Некоторые промышленные химические процессы проводятся в газовой форме при наличии твердых катализаторов. Однако на практике чаще всего осуществляются жидкофазные каталитические процессы. В последние десятилетия не менее 20% всей промышленной химической продукции производят каталитическим способом. К довольно эффективным катализаторам относятся ионообменные смолы, металлоорганические соединения, мембранные катализаторы. Каталитическим свойством обладают многие химические элементы периодической системы Менделеева, среди которых важнейшую роль играют металлы платиновой группы и редкоземельные металлы. Некоторые катализаторы позволяют уменьшить в химических превращениях не только температуру, но и давление. Например, разработанный в нашей стране катализатор дал возможность синтезировать метанол при давлении 50 атм. и температуре 260–290° С, в то время как раньше такой синтез проводился при давлении до 1000 атм. и температуре 300–400° С. Ряд катализаторов существенно ускоряет химические реакции. С участием катализатора скорость некоторых реакций увеличивается в 10 млрд. раз. Селективные катализаторы оказывают такое же сильное влияние, но лишь на одну из многих конкурирующих реакций. Стереоселективные катализаторы позволяют не просто контролировать состав конечного продукта, но и способствуют образованию молекул определенной формы и зачастую сильно влияют на физические свойства продукта, такие как прочность, твердость, пластичность, а также на активность биологических объектов. Каталитические процессы можно классифицировать с учетом их физической и химической природы. Различают несколько основных видов катализа: гетерогенный и гомогенный, электрокатализ, фотокатализ и ферментативный катализ. В гетерогенном катализе химическая реакция происходит в поверхностных слоях на границе раздела твердого тела и газообразной либо жидкой смеси реагентов. При гомогенном катализе исходные реагенты находятся в одной фазе (газовой либо жидкой). В электрокатализе реакция протекает на поверхности электрода в контакте с раствором и под действием электрического тока. В нем в отличие от гетерогенного катализа возможно управление химическим процессом при изменении электрического тока. При фотокатализе химическая реакция стимулируется энергией поглощенного излучения, и она может происходить на поверхности твердого тела (в том числе и на поверхности электрода)либо в жидком растворе. Процесс с участием ферментов называется ферментативным катализом. Ему присущи свойства как гетерогенного, так и гомогенного катализа. Ферменты – это большие белковые структуры, способные удерживать молекулы реагента в ждущем состоянии до начала реакции. Фермент, кроме того, собирает подходящее химическое окружение, катализирующее нужную реакцию по прибытии партнера. Гетерогенный катализ Одна из важных задач гетерогенного катализа – увеличение эффективной поверхности катализатора. Удельная поверхность катализаторов, применяемых в промышленности, составляют около 150 м2/г. Некоторые катализаторы на основе активированного углялибо молекулярных сит имеют удельную поверхность до 1000 м2/г. Кроме большой активной поверхности, катализаторы должны иметь небольшую массу, высокую прочность и обтекаемость. Совокупностью таких свойств обладают перспективные катализаторы – искусственные цеолиты (молекулярные сита) и пористая керамика. Гетерогенный катализ известен давно – еще со времен шведского химика И.Я. Берцелиуса (1799–1848), но только недавно – примерно 20 лет назад – уникальные методы и приборы открыли путь для экспериментального исследования химических явлений на поверхности. В результате гетерогенного катализа получается из элементных азота и водорода аммиак Nh4 – важнейший компонент удобрений. При повышенной температуре N2 и Н2 могут реагировать с образованием Nh4 на совершенных кристаллах железного катализатора. Грань кристалла железа (111) примерно в 430 раз активнее, чем грань (110) и в 13 раз активнее, чем грань (100). Синтез аммиака – один из первых каталитических процессов, внедренный в крупное промышленное производство. Обычно катализатором для такого синтеза служат мелкие частицы железа – тонко-дисперсное железо, осажденное на оксиде алюминия с добавкой оксида калия. Синтез происходит при 500° С. В последнее время проводится поиск катализатора, который позволил бы снизить температуру синтеза. К настоящему времени освоены многие новые каталитические процессы для промышленного производства ценных продуктов (табл. 6.1). Таблица 6.1. Современные экспериментальные средства позволяют проследить за поведением атомов на поверхности твердого катализатора. Поверхностные атомы обладают способностью образовывать химические связи и влиять на