СОДЕРЖАНИЕ
1. Общие сведения
2. Стекло и его свойства
3. Стеклянные материалы
3.1 Листовое светопрозрачное и светорассеивающее стекло
3.2 Светопрозрачные изделия и конструкции
3.3 Облицовочные изделия из стекла
3.4 Изделия из пеностекла
3.5 Материалы на основе стекловолокна
4. Ситаллы, шлакоситаллы и ситаллопласты
4.1 Ситаллы
4.2 Шлакоситаллы
4.3 Ситаллопласты
5. Изделия из каменных расплавов
6. Использование отходов в производстве плавленых изделий
Заключение
Список литературы
1. ОБЩИЕ СВЕДЕНИЯ
Стекло – все аморфные тела, получаемые путем переохлаждения расплава, независимо от их химического состава и температурной области затвердевания и обладающие в результате постепенного увеличения вязкости механическими свойствами твердых тел; причем процесс перехода из жидкого состояния в стеклообразное должен быть обратимым.
По масштабам применения первое место принадлежит строительству, в котором оно применяется не только для устройства световых приемов, но и в качестве конструктивного и отделочного материала. За 3 – 4 тыс. лет до н.э. производство стекла было известно египтянам, в этот период стекольные изделия изготовлялись путем пластического формирования и прессования. Значительное развитие получило стеклоделие в Венеции, которая оставалась мировым центром стеклоделия до XVII века. Венецианское стекло, отличающееся большой художественной ценностью, проникало в другие страны Европы и ближнего Востока.
В России в 1635 году шведом Елисеем Койотом на пустоши Духанино в Дмитровском уезде был построен стекольный завод. Вслед за Духанинским был открыт казенный завод в Измайлове (1669-1710). Здесь наряду с иноземцами работали и русские мастера, которые осваивали основные приемы европейского стеклоделия. Начало XVIII в. можно назвать периодом подъема стеклоделия. Важной вехой его развития в России явилось открытие стекольного завода на Воробьевых горах под Москвой, построенного также по инициативе Петра I. В 1706 завод уже работал. Основными видами продукции Воробьевского завода были литые зеркала и зажигательные стекла. Стекло варилось, затем выливалось на медную доску, прокатывалось медным катком, шлифовалось, полировалось и под него подводилась амальгама. При этом размеры зеркал были самыми большими в Европе того времени. Наиболее широкое развитие стеклянная промышленность получила в СССР. В годы первых пятилеток был построен ряд крупнейших стекольных заводов, в том числе заводы-гиганты в г. Гусь-Хрустальный, Горьком, Улан-Удэ, Дагестане и т.д. Основную массу продукции составляло оконное листовое стекло, его производили в мощных печах S = 650 – 700 м2. Наряду с «лодочным» способом вертикального вытягивания стекла внедряется в промышленность «безлодочный» способ, повышающий скорость вытягивания на 15 – 20 %.
2. СТЕКЛО И ЕГО СВОЙСТВА
Свойства стекла определяются прежде всего, составом входящих в него оксидов. Главными стеклообразующими оксидами являются оксиды кремния, фосфора и бора, в соответствии с чем стекла называют силикатными, фосфатными или боратными. Подавляющее большинство промышленных стекол является силикатными. Фосфатные стекольные расплавы применяют в основном для производства оптических, электровакуумных стекол, боратные – для специальных видов стекол (рентгенопрозрачных, реакторных и др.). Смешанные боросиликатные стекла применяют для изготовления оптических и термически устойчивых стеклоизделий.
Химический состав стекол в значительной степени влияет на их свойства. Строительное стекло содержит 71,5 – 72,5 % SiO2, 1,5 – 2 % Al2 O3, 13 – 15 % Na2 O, 6,5 – 9 % CaO, 3,8 – 4,3 % MgO и незначительное количество других оксидов (Fe2 O3, K2 O, SO3 ). Увеличение содержания оксидов Al2 O3, CaO, ZnO, B2 O3, BaO повышает прочность, твердость, модуль упругости стекла и снижает его хрупкость. Повышенное содержание SiO2 ,Al2 O3, B2 O3, Fe2 O3 увеличивает теплопроводность. Оксиды щелочных металлов, а так же CaO, BaO повышают температурный коэффициент линейного расширения, а SiO2, Al2 O3, ZnO, B2 O3, ZrO2 уменьшают его. Введение в состав стекла оксида свинца взамен части SiO2 и Na2 O вместо K2 O приводит к повышению блеска и световой игры, что позволяет получать хрустальные изделия. Добавки фторидов и пятиокиси фосфора уменьшают светопрозрачность стекол, позволяют получать «глушенные», непрозрачные стеклоизделия. Таким образом, варьирование химического состава стекол позволяет изменить их свойства в нужном направлении в соответствии с областью их использования.
Стекло как строительный материал обладает целым рядом ценных качеств, не свойственных другим материалам, и прежде всего, светопрозрачностью при высокой плотности и прочности, в связи с чем оно является незаменимым материалом для светопроемов.
Плотность обычного строительного стекла составляет 2,5 т/м3. С увеличением содержания оксидов металлов с низкой молекулярной массой (B2 O3, LiO2 ) плотность стекла понижается до 2,2 т/м3, с увеличением содержания оксидов тяжелых металлов (свинца, висмута и др.) плотность повышается до 6 т/м3 и более.
Прочность при сжатии стекла достигает 700 – 1000 МПа, прочность при растяжении значительно ниже – 30 – 80 МПа. Прочностные показатели изделий из стекла зависят не только от состава, но и от целого ряда других факторов: способа получения, режима тепловой обработки, состояния поверхности, размеров изделия. Низкая прочность стекла при растяжении и изгибе обусловлена наличием на его поверхности микротрещин, микронеоднородностей и других дефектов. Теоретическая прочность стекла при растяжении, рассчитанная различными способами, достигает 10000 МПа.
Для повышения прочности стекол применяют различные технологические приемы: повышение температуры отжига, закалку, травление и комбинированные методы, покрытие поверхности различными пленками, микрокристаллизация, армирование, триплексование и др. При травлении стекла плавиковой кислотой происходит растворение поверхностного слоя и удаление наиболее опасных дефектов, в результате чего прочность стекла повышается в 3 – 4 раза и более. Закаливание отожженных стекол увеличивает прочность в 4 – 5 раз. Комбинированные способы закалки и травления позволяют значительно повысить прочность стекла (до 800 – 900 МПа). Упрочнение стекла после травления путем нанесения силиконовой пленки приводит к повышению прочности стекла в 5 – 10 раз.
Термохимический способ упрочнения стекол заключается в закалке с последующей обработкой кремнийорганической жидкостью, что позволяет получить закаленное стекло с защитной кремнекислородной пленкой и прочностью при изгибе до 550 – 570 МПа.
На прочность стекла при растяжении и изгибе в значительной мере влияет размер изделия. Так, прочность на растяжение стеклянного волокна диаметром 10-3 мм достигает 200 – 500 МПа, что значительно выше показателей для массивного стекла. Воздействие длительных нагрузок снижает прочность стекла примерно в 3 раза, после чего значение этого показателя стабилизируется. Наступает так называемое явление усталости стекла, которое обусловлено влиянием окружающей среды, и прежде всего воды. Прочность стекла изменяется с изменением температуры. Стекло имеет минимальную прочность при +2000С, максимальную при – 2000С и +5000С. Увеличение прочности при понижении температуры объясняют уменьшением действия поверхностно-активных веществ (влаги), а при высоких температурах (до 5000С) возможностью появления пластических деформаций.
Модуль упругости стекол лежит в пределах 45000 – 98000 МПа. Отношение модуля упругости к прочности при растяжении (Е/Rp ) – так называемый показатель хрупкости стекла – достигает 1300 – 1500 (у стали он составляет 400 – 450, у резины – 0,4 – 0,6). Чем больше показатель хрупкости материала, тем при меньшей деформации напряжение в материале достигает предела прочности.
Стекла являются типично хрупкими материалами. Они практически не испытывают пластической деформации и разрушаются, как только напряжение достигает предела упругой деформации. Хрупкость стекла – величина обратная ударной прочности. Ударная прочность при изгибе обычного стекла составляет 0,2 МПа, закаленного – 1 – 1,5 МПа. Хрупкость можно снизить увеличением содержания в стекле оксидов B2 O3, Al2 O3, MgO, а так же закалкой стекол, травлением кислотой и другими способами его упрочнения. Твердость обычных силикатных стекол составляет 5 – 7 по шкале Мооса. Кварцевое стекло и борсодержащие малощелочные стекла имеют бо льшую твердость.
Теплоемкость промышленных стекол колеблется в пределах 0,3 – 1,1 кДж/(кг*0С), увеличиваясь с повышением температуры и содержания оксидов легких металлов.
Температурный коэффициент линейного расширения обычных строительных стекол сравнительно невысок, он лежит в пределах (9 – 15)* 10-6 0 С-1, увеличиваясь с повышением содержания в стекле щелочных металлов. Наименьший температурный коэффициент линейного расширения у кварцевого стекла: 5* 10-7 0 С-1 .
Термостойкость стекол определяется совокупностью термических свойств (теплоемкостью, теплопроводностью, температурным коэффициентом линейного расширения), а так же размерами и формой изделия. Кварцевые и боросиликатные стекла имеют наибольшую термостойкость. Тонкостенные изделия более термостойки, чем толстостенные.
Электрические свойства стекла оцениваются объемной и поверхностной электропроводностью. Электропроводность определяет возможность применения стекол в качестве изоляторов и учитывается при расчете режимов работы стекловарных электропечей. При нормальной температуре объемная электрическая проводимость стекол мала. С возрастанием температуры она повышается. Увеличение содержания в составе щелочных оксидов, особенно оксида лития, повышает электропроводность стекол. Закалка стекол приводит к увеличению их электропроводности, кристаллизация – к ее уменьшению.
Стекло обладает просто уникальными оптическими свойствами: светопропусканием (прозрачностью), светопреломлением, отражением, рассеиванием. Светопропускание стекла достигает 92%. Оно находится в прямой зависимости от его отражающей и поглощающей способности. Показатель преломления для обычных строительных стекол составляет 1,46 – 1,51. Он определяет светопропускание стекол при разных углах падения света. При изменении угла падения света с 00(перпендикулярно плоскости стекла) до 750светопропускание уменьшается с 92 до 50%. Коэффициент отражения может быть снижен или увеличен путем нанесения на поверхность стекла специальных прозрачных пленок определенной толщины и с меньшим или большим показателем преломления, избирательно отражающих лучи с определенной длиной волны.
