Доклад: Теплопроводность жидкостей и газов. Реферат теплопроводность


Реферат Теплопроводность

скачать

Реферат на тему:

План:

Введение

Не следует путать с термическим сопротивлением.

Теплопрово́дность — это перенос тепловой энергии структурными частицами вещества (молекулами, атомами, ионами) в процессе их теплового движения. Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло.

Численная характеристика теплопроводности материала равна количеству теплоты, проходящей через материал толщиной 1 м и площадью 1 кв.м за единицу времени (секунду) при разности температур на двух противоположных поверхностях в 1 К. Данная численная характеристика используется для расчета теплопроводности для калибрования и охлаждения профильных изделий.

Исторически считалось, что передача тепловой энергии связана с перетеканием теплорода от одного тела к другому. Однако более поздние опыты, в частности, нагрев пушечных стволов при сверлении, опровергли реальность существования теплорода как самостоятельного вида материи. Соответственно, в настоящее время считается, что явление теплопроводности обусловлено стремлением занять состояние более близкое к термодинамическому равновесию, что выражается в выравнивании температуры.

1. Закон теплопроводности Фурье

В установившемся режиме поток энергии, передающейся посредством теплопроводности, пропорционален градиенту температуры:

где  — вектор потока тепла — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси,  — коэффициент теплопроводности (иногда называемый просто теплопроводностью), T — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad T (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

где P — полная мощность тепловых потерь, S — площадь сечения параллелепипеда, ΔT — перепад температур граней, h — длина параллелепипеда, то есть расстояние между гранями.

Коэффициент теплопроводности измеряется в Вт/(м·K).

1.1. Коэффициент теплопроводности вакуума

Коэффициент теплопроводности вакуума почти ноль (чем глубже вакуум, тем ближе к нулю). Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, тепло в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотери стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

1.2. Связь с электропроводностью

Связь коэффициента теплопроводности K с удельной электрической проводимостью σ в металлах устанавливает закон Видемана — Франца:

где k — постоянная Больцмана, e — заряд электрона.

2. Обобщения закона Фурье

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье не применим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т. д. Инерционность в уравнения переноса первым ввел Максвелл[1], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[2]

Если время релаксации τ пренебрежимо мало, то это уравнение переходит в закон Фурье.

3. Коэффициенты теплопроводности различных веществ

Цветок на куске аэрогеля над горелкой Бунзена

Материал Теплопроводность, Вт/(м·K)
Графен (4840±440) — (5300±480)
Алмаз 1001—2600
Серебро 430
Медь 382—390
Золото 320
Алюминий 202—236
Латунь 97—111
Железо 92
Платина 70
Олово 67
Сталь 47
Кварц 8
Стекло 1-1,15
КПТ-8 0,7
Вода при нормальных условиях 0,6
Кирпич строительный 0,2—0,7
Пенобетон 0,14—0,3
Дерево 0,15
Свежий снег 0,10—0,15
Вата 0,055
Воздух (300 K, 100 кПа) 0,026
Вакуум (абсолютный) 0 (строго)

другие вещества

Материал Теплопроводность, Вт/(м·K)
Кальций 201
Бериллий 201
Вольфрам 173
Магний 156
Родий 150
Иридий 147
Молибден 138
Рутений 117
Хром 93,9
Осмий 87,6
Титан 21,9
Тефлон 0,25
Бумага 0,14
Полистирол 0,082
Шерсть 0,05
Минеральная вата 0,045
Пенополистирол 0,04
Стекловолокно 0,036
Пробковое дерево 0,035
Пеноизол 0,035
Каучук вспененный 0,03
Аргон 0,0177
Аэрогель 0,017
Ксенон 0,0057

На практике нужно также учитывать проводимость тепла за счет конвекции молекул и проникаемости излучений. Например, при полной нетеплопроводности вакуума, тепло может передаваться за счет излучения (пример — Солнце, установки инфракрасного излучения). А газ или жидкость могут обмениваться нагретыми или охлажденными слоями самостоятельно или искусственно (пример — фен, греющие вентиляторы).

Примечания

  1. J. C. Maxwell, Philos. Trans. Roy. Soc. London 157 (1867) 49.
  2. C. Cattaneo, Atti Seminario Univ. Modena 3 (1948) 33.

wreferat.baza-referat.ru

Реферат - Теплопроводность жидкостей и газов

Московский Государственный Строительный Университет

Кафедра Физики

КУРСОВАЯ РАБОТА

по физике на тему

Теплопроводность. Теплопроводность жидкостей и газов

Москва 2008 г.

