота (см. (99.5))

Q=I2Rt=IR(It)=IRQ0. (100.2) Из формул (100.1) и (100.2) получим

Выражение (100.3) или (100.4) представ­ляет собой закон Ома для неоднородного участка цепи в интегральной форме, кото­рый является обобщенным законом Ома.

Если на данном участке цепи источник тока отсутствует (ξ12=0), то из (100.4) приходим к закону Ома для однородного участка цепи (98.1):

I=(1-2)/R=U/R

(при отсутствии сторонних сил напряже­ние на концах участка равно разности потенциалов (см. §97)). Если же электри­ческая цепь замкнута, то выбранные точки 1 и 2 совпадают, 1=2; тогда из (100.4) получаем закон Ома для замкнутой цепи:

I=ξ/R,

где ξ— э.д.с., действующая в цепи, R — суммарное сопротивление всей цепи. В общем случае R = r+R1, где r — внут­реннее сопротивление источника э.д.с., R1 — сопротивление внешней цепи. По­этому закон Ома для замкнутой цепи будет иметь вид

I=ξ/(r+R1).

Если цепь разомкнута и, следователь­но, в ней ток отсутствует (I=0), то из закона Ома (100.4) получим, что ξ12=2-1 т. е. э.д.с., действующая в разо­мкнутой цепи, равна разности потенциа­лов на ее концах. Следовательно, для того чтобы найти э.д.с. источника тока, надо измерить разность потенциалов на его клеммах при разомкнутой цепи.

160

studfiles.net

Закон джоуля – ленца - fiziku5.ru

3)Затруднение возникло также с зависимостью сопротивления от температуры. Из (···) следует, что удельное сопротивление r =1/s ~ , т. к. скорость теплового движения u ~ , а остальные величины практически не зависят от температуры. Но из опыта следовало, что r ~ Т. Квантовая механика разрешила и это затруднение (см. III часть курса).

Закон Джоуля – Ленца: «Если по проводнику протекает ток, в проводнике выделяется теплота Q». Найдем выражение для Q. Сначала получим закон в дифференциальной форме на основе электронной теории. Введем новое понятие:

(Дж/м3×с)

удельная мощность – это энергия, выделяющаяся в единице объема проводника за единицу времени [22]

энергия, передаваемая одним электроном иону решетки за одно столкновение, т. е. за время t — время между двумя столкновениями.

энергия, передаваемая электронами, находящимися в единице объема проводника за одно столкновение (за время t), n— концентрация электронов

энергия, выделяющаяся в единице объема за единицу времени (формулы — см. закон Ома)

закон Джоуля – Ленца в дифференциальной форме

Чтобы найти количество теплоты, выделяющейся во всем проводнике за некоторое время нужно проинтегрировать и использовать закон Ома:

закон Джоуля — Ленца

в интегральной форме

при постоянной силе тока, R – общее сопротивление участка цепи

для случая, когда сила тока

зависит от времени

Электрическое сопротивление.

В законе Ома электрическое сопротивление R – коэффициент пропорциональности между разностью потенциалов, приложенной к концам проводника, и силой тока, возникающего при этом в проводнике. Исходя из этого, электрическое сопротивление можно определить следующим образом: это мера

того сопротивления, которое оказывает проводник попытке установления в нем тока. С позиций электронной теории сопротивление объясняется тем, что ионы решетки препятствуют движению электронов. Сталкиваясь с ионами, электроны теряют энергию, передавая ее ионам и меняют направление движения.

Электрическое сопротивление данного проводника зависит от его природы и размеров. Опытным путем установлено, что сопротивление R проводника прямо пропорционально его длине l и обратно пропорционально площади его поперечного сечения:

Эта формула применима только для однородного по составу проводника с постоянной площадью поперечного сечения.

r (Ом. м)- удельное сопротивление – это характеристика электрических свойств

металла, оно зависит от природы металла и от его температуры. По смыслу r — это электрическое сопротивление единицы длины проводника с единичной площадью поперечного сечения. (В СИ – это сопротивление, например, металлического куба с ребром 1м при условии, что ток распространяется параллельно ребру куба).