Поглощающая способность стекла в значительной степени зависит от его химического состава, увеличиваясь с повышением содержания оксидов тяжелых металлов, и от толщины изделий. Многие специальные виды стекол (например, солнцезащитные) отличаются значительным светопоглощением – до 40%.
Обычные силикатные стекла хорошо пропускают всю видимую часть спектра и незначительную часть ультрафиолетовых и инфракрасных лучей.
Поглощение ультрафиолетовой области спектра достигается увеличением содержания в стекле оксидов титана, свинца, хрома, сурьмы, трехвалентного железа и сульфидов тяжелых металлов. Поглощение инфракрасной области спектра достигается при окраске стекла Fe2+ и Cr2+. Кварцевые стекла хорошо пропускают коротковолновую инфракрасную и ультрафиолетовую области спектра, а сернистомышьяковые стекла – длинноволновые инфракрасные излучения. Для пропускания ультрафиолетовых лучей содержание оксидов железа, титана, хрома в стекольной шихте должно быть минимальным. Стекла, пропускающие рентгеновские лучи, содержат оксиды легких металлов – L2 O, BeO, B2 O3. Таким образом, изменяя химический состав стекол и применяя различные технологические приемы, можно получить специальные виды стекол с солнце- и теплозащитными свойствами, предопределяющими теплотехнические и светотехнические показатели светопрозрачных ограждений.
Химическая устойчивость стекол характеризует их сопротивляемость разрушающему действию водных растворов, атмосферных воздействий и других агрессивных сред. Силикатные стекла отличаются высокой стойкостью к большинству химических реагентов, за исключением плавиковой и фосфорной кислот. Химическая устойчивость силикатных стекол объясняется образованием при воздействии воды, кислот и солей защитного нерастворимого поверхностного слоя из гелеобразной кремнекислоты – продукта разложения силикатов.
3. СТЕКЛЯННЫЕ МАТЕРИАЛЫ
3.1 Листовое светопрозрачное и светорассеивающее стекло
Витринное стекло производится двух марок: М7 — полированное и М8 — неполированное, толщиной 6,5-12 мм и максимальных размеров 3000x6000 мм. Применяется для остекления витрин, витражей и окон общественных зданий. Светопропускание витринных стекол 75-83%.
Стекло листовое узорчатое имеет на одной или обеих сторонах четкий рельефный узор и изготовляется способом проката. Узорчатое стекло бывает бесцветным и цветным, окрашенным в массе или нанесением на поверхность его пленок оксидов различных металлов. Применяется для декоративного остекления оконных и дверных проемов, внутренних перегородок, крытых веранд и т.д. Для этих же целей применяется листовое стекло «мороз», имеющее на одной стороне узор, напоминающий заиндевевшее стекло.
Армированное листовое бесцветное и цветное стекло для устройства световых проемов, фонарей верхнего света, ограждений в зданиях и сооружениях различного назначения. Армированное стекло может иметь обе поверхности или одну поверхность гладкими, рифлеными или узорчатыми. Для армирования применяется сварная или крученая сетка из стальной проволоки со светлой поверхностью или с защитным алюминиевым покрытием. Диаметр проволоки сетки 0,45-0,60 мм. Сетка имеет квадратные или шестиугольные ячейки размерами 12,5 и 25 мм. Армированное стекло отличается повышенной прочностью и огнестойкостью. Светопропускание бесцветного армированного стекла 65-75%.
Увиолевое стекло пропускает 25-75% ультрафиолетовых лучей и применяется для остекления оранжерей и заполнения оконных проемов в детских и лечебных учреждениях. Такое стекло получают из шихты с минимальными примесями оксидов железа, титана, хрома.
Закаленное стекло представляет собой листовое или другой формы стекло с повышенной механической прочностью и термической устойчивостью. Используют для остекления дверей, перегородок, ограждения лифтовых шахт, балконов, лестниц, а так же для изготовления электронагреваемых не замерзающих стекол. Толщина более 5 мм, оно выдерживает удар свободно падающего стального шара массой 800 гр. с высоты 120 см. Безопасно. Осколки этого стекла имеют тупые ребра и края.
Многослойное стекло (триплекс), армированное или неармированное, состоит из нескольких листов стекла, прочно склеенных между собой прозрачной эластичной прокладкой, чаще всего из поливинилбутирольной пленки. При ударе оно не дает осколков и является безопасным.
Теплопоглощающее стекло предназначено для защиты интерьеров зданий от воздействия прямого солнечного излучения и уменьшения солнечной радиации в помещениях. Стекла голубого, серого и бронзового оттенков получают введением в состав стекломассы оксидов кобальта, железа или селена. Задерживая большое количество инфракрасных лучей, стекло нагревается и подвергается большим температурным деформациям. Поэтому при остекленении следует предусматривать достаточный зазор между рамой и стеклом.
Применяется с целью уменьшения нагрева солнцем помещений жилых, культурных, общественных и промышленных зданий.
Теплоотражающее стекло применяется для нагрева помещений от солнечных и тепловых лучей. Изготавливается нанесением на поверхность тонких (0,3-1 мкм) пленок металлов и их оксидов. Светопропускание стекол 30-70%, а пропускание тепла 40-60%. В связи с тем, что в таких стеклах большая часть инфракрасных лучей не поглощается, а отражается, само стекло почти не нагревается. Вследствие уменьшения излучения из помещения они повышают теплозащиту зимой. Стекла имеют различную окраску: золотистую, голубую, оранжевую и др.
Электропроводящее стекло применяется в строительстве для стеклопакетов, используемых как источники тепла. Электропроводящие прозрачные покрытия наносятся на стекло с целью обогрева стекла и предотвращения запотевания. Покрытие получают напылением на поверхность стекла тонкой (0,5 мкм) пленки солей металлического серебра. Стекло устойчивое к радиоактивным излучениям применяется при строительстве АЭС и предприятий по изготовлению изотопов. Для поглощения радиоактивных лучей используются стекла с высоким содержанием свинца и бора. Например, тяжелое свинцовое стекло плотностью 6200 кг/м3, содержащее 80% оксида свинца, по своей защитной способности в этом отношении эквивалентно стали.
3.2 Светопрозрачные изделия и конструкции
Кроме листового светопроницаемого стекла в строительстве применяются светопрозрачные изделия и конструкции: стеклоблоки, стеклопрофилит, стеклопакеты, стеклобетонные конструкции и стеклянные трубы.
Блоки стеклянные пустотелые, блоки обладают хорошей стекло рассеивающей способностью, а выполненные из них световые проемы и перегородки имеют хорошие тепло- и звукоизоляционные свойства. Блоки состоят из двух отпрессованных половинок, которые свариваются между собой. Наиболее распространенные виды стеклянных блоков имеют на внутренней стороне рифления, придающие блокам светорассеивающую способность (рисунок 1). Светопропускание — не менее 65%, светорассеивание — около 25%, коэффициент теплопроводности — 0,4 Вт/(м · °С).
Панели из профильного стекла (стеклопрофилит). Отечественной промышленностью освоен выпуск профилированных стеклянных изделий больших размеров. Подобные изделия имеют коробчатый, ковровый, ребристый и другие профили и используются для монтажа светопропускающих перегородок и перекрытий.
Стеклобетонные конструкции представляют собой бетонную обойму, внутри которой на растворе уложены стеклянные блоки. Эти конструкции несгораемы и препятствуют распространению огня. В промышленном строительстве стеклянные блоки применяют для устройства окон. В жилых и общественных зданиях пустотелые стеклянные блоки используют для заполнения наружных световых проемов, остекления лестничных клеток, а также для устройства светопрозрачных перекрытий и перегородок.
Стеклопакеты в индустриальном строительстве находят все большее применение. Они состоят из двух или трех листов стекла, между которыми образуется геометрически замкнутая воздушная полость. Стекло пакетное остекление обладает хорошей тепло- и звукозащитной способностью, оно не запотевает и не нуждается в протирке внутренних поверхностей. В зависимости от назначения стеклопакеты могут быть выполнены с применением оконного, закаленного, отражающего или других видов стекла.
Стеклянные трубы в ряде случаев (например, в условиях химической агрессии) могут оказаться эффективнее металлических. Они обладают высокой химической стойкостью, гладкой поверхностью, прозрачны и гигиеничны. Благодаря этим высоким качествам их широко используют в пищевой и химической промышленности. Основными недостатками стеклянных труб следует считать хрупкость, т.е. слабое сопротивление изгибу и ударам, а также невысокую термостойкость (около 40°С). В последнее время на основе боросиликатных стекол получены термостойкие трубы с малым тепловым расширением.
3.3 Облицовочные изделия из стекла
Декоративная стеклокрошка при применении вместо керамических стеклянных плиток для отделки дает существенный экономический эффект. Крошка представляет собой гранулы размерами от 0,4 до 10 мм из глушенного окрашенного или неокрашенного стекла. Стеклянная крошка применяется для декоративной отделки фасадных поверхностей стен и оформления интерьеров.
Пенодекор — плиты размером 450x450-мм и толщиной до 40 мм, лицевая поверхность которых покрыта сплошной стекловидной пленкой широкой гаммы цветов. В качестве сырья используется стеклобой стекла.
Сигран — стеклокристаллический материал, имитирующий гранит, мрамор. Получают методом прессования стекла из шлаковых расплавов. К этой разновидности относятся и плиты из авантюринового стекла (природный авантюрин представляет собой мелкозернистый кварцит). Массовое применение находят хромовые авантюриновые стекла, получаемые на основе минерального сырья и металлургических шлаков с добавками оксидов хрома. Авантюриновые стекла используются и для покрытия керамических плиток в качестве глазури. Применяются для внутренней и наружной отделки интерьеров и витражей, работающих в отраженном свете.
Стеклокристаллит — выпускается в виде плит, получаемых сплавлением гранул из бесцветного или окрашенного стекла. Размеры плит 300x300 и 300x150 мм. Применяется для облицовки стен зданий и устройства полов.
