|
||||||||||||||||||||||||||||||||||||||||||||||||||
|
Механизм дыхания. Жизненная емкость легких. Реферат жизненная емкость легкихМеханизм дыхания. Жизненная емкость легкихДыхательные движения обеспечивают вдохи и выдохи, то есть попеременные увеличения и уменьшения объема легких. При вдохе межреберные мышцы, сокращаясь, поднимают ребра, а диафрагма отодвигается в сторону брюшной полости, становясь менее выпуклой. В результате этого объем грудной полости увеличивается. Так как давление в грудной полости ниже атмосферного, то при увеличении её объёма растягиваются и лёгкие. Давление в них на какой-то момент также становится ниже атмосферного, и в лёгкие по дыхательным путям устремляется воздух из окружающей среды. Механизмы вдоха и выдоха При необходимости глубокого дыхания, кроме межрёберных мышц и диафрагмы, сокращаются также мышцы туловища и плечевого пояса. Выдох обычно пассивен, то есть он является следствием прекращения вдоха: межрёберные мышцы расслабляются, рёбра опускаются, диафрагма также расслабляется и объём грудной полости, а вместе с ней и лёгких уменьшается. Давление в лёгких становится выше атмосферного, и воздух выходит из них по дыхательным путям. При глубоком выдохе происходит дополнительное сокращение межрёберных и брюшных мышц, и объём выдыхаемого воздуха возрастает. Типы внешнего дыхания у женщин и мужчин несколько различаются. У мужчин брюшной тип дыхания, то есть они дышат главным образом за счёт сокращения диафрагмы, а у женщин грудной, то есть они дышат за счёт сокращения межрёберных мышц. Жизненная ёмкость лёгкихЕсли человек сделает возможный максимально вдох, а затем изо всех сил выдохнет воздух, то объём этого выдохнутого воздуха составит жизненную ёмкость лёгких (ЖЁЛ). Среднее значение ЖЁЛ составляет 3500 см3 и сильно зависит от возраста, пола, тренированности человека. От рождения до взросления этот показатель увеличивается примерно в 45 раз и может достигать у тренированного человека более 5000 см3. Газообмен в лёгких и тканях других органовПри вдохе лёгкие заполняются воздухом, который в основном содержит кислород, углекислый газ, азот и пары воды. Таблица. Состав вдыхаемого, выдыхаемого и альвеолярного воздуха В альвеолах кислород переходит из альвеолярного воздуха в кровь, а углекислый газ - из крови в альвеолярный воздух. Это происходит благодаря тому, что кровь, поступающая в лёгкие по сосудам малого круга кровообращения из правого желудочка сердца, содержит много углекислого газа. В лёгких углекислый газ переходит из кровеносных сосудов в альвеолы и выдыхается в окружающую среду. Кислород из воздуха, заполняющего альвеолы при вдохе, наоборот, переходит в кровь, находящуюся в капиллярах малого круга. В крови кислород связывается гемоглобином эритроцитов, и кровь, ставшая теперь артериальной, устремляется по сосудам к сердцу. Газообмен В тканях других органов наблюдается обратная картина. В межклеточной жидкости и в клетках кислорода значительно меньше, чем в крови, приносимой по сосудам большого круга кровообращения из левого желудочка сердца. Гемоглобин отдаёт кислород, который выходит в тканевую жидкость, окружающую кровеносные капилляры, а затем попадает в клетки. В клетках кислород используется для окисления органических соединений, что приводит к освобождению энергии и образованию основного конечного продукта распада органических соединений - углекислого газа. Энергия используется клетками для процессов жизнедеятельности, а вот углекислый газ необходимо постоянно удалять. Поэтому он переходит из клеток сначала в межклеточную жидкость, а затем через однослойные стенки капилляров попадает в кровь. В крови часть углекислого газа связывается гемоглобином, а часть растворяется в плазме крови. С током крови углекислый газ достигает правого предсердия, а затем правого желудочка, откуда по лёгочным артериям переносится в лёгкие, где и удаляется из организма. Чем больше физическая и умственная нагрузка на организм, тем больше ему нужно энергии, а значит, и кислорода для её получения. Поэтому при активной деятельности одновременно увеличивается частота и глубина дыхания, а также учащается ритм сердцебиений и объём крови, выбрасываемый из сердца в круги кровообращения. blgy.ru Жизненная ёмкость лёгкихЖизненная ёмкость лёгких (ЖЕЛ) — это максимальное количество воздуха, которое может быть забрано в легкие после максимального выдоха. Взрослый здоровый человек при спокойном вдохе и выдохе вдыхает и выдыхает около 500 см3 воздуха. Это так называемый дыхательный воздух. Однако после спокойного вдоха можно дополнительно