Содержание

Введение

Основной закон теплопроводности

Физический смысл коэффициента теплопроводности

Теплопроводность жидкостей и газов

Теплопроводность газов

Теплопроводность жидкости

Заключение

Список используемых источников

Введение

В учении о теплообмене рассматриваются процессы распространения теплоты в твердых, жидких и газообразных телах. Эти процессы по своей физико-механической природе весьма многообразны, отличаются большой сложностью и обычно развиваются в виде целого комплекса разнородных явлений.

Перенос теплоты может осуществляться тремя способами: теплопроводностью, конвекцией и излучением, или радиацией. Эти формы глубоко различны по своей природе и характеризуются различными законами.

Процесс переноса теплоты теплопроводностью происходит между непосредственно соприкасающимися телами или частицами тел с различной температурой. Учение о теплопроводности однородных и изотропных тел опирается на весьма прочный теоретический фундамент. Оно основано на простых количественных законах и располагает хорошо разработанным математическим аппаратом. Теплопроводность представляет собой, согласно взглядам современной физики, молекулярный процесс передачи теплоты.

Известно, что при нагревании тела кинетическая энергия его молекул возрастает. Частицы более нагретой части тела, сталкиваясь при своем беспорядочном движении с соседними частицами, сообщают им часть своей кинетической энергии. Этот процесс постепенно распространяется по всему телу. Перенос теплоты теплопроводностью зависит от физических свойств тела, от его геометрических размерах, а также от разности температур между различными частями тела. При определении переноса теплоты теплопроводностью в реальных телах встречаются известные трудности, которые на практике до сих пор удовлетворительно не решены. Эти трудности состоят в том, что тепловые процессы развиваются в неоднородной среде, свойства которой зависят от температуры и изменяются по объему.

Основной закон теплопроводности

Для распространения теплоты в любом теле или пространстве необходимо наличие разности температур в различных точках тела. Это условие относится и к передаче теплоты теплопроводностью, при которой градиент температуры в различных точках тела не должен быть равен нулю.

Связь между количеством теплоты />, проходящим за промежуток времени /> через элементарную площадку dS, расположенную на изотермической поверхности, и градиентом температуры устанавливается гипотезой Фурье, согласно которой

/>.(2.1)

Минус в правой части показывает, что в направлении теплового потока температура убывает и grad T является величиной отрицательной. Коэффициент пропорциональности /> называется коэффициентом теплопроводности или более кратко теплопроводностью. Справедливость гипотезы Фурье подтверждено многочисленными опытными данными, поэтому эта гипотеза в настоящее время носит название основного уравнения теплопроводности или закона Фурье.

Отношение количества теплоты, проходящего через заданную поверхность, ко времени называют тепловым потоком. Тепловой поток обозначают q и выражают в ваттах (Вт):

/>.(2.2)

Если относительное изменение температуры Тна расстоянии средней длины свободного пробегачастиц lмало, то выполняется основной закон теплопроводности (закон Фурье): плотность теплового потокаqпропорциональна градиентутемпературы grad T,то есть

/>(2.3)

(где /> — коэффициент теплопроводности или просто теплопроводности)

Отношение теплового потока dq через малый элемент поверхности к площади dS этой поверхности называют поверхностной плотностью теплового потока (или вектором плотности теплового потока), обозначают j и выражают в ваттах на квадратный метр (Вт/м2):

/>.(2.4)

Вектор плотности теплового потока направлен по нормали к поверхности в сторону убывания температуры. Векторы j и grad T лежат на одной прямой, но направлены в противоположные стороны.

Тепловой поток q, прошедший сквозь произвольную поверхность S, находят из выражения

/>.(2.5)

Количество теплоты, прошедшее через эту поверхность в течение времени t, определяется интегралом

/>.(2.6)

Таким образом, для определения количества теплоты, проходящего через какую-либо произвольную поверхность твердого тела, необходимо знать температурное поле внутри рассматриваемого тела. Нахождение температурного поля и составляет основную задачу аналитической теории теплопроводности.