Стеклокремнезит — облицовочно-декоративный плиточный материал, получаемый спеканием массы из стеклянных гранул и наполнителей (песка, глины, шамота). Стеклокерамит — облицовочный материал, получаемый спеканием массы на основе отходов стекла, глины и кварцевого песка.
3.4 Изделия из пеностекла
Пеностекло представляет собой искусственный материал, подобный пемзе. Процесс производства пеностекла заключается во вспучивании размолотого стекла, смешанного с небольшим количеством (1-3%) древесного угля, известняка или других материалов, выделяющих газ при температуре размягчения стекла. Пеностекло хорошо обрабатывается, склеивается, гвоздится, воздухопроницаемо и негигроскопично. Изготавливается в виде блоков и гранул. Плотность пеностекла 100-700 кг/м, коэффициент теплопроводности 0,04-0,15 Вт/(м* °С), предел прочности при сжатии 0,1-15 МПа. Широко применяется в конструкциях как теплоизолирующий и звукопоглощающий материал.
Блоки из пеностекла применяются для тепловой изоляции строительных конструкций, промышленного оборудования, холодильников (в интервале рабочих температур от -260 до +430°С и относительной влажности до 97%). Максимальные размеры изделий 475x400x120 мм.
Гранулированное пеностекло применяется в качестве особо легкого заполнителя в производстве легкого и конструкционного или теплоизоляционного бетона; изготавливается путем вспенивания во вращающихся печах сырцовых гранул, полученных из порошка стекла, измельченного в шаровых мельницах. Насыпная плотность гранулированного пеностекла — 100-150 кг/м3.
3.5 Материалы на основе стекловолокна
Стеклянное волокно применяется в производстве композиционных строительных материалов в виде непрерывных нитей, стеклотканей, холста, рубленого стекловолокна и стекловаты. Диаметр стекловолокон 5-15 мкм. Прочность их при растяжении достигает 4000 МПа. Непрерывное стекловолокно получают из расплава методами механического вытягивания из фильер плавильных ванн и намотки. Коротковолокнистые материалы получают центробежным или дутьевым способами (рисунок 3).
Непрерывное стекловолокно используется для изготовления стеклонитей и стеклотканей. Стеклонити применяются для изготовления стеклопластиковых труб и резервуаров методом намотки на соответствующие оправки.
Стекловолокнистый холст представляет собой тонкий листовой материал из переплетенных непрерывных волокон, скрепленных синтетическим связующим. Применяется как полуфабрикат для изготовления гидроизоляционных и кровельных материалов, в частности, стеклорубероида.
Стеклоткани применяются для изготовления стеклотекстолитов на полимерном связующем, а также в строительстве при теплоизоляции трубопроводов. Рубленое стекловолокно получают резанием непрерывного стекловолокна и применяют для повышения прочности различных изделий на основе минеральных связующих и в производстве стеклопластиковых светопрозрачных плоских и волнистых листов для кровли и обшивок трехслойных панелей.
4. СИТАЛЛЫ, ШЛАКОСИТАЛЛЫ И СИТАЛЛОПЛАСТЫ
4.1 Ситаллы
Ситаллы представляют собой стеклокристаллические материалы, полученные из стеклянных расплавов путем их полной или частичной кристаллизации. По структуре ситаллы представляют собой композиционные материалы со стекловидной аморфной непрерывной фазой — матрицей, наполненной мелкими кристаллами стекла. Средний размер кристаллов в ситаллах 1-2 мкм, а толщина прослоек стеклофазы не превышает десятых долей микрона. Объем кристаллической фазы в ситаллах достигает 90-95%. Сырьем для производства ситаллов являются те же природные материалы, что и для стекла, но к чистоте сырья предъявляются очень высокие требования. Кроме того, в расплав вводят добавки, катализирующие кристаллизацию при последующей термообработке. В качестве катализаторов кристаллизации применяют соединения фторидов или фосфатов щелочных и щелочноземельных металлов. Технология производства изделий из ситаллов не отличается от технологии производства изделий из стекла, требуется лишь дополнительная термическая обработка стекла в кристаллизаторе. Обладая поликристаллическим строением, ситаллы, сохраняя положительные свойства стекла, лишены его недостатков: хрупкости, малой прочности при изгибе, низкой теплостойкости. По своим физико-техническим свойствам ситаллы выдерживают сравнение с металлами. Твердость ситаллов приближается к твердости закаленной стали. Термостойкость изделий из ситалла достигает 1100°С. Ситаллы обладают высокой стойкостью к воздействию сильных кислот (кроме плавиковой) и щелочей. Отдельные виды ситаллов отличаются жаростойкостью и способностью паяться со сталью. Прочность ситаллов при сжатии — до 500 МПа.
В строительстве ситаллы используются для устройства полов промышленных цехов, в которых могут быть проливы кислот, щелочей, расплавов металлов, а также движение тяжелых машин. Высокую технико-экономическую эффективность дает применение ситаллов для изготовления химической аппаратуры и труб для транспортировки высокоагрессивных сред и теплообменников. По внешнему виду ситаллы могут быть темного, серого, коричневого, кремового, светлого цветов, глухие и прозрачные.
4.2 Шлакоситаллы
Шлакоситалл — это стеклокристаллический материал, получаемый путем управляемой гетерогенной кристаллизации стекла, сваренного на основе металлургического шлака, кварцевого песка и некоторых добавок и характеризуемый мелкозернистой кристаллической структурой. Листовой шлакоситалл производят белого и серого цветов с гладкой или рифленой поверхностью. При необходимости поверхность шлакоситалла шлифуют, полируют и фрезеруют. Шлакоситалловые листы можно окрашивать в различные цвета путем нанесения на их поверхность керамических глазурей. Шлакоситалл обладает высокой химической стойкостью, износостойкостью, водонепроницаемостью, отличается повышенной механической прочностью и твердостью по сравнению со стеклом и каменным литьем. Физико-механические свойства шлакоситалла характеризуются следующими данными: плотность — 600..-2700 кг/м3, прочность при изгибе — 65...110 МПа, прочность на сжатии — 250...550 МПа, удельная ударная вязкость — 0,3...0,35 МПа/см, потеря в массе при истирании — 0,03… 006 г/см2, термостойкость образца размером 30X30X4 мм — 100...150°С, кислотостойкость в 96%-ной h3S04 — 99,1...99,9% и шелочестойкость в 35%-ной NaOH — 80...85%.
Производство листового шлакоситалла отличается высокой степенью механизации и автоматизации. Шихту для белого шлакоситалла приготовляют на обычном оборудовании стекольного производства. Стекло для шлакоситалла варится в ванной печи непрерывного действия. Изготовление листового шлакоситалла осуществляется на непрерывно действующей поточно-механизированной линии. Сваренная масса подается на формование в прокатную машину, рассчитанную на получение непрерывной ленты шириной 1,6 м, толщиной 7...10 мм. Отформованная лента стекла подвергается теплообработке в печи-кристаллизаторе непрерывного действия с газовым обогревом, в результате чего стекло превращается в мелкозернистый стеклокристаллический материал. На открытой части рольганга печи-кристаллизатора производится поперечный и продольный автоматический раскрой ленты на изделия заданных размеров.
Шлакокристаллы могут быть получены любого цвета, а по долговечности они конкурируют с базальтами и гранитами. Сочетание физических и механических свойств шлакоситаллов обусловливает возможность их широкого использования в строительстве: для полов промышленных и гражданских зданий, декоративной и защитной облицовки наружных и внутренних стен, перегородок, цоколей, футеровки строительных конструкций, подверженных химической агрессии или абразивному износу, кровельных покрытий отапливаемых и неотапливаемых промышленных зданий, облицовки слоистых панелей навесных стен зданий повышенной этажности.
Экономический эффект использования изделий из шлакоситаллов обусловливает дальнейшее расширение номенклатуры изделий. Все более широкое развитие получает производство пеношлакоситаллов, обладающих малой плотностью 300… 600 кг/м3, прочностью при сжатии до 14 МПа, теплопроводностью 0,08...0,16 Вт/(м* °С) и рабочей температурой до 750°С
4.3 Ситаллопласты
Ситаллопласты представляют собой материалы, получаемые на базе пластических масс (фторопластов) и ситаллов. Ситаллопласты обладают высокой износоустойчивостью и химической стойкостью. Они находят применение в качестве антифрикционных и конструктивных материалов, а также могут использоваться в промышленности, где ни ситаллы, ни пластмассы, отдельно взятые, не удовлетворяют требованиям высокой пластичности, износоустойчивости и химической стойкости. Для изготовления ситаллопластов ситаллы измельчают до получения порошка заданного гранулометрического состава. Дальнейший процесс отличается от технологии изготовления пластмасс, разница лишь та, что с добавкой ситалла усадка пластмассы будет меньше.
5. ИЗДЕЛИЯ ИЗ КАМЕННЫХ РАСПЛАВОВ
Изделия из каменных расплавов подразделяются на плотные, ячеистые и волокнистые.
Литые каменные изделия изготовляют из расплавов горных пород или шлаков литьем в формы с последующей термической обработкой. По однородности и техническим свойствам литые изделия превосходят многие самые прочные природные каменные материалы. В зависимости от используемого сырья каменное литье бывает темного и светлого цвета. Для получения изделий темного цвета применяются магматические горные породы — базальты и диабазы. Для получения светлого каменного литья используют осадочные горные породы — доломит, известняк, мрамор и кварцевый песок.
Технология получения литых изделий включает операции дробления, помола, перемешивания компонентов, плавления, отливки изделий, кристаллизацию и отжиг. Плавление диабаза и базальта чаще всего производят в ванных печах или вагранках при температуре 1400-1500°С, а при изготовлении светлого каменного литья — в электропечах.
Плотные литые каменные изделия имеют: плотность 2900-3000 кг/м3, высокую морозостойкость, прочность при сжатии 200-240 МПа и при растяжении 20-30 МПа; истираемость до 5 раз меньше, чем у гранита, базальта и диабаза; высокую химическую стойкость, в том числе к воздействию концентрированных серной и соляной кислот.
В строительстве литые каменные изделия используют в особо тяжелых условиях эксплуатации: брусчатка для дорог, трубы для агрессивных сред, облицовочные плитки для предприятий химической промышленности.
