Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Закон сохранения момента импульса. Реферат закон сохранения момента импульса


Закон сохранения момента импульса

Количество просмотров публикации Закон сохранения момента импульса - 1108

 

Моментом импульса относительно неподвижной осиz принято называть скалярная величина Lz, равная проекции на эту ось вектора момента импульса, определœенного относительно произвольной точки 0 данной оси. Значение момента импульса Lz не зависит от положения точки 0 на оси z.

При вращении абсолютно твердого тела вокруг неподвижной оси каждая отдельная точка тела движется по окружности постоянного радиуса с некоторой скоростью . Скорость и импульс перпендикулярны этому радиусу, ᴛ.ᴇ. радиус является плечом вектора . По этой причине можно записать, что момент импульса отдельной точки относительно оси z равен

Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных его точек:

Учитывая связь между линœейной и угловой скоростями (), получим следующее выражение для момента импульса тела относительно неподвижной оси:

(4.12)

ᴛ.ᴇ. момент импульса твердого тела относительно оси равен произведению момента инœерции тела относительно той же оси на угловую скорость.

Продифференцировав выражение (4.12) по времени, получим:

(4.13)

Это еще одна форма уравнения динамики вращательного движения твердого тела относительно неподвижной оси: скорость изменения момента импульса тела относительно неподвижной оси вращения равна результирующему моменту относительно этой оси всœех внешних сил, действующих на тело.

Закон сохранения момента импульса вытекает из основного уравнения динамики вращательного движения тела, закрепленного в неподвижной точке (уравнение 4.8), и состоит в следующем:

если результирующий момент внешних сил относительно неподвижной точки тождественно равен нулю, то момент импульса тела относительно этой точки с течением времени не изменяется.

Действительно, в случае если , то , откуда

(4.14)

Другими словами, момент импульса замкнутой системы с течением времени не изменяется.

Из основного закона динамики тела, вращающегося вокруг неподвижной оси z (уравнение 4.13), следует закон сохранения момента импульса тела относительно оси:

если момент внешних сил относительно неподвижной оси вращения тела тождественно равен нулю, то момент импульса тела относительно этой оси не изменяется в процессе движения, ᴛ.ᴇ. если Mz=0, то , откуда

(4.15)

Закон сохранения момента импульса является фундаментальным законом природы. Справедливость этого закона обусловливается свойством симметрии пространства – его изотропностью, ᴛ.ᴇ. с инвариантностью физических законов относительно выбора направления осœей координат системы отсчета.

Справедливость закона сохранения момента импульса относительно неподвижной оси вращения можно продемонстрировать на опыте со скамьей Жуковского. Скамьей Жуковского принято называть горизонтальная площадка, свободно вращающаяся без трения вокруг неподвижной вертикальной оси ОО1. Человек, стоящий или сидящий на скамье, держит в вытянутых руках гимнастические гантели и приводится во вращение вместе со скамьей вокруг оси ОО1 с угловой скоростью . Приближая гантели к себе, человек уменьшает момент инœерции системы, а так как момент внешних сил равен нулю, момент импульса системы сохраняется и угловая скорость ее вращения возрастает. Тогда по закону сохранения момента импульса относительно оси ОО1 можно записать:

(4.16)

где - момент инœерции человека и скамьи; и - моменты инœерции гантелœей в первом и втором положениях; m – масса одной гантели; r1, r2 – расстояния от гантелœей до оси ОО1.

Изменение момента инœерции системы связано с изменением ее кинœетической энергии:

Используя выражение для , полученное из (4.16)

,

после преобразований получим:

Это изменение кинœетической энергии системы численно равно работе, совершенной человеком при перемещении гантелœей.

В табл. 4.2 сопоставлены основные физические величины и уравнения, определяющие вращение тела вокруг неподвижной оси и его поступательное движение.

Таблица 4.2

Краткие выводы

· Вращательным принято называть движение, при котором всœе точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения.

· Момент инœерции тела относительно оси вращения - ϶ᴛᴏ физическая величина, равная сумме произведений масс n материальных точек тела на квадраты их расстояний до рассматриваемой оси:

· Момент инœерции тела Jz относительно любой оси вращения равен моменту его инœерции Jc относительно параллельной оси, проходящей через центр масс С тела, сложенному с произведением массы m тела на квадрат расстояния а между осями:

· При вращении абсолютно твердого тела вокруг неподвижной оси z его кинœетическая энергия равна половинœе произведения момента инœерции относительно оси вращения на квадрат угловой скорости:

· Из сравнения формул и следует, что момент инœерции – мера инœертности тела при вращательном движении.

· Работа вращения тела идет на увеличение его кинœетической энергии и определяется выражением где Mz – момент сил относительно оси вращения z.