химические свойства молекул. Поэтому поведение реагентов на поверхности твердого катализатора может резко отличаться от поведения тех же молекул в растворе или газовой фазе. Одно из перспективных направлений повышения эффективности катализа заключается в разработке молекулярных cит – природных или синтетических материалов, содержащих алюминий, кремний и кислород (алюмосиликаты) и включающих мельчайшие пустоты и каналы, образующие пористую структуру. Попавшие внутрь пустот и каналов молекулы вступают в химическую реакцию, которая при обычных условиях возможна только при высокой температуре. Форма и размер внутренних полостей не только влияют на селекцию реагентов, но и ограничивают размер частиц конечного продукта, т.е. молекулярные сита – селективные катализаторы. Они применяются, например, для производства высокооктанового бензина в результате крекинга и для превращения полученного из древесины метанола в бензин. Давно известно, что чрезвычайно малых размеров частицы, состоящие всего лишь из нескольких тысяч атомов, могут активно катализировать превращения углеводородов (производство топлив) и реакцию синтеза аммиака из азота (производство удобрений). Такие частицы обладают каталитическими свойствами, если они получены из металлов: кобальт, никель, родий, палладий и платина. Все эти металлы являются очень дорогостоящими, поэтому разработка более дешевых и широко доступных катализаторов представляет практический интерес. Производству нужны такие катализаторы, которые позволили бы превращать имеющееся в изобилии и дешевое сырье в более ценные и полезные соединения, а именно превращать азот в нитраты (производство минеральных удобрений), уголь в углеводороды (производство топлива), соединения с одним атомом углерода – моноксид в диоксид углерода, метан и метанол в соединения с двумя атомами углерода – этилен, этан, уксусную кислоту и этиленгликоль (промышленное сырье). Для сохранения окружающей среды нужны не только каталитические конверторы для очистки выхлопных газов автомобилей, но и эффективные катализаторы для удаления оксидов серы из заводских дымов, очистки воды и т. п.
Гомогенный катализ Часто гомогенные катализаторы представляют собой сложные металлосодержащие молекулярные соединения, структура которых позволяет осуществить тонкую настройку реакционной способности реагентов и достичь высокой селективности. Один из крупномасштабных промышленных процессов с применением гомогенного катализа – это частичное окисление параксилола и превращение его в терефталевую кислоту (см. рис. 6.2). В таком процессе катализатором служат соли кобальта и марганца. Большая часть конечного продукта подвергается самополимеризации с этиленгликолем и используется для производства полиэфирных тканей, корда для шин, контейнеров для соды и многих других полезных изделий. В промышленном процессе производства уксусной кислоты из метанола и моноксида углерода роль катализатора выполняет дикарбонилдииодид родия, позволяющий получить около 99% целевого продукта. В качестве промышленного сырья было бы весьма заманчиво использовать некоторые широко распространенные вещества, включая азот, моноксид и диоксид углерода и метан. Однако это относительно инертные вещества, и для их участия в реакции нужны эффективные катализаторы. Для такой цели весьма перспективно применение растворимых металло-органических соединений. Например, при помощи растворимых соединений молекулярного азота с оловом и молибденом удается осуществить синтез аммиака. Химические связи углерод–водород в соединениях типа метана и этана, нереакционных в обычных условиях, разрываются родий-, рений-, иридийорганическими комплексами, и тем самым повышается их реакционная способность. Одно из направлений катализа связано с синтезом молекул, ядро которых состоит из нескольких химически связанных атомов металла. Из таких молекул формируются кластеры, размеры которых больше, чем молекул гомогенных катализаторов, но меньше, чем частиц металла, служащих гетерогенным катализатором. Во многих металлах – активных гетерогенных катализаторах,– а именно в таких, как родий, платина, осмий, рутений и иридий обнаруживается способность к образованию кластеров. Существует ряд кластеров, получивших название кубаны. Ядро молекул кубанов состоит из четырех атомов металла и четырех атомов серы, расположенных в вершинах куба. Структура кубаны получена для железа, никеля, вольфрама и других металлов. К кубанам относится, например, производное железа – ферродоксин, являющийся функциональной частью белков, катализирующих реакции с переносом электронов в биологических системах. Многие биологические молекулы имеют одну из двух возможных геометрических структур, представляющих