Термозит (шлаковая пемза) — ячеистый материал, получаемый в результате вспучивания расплава шлака при быстром его охлаждении струей воды. Насыпная плотность щебня из термозита — 300-1100 кг/м3 позволяет его использовать в качестве эффективного легкого заполнителя для бетонов. Стоимость такого заполнителя в 2-3 раза ниже стоимости керамзита.
Минеральная вата и изделия из нее представляют собой волокнистые материалы, полученные из расплава горных пород или металлургических шлаков. Вату из расплава горных пород называют горной, а из расплава шлаков — шлаковой. Высокая пористость ваты, содержащей пустоты до 95% по объему, обеспечивает ей отличные тепло- и звукоизоляционные свойства. Длина волокон в вате от 2 до 60 мм. Производство минеральной ваты и изделий из нее не отличается от описанной выше технологии производства стекловаты и изделий из нее. Эти изделия производятся марок от 50 до 250 и имеют теплопроводность от 0,032 до 0,077 Вт/(м°С).
Минераловатные изделия применяются для теплоизоляции строительных конструкций при температуре изолируемых поверхностей от -180до+600°С.
Минераловатные утеплители в нашей стране занимают первое место среди всех других теплоизоляционных материалов.
6. ИСПОЛЬЗОВАНИЕ ОТХОДОВ В ПРОИЗВОДСТВЕ ПЛАВЛЕНЫХ ИЗДЕЛИЙ
Отходы стекла представляют в различных странах 28-38% всех бытовых отходов. Кроме того значительные отходы стекла образуются на самих стекольных заводах и в строительстве. В связи с этим их утилизация с целью защиты окружающей среды представляет важную экологическую задачу, которая в промышленности строительных материалов находит определенное решение. В настоящее время некоторые фирмы для производства стеклотары используют 90% стеклянного боя. В США и Канаде построено более 30 экспериментальных дорог с использованием более 50% стеклобоя в качестве заполнителя. Эта добавка улучшает торможение и увеличивает долговечность дорог. Значительное применение отходы стекла нашли в производстве отделочных стеклянных материалов и изделий, а также блочного и гранулированного пеностекла. Отходы шлифования стекла применяются в качестве кремнеземистого компонента для замены молотого песка при производстве автоклавных силикатных изделий. Отходы камнедобычи и камнепиления представляют собой наиболее значительные по объему по сравнению с другими отходами промышленности. Использование их в производстве изделий из каменных расплавов является важным направлением рационального их применения. На металлургических заводах стран СНГ ежегодно образуется более 90 млн.т доменных шлаков. Значительная часть их используется в производстве шлакопортландцемента. Вместе с тем имеются большие резервы неиспользуемых шлаков, которые находят и имеют большие перспективы для использования их в производстве изделий из каменного литья: шлаковой пемзы, шлакового щебня, шлаковаты, шлакосиликатов.
ЗАКЛЮЧЕНИЕ
Способность к образованию стекол характерна для многих минеральных и органических веществ. Наиболее ярко эта способность выражена у диоксида кремния (SiO2 ) и соединений на его основе — силикатов, к которым относится большинство природных минералов. В стеклообразном состоянии могут находиться и многие другие материалы, например, полимеры (всем известен термин «плексиглас» — органическое стекло). В последние годы даже металлы удалось получить в стеклообразном состоянии.
Стекла по сравнению с кристаллическими веществами обладают повышенной внутренней энергией (скрытой энергией кристаллизации), поэтому вещество в стеклообразном состоянии метастабилъно (термодинамически не устойчиво). Из-за этого обычное стекло при некоторых условиях, а иногда и самопроизвольно начинает кристаллизоваться (этот процесс в стеклоделии называют «зарухание» или расстекловывание). Расстекловывание является браком стеклоизделий.
Этот же процесс, но проводимый направленно с целью частичной или полной кристаллизации расплава, используется для получения стеклокристаллических материалов — ситаллов и каменного литья.
В строительстве, за малым исключением, применяют силикатное стекло, получаемое в промышленных масштабах из простейшего минерального сырья: кварцевого песка, мела, соды и других компонентов (далее вместо термина «силикатное стекло» будет использоваться термин «стекло»).
Прозрачность и возможность окраски стекла в любые цвета, высокая химическая стойкость, достаточно высокая прочность и твердость, электроизоляционные и многие другие ценные свойства делают стекло незаменимым строительным материалом. Его используют не только для сооружения светопрозрачных конструкций (окон, витражей, фонарей), но и как конструкционный и отделочный материал. В современном строительстве высотные здания часто имеют фасады, полностью выполненные из стекла с улучшенными декоративными, светоотражающими и теплозащитными свойствами. Кроме того, из стекла получают различные стеклоизделия (блоки, трубы, стеклопрофилит), эффективные теплоизоляционные материалы (пеностекло и стеклянную вату), а также стекловолокно и стеклоткани.
Стекла встречаются в природе в виде бесформенных непрозрачных кусков — например, вулканическое стекло обсидиан. Первые сведения о получении стекла человеком относятся к третьему-четвертому тысячелетию до н. э. Те стекла были непрозрачными (глухими) наподобие керамической глазури. Они варились в небольших тиглях и использовались как украшения.
Коренное изменение в производстве стекла произошло на рубеже нашей эры, когда были решены две важнейшие проблемы стеклоделия — варка прозрачного бесцветного стекла и формование изделий с помощью стеклодувной трубки. Первые листовые стекла получали, разрезая и распрямляя стеклянные цилиндры, формуемые выдуванием (их называли «халявы»). В XVII в. началось производство листового зеркального стекла отливкой на медные плиты. Массовое производство листового стекла большого размера стало возможным в конце XIX — начале XX в., когда появились большие ванные печи и новые методы выработки стекла.
Необходимо отметить, что на процесс стекловарения расходуется очень много энергии, и при этом в атмосферу поступает много вредных выбросов. Поэтому и экологически, и экономически целесообразно вырабатывать стеклоизделия из вторичного сырья (стеклобоя, стеклянной посуды и т. п.). Это оценили в большинстве стран Западной Европы, где до 80 % стекла получают именно таким образом.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1. Микульский В.Г. Строительные материалы, учебник. М.: АСВ 2000 г. – 536 с.
2. Домокеев А.Г. Строительные материалы, учебник для вузов. М.: Высшая школа 1989г. – 495 с.
3. Китайгородский И.И. Технология стекла. М.: Изд. лит. по строительству 1967г. – 564 с.
4. glass.ru
5. stroyschool.ru
www.ronl.ru
Листовое стекло (обычное оконное, увиолевое, теплозащитное, светорассеивающее, закаленное, витринное, армированное и др.) является самым распространенным стеклом для строительных целей.
Оконное стекло выпускают толщиной 2; 2,5; 3; 4; 5 и 6 мм в виде листов от 4.00X400 до 1600X2200 мм или по спецификации потребителя. Стекло должно быть бесцветным и прозрачным (светопропускание в зависимости от толщины не менее 84…90 %).
Увиолевое стекло пропускает не менее 25 % ультрафиолетовых лучей. Это достигается за счет применения стекольной шихты с минимальным содержанием примесей оксидов железа, титана и … хрома. Такое стекло используют для остекления проемов в лечебных, детских учреждениях, оранжереях и других специальных сооружениях.
Теплозащитное стекло способно поглощать до 75 % инфракрасных лучей. Его изготовляют из стекломассы, в которую вводят оксиды кобальта, никеля и железа, или путем обработки поверхности стекла специальными растворами при его вытягивании. Применяют такое стекло для остекления зданий и средств транспорта с целью уменьшения солнечной и тепловой радиации, особенно в южных районах.
Светорассеивающее стекло характеризуется декоративностью и светорассеивающей способностью. Оно может быть узорчатым и матовым.
Узорчатое стекло получают методом непрерывного проката на гравировальных вальцах из бесцветной или цветной стекломассы.
Матовое стекло изготовляют пескоструйной обработкой поверхности оконного стекла, при этом с помощью трафарета можно получить матово-узорчатый рисунок. Светорассеивающее стекло применяют для остекления оконных и дверных проемов, перегородок, когда требуется освещение без сквозной видимости или рассеянный свет.
Армированное стекло получают методом проката с одновременной запрессовкой в обычную или цветную стекломассу металлической сетки. Такое стекло может быть в виде плоских или волнистых листов (4.3). Армированное стекло обладает повышенной прочностью и огнестойкостью. Его применяют для остекления дверей, ограждения лестничных клеток и балконов, устройства перегородок и кровли.
Витринное стекло неполированное и полированное выпускают увеличенной толщины 5.. 12 мм. Стекло толщиной 5…6 мм получают, как и обычное оконное, методом вертикального вытягивания, как правило, без последующей полировки. Более толстое витринное стекло изготовляют прокатом с последующей шлифовкой и полировкой. Используют витринное стекло для остекления витрин в нижних этажах зданий, а также для сплошного остекления выставочных залов, аэропортов и т. п.
Закаленное стекло получают путем термической обработки стекла по специальному режиму, в результате чего оно приобретает напряженное состояние, характеризуемое небольшим растяжением всей толщи стекла, кроме тонких поверхностных слоев, которые оказываются сильно сжатыми. Закаленное стекло имеет выше прочность на удар в 4…6 раз, а предел прочности при изгибе в 5…8 раз по сравнению с обычным стеклом. Такое стекло является безопасным, так как при разрушении распадается на мелкие осколки с тупыми нережущими краями. Основной потребитель закаленного стекла — транспорт. В строительной практике толстое закаленное стекло применяют для устройства дверей, перегородок, потолков. Листы закаленного стекла толщиной около 6 мм, покрытые с тыльной стороны цветными керамическими красками, называют стемалитом и применяют для внутренней и наружной облицовки зданий.
Плоское цветное стекло получают путем введения красителей в стекломассу или нанесения в процессе проката на бесцветную стекломасу цветного слоя. Используют цветное стекло при строительстве общественных зданий в декоративных целях (в световых проемах, перегородках, витражах).
Цветные плиты «марблит» изготовляют из цветной непрозрачной (глушеной) стекломассы методом проката или литья с полировкой лицевой поверхности и рифлением тыльной. Такие плиты (толщиной 6…12 мм и размером до 2100X1400 мм) используют для облицовки фасадов и внутренних помещений общественных зданий, а также для подоконников, крышек столов, прилавков.
При прокате марблит может быть разделен на плитки размером 200X200 мм и менее. Такие плитки называют стекломрамор.