Физический смысл коэффициента теплопроводности

Вспомним ещё раз, что основным законом передачи тепла теплопроводностью является закон Фурье. Согласно этому закону количество тепла dQ, передаваемое посредством теплопроводности через элемент поверхности dF, перпендикулярный тепловому потоку, за время dt прямопропорционально температурному градиенту ¶t/¶n, поверхности dF и времени dt:

/> (3.1)

Коэффициент пропорциональности l называется коэффициентом теплопроводности, при выражении Q в ккал/ч:

Таким образом, коэффициент теплопроводности l показывает, какое количество тепла проходит вследствие теплопроводности в единицу времени

/>

через единицу поверхности теплообмена при падении температуры на 1 град на единицу длины нормали к изотермической поверхности.

Коэффициенты теплопроводности l сплошных однородных сред зависят от физико-химических свойств вещества (структура вещества, его природа). Значения теплопроводности для многих веществ табулированы и могут быть легко найдены в справочной литературе.

Значения коэффициента теплопроводности /> для некоторых газов, жидкостей и твёрдых тел при атмосферном давлении, />зависит от агрегатного состояния вещества (см. табл.), его атомно-молекулярного строения, температуры и давления, состава (в случае смеси или раствора) и т. д.].

Вещество

t, />

/>,вт/(мК)

Газы

Водород

Гелий

Кислород

Азот

Металлы

Серебро

Медь

Железо

Олово

Жидкости

Ртуть

Вода

Ацетон

Бензол

 

-3

20

16

 22,5

 

0,1765

0,1411

0,0237

0,0226

403

86,5

68,2

35,6

0,190

0,167

0,158

6,9 

--PAGE_BREAK--

Теплопроводность жидкостей и газов

Теплопроводность, один из видов переноса теплоты (энергии теплового движения микрочастиц) от более нагретых частей тела к менее нагретым, приводящий к выравниванию температуры. При теплопроводности перенос энергии в теле осуществляется в результате непосредственной передачи энергии от частиц (молекул, атомов, электронов), обладающих большей энергией, частицам с меньшей энергией.

Отклонения от закона Фурье могут появиться при очень больших значениях grad T (например, в сильных ударных волнах), при низких температурах (для жидкого гелия Не) и при высоких температурах порядка десятков и сотен тысяч градусов, когда в газах перенос энергии осуществляется не только в результате межатомных столкновений, но в основном за счёт излучения (лучистая теплопроводность). В разреженных газах, когда l сравнимо с расстоянием L между стенками, ограничивающими объём газа, молекулы чаще сталкиваются со стенками, чем между собой. При этом нарушается условие применимости закона Фурье, и само понятие локальной температуры газа теряет смысл. В этом случае рассматривают не процесс теплопроводности в газе, а теплообмен между телами, находящимися в газовой среде.

Теплопроводность газов

Для идеального газа,состоящего из твёрдых сферических молекул диаметром d, согласно кинетической теории газов, справедливо следующее выражение

/>(3.4)

где /> — плотность газа, cv — теплоёмкость единицы массы газа при постоянном объёме, V — средняя скорость движения молекул. Поскольку J пропорциональна 1/р, а /> ~ р (р — давление газа), то Т. такого газа не зависит от давления. Кроме того, коэффициент теплопроводности /> и вязкости /> связаны соотношением: />. В случае газа, состоящего из многоатомных молекул, существенный вклад в /> дают внутренние степени свободы молекул, что учитывает соотношение:

/>,

где /> = ср/cv, ср — теплоёмкость при постоянном давлении. В реальных газах коэффициент теплопроводности — довольно сложная функция температуры и давления, причём с ростом Т и р значение /> возрастает. Для газовых смесей /> может быть как больше, так и меньше коэффициента теплопроводности компонентов смеси, то есть теплопроводности — нелинейная функция состава.

Если газ неравномерно нагрет, т. е. температура в одной его части выше или ниже, чем в другой, то наблюдается выравнивание температуры: более нагретая часть охлаждается, тогда, как более холодная нагревается.

Очевидно, что это связано с потоком тепла от более нагретой части газа к более холодной. Это явление возникновения потока тепла в газе называется теплопроводностью, В любом теле, в частности в газе, предоставленном самому себе, теплопроводность приводит к выравниванию температур, и этот процесс, конечно, нестационарный. Но часто встречаются и случаи, когда разность температур искусственно поддерживается постоянной.