зеркальное отражение друг друга. Обычно лишь одна из таких хиральных структур биологически активна. Если сложная молекула содержит, например, семь хиральных углеродных атомов, а в процессе синтеза образуются все возможные хиральные структуры, то получится смесь 27 = 128 продуктов, из которых 127 могут быть неактивными или, еще хуже, давать нежелательные эффекты. Поэтому важно уметь синтезировать на каждом хиральном центре нужную структуру. Катализатор, обеспечивающий такой синтез, называется стереоселективным. В качестве примера можно привести синтез леводофы – соединения в виде стереоизомера аминокислоты (см. рис. 6.3). Молекула леводофы получается при стереоселективном присоединении водорода к двойной углерод-углеродной связи. Используемый при этом катализатор – растворимое соединение фосфина и родия – приводит к образованию конечного продукта с выходом 96%. Леводофа – эффективное средство лечения болезни Паркинсона. Электрокатализ и фотокатализ Благодаря химической модификации каталитически активных электродных поверхностей создается возможность управления химическими процессами, происходящими на границе раздела жидкий раствор – электроды. Химическая модификация электродов стимулирует вполне определенные реакции. Она осуществляется в результате технологической операции осаждения тонкопленочных слоев, широко применяемой для формирования рабочих элементов интегральных схем. Например, нанесенный тонкопленочный слой рутения в качестве каталитического покрытия существенно сокращает потребление энергии в производстве хлора и щелочи.
Электрохимическая ячейка может содержать один или два полупроводниковых электрода, поглощающих электромагнитное излучение. В результате возникает фотокатализ, стимулирующий окислительно-восстановительные процессы на границе раздела электрод– раствор. Подобный эффект наблюдается на границе раствор–частица. Фотокаталитические процессы представляют не только научный, но и практический интерес. Например, на поверхности диоксида титана происходит деструкция (разрушение структуры) токсичных веществ в стоках, в частности, в стоках цианидов. Известна идея фотокаталитического использования солнечной энергии для производства кислорода и водорода из воды. А водород как экологически чистое топливо (при его сгорании образуется вода) мог бы заменить истощающееся и загрязняющее атмосферу нефтяное топливо. Искусственные ферменты Ферменты – естественные биологические катализаторы, представляющие собой сложнейшие молекулярные системы. Современные экспериментальные средства позволяют не только определить состав подобного рода систем, но и управлять их молекулярной топологией, что очень важно при создании искусственных ферментов. Один из способов конструирования искусственных ферментов заключается в формировании в больших молекулах профилированных полостей с последующим их заполнением каталитическими связывающими центрами.
Искусственные ферменты иногда называют биоимитаторами. К настоящему времени получены биоимитаторы ферментов, биологически синтезирующих аминокислоты. Синтезированы ферменты, структурно родственные природному соединению – витамину В и обладающие высокой селективностью и даже стереоселективностью. Получены биоимитаторы нескольких ферментов, участвующих в переваривании белков, и соединения, катализирующие расщепление РНК, в которые введены каталитические группы, присутствующие в ферменте рибонуклеазе. Синтезирован имитатор гемоглобина – переносчик кислорода. Структура активной части гемоглобина изображена на рис. 6.4. Интенсивные работы по созданию искусственных ферментов продолжаются. В результате появляются новые биоимитаторы ферментов.
referat7.ru
Содержание
Роль катализа в промышленности и экологии.
Определение катализа.
Селективность.
Общие представления о понятии "механизм химической реакции".
Классификация каталитических систем по фазам.
Классификация катализаторов по типам реакций.
Адсорбция.
Основные требования к промышленным катализаторам.
Роль катализа в промышленности и экологии
Основным потребителем катализаторов являются нефтепереработка, нефтехимия, химия и экология.
Маркет катализаторов в год составляет около 700 тысяч тонн. Примерно половина – катализаторы каталитического крекинга. Потребности химической промышленности – около одной трети, экологии – десятая часть.
Если средняя стоимость катализаторов – 4$ за килограмм, а средняя доля в себестоимости – 0,3%, то с помощью катализаторов производят продуктов на сумму не менее 1000 миллиардов $.
Катализ позволяет экономить сырье и энергию, а также не загрязнять окружающую среду.
Определение катализа
Катализ – это ускорение одного или нескольких возможных направлений превращения химических веществ.