Плиты «стеклокремнезит» —цветные непрозрачные плиты, получаемые плавлением с последующей кристаллизацией цветных стеклянных гранул. Стеклокремнезит воспроизводит структуру полированных горных пород; может быть получен разнообразных цветов.
Стеклянную эмалированную плитку производят из отходов листового оконного стекла путем нарезания на требуемые размеры (150X150 и 10X75 мм) и нанесения слоя стеклянной эмали, закрепляемого нагреванием в печи. Применяют такую плитку для облицовки помещений с повышенными санитарно-гигиеническими требованиями и в сооружениях, подвергающихся агрессивному действию кислот и щелочей.
Стеклянную мозаику выпускают двух видов — ковровая мозаика и смальта. Ковровая мозаика — это мелкие квадратные плитки (например, 20X20X4 мм) из непрозрачного прокатного стекла различных цветов с глянцевой или матовой поверхностью. Плитки по рисунку наклеивают на крафт-бумагу и в виде ковриков применяют для облицовки стеновых панелей и внутренней отделки стен и колонн. Смальта — небольшие кусочки разной формы из непрозрачного литого или прессованного стекла различного цвета. Из кусочков смальты набирают мозаичные картины или отдельные вставки при отделке общественных зданий и сооружений.
Зеркала изготовляют из полированного стекла с нанесением на него с одной стороны тонкого слоя алюминия или серебра, закрепляемого слоем асфальтового лака или стеклянной эмалью.
Стеклопакеты представляют собой элементы из двух или трех плоских стекол (оконного, витринного и других видов), соединенных по периметру так, что между ними образуется герметически замкнутая воздушная полость шириной до 15…20 мм. Стеклопакеты не замерзают при температуре —25 °С (одинарный) и —40 °С (двойной), не запотевают, выдерживают большую ветровую нагрузку, чем отдельные стекла той же толщины, я обладают достаточной звукоизолирующей способностью. Их использование вместо обычного двойного остекления упрощает и удешевляет процесс остекления зданий различного назначения и снижает расход древесины на изготовление оконных переплетов в 1,5…2 раза.
Стеклопрофилит представляет собой изделия из прокатного стекла, имеющие профильное и коробчатое сечение длиной до 6000 мм (4.4). Конструкции из стеклопрофилита дают мягкий рассеивающий свет (све-топропускание 40…70 %). Теплопередача.стены из коробчатых (в один ряд) или швеллерных (в два ряда) профилей примерно такая же, как окон с двойным остеклением, а акустические свойства не уступают глухим межкомнатным оштукатуренным перегородкам из кирпича. Стеклопрофилит применяют для устройства ненесущих стен, внутренних перегородок, остекления фонарей и других целей, обычно в сочетании с металлическими, бетонными, кирпичными или деревянными элементами зданий.
Стеклянные блоки — пустотелые изделия квадратной или прямоугольной формы размерами до 294X X 294X98 мм, состоящие из двух прессованных полублоков из обычной или цветной стекломассы и сваренных или склеенных друг с другом. Блоки имеют небольшую плотность — 800 кг/м3, относительно низкую теплопроводность—в среднем 0,46 Вт/(м-°С), достаточное свето-пропускание —50…65 % и светорассеивание — до 25 %. Стеклоблоки применяют для сооружения светопрозрач-ных элементов стен (4.5) перегородок, остекления лестничных клеток, лифтовых шахт и т.п. Использование стеклоблоков позволяет более чем в 2 раза снизить потери теплоты по сравнению с одинарным остеклением, улучшает звукоизоляцию.
Стеклянные трубы различных диаметров (до 150 мм и более) хорошо сопротивляются коррозии, обладают достаточной механической прочностью, гигиеничны, прозрачны, имеют гладкую поверхность, вследствие чего их пропускная способность на 22 % выше, чем чугунных, и на 6,5 % — стальных труб равного диаметра. Недостатком стеклянных труб является малое сопротивление изгибу и удару и значительная хрупкость. Трубы нашлн широкое применение для самых различных целей как в строительстве, так и в других отраслях промышленности — пищевой, химической, фармацевтической и т. п.
refac.ru
СОДЕРЖАНИЕ
1. Общие сведения
2. Стекло и его свойства
3. Стеклянные материалы
3.1 Листовое светопрозрачное и светорассеивающее стекло
3.2 Светопрозрачные изделия и конструкции
3.3 Облицовочные изделия из стекла
3.4 Изделия из пеностекла
3.5 Материалы на основе стекловолокна
4. Ситаллы, шлакоситаллы и ситаллопласты
4.1 Ситаллы
4.2 Шлакоситаллы
4.3 Ситаллопласты
5. Изделия из каменных расплавов
6. Использование отходов в производстве плавленых изделий
Заключение
Список литературы
1. ОБЩИЕ СВЕДЕНИЯ
Стекло – все аморфные тела, получаемые путем переохлаждения расплава, независимо от их химического состава и температурной области затвердевания и обладающие в результате постепенного увеличения вязкости механическими свойствами твердых тел; причем процесс перехода из жидкого состояния в стеклообразное должен быть обратимым.
По масштабам применения первое место принадлежит строительству, в котором оно применяется не только для устройства световых приемов, но и в качестве конструктивного и отделочного материала. За 3 – 4 тыс. лет до н.э. производство стекла было известно египтянам, в этот период стекольные изделия изготовлялись путем пластического формирования и прессования. Значительное развитие получило стеклоделие в Венеции, которая оставалась мировым центром стеклоделия до XVII века. Венецианское стекло, отличающееся большой художественной ценностью, проникало в другие страны Европы и ближнего Востока.
В России в 1635 году шведом Елисеем Койотом на пустоши Духанино в Дмитровском уезде был построен стекольный завод. Вслед за Духанинским был открыт казенный завод в Измайлове (1669-1710). Здесь наряду с иноземцами работали и русские мастера, которые осваивали основные приемы европейского стеклоделия. Начало XVIII в. можно назвать периодом подъема стеклоделия. Важной вехой его развития в России явилось открытие стекольного завода на Воробьевых горах под Москвой, построенного также по инициативе Петра I. В 1706 завод уже работал. Основными видами продукции Воробьевского завода были литые зеркала и зажигательные стекла. Стекло варилось, затем выливалось на медную доску, прокатывалось медным катком, шлифовалось, полировалось и под него подводилась амальгама. При этом размеры зеркал были самыми большими в Европе того времени. Наиболее широкое развитие стеклянная промышленность получила в СССР. В годы первых пятилеток был построен ряд крупнейших стекольных заводов, в том числе заводы-гиганты в г. Гусь-Хрустальный, Горьком, Улан-Удэ, Дагестане и т.д. Основную массу продукции составляло оконное листовое стекло, его производили в мощных печах S = 650 – 700 м2. Наряду с «лодочным» способом вертикального вытягивания стекла внедряется в промышленность «безлодочный» способ, повышающий скорость вытягивания на 15 – 20 %.
2. СТЕКЛО И ЕГО СВОЙСТВА
Свойства стекла определяются прежде всего, составом входящих в него оксидов. Главными стеклообразующими оксидами являются оксиды кремния, фосфора и бора, в соответствии с чем стекла называют силикатными, фосфатными или боратными. Подавляющее большинство промышленных стекол является силикатными. Фосфатные стекольные расплавы применяют в основном для производства оптических, электровакуумных стекол, боратные – для специальных видов стекол (рентгенопрозрачных, реакторных и др.). Смешанные боросиликатные стекла применяют для изготовления оптических и термически устойчивых стеклоизделий.
Химический состав стекол в значительной степени влияет на их свойства. Строительное стекло содержит 71,5 – 72,5 % SiO2, 1,5 – 2 % Al2 O3, 13 – 15 % Na2 O, 6,5 – 9 % CaO, 3,8 – 4,3 % MgO и незначительное количество других оксидов (Fe2 O3, K2 O, SO3 ). Увеличение содержания оксидов Al2 O3, CaO, ZnO, B2 O3, BaO повышает прочность, твердость, модуль упругости стекла и снижает его хрупкость. Повышенное содержание SiO2 ,Al2 O3, B2 O3, Fe2 O3 увеличивает теплопроводность. Оксиды щелочных металлов, а так же CaO, BaO повышают температурный коэффициент линейного расширения, а SiO2, Al2 O3, ZnO, B2 O3, ZrO2 уменьшают его. Введение в состав стекла оксида свинца взамен части SiO2 и Na2 O вместо K2 O приводит к повышению блеска и световой игры, что позволяет получать хрустальные изделия. Добавки фторидов и пятиокиси фосфора уменьшают светопрозрачность стекол, позволяют получать «глушенные», непрозрачные стеклоизделия. Таким образом, варьирование химического состава стекол позволяет изменить их свойства в нужном направлении в соответствии с областью их использования.
Стекло как строительный материал обладает целым рядом ценных качеств, не свойственных другим материалам, и прежде всего, светопрозрачностью при высокой плотности и прочности, в связи с чем оно является незаменимым материалом для светопроемов.
Плотность обычного строительного стекла составляет 2,5 т/м3. С увеличением содержания оксидов металлов с низкой молекулярной массой (B2 O3, LiO2 ) плотность стекла понижается до 2,2 т/м3, с увеличением содержания оксидов тяжелых металлов (свинца, висмута и др.) плотность повышается до 6 т/м3 и более.
Прочность при сжатии стекла достигает 700 – 1000 МПа, прочность при растяжении значительно ниже – 30 – 80 МПа. Прочностные показатели изделий из стекла зависят не только от состава, но и от целого ряда других факторов: способа получения, режима тепловой обработки, состояния поверхности, размеров изделия. Низкая прочность стекла при растяжении и изгибе обусловлена наличием на его поверхности микротрещин, микронеоднородностей и других дефектов. Теоретическая прочность стекла при растяжении, рассчитанная различными способами, достигает 10000 МПа.
Для повышения прочности стекол применяют различные технологические приемы: повышение температуры отжига, закалку, травление и комбинированные методы, покрытие поверхности различными пленками, микрокристаллизация, армирование, триплексование и др. При травлении стекла плавиковой кислотой происходит растворение поверхностного слоя и удаление наиболее опасных дефектов, в результате чего прочность стекла повышается в 3 – 4 раза и более. Закаливание отожженных стекол увеличивает прочность в 4 – 5 раз. Комбинированные способы закалки и травления позволяют значительно повысить прочность стекла (до 800 – 900 МПа). Упрочнение стекла после травления путем нанесения силиконовой пленки приводит к повышению прочности стекла в 5 – 10 раз.