· Уравнение динамики вращательного движения твердого тела относительно неподвижной оси z (аналог второго закона Ньютона) имеет вид:

где Lz – момент импульса твердого тела относительно оси z.

· В замкнутой механической системе момент внешних сил относительно неподвижной оси Mz=0 и , откуда Lz=const – закон сохранения момента импульса. Он является следствием изотропности пространства: инвариантность физических законов относительно выбора направления осœей координат системы отсчета.

Вопросы для самоконтроля и повторения

1. Что принято называть моментом инœерции тела? Какова роль момента инœерции во вращательном движении?

2. Сформулируйте теорему Штейнера. От чего зависит момент инœерции тела?

3. Что принято называть моментом силы относительно неподвижной точки? Относительно неподвижной оси? Как определяется направление момента силы?

4. Что такое момент импульса твердого тела? Как определяется направление момента импульса?

5. Какова формула для кинœетической энергии тела, вращающегося вокруг неподвижной оси? Как определяется работа при вращении тела?

6. Выведите и сформулируйте уравнение динамики вращательного движения твердого тела.

7. Сформулируйте закон сохранения момента импульса. В каких системах он выполняется?

8. Сопоставьте основные величины и уравнения динамики поступательного и вращательного движений.

Примеры решения задач

Задача 1. Шар радиусом 10 см и массой 5 кг вращается вокруг оси симметрии по закону , где В=2 рад/с2, С=-0,5 рад/с3. Определить момент сил относительно оси вращения для момента времени t=3 c.

Дано: R=0,1 м; m=5 кг; рад; В=2 рад/с2; С=-0,5 рад/с3; t=3 c.

Найти: Mz.

Решение

Согласно уравнению динамики вращательного движения твердого тела относительно неподвижной оси

, где - момент инœерции шара;

Для t=3 c

Ответ: Mz=-0,1 Н·м.

Задача 2. На однородный сплошной цилиндрический вал радиусом 20 см, момент инœерции которого 0,15 кг·м2, намотана легкая нить, к концу которой прикреплен груз массой 0,5 кᴦ. До начала вращения барабана высота груза над полом составляла 2,3 м (рис. ). Определить: а) время опускания груза до пола; б) силу натяжения нити; в) кинœетическую энергию груза в момент удара о пол.

Дано: R=0,2 м; Jz=0,15 кг·м2; m=0,5 кг; h=2,3 м.

Найти: t, T, Eк.

Решение

По закону сохранения энергии

откуда

Время опускания груза до пола:

.

Уравнение динамики вращательного движения вала откуда сила натяжения нити

тогда .

Кинœетическая энергия груза в момент удара о пол:

Ответ: t=2 с; Т=4,31 Н; Ек=1,32 Дж.

Задачи для самостоятельного решения

1. Шар и сплошной цилиндр, изготовленные из одного и того же материала, одинаковой массы катятся без скольжения с одинаковой скоростью. Определить, во сколько раз кинœетическая энергия шара меньше кинœетической энергии сплошного цилиндра.

2. Полый тонкостенный цилиндр массой 0,5 кг, катящийся без скольжения, ударяется о стену и откатывается от нее. Скорость цилиндра до удара о стену 1,4 м/с, после удара 1 м/с. Определить выделившееся при ударе количество теплоты.

3. К ободу однородного сплошного диска массой 10 кг, насаженного на ось, приложена постоянная касательная сила 30 Н. Определить кинœетическую энергию через 4 с после начала действия силы.

4. Вентилятор вращается с частотой 600 об/мин. После выключения он начал вращаться равнозамедленно и, сделав 50 оборотов, остановился. Работа сил торможения равна 31,4 Дж. Определить: а) момент сил торможения; б) момент инœерции вентилятора.

5. К ободу однородного сплошного диска радиусом 0,5 м приложена постоянная касательная сила 100 Н. При вращении диска на него действует момент сил трения 2 Н·м. Определить массу диска, в случае если известно, что его угловое ускорение постоянно и равно 16 рад/с2.

6. С наклонной плоскости, составляющей угол 300 с горизонтом, скатывается без скольжения шарик. Пренебрегая трением, определить время движения шарика по наклонной плоскости, в случае если известно, что его центр масс при скатывании понизился на 30 см.

7. На однородный сплошной цилиндрический вал радиусом 50 см намотана легкая нить, к концу которой прикреплен груз массой 6,4 кᴦ. Груз, разматывая нить, опускается с ускорением 2 м/с2. Определить: а) момент инœерции вала; б) массу вала.

8. Горизонтальная платформа массой 25 кг и радиусом 0,8 м вращается с частотой 18 об/мин. В центре стоит человек и держит в расставленных руках гири. Считая платформу диском, определить частоту вращения платформы, в случае если человек, опустив руки, уменьшит свой момент инœерции от 3,5 кг·м2 до 1 кг·м2.