Термодинамика дает ответ на вопрос, как далеко может пройти конкретная химическая реакция. Этот ответ не зависит от пути реакции. На вопрос, с какой скоростью будет достигаться это конечное состояние, отвечает кинетика.
Скорость зависит от пути реакции!
Например, смесь 1,5 % бутана с воздухом при бесконечном по времени их контакте при температуре 4500 С превратится в смесь диоксида углерода, воды и остатка воздуха. В присутствии катализатора, состоящего из смеси V, P и O, в течение 2-3 секунд примерно половина бутан окислится в малеиновый ангидрид.
Катализаторы ускоряют один или несколько термодинамически возможных превращений участников реакции, создавая, как правило, новый, энергетически более выгодный путь.
СН3---СН2---СН2--- СН3 + 3,5 О2 ==
HC C ==O
O
HC C ==O
Новый путь появляется за счет того, что реагенты образуют химические (промежуточные) соединения с катализатором.
Селективность
Если превращения этих соединений протекает через более низкие энергетические барьеры, то каталитический путь может оказаться быстрее, чем некаталитический.
Путь, по которому превращаются или образуются интересующие нас вещества, часто называю механизмом.
Что значит «более низкие энергетические барьеры»?
Число соударений молекул газа между собой при атмосферном давлении в 1 см3 в 1 сек из кинетической теории газов равно примерно 1030.
Число ударов молекул газа при атмосферном давлении об 1 см2 поверхности в 1 сек равно примерно 1023. Если внешняя поверхность гранул катализатора в 1 см3 равна 100 см2, то для того, чтобы каталитический путь был более быстрым, необходимо, чтобы Екат было бы примерно на 60 кДж/моль меньше, чем Енк.
Реакция |
Е нк, кДж/моль |
Е кат, кДж/моль |
Кат-р |
2HJ ® h3 + J2 2N2O ® 2N2 + O2 |
184 245 |
105 59 121 134 |
Au Pt Au Pt |
Общие представления о понятии «механизм химической реакции»
Лимитирующая стадия.
Схемы механизма – химическая, физическая и кинетическая.
Микрокинетическая модель паровой конверсии метана.
Классификация каталитических систем по фазам.
Катализатор |
Реактанты |
Гомогенная |
|
газообразный жидкий |
газообразные жидкие |
Гетерогенная | |
жидкий твердый твердый твердый твердый |
газообразные жидкие газообразные жидкие + газообразные твердые |
Классификация катализаторов по типам реакций.
Реакции |
Катализатор |
|
Металлы Полупроводниковые оксиды и сульфиды Изоляторы Кислоты |
Гидрирование Дегидрирование Гидрогенолиз Алкилирование Окисление Окисление Дегидрирование Гидродесульфирование Дегидрирование Алкилирование Гидратация Крекинг |
Ni, Cu, Pd, Pt, Fe Ni, Cu, Pd, Pt Pd, Pt Ni, Cu Cu, Ag Bi-Mo-O, Fe-Mo-O, Fe-Sn-O, V-P-O Cr-O, Fe-Cr-O Ni-Mo-S, Co-Mo-S Al-O, Si-O, Mg-O h3SO4 h4PO4 Цеолиты |
Адсорбция
Роль адсорбции в катализе. Физическая и химическая адсорбции. Их характерные различия и общие черты
· зависимость от природы адсорбента,
· от температуры,
· покрытия поверхности,
· тепловой эффект,
· влияние на электропроводность.
Энергетическая диаграмма при химической адсорбции.
Теплота и термодинамика адсорбции.
Изотермы адсорбции.
Модель идеальной поверхности Ленгмюра.
Вывод изотермы Ленгмюра.
Физический смысл констант.
Вид изотермы при устремлении Р к нулю или бесконечности.
Связь между энергиями активации стадий адсорбции и десорбции и теплотой адсорбции.
Модели биографической и индуцированной неоднороднных поверхностей.
Вывод изотермы Темкина.
Физический смысл констант.
Вид изотермы при устремлении Р к нулю или бесконечности. Область средних покрытий.
Основные требования к промышленным катализаторам
Химические требования
· термическая стабильность,
· стойкость к отравлению «ядами»,
· легкая регенерируемость,
· высокая избирательность,
· активность при доступных температурах и давлениях.
Механические требования
· прочность,
· малое гидравлическое сопротивление,
· однородность,
· оптимальная пористая структура.
www.neuch.ru
Вернуться к основной статье
chem21.info