Термохимический способ упрочнения стекол заключается в закалке с последующей обработкой кремнийорганической жидкостью, что позволяет получить закаленное стекло с защитной кремнекислородной пленкой и прочностью при изгибе до 550 – 570 МПа.
На прочность стекла при растяжении и изгибе в значительной мере влияет размер изделия. Так, прочность на растяжение стеклянного волокна диаметром 10-3 мм достигает 200 – 500 МПа, что значительно выше показателей для массивного стекла. Воздействие длительных нагрузок снижает прочность стекла примерно в 3 раза, после чего значение этого показателя стабилизируется. Наступает так называемое явление усталости стекла, которое обусловлено влиянием окружающей среды, и прежде всего воды. Прочность стекла изменяется с изменением температуры. Стекло имеет минимальную прочность при +2000С, максимальную при – 2000С и +5000С. Увеличение прочности при понижении температуры объясняют уменьшением действия поверхностно-активных веществ (влаги), а при высоких температурах (до 5000С) возможностью появления пластических деформаций.
Модуль упругости стекол лежит в пределах 45000 – 98000 МПа. Отношение модуля упругости к прочности при растяжении (Е/Rp ) – так называемый показатель хрупкости стекла – достигает 1300 – 1500 (у стали он составляет 400 – 450, у резины – 0,4 – 0,6). Чем больше показатель хрупкости материала, тем при меньшей деформации напряжение в материале достигает предела прочности.
Стекла являются типично хрупкими материалами. Они практически не испытывают пластической деформации и разрушаются, как только напряжение достигает предела упругой деформации. Хрупкость стекла – величина обратная ударной прочности. Ударная прочность при изгибе обычного стекла составляет 0,2 МПа, закаленного – 1 – 1,5 МПа. Хрупкость можно снизить увеличением содержания в стекле оксидов B2 O3, Al2 O3, MgO, а так же закалкой стекол, травлением кислотой и другими способами его упрочнения. Твердость обычных силикатных стекол составляет 5 – 7 по шкале Мооса. Кварцевое стекло и борсодержащие малощелочные стекла имеют бо льшую твердость.
Теплоемкость промышленных стекол колеблется в пределах 0,3 – 1,1 кДж/(кг*0С), увеличиваясь с повышением температуры и содержания оксидов легких металлов.
Температурный коэффициент линейного расширения обычных строительных стекол сравнительно невысок, он лежит в пределах (9 – 15)* 10-6 0 С-1, увеличиваясь с повышением содержания в стекле щелочных металлов. Наименьший температурный коэффициент линейного расширения у кварцевого стекла: 5* 10-7 0 С-1 .
Термостойкость стекол определяется совокупностью термических свойств (теплоемкостью, теплопроводностью, температурным коэффициентом линейного расширения), а так же размерами и формой изделия. Кварцевые и боросиликатные стекла имеют наибольшую термостойкость. Тонкостенные изделия более термостойки, чем толстостенные.
Электрические свойства стекла оцениваются объемной и поверхностной электропроводностью. Электропроводность определяет возможность применения стекол в качестве изоляторов и учитывается при расчете режимов работы стекловарных электропечей. При нормальной температуре объемная электрическая проводимость стекол мала. С возрастанием температуры она повышается. Увеличение содержания в составе щелочных оксидов, особенно оксида лития, повышает электропроводность стекол. Закалка стекол приводит к увеличению их электропроводности, кристаллизация – к ее уменьшению.
Стекло обладает просто уникальными оптическими свойствами: светопропусканием (прозрачностью), светопреломлением, отражением, рассеиванием. Светопропускание стекла достигает 92%. Оно находится в прямой зависимости от его отражающей и поглощающей способности. Показатель преломления для обычных строительных стекол составляет 1,46 – 1,51. Он определяет светопропускание стекол при разных углах падения света. При изменении угла падения света с 00(перпендикулярно плоскости стекла) до 750светопропускание уменьшается с 92 до 50%. Коэффициент отражения может быть снижен или увеличен путем нанесения на поверхность стекла специальных прозрачных пленок определенной толщины и с меньшим или большим показателем преломления, избирательно отражающих лучи с определенной длиной волны.
Поглощающая способность стекла в значительной степени зависит от его химического состава, увеличиваясь с повышением содержания оксидов тяжелых металлов, и от толщины изделий. Многие специальные виды стекол (например, солнцезащитные) отличаются значительным светопоглощением – до 40%.
Обычные силикатные стекла хорошо пропускают всю видимую часть спектра и незначительную часть ультрафиолетовых и инфракрасных лучей.
Поглощение ультрафиолетовой области спектра достигается увеличением содержания в стекле оксидов титана, свинца, хрома, сурьмы, трехвалентного железа и сульфидов тяжелых металлов. Поглощение инфракрасной области спектра достигается при окраске стекла Fe2+ и Cr2+. Кварцевые стекла хорошо пропускают коротковолновую инфракрасную и ультрафиолетовую области спектра, а сернистомышьяковые стекла – длинноволновые инфракрасные излучения. Для пропускания ультрафиолетовых лучей содержание оксидов железа, титана, хрома в стекольной шихте должно быть минимальным. Стекла, пропускающие рентгеновские лучи, содержат оксиды легких металлов – L2 O, BeO, B2 O3. Таким образом, изменяя химический состав стекол и применяя различные технологические приемы, можно получить специальные виды стекол с солнце- и теплозащитными свойствами, предопределяющими теплотехнические и светотехнические показатели светопрозрачных ограждений.
Химическая устойчивость стекол характеризует их сопротивляемость разрушающему действию водных растворов, атмосферных воздействий и других агрессивных сред. Силикатные стекла отличаются высокой стойкостью к большинству химических реагентов, за исключением плавиковой и фосфорной кислот. Химическая устойчивость силикатных стекол объясняется образованием при воздействии воды, кислот и солей защитного нерастворимого поверхностного слоя из гелеобразной кремнекислоты – продукта разложения силикатов.
3. СТЕКЛЯННЫЕ МАТЕРИАЛЫ
3.1 Листовое светопрозрачное и светорассеивающее стекло
Витринное стекло производится двух марок: М7 — полированное и М8 — неполированное, толщиной 6,5-12 мм и максимальных размеров 3000x6000 мм. Применяется для остекления витрин, витражей и окон общественных зданий. Светопропускание витринных стекол 75-83%.
Стекло листовое узорчатое имеет на одной или обеих сторонах четкий рельефный узор и изготовляется способом проката. Узорчатое стекло бывает бесцветным и цветным, окрашенным в массе или нанесением на поверхность его пленок оксидов различных металлов. Применяется для декоративного остекления оконных и дверных проемов, внутренних перегородок, крытых веранд и т.д. Для этих же целей применяется листовое стекло «мороз», имеющее на одной стороне узор, напоминающий заиндевевшее стекло.
Армированное листовое бесцветное и цветное стекло для устройства световых проемов, фонарей верхнего света, ограждений в зданиях и сооружениях различного назначения. Армированное стекло может иметь обе поверхности или одну поверхность гладкими, рифлеными или узорчатыми. Для армирования применяется сварная или крученая сетка из стальной проволоки со светлой поверхностью или с защитным алюминиевым покрытием. Диаметр проволоки сетки 0,45-0,60 мм. Сетка имеет квадратные или шестиугольные ячейки размерами 12,5 и 25 мм. Армированное стекло отличается повышенной прочностью и огнестойкостью. Светопропускание бесцветного армированного стекла 65-75%.
Увиолевое стекло пропускает 25-75% ультрафиолетовых лучей и применяется для остекления оранжерей и заполнения оконных проемов в детских и лечебных учреждениях. Такое стекло получают из шихты с минимальными примесями оксидов железа, титана, хрома.
Закаленное стекло представляет собой листовое или другой формы стекло с повышенной механической прочностью и термической устойчивостью. Используют для остекления дверей, перегородок, ограждения лифтовых шахт, балконов, лестниц, а так же для изготовления электронагреваемых не замерзающих стекол. Толщина более 5 мм, оно выдерживает удар свободно падающего стального шара массой 800 гр. с высоты 120 см. Безопасно. Осколки этого стекла имеют тупые ребра и края.
Многослойное стекло (триплекс), армированное или неармированное, состоит из нескольких листов стекла, прочно склеенных между собой прозрачной эластичной прокладкой, чаще всего из поливинилбутирольной пленки. При ударе оно не дает осколков и является безопасным.
Теплопоглощающее стекло предназначено для защиты интерьеров зданий от воздействия прямого солнечного излучения и уменьшения солнечной радиации в помещениях. Стекла голубого, серого и бронзового оттенков получают введением в состав стекломассы оксидов кобальта, железа или селена. Задерживая большое количество инфракрасных лучей, стекло нагревается и подвергается большим температурным деформациям. Поэтому при остекленении следует предусматривать достаточный зазор между рамой и стеклом.
Применяется с целью уменьшения нагрева солнцем помещений жилых, культурных, общественных и промышленных зданий.
Теплоотражающее стекло применяется для нагрева помещений от солнечных и тепловых лучей. Изготавливается нанесением на поверхность тонких (0,3-1 мкм) пленок металлов и их оксидов. Светопропускание стекол 30-70%, а пропускание тепла 40-60%. В связи с тем, что в таких стеклах большая часть инфракрасных лучей не поглощается, а отражается, само стекло почти не нагревается. Вследствие уменьшения излучения из помещения они повышают теплозащиту зимой. Стекла имеют различную окраску: золотистую, голубую, оранжевую и др.
Электропроводящее стекло применяется в строительстве для стеклопакетов, используемых как источники тепла. Электропроводящие прозрачные покрытия наносятся на стекло с целью обогрева стекла и предотвращения запотевания. Покрытие получают напылением на поверхность стекла тонкой (0,5 мкм) пленки солей металлического серебра. Стекло устойчивое к радиоактивным излучениям применяется при строительстве АЭС и предприятий по изготовлению изотопов. Для поглощения радиоактивных лучей используются стекла с высоким содержанием свинца и бора. Например, тяжелое свинцовое стекло плотностью 6200 кг/м3, содержащее 80% оксида свинца, по своей защитной способности в этом отношении эквивалентно стали.