9. Человек массой 60 кг, стоящий на краю горизонтальной платформы массой 120 кг, вращающейся по инœерции вокруг неподвижной вертикальной оси с частотой 10 об/мин, переходит к ее центру. Считая платформу круглым однородным диском, а человека – точечной массой, определить, с какой частотой будет тогда вращаться платформа.

10. Платформа, имеющая форму сплошного однородного диска, может вращаться по инœерции вокруг неподвижной вертикальной оси. На краю платформы стоит человек, масса которого в 3 раза меньше массы платформы. Определить, как и во сколько раз изменится угловая скорость вращения платформы, в случае если человек перейдет ближе к центру на расстояние, равное половинœе радиуса платформы.

ГЛАВА 5. ЭЛЕМЕНТЫ СПЕЦИАЛЬНОЙ ТЕОРИИ

ОТНОСИТЕЛЬНОСТИ

referatwork.ru

Доклад - Законы сохранения энергии и момента импульса

СОДЕРЖАНИЕ

Раздел 1. Краткие сведения теоретического характера

Раздел 2. Расчетная часть

Раздел 1. Краткие сведения теоретического характера

ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ И МОМЕНТА ИМПУЛЬСА

Импульсом тела или количеством движения называют произведение массы тела на его скорость. P – векторная величина. Направление импульса тела совпадает с направлением скорости оси и равно нулю, момент импульса системы относительно этой же оси остается постоянным.

Любая частица обладает моментом импульса, независимо от формы траектории по которой она движется Момент импульса замкнутой системы относительно любой неподвижной точки не изменяется с течением времени

ЗАКОН СОХРАНЕНИЯ МЕХАНИЧЕСКОЙ ЭНЕРГИИ

Для того чтобы решить данную задачу, необходимо использовать закон сохранения механической энергии, который гласит: Полная механическая энергия системы материальных точек, находящаяся под действием только консервативных сил, остается постоянной.

E = K + Пвнутр + Пвнеш = const , где

К – полная кинетическая энергия системы

Пвнутр ­ – полная внутренняя потенциальная энергия системы

Пвнешн – полная потенциальная энергия системы в поле внешних консервативных сил

При скольжении тела по гладкой сфере сила трения не действует, сохраняется его полная механическая энергия, что позволяет определить скорость тела в любой точке траектории. В основе закона сохранения энергии лежит однородность времени, т.е. равнозначность всех моментов времени. По мере движения тела его кинетическая энергия увеличивается, а потенциальная энергия уменьшается.

Кинетической энергией системы называется энергия механического движения этой системы.

Потенциальная энергия тела в поле сил тяжестиП (h) = mgh

Если на материальную точку действуют одновременно несколько сил, то каждая из них сообщает материальной точке ускорение согласно второму закону Ньютона, не зависящее от других сил.

Ускорение, приобретаемое материальной точкой, совпадает по направлению с действующей на нее силой и равно отношению этой силы к массе материальной точки.

Раздел 2. Расчетная часть

С вершины гладкой сферы радиуса R соскальзывает небольшое тело массой m. Следует определить

1. На какой высоте H от основания полусферы тело оторвется от ее поверхности?

2. Изменение величины потенциальной энергии ΔΠ тела за время его движения от верщины полусферы до точки отрыва?

M = 30

R = 0,6

По мере движения тела по поверхности сферы его скорость увеличивается, а сила нормального давления на сферу со стороны тела уменьшается. Когда сила нормального давления обратится в нуль, тело оторвется от поверхности.

При скольжении тела по гладкой сфере сохраняется его полная механическая энергия, это позволит определить скорость тела в любой точке траектории

Второй закон Ньютона для тела имеет вид

Условие отрыва тела от поверхности

Примем за нулевой уровень потенциальной энергии тела центр сферы. Тогда закон сохранения энергии для тела принимает вид

Принимая во внимание, что тело движется по окружности и подставив значение силы реакции в точке отрыва во второй закон Ньютона спроецируем полученное уравнение на радиальное направление

Подставим в полученное уравнение найденную из закона сохранения энергии скорость тела, определим угол , при котором произойдет отрыв, а затем и высоту, на которой он произойдет

Следовательно

Подставим найденное значение скорости в уравнение второго закона Ньютона, получим

далее получится ,

Следовательно

Находим высоту (отсчитываемую от центра сферы) на которой произойдет отрыв тела от поверхности

Изменение величины потенциальной энергии тела за время его движения от вершины полусферы до точки отрыва

где

П1 – потенциальная энергия в начале движения

П2 – потенциальная энергия в точке отрыва

Ответ:

1.На высоте H = 0,4м от основания полусферы тело оторвется от ее поверхности

2.Изменение величины потенциальной энергии ΔΠ тела за время его движения от вершины полусферы до точки отрыва равно 0,0588 Дж

www.ronl.ru

Реферат: Закон сохранения момента импульса

В замкнутой системе выполняется закон сохранения момента импульса.