вдохнуть некоторое количество воздуха, так называемого дополнительного, его объем около 1500 см3. После спокойного выдоха можно дополнительно выдохнуть еще около 1500 см3 воздуха. Это так называемый резервный воздух. Таким образом, жизненная ёмкость лёгких представляет собой сумму дополнительного, дыхательного и резервного объемов и равна около 3500 см3. Даже после самого глубокого выдоха в легких остается еще около 800— 1700 см3 воздуха, так называемый остаточный воздух. Остаточный и резервный воздух постоянно заполняют альвеолы легких при спокойном дыхании. Это так называемый альвеолярный воздух. Объем его равен 2500—3500 см3. Именно альвеолярный воздух участвует в непрерывном газообмене между легкими и кровью, составляя как бы внутреннюю газовую среду организма (см. Газообмен, Дыхание). Сумма дополнительного и дыхательного объемов определяет инспираторную мощность легких, сумма дыхательного и резервного объемов характеризует их экспираторную мощность. Жизненная емкость легких, их инспираторная и экспираторная мощность прежде всего зависят от физического развития, тренированности и телосложения. Они в значительной степени изменяются при заболевании легких и сердечно-сосудистой системы. Специальная тренировка быстро приводит к увеличению ЖЕЛ. Таким образом, определение жизненной ёмкости лёгких является одним из наиболее важных методов диспансерного и клинического исследования людей. Определение жизненной ёмкости лёгких — см. Спирометрия. Жизненная емкость легких у детей — величина более лабильная, чем у взрослых. У детей раннего возраста она зависит от ряда факторов: возраста, пола, роста, окружности груди, подвижности диафрагмы и грудной клетки, состояния здоровья, степени тренированности и др. Снижение жизненной ёмкости лёгких у детей возникает при некоторых патологических состояниях легких (фиброзы любой этиологии, ателектазы, диффузный бронхит, бронхиолоспазм, состояние после резекции), плевры (спайки, плевральные наложения, гемо-, пио- и пневмоторакс), грудной клетки (выраженные деформации, состояние после торакотомии). Диагностическое значение приобретает снижение жизненной ёмкости лёгких ниже 80% должной ее величины. Должная величина жизненной ёмкости лёгких равна должной величине основного обмена, умноженной на К (коэффициент корреляции, найденный эмпирическим путем). Должная величина основного обмена определяется показателями веса, роста, пола и возраста по таблицам. К для детей 4 лет — 1,4; 5—6 лет — 1,5; 7—9 лет — 1,65; 10—13 лет — 1,75; 14—15 лет — 2,0. К для взрослых равен 2,3. Жизненная емкость легких. ЖЕЛ у здоровых лиц варьирует в зависимости от положения тела, возраста, пола, типа сложения и физической тренированности. Иногда показатели улучшаются при повторных исследованиях. Уменьшение более чем на 20% должной величины при повторных исследованиях может считаться патологией. Так, много заболеваний могут снизить жизненную емкость, что этот тест не может применяться изолированно в специфической диагностике. Более того, снижение ЖЕЛ вообще может не означать наличия легочной патологии. ЖЕЛ уменьшается, когда имеются: 1) редукция функционирующей легочной ткани в связи с резекцией легких, опухолью, пневмонией, коллапсом, отеком, фиброзом; 2) ограничение расправления нормального легкого в связи с болью, деформацией грудной клетки, нервно-мышечными заболеваниями, асцитом, пневмотораксом, уплотнением плевры или экссудатом, поздними стадиями беременности. Повторные определения ЖЕЛ могут помочь в оценке течения болезни с проявлениями рестриктивных и вентиляторных нарушений. Эти нарушения связаны с факторами, влияющими на легочные объемы, как фиброз плевры, либо уменьшающими способность грудной клетки или легких к расправлению, как анкилозирующий спондилит, диффузный интерстициальный легочный фиброз. www.medical-enc.ru Дыхательные движения. Жизненная емкость лёгких. 8-й классРазделы: Биология Образовательные и развивающие задачи урока: сформировать понятие «жизненная емкость легких», разъяснить механизм вдоха и выдоха, роль дыхательного центра в ритмичном чередовании вдоха и выдоха, раскрыть механизм нейрогуморальной регуляции дыхания. Оборудование: таблица «Органы дыхания», диафильм «Регуляция дыхательных движений. Приемы искусственного дыхания», модель, поясняющая механизм вдоха и выдоха, раздаточный материал. Ход урокаI. Организационный момент.П. Актуализация опорных знаний.1. Индивидуальная работа по карточкам 2. Фронтальный опрос Примеры вопросов и заданий обязательного уровня.
Примеры вопросов и заданий повышенного уровня.