3.2 Светопрозрачные изделия и конструкции
Кроме листового светопроницаемого стекла в строительстве применяются светопрозрачные изделия и конструкции: стеклоблоки, стеклопрофилит, стеклопакеты, стеклобетонные конструкции и стеклянные трубы.
Блоки стеклянные пустотелые, блоки обладают хорошей стекло рассеивающей способностью, а выполненные из них световые проемы и перегородки имеют хорошие тепло- и звукоизоляционные свойства. Блоки состоят из двух отпрессованных половинок, которые свариваются между собой. Наиболее распространенные виды стеклянных блоков имеют на внутренней стороне рифления, придающие блокам светорассеивающую способность (рисунок 1). Светопропускание — не менее 65%, светорассеивание — около 25%, коэффициент теплопроводности — 0,4 Вт/(м · °С).
Панели из профильного стекла (стеклопрофилит). Отечественной промышленностью освоен выпуск профилированных стеклянных изделий больших размеров. Подобные изделия имеют коробчатый, ковровый, ребристый и другие профили и используются для монтажа светопропускающих перегородок и перекрытий.
Стеклобетонные конструкции представляют собой бетонную обойму, внутри которой на растворе уложены стеклянные блоки. Эти конструкции несгораемы и препятствуют распространению огня. В промышленном строительстве стеклянные блоки применяют для устройства окон. В жилых и общественных зданиях пустотелые стеклянные блоки используют для заполнения наружных световых проемов, остекления лестничных клеток, а также для устройства светопрозрачных перекрытий и перегородок.
Стеклопакеты в индустриальном строительстве находят все большее применение. Они состоят из двух или трех листов стекла, между которыми образуется геометрически замкнутая воздушная полость. Стекло пакетное остекление обладает хорошей тепло- и звукозащитной способностью, оно не запотевает и не нуждается в протирке внутренних поверхностей. В зависимости от назначения стеклопакеты могут быть выполнены с применением оконного, закаленного, отражающего или других видов стекла.
Стеклянные трубы в ряде случаев (например, в условиях химической агрессии) могут оказаться эффективнее металлических. Они обладают высокой химической стойкостью, гладкой поверхностью, прозрачны и гигиеничны. Благодаря этим высоким качествам их широко используют в пищевой и химической промышленности. Основными недостатками стеклянных труб следует считать хрупкость, т.е. слабое сопротивление изгибу и ударам, а также невысокую термостойкость (около 40°С). В последнее время на основе боросиликатных стекол получены термостойкие трубы с малым тепловым расширением.
3.3 Облицовочные изделия из стекла
Декоративная стеклокрошка при применении вместо керамических стеклянных плиток для отделки дает существенный экономический эффект. Крошка представляет собой гранулы размерами от 0,4 до 10 мм из глушенного окрашенного или неокрашенного стекла. Стеклянная крошка применяется для декоративной отделки фасадных поверхностей стен и оформления интерьеров.
Пенодекор — плиты размером 450x450-мм и толщиной до 40 мм, лицевая поверхность которых покрыта сплошной стекловидной пленкой широкой гаммы цветов. В качестве сырья используется стеклобой стекла.
Сигран — стеклокристаллический материал, имитирующий гранит, мрамор. Получают методом прессования стекла из шлаковых расплавов. К этой разновидности относятся и плиты из авантюринового стекла (природный авантюрин представляет собой мелкозернистый кварцит). Массовое применение находят хромовые авантюриновые стекла, получаемые на основе минерального сырья и металлургических шлаков с добавками оксидов хрома. Авантюриновые стекла используются и для покрытия керамических плиток в качестве глазури. Применяются для внутренней и наружной отделки интерьеров и витражей, работающих в отраженном свете.
Стеклокристаллит — выпускается в виде плит, получаемых сплавлением гранул из бесцветного или окрашенного стекла. Размеры плит 300x300 и 300x150 мм. Применяется для облицовки стен зданий и устройства полов.
Стеклокремнезит — облицовочно-декоративный плиточный материал, получаемый спеканием массы из стеклянных гранул и наполнителей (песка, глины, шамота). Стеклокерамит — облицовочный материал, получаемый спеканием массы на основе отходов стекла, глины и кварцевого песка.
3.4 Изделия из пеностекла
Пеностекло представляет собой искусственный материал, подобный пемзе. Процесс производства пеностекла заключается во вспучивании размолотого стекла, смешанного с небольшим количеством (1-3%) древесного угля, известняка или других материалов, выделяющих газ при температуре размягчения стекла. Пеностекло хорошо обрабатывается, склеивается, гвоздится, воздухопроницаемо и негигроскопично. Изготавливается в виде блоков и гранул. Плотность пеностекла 100-700 кг/м, коэффициент теплопроводности 0,04-0,15 Вт/(м* °С), предел прочности при сжатии 0,1-15 МПа. Широко применяется в конструкциях как теплоизолирующий и звукопоглощающий материал.
Блоки из пеностекла применяются для тепловой изоляции строительных конструкций, промышленного оборудования, холодильников (в интервале рабочих температур от -260 до +430°С и относительной влажности до 97%). Максимальные размеры изделий 475x400x120 мм.
Гранулированное пеностекло применяется в качестве особо легкого заполнителя в производстве легкого и конструкционного или теплоизоляционного бетона; изготавливается путем вспенивания во вращающихся печах сырцовых гранул, полученных из порошка стекла, измельченного в шаровых мельницах. Насыпная плотность гранулированного пеностекла — 100-150 кг/м3.
3.5 Материалы на основе стекловолокна
Стеклянное волокно применяется в производстве композиционных строительных материалов в виде непрерывных нитей, стеклотканей, холста, рубленого стекловолокна и стекловаты. Диаметр стекловолокон 5-15 мкм. Прочность их при растяжении достигает 4000 МПа. Непрерывное стекловолокно получают из расплава методами механического вытягивания из фильер плавильных ванн и намотки. Коротковолокнистые материалы получают центробежным или дутьевым способами (рисунок 3).
Непрерывное стекловолокно используется для изготовления стеклонитей и стеклотканей. Стеклонити применяются для изготовления стеклопластиковых труб и резервуаров методом намотки на соответствующие оправки.
Стекловолокнистый холст представляет собой тонкий листовой материал из переплетенных непрерывных волокон, скрепленных синтетическим связующим. Применяется как полуфабрикат для изготовления гидроизоляционных и кровельных материалов, в частности, стеклорубероида.
Стеклоткани применяются для изготовления стеклотекстолитов на полимерном связующем, а также в строительстве при теплоизоляции трубопроводов. Рубленое стекловолокно получают резанием непрерывного стекловолокна и применяют для повышения прочности различных изделий на основе минеральных связующих и в производстве стеклопластиковых светопрозрачных плоских и волнистых листов для кровли и обшивок трехслойных панелей.
4. СИТАЛЛЫ, ШЛАКОСИТАЛЛЫ И СИТАЛЛОПЛАСТЫ
4.1 Ситаллы
Ситаллы представляют собой стеклокристаллические материалы, полученные из стеклянных расплавов путем их полной или частичной кристаллизации. По структуре ситаллы представляют собой композиционные материалы со стекловидной аморфной непрерывной фазой — матрицей, наполненной мелкими кристаллами стекла. Средний размер кристаллов в ситаллах 1-2 мкм, а толщина прослоек стеклофазы не превышает десятых долей микрона. Объем кристаллической фазы в ситаллах достигает 90-95%. Сырьем для производства ситаллов являются те же природные материалы, что и для стекла, но к чистоте сырья предъявляются очень высокие требования. Кроме того, в расплав вводят добавки, катализирующие кристаллизацию при последующей термообработке. В качестве катализаторов кристаллизации применяют соединения фторидов или фосфатов щелочных и щелочноземельных металлов. Технология производства изделий из ситаллов не отличается от технологии производства изделий из стекла, требуется лишь дополнительная термическая обработка стекла в кристаллизаторе. Обладая поликристаллическим строением, ситаллы, сохраняя положительные свойства стекла, лишены его недостатков: хрупкости, малой прочности при изгибе, низкой теплостойкости. По своим физико-техническим свойствам ситаллы выдерживают сравнение с металлами. Твердость ситаллов приближается к твердости закаленной стали. Термостойкость изделий из ситалла достигает 1100°С. Ситаллы обладают высокой стойкостью к воздействию сильных кислот (кроме плавиковой) и щелочей. Отдельные виды ситаллов отличаются жаростойкостью и способностью паяться со сталью. Прочность ситаллов при сжатии — до 500 МПа.
В строительстве ситаллы используются для устройства полов промышленных цехов, в которых могут быть проливы кислот, щелочей, расплавов металлов, а также движение тяжелых машин. Высокую технико-экономическую эффективность дает применение ситаллов для изготовления химической аппаратуры и труб для транспортировки высокоагрессивных сред и теплообменников. По внешнему виду ситаллы могут быть темного, серого, коричневого, кремового, светлого цветов, глухие и прозрачные.
4.2 Шлакоситаллы
Шлакоситалл — это стеклокристаллический материал, получаемый путем управляемой гетерогенной кристаллизации стекла, сваренного на основе металлургического шлака, кварцевого песка и некоторых добавок и характеризуемый мелкозернистой кристаллической структурой. Листовой шлакоситалл производят белого и серого цветов с гладкой или рифленой поверхностью. При необходимости поверхность шлакоситалла шлифуют, полируют и фрезеруют. Шлакоситалловые листы можно окрашивать в различные цвета путем нанесения на их поверхность керамических глазурей. Шлакоситалл обладает высокой химической стойкостью, износостойкостью, водонепроницаемостью, отличается повышенной механической прочностью и твердостью по сравнению со стеклом и каменным литьем. Физико-механические свойства шлакоситалла характеризуются следующими данными: плотность — 600..-2700 кг/м3, прочность при изгибе — 65...110 МПа, прочность на сжатии — 250...550 МПа, удельная ударная вязкость — 0,3...0,35 МПа/см, потеря в массе при истирании — 0,03… 006 г/см2, термостойкость образца размером 30X30X4 мм — 100...150°С, кислотостойкость в 96%-ной h3S04 — 99,1...99,9% и шелочестойкость в 35%-ной NaOH — 80...85%.