Вращающееся вокруг своей оси тело при отсутствии тормозящих вращение сил так и будет продолжать вращаться. Физики привычно объясняют этот феномен тем, что такое вращающееся тело обладает неким количеством движения, выражающимся в форме углового момента количества движения или, кратко, момента импульса или момента вращения. Момент импульса вращающегося тела прямо пропорционален скорости вращения тела, его массе и линейной протяженности. Чем выше любая из этих величин, тем выше момент импульса. Если теперь допустить, что тело вращается не вокруг собственного центра массы, а вокруг некоего центра вращения, удаленного от него, оно всё равно будет обладать вращательным моментом импульса. В математическом представлении момент импульса L тела, вращающегося с угловой скоростью ω, равен L = Iω, где величина I, называемая моментом инерции, является аналогом инерционной массы в законе сохранения линейного импульса, и зависит она как от массы тела, так и от его конфигурации — то есть, от распределения массы внутри тела. В целом, чем дальше от оси вращения удалена основная масса тела, тем выше момент инерции.

Сохраняющейся или консервативной принято называть величину, которая не изменяется в результате рассматриваемого взаимодействия. В рамках закона сохранения момента импульса консервативной величиной как раз и является угловой момент вращения массы — он не изменяется в отсутствие приложенного момента силы или крутящего момента — проекции вектора силы на плоскость вращения, перпендикулярно радиусу вращения, помноженной на рычаг (расстояние до оси вращения). Самый расхожий пример закона сохранения момента импульса — фигуристка, выполняющая фигуру вращения с ускорением. Спортсменка входит во вращение достаточно медленно, широко раскинув руки и ноги, а затем, по мере того, как она собирает массу своего тела всё ближе к оси вращения, прижимая конечности всё ближе к туловищу, скорость вращения многократно возрастает вследствие уменьшения момента инерции при сохранении момента вращения. Тут мы и убеждаемся наглядно, что чем меньше момент инерции I, тем выше угловая скорость ω и, как следствие, короче период вращения, обратно пропорциональный ей.

Следует отметить, однако, что не любая приложенная извне сила сказывается на моменте вращения. Предположим, вы поставили свой велосипед «на попа» (колесами вверх) и сильно раскрутили одно из его колес. Понятно, что, приложив тормозящую силу трения к любой окружности колеса (нажав на ручной тормоз, приложив руку к резине или вращающимся спицам), вы, тем самым, снизите угловую скорость его вращения. Однако, сколько бы вы ни старались, вы не остановите вращения колеса, пытаясь воздействовать на ось вращения. Иными словами, для изменения момента вращения необходима не просто сила, а момент силы — то есть, сила, приложенная по направлению, отличному от направления оси вращения, и на некотором удалении от нее. Поэтому закон сохранения момента вращения можно сформулировать и несколько иначе: момент вращения тела изменяется только в присутствии момента силы, направленной на его изменение.

И тут возникает важное дополнительное замечание. До сих пор мы говорили об изменении момента вращения в плане ускорения или замедления вращения, как такового, но при этом тело продолжало вращаться всё в той же плоскости, и ось вращения не изменяла своей ориентации в пространстве. Теперь предположим, что момент силы приложен в плоскости, которая отличается от плоскости, в которой вращается тело. Такое воздействие неизбежно приведет к изменению направления оси вращения. В отсутствие же внешних воздействий закон сохранения момента импульса подразумевает, что направление оси вращения остается неизменным. Этот принцип широко используется в так называемых гироскопических навигационных приборах. В их основе лежит массивное, быстро вращающееся колесо — гироскоп, — которое не изменяет своей ориентации в пространстве, благодаря чему прибор стабильно указывает заданное направление, вне зависимости от угла поворота субмарины, самолета или спутника, на котором он установлен. С технической точки зрения гироскоп представляет собой массивный диск на осевых подшипниках низкого трения, раскрученный с очень большой скоростью. Идеальный гироскоп — это диск бесконечной массы, вращающийся с бесконечной скоростью в идеальном вакууме. В таком случае закон сохранения момента импульса подскажет нам, что направление оси такого идеального гироскопа не отклонится от исходной ни на одну угловую секунду, и он вечно будет указывать нам на изначально заданную точку. Искусственные спутники Земли, как правило, оснащаются несколькими независимыми гироскопами, вращающимися в разных плоскостях, и бортовая электроника, сопоставляя данные нескольких гироскопических компасов и усредняя поправки на возможные отклонения их показаний, безошибочно определяет координаты и ориентацию спутника в околоземном пространстве.

Список литературы

www.neuch.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.