С увеличением температуры сопротивление металлов увеличивается. При умеренных температурах удельное сопротивление линейно зависит от температуры:

(1/К)

зависимость удельного сопротивления металлов от температуры;

r0 – удельное сопротивление при 0оС,

a — температурный коэффициент сопротивления, определяющий относительное изменение сопротивления при нагревании проводника на один градус.

Зависимость сопротивления от температуры используется для точного измерения температуры с помощью термометров сопротивления. В простейшем виде – это намотанная на изолятор тонкая проволочка, сопротивление которой при различных температурах заранее известна. Для измерения температуры проволочка приводится в контакт с телом, температуру которого хотят измерить, и измеряется ее сопротивление.

При соединении сопротивлений выполняются следующие соотношения.

последовательное соединение

параллельное соединение

 

[1] Ничего более конкретного сказать нельзя, т. к. по сути, мы не знаем, что такое электрический заряд. Это некое неотъемлемое свойство, присущее частицам, подобно психике у человека

[2] Существуют также частицы – кварки – с зарядами 1/3 е×и 2/3×е, но это виртуальные частицы, которые не могут длительное время находится в свободном состоянии.

[3] Электрические и магнитные явления существуют в неразрывном единстве. Однако общая теория электромагнитных явлений (релятивистская квантовая электродинамика) слишком сложна для курса общей физики, поэтому мы будем рассматривать электрические и магнитные явления традиционно, т. е. раздельно.

[4] Был установлен опытным путем фр. ученым Кулоном в 1785 г.

[5] В действительности, существует явление электрической индукции, т. е. взаимное влияние заряженных тел друг на друга (см. ниже).

[6] Циркуляция вектора напряженности электрического поля ¹ 0 (см. дальше в тексте)

[7] Различают электростатическое (потенциальное) и электрическое (вихревое) поля, оба поля характеризуют напряженностью Е, потенциал ×j — характеристика электростатического поля.

[8] grad или Ñ– это краткое обозначение математической операции:

[9] Не обязательно брать цилиндр, можно взять любую призму, важно, чтобы ее образующие были перпендикулярны торцевым сечениям и самой заряженной плоскости.

[10] Будем употреблять для краткости слово «емкость»

[11]Подумайте над вопросом: проводник заряжен зарядом 1 мкКл. Во сколько раз изменится его емкость, если заряд увеличить до 5 мкКл?

[12] Силы F2 и F1 направлены по касательным к силовым линиям, а не горизонтально, как показано на рис., но мы будем этим небольшим различием пренебрегать.

[13] Существуют также жидкие проводники, но мы их рассматривать не будем.

[14] Для газов использовать e неудобно, т. к. она очень мало отличается от единицы (для воздуха e = 1,000576), поэтому для газов чаще используют c.

[15] На границе двух диэлектриков силовые линии преломляются. При этом для вектора Е совпадают касательные составляющие, а отношение нормальных составляющих равно отношению диэлектрических проницаемостей. Для вектора D –наоборот (см. учебник).

[16] Для обоснования этого утверждения нужно снова рассмотреть все приведенные ранее случаи, вводя диэлектрик, и применять теорему Гаусса для D, а потом определять Е.

[17] Не приводим из-за громоздкости.

[18] Если бросить заряженный металлический предмет – его движение можно считать кратковременным током. Если

вблизи находится компас, его стрелка даст отклонение, т. к. она реагирует на магнитное поле тока.

[19] В металлах положительные заряды (ионы решетки) не могут перемещаться – они и есть сам металл.

[20]На вопрос, где работают сторонние силы ответить трудно. Натираем стеклянную палочку, дотрагиваемся до проводника, работают сторонние силы, а где? В батарейках сторонние силы работают только на границе проводника с электролитом. Внутри проводника всегда работают электростатические силы.

[21] Открыт опытным путем нем. учителем Омом в 1827 г. В приведенных формулах интегралов нет, но формулы можно вывести из дифференциальной формы закона путем интегрирования (см. дальше по тексту).

[22] W — большая печатная греческая буква «омега».

fiziku5.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.