Производство листового шлакоситалла отличается высокой степенью механизации и автоматизации. Шихту для белого шлакоситалла приготовляют на обычном оборудовании стекольного производства. Стекло для шлакоситалла варится в ванной печи непрерывного действия. Изготовление листового шлакоситалла осуществляется на непрерывно действующей поточно-механизированной линии. Сваренная масса подается на формование в прокатную машину, рассчитанную на получение непрерывной ленты шириной 1,6 м, толщиной 7...10 мм. Отформованная лента стекла подвергается теплообработке в печи-кристаллизаторе непрерывного действия с газовым обогревом, в результате чего стекло превращается в мелкозернистый стеклокристаллический материал. На открытой части рольганга печи-кристаллизатора производится поперечный и продольный автоматический раскрой ленты на изделия заданных размеров.
Шлакокристаллы могут быть получены любого цвета, а по долговечности они конкурируют с базальтами и гранитами. Сочетание физических и механических свойств шлакоситаллов обусловливает возможность их широкого использования в строительстве: для полов промышленных и гражданских зданий, декоративной и защитной облицовки наружных и внутренних стен, перегородок, цоколей, футеровки строительных конструкций, подверженных химической агрессии или абразивному износу, кровельных покрытий отапливаемых и неотапливаемых промышленных зданий, облицовки слоистых панелей навесных стен зданий повышенной этажности.
Экономический эффект использования изделий из шлакоситаллов обусловливает дальнейшее расширение номенклатуры изделий. Все более широкое развитие получает производство пеношлакоситаллов, обладающих малой плотностью 300… 600 кг/м3, прочностью при сжатии до 14 МПа, теплопроводностью 0,08...0,16 Вт/(м* °С) и рабочей температурой до 750°С
4.3 Ситаллопласты
Ситаллопласты представляют собой материалы, получаемые на базе пластических масс (фторопластов) и ситаллов. Ситаллопласты обладают высокой износоустойчивостью и химической стойкостью. Они находят применение в качестве антифрикционных и конструктивных материалов, а также могут использоваться в промышленности, где ни ситаллы, ни пластмассы, отдельно взятые, не удовлетворяют требованиям высокой пластичности, износоустойчивости и химической стойкости. Для изготовления ситаллопластов ситаллы измельчают до получения порошка заданного гранулометрического состава. Дальнейший процесс отличается от технологии изготовления пластмасс, разница лишь та, что с добавкой ситалла усадка пластмассы будет меньше.
5. ИЗДЕЛИЯ ИЗ КАМЕННЫХ РАСПЛАВОВ
Изделия из каменных расплавов подразделяются на плотные, ячеистые и волокнистые.
Литые каменные изделия изготовляют из расплавов горных пород или шлаков литьем в формы с последующей термической обработкой. По однородности и техническим свойствам литые изделия превосходят многие самые прочные природные каменные материалы. В зависимости от используемого сырья каменное литье бывает темного и светлого цвета. Для получения изделий темного цвета применяются магматические горные породы — базальты и диабазы. Для получения светлого каменного литья используют осадочные горные породы — доломит, известняк, мрамор и кварцевый песок.
Технология получения литых изделий включает операции дробления, помола, перемешивания компонентов, плавления, отливки изделий, кристаллизацию и отжиг. Плавление диабаза и базальта чаще всего производят в ванных печах или вагранках при температуре 1400-1500°С, а при изготовлении светлого каменного литья — в электропечах.
Плотные литые каменные изделия имеют: плотность 2900-3000 кг/м3, высокую морозостойкость, прочность при сжатии 200-240 МПа и при растяжении 20-30 МПа; истираемость до 5 раз меньше, чем у гранита, базальта и диабаза; высокую химическую стойкость, в том числе к воздействию концентрированных серной и соляной кислот.
В строительстве литые каменные изделия используют в особо тяжелых условиях эксплуатации: брусчатка для дорог, трубы для агрессивных сред, облицовочные плитки для предприятий химической промышленности.
Термозит (шлаковая пемза) — ячеистый материал, получаемый в результате вспучивания расплава шлака при быстром его охлаждении струей воды. Насыпная плотность щебня из термозита — 300-1100 кг/м3 позволяет его использовать в качестве эффективного легкого заполнителя для бетонов. Стоимость такого заполнителя в 2-3 раза ниже стоимости керамзита.
Минеральная вата и изделия из нее представляют собой волокнистые материалы, полученные из расплава горных пород или металлургических шлаков. Вату из расплава горных пород называют горной, а из расплава шлаков — шлаковой. Высокая пористость ваты, содержащей пустоты до 95% по объему, обеспечивает ей отличные тепло- и звукоизоляционные свойства. Длина волокон в вате от 2 до 60 мм. Производство минеральной ваты и изделий из нее не отличается от описанной выше технологии производства стекловаты и изделий из нее. Эти изделия производятся марок от 50 до 250 и имеют теплопроводность от 0,032 до 0,077 Вт/(м°С).
Минераловатные изделия применяются для теплоизоляции строительных конструкций при температуре изолируемых поверхностей от -180до+600°С.
Минераловатные утеплители в нашей стране занимают первое место среди всех других теплоизоляционных материалов.
6. ИСПОЛЬЗОВАНИЕ ОТХОДОВ В ПРОИЗВОДСТВЕ ПЛАВЛЕНЫХ ИЗДЕЛИЙ
Отходы стекла представляют в различных странах 28-38% всех бытовых отходов. Кроме того значительные отходы стекла образуются на самих стекольных заводах и в строительстве. В связи с этим их утилизация с целью защиты окружающей среды представляет важную экологическую задачу, которая в промышленности строительных материалов находит определенное решение. В настоящее время некоторые фирмы для производства стеклотары используют 90% стеклянного боя. В США и Канаде построено более 30 экспериментальных дорог с использованием более 50% стеклобоя в качестве заполнителя. Эта добавка улучшает торможение и увеличивает долговечность дорог. Значительное применение отходы стекла нашли в производстве отделочных стеклянных материалов и изделий, а также блочного и гранулированного пеностекла. Отходы шлифования стекла применяются в качестве кремнеземистого компонента для замены молотого песка при производстве автоклавных силикатных изделий. Отходы камнедобычи и камнепиления представляют собой наиболее значительные по объему по сравнению с другими отходами промышленности. Использование их в производстве изделий из каменных расплавов является важным направлением рационального их применения. На металлургических заводах стран СНГ ежегодно образуется более 90 млн.т доменных шлаков. Значительная часть их используется в производстве шлакопортландцемента. Вместе с тем имеются большие резервы неиспользуемых шлаков, которые находят и имеют большие перспективы для использования их в производстве изделий из каменного литья: шлаковой пемзы, шлакового щебня, шлаковаты, шлакосиликатов.
ЗАКЛЮЧЕНИЕ
Способность к образованию стекол характерна для многих минеральных и органических веществ. Наиболее ярко эта способность выражена у диоксида кремния (SiO2 ) и соединений на его основе — силикатов, к которым относится большинство природных минералов. В стеклообразном состоянии могут находиться и многие другие материалы, например, полимеры (всем известен термин «плексиглас» — органическое стекло). В последние годы даже металлы удалось получить в стеклообразном состоянии.
Стекла по сравнению с кристаллическими веществами обладают повышенной внутренней энергией (скрытой энергией кристаллизации), поэтому вещество в стеклообразном состоянии метастабилъно (термодинамически не устойчиво). Из-за этого обычное стекло при некоторых условиях, а иногда и самопроизвольно начинает кристаллизоваться (этот процесс в стеклоделии называют «зарухание» или расстекловывание). Расстекловывание является браком стеклоизделий.
Этот же процесс, но проводимый направленно с целью частичной или полной кристаллизации расплава, используется для получения стеклокристаллических материалов — ситаллов и каменного литья.
В строительстве, за малым исключением, применяют силикатное стекло, получаемое в промышленных масштабах из простейшего минерального сырья: кварцевого песка, мела, соды и других компонентов (далее вместо термина «силикатное стекло» будет использоваться термин «стекло»).
Прозрачность и возможность окраски стекла в любые цвета, высокая химическая стойкость, достаточно высокая прочность и твердость, электроизоляционные и многие другие ценные свойства делают стекло незаменимым строительным материалом. Его используют не только для сооружения светопрозрачных конструкций (окон, витражей, фонарей), но и как конструкционный и отделочный материал. В современном строительстве высотные здания часто имеют фасады, полностью выполненные из стекла с улучшенными декоративными, светоотражающими и теплозащитными свойствами. Кроме того, из стекла получают различные стеклоизделия (блоки, трубы, стеклопрофилит), эффективные теплоизоляционные материалы (пеностекло и стеклянную вату), а также стекловолокно и стеклоткани.
Стекла встречаются в природе в виде бесформенных непрозрачных кусков — например, вулканическое стекло обсидиан. Первые сведения о получении стекла человеком относятся к третьему-четвертому тысячелетию до н. э. Те стекла были непрозрачными (глухими) наподобие керамической глазури. Они варились в небольших тиглях и использовались как украшения.
Коренное изменение в производстве стекла произошло на рубеже нашей эры, когда были решены две важнейшие проблемы стеклоделия — варка прозрачного бесцветного стекла и формование изделий с помощью стеклодувной трубки. Первые листовые стекла получали, разрезая и распрямляя стеклянные цилиндры, формуемые выдуванием (их называли «халявы»). В XVII в. началось производство листового зеркального стекла отливкой на медные плиты. Массовое производство листового стекла большого размера стало возможным в конце XIX — начале XX в., когда появились большие ванные печи и новые методы выработки стекла.
Необходимо отметить, что на процесс стекловарения расходуется очень много энергии, и при этом в атмосферу поступает много вредных выбросов. Поэтому и экологически, и экономически целесообразно вырабатывать стеклоизделия из вторичного сырья (стеклобоя, стеклянной посуды и т. п.). Это оценили в большинстве стран Западной Европы, где до 80 % стекла получают именно таким образом.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1. Микульский В.Г. Строительные материалы, учебник. М.: АСВ 2000 г. – 536 с.
2. Домокеев А.Г. Строительные материалы, учебник для вузов. М.: Высшая школа 1989г. – 495 с.
3. Китайгородский И.И. Технология стекла. М.: Изд. лит. по строительству 1967г. – 564 с.
4. glass.ru
5. stroyschool.ru
www.ronl.ru