III. Изучение новой темыУчитель сообщает тему урока и акцентирует внимание учащихся на доску, где записан план занятия.
После ознакомления с планом работы учитель просит сформулировать основные задачи урока. «Дыхание – значит жизнь». Эта фраза бесспорна. ►Обычно дыхание ассоциируется с вдохом и выдохом, т.е. дыхательными движениями, необходимыми для вентиляции легких у человека. Издавна интересовала ученых и врачей и причина вдоха и выдоха. В свое время было предложено несколько гипотез, объясняющих это явление: а) воздух самотеком входит, раздувает легкие и расширяет грудную клетку; б) легкие в грудной полости расширяются и засасывают (втягивают) атмосферный воздух внутрь (вдох), а, сжимаясь, выталкивают его (выдох). – С какой гипотезой вы согласны? Ответ свой объясните. Действительно, воздух поступает в легкие, потому что они способны менять свой объем благодаря высокой эластичности альвеол. Но легкие – орган дыхания – не имеют мышц, однако при дыхании они расширяются и сжимаются. Благодаря чему легкие обладают такой способностью? Легкие самостоятельно никогда не растягиваются и не сокращаются, они пассивно следуют за грудной клеткой. Полость же грудной клетки расширяется благодаря сокращению дыхательных мышц, к которым в первую очередь относятся диафрагма и межреберные мышцы. Диафрагма при вдохе опускается на 3-4 см. Опускание ее на 1 см увеличивает объем грудной клетки на 250-300 мл. Таким образом, только за счет сокращения диафрагмы объем грудной клетки увеличивается на 1000-1200 мл. На прошлом занятии мы с вами говорили о плевральной щели, которая образуется между двумя листками плевры и герметически закрыта. Давление в ней ниже атмосферного, за счет отрицательного давления в плевральной полости легкие следуют за расширившейся грудной клеткой, растягиваются. В растянутых легких давление становится ниже атмосферного, и в результате разности давления атмосферный воздух устремляете через дыхательные пути в легкие. Происходит вдох. Кроме того, активное участие в дыхании принимают и межреберные мышцы, которые при их сокращении приподнимают ребра за счет чего, также увеличивается объем грудной полости. За вдохом наступает выдох. При обычном выдохе диафрагма и межреберные мышцы расслабляются, грудная клетка спадается и ее объем уменьшается. При этом объем легких уменьшается, и воздух выходит наружу. Поступление воздуха в легкие и его изгнание из легких можно пронаблюдать на модели, носящей имя своего изобретателя, физиолога Дондерса. Учитель демонстрирует механизмы вдоха и выдоха на модели. В сильном выдохе участвует брюшной пресс, который, напрягаясь, давит на внутрибрюшные органы. Они, в свою очередь, давят на диафрагму, которая еще более выпячивается в полость грудной клетки. Будут ли работать легкие, если нарушится герметичность грудной клетки? Ответ отрицательный. Учитель подтверждает ответ на модели. (Если вставить спичку между наружной стенкой воронки и шариком, изображающим диафрагму, в месте их соприкосновения так, чтобы воздух внутри воронки соединялся с наружным, то модель работать не будет.) Поступление воздуха в плевральную щель (или в полость плевры) при нарушении целостности ее стенок называется пневмотораксом. Частичный пневмоторакс с успехом применяется при лечении туберкулеза легких. Врач специальной иглой прокалывает грудную клетку и впускает в плевральную щель определенное количество газа. Давление в ней искусственно повышается, и движение легких значительно ограничивается, а это создает покой больному органу. Клетки плевры обладают способностью поглощать воздух, поэтому чрез некоторое время они полностью удаляют газ из плевральной щели и в ней опять устанавливается пониженное давление. Давайте подведем итоги этой части урока. 1. Механизм вдоха
2. Механизм выдоха
3. Поступление воздуха во время вдоха в легкие и выталкивание воздуха из легких из воздуха являются физическими процессами. Доказать это положение мы можем тем, что нам удалось смоделировать этот процесс на неживом объекте. Следовательно, законы физики едины для органического и неорганического мира. Следует отметить, что у человека в дыхании принимают участие не только легкие, но и вся поверхность тела - кожа от пяток до головы. Особенно усиленно дышит кожа на груди, спине и животе. Интересно, что по интенсивности дыхания эти участки кожи значительно превосходят легкие. Так, например, с единицы поверхности такой кожи может поглощаться на 28 % больше О2, а выделяться на 54 % больше СО2, чем в легких. Это превосходство кожи над легкими обусловлено тем, что кожа «дышит» чистым воздухом, а свои легкие мы проветриваем плохо. Чем плохи наши легкие? Не весь