Например, в электрической лампе накаливания газ, находящийся непосредственно около накаленной нити, имеет высокую температуру (равную температуре самой нити), тогда как газ, прилегающий к стенкам стеклянного баллона лампы, обладает значительно более низкой температурой. Через некоторое время после включения лампы устанавливается постоянная разность температур между нитью и стенками. Это постоянство обеспечивается, с одной стороны, электрической энергией, подводимой к нити из электрической сети, с другой стороны — отдачей тепла от стенок лампы к окружающему ее воздуху. При этих условиях в газе, находящемся в лампе, устанавливается стационарный, т. е. не изменяющийся со временем, поток тепла. Установившаяся стационарная разность температур зависит от теплопроводности газа (для лампы накаливания надо иметь в виду, что кроме отвода тепла через газ в данном частном случае отвод тепла происходит главным образом в результате излучения).

В приведенном примере лампы расчет потока тепла представляет большие трудности, связанные со сложной формой нити и сосуда, вследствие чего распределение температуры в газе тоже оказывается весьма сложным.

Чтобы найти количественные закономерности,

характеризующие процесс теплопроводности,

мы рассмотрим более простую задачу

Пусть вдоль какого-нибудь направления в газе,

например, вдоль оси X, температура меняется от точки к точке, т. е. является функцией v. в то время как в плоскости, перпендикулярной к этой оси, температура всюду одинакова

Изменение температуры вдоль оси X характеризуется градиентом температуры />.

Смысл градиента температуры заключается в том, что он равен изменению температуры от одной точки к другой, отнесенному к единице расстояния между ними. Существование градиента температуры и является необходимым условием для возникновения теплопроводности. Направление потока тепла совпадает с направлением падения температуры. Если возрастанию х (т. е. dx> 0) соответствует падение температуры (dТ<0), то тепло течет в направлении возрастающего х: поток тепла направлен так, чтобы уменьшить существующий градиент температуры, который его вызвал. Опыт показывает, что поток тепла Qпропорционален градиенту температуры (закон Фурье): /> (3.5)

При стационарных условиях количество тепла Q, протекающего в единицу времени через газ, равно мощности источника энергии, за счет которого поддерживается заданный градиент температуры. Эта мощность (обычно электрическая) и подлежит измерению при экспериментальном определении коэффициента теплопроводности. В тех случаях, когда газ, в котором существует градиент температуры, предоставлен самому себе, т. е. к нему извне не подводится энергия, теплопроводность приводит к выравниванию температуры. Сначала мы и рассмотрим такую нестационарную теплопроводность. Как мы увидим, закон выравнивания температуры весьма напоминает процесс выравнивания концентрации посредством диффузии.

Теплопроводность жидкости

В исследованиях, посвященных теории теплопроводности жидкостей, можно увидеть три основных направления:

1.Вычисление кинетических коэффициентов средствами статистической физики.

2. Использование моделей теплового движения и механизмов переноса.

3. Полуэмпирический подход.

Рассмотрим первое из этих направлений.

Исторически первой попыткой расчета коэффициента теплопроводности путем использования аппарата статистической физики можно считать работу Энскога. В теории Энскога используется модель молекул — жестких шаров, которая позволяет ограничиться учетом лишь парных соударений молекул и тем самым воспользоваться схемой кинетического уравнения Больцмана.

Непосредственно к жидкостям метод Энскога может быть применен в качестве первого приближения теплопроводности по газу т.к. схема кинетического уравнения Больцмана не содержит основного элемента, свойственного жидкому состоянию — взаимодействия коллектива молекул.

Второе направление использует различные представления модельного характера о природе теплового движения и механизмах переноса. Так, например, существует группа работ, в основу которой положена решеточная модель жидкости. В них предполагается, что тепловое движение молекул, в основном, сводится к колебательным движениям вокруг временных положений равновесия в квазикристаллических «ячейках». В соответствии с этим предполагается, что перенос тепла происходит за счет обмена энергией при непосредственном «столкновении» колеблющихся соседних молекул.

Теплопроводность жидкости предлагается рассчитывать по формуле

/> (3.6)

где νк — частота колебаний, aкол — амплитуда колебаний,

Далее рассмотрим работы, где использовано представление о колебательном характере теплового движения в жидкостях по аналогии с теорией Дебая для