вдыхаемый воздух участвует в газообмене с кровью. А именно, воздух, оказавшийся в конце вдоха в трахее и бронхах, не сможет отдать кислород в кровь и взять оттуда углекислый газ, так как в этих местах почти нет кровеносных сосудов. Поэтому часть объема легких, занимаемую трахеей и бронхами (вместе с объемом верхних дыхательных путей), принято называть «мертвым пространством». Обычно мертвое пространство в легких человека имеет объем около 150 см3. Наличие этого пространства не только не позволяет соответствующему количеству свежего воздуха достичь внутренней поверхности альвеол, богатой кровеносными сосудами, но и уменьшает среднюю концентрацию кислорода в той части воздуха, которая достигла альвеол. Это происходит из-за того, что в начале каждого вдоха в альвеолы поступает воздух из мертвого пространства, который представляет собой последнюю концентрацию только что выдохнутого воздуха. Поэтому концентрация кислорода в воздухе, поступающем в альвеолы в начале вдоха, низка и не отличается от таковой в выдыхаемом воздухе. Движение воздуха в легких меняет свое направление при переходе от вдоха к выдоху. Поэтому почти половину времени легкие практически бездействуют, т. к. свежий воздух в фазу выдоха в легкие не поступает. В результате этого к концу выдоха концентрация кислорода в альвеолярном воздухе уменьшается в полтора раза по сравнению с его концентрацией в атмосфере. Так как во время богатый кислородом вдыхаемый воздух перемешивается в альвеолах с воздухом, находившемся там ранее, то получившаяся смесь, которая и обменивается газами с кровью, содержит кислород в меньшей концентрации, чем атмосфера. У человека легкие занимают около 6% объема тела независимо от его веса. Но объем легкого меняется при вдохе не всюду одинаково. Учитель вешает на доску схему легочных объемов. Измеряя дыхание, мы можем судить об интенсивности обмена веществ в организме. Объем воздуха, вдыхаемый при обычном (неизменном) вдохе и вдыхаемый при обычном (неусиленном) выдохе, называется дыхательным объемом. Объем максимального выдоха после предшествовавшего максимального вдоха называется жизненной емкостью легких (ЖЕЛ). Равна ли ЖЕЛ всему объему легких? Нет. Это связано с тем, что легкие никогда не спадают, в них содержится так называемый остаточный объем. Воздух, который вдыхается максимальным усилием после нормального вдоха, называется резервным объемом выдоха. Функциональная остаточная емкость состоит из резервного объема выдоха и остаточного объема. Это тот находящийся в легких воздух, в котором разбавляется нормальный дыхательный воздух. Вследствие этого состав газа в легких после одного дыхательного движения обычно резко не меняется. Интенсивность вентиляции зависит от физической нагрузки, т. к. работающая ткань быстрее поглощает кислород. Во время сна человек за 1 час поглощает от 15 до 20 л О2; когда он бодрствует, но лежит, потребление О2 увеличивается на 1/3, при ходьбе – вдвое, при легкой работе – втрое, при тяжелой в шесть и более раз. Активность газообмена влияет на жизненную емкость легких. Проанализируйте средние показатели ЖЕЛ спортсменов, занимающихся разными видами спорта. Почему отличаются средние показатели ЖЕЛ у спортсменов? Сделайте выводы:
Человек дышит ритмично. С первого и до последнего дня жизни ритм дыхания у него не нарушается, изменяется лишь его частота. Новорожденный ребенок 60 раз в мин совершает дыхательное движение, пятилетний – 25, с 15-16 лет частота дыхания устанавливается 16-18 раз в мин. и сохраняется такой до старости, а в старости вновь учащается.
Регуляция дыхания – Чем же определяется ритм дыхания? От чего он зависит? 1. Чтобы ответить на эти вопросы, мы с вами просмотрим диафильм. Обратите внимание на схему регуляции движения, которая висит на доске. После просмотра диафильма вам предстоит работа с этой схемой. Демонстрируется 1 фрагмент «Регуляция дыхательных движений». 2. Работа с текстом учебника. Учитель просит рассказать о том, как происходит вдох по предложенной схеме. Учащиеся объясняют рефлекторный механизм выдоха с опорой на схему. – Какое влияние оказывает на работу дыхательного центра углекислый газ? IV. Общие выводы урока
Закрепление изученного материала Решите задачи.
Работа с криптограммой (использование игрового момента) Домашнее задание: Изучить текст учебника, с. 143-144, выполнить задание к тексту, с. 146-147, работа со словариком, выполнить задание №111 в рабочей тетради. Индивидуальное задание: подготовить сообщения к следующему занятию. Сообщение 1. «Дыхание на Эльбрусе». Дополнительная литература:
Презентация. xn--i1abbnckbmcl9fb.xn--p1ai |
|
||||||||||||||||||||||||||||||||||||||||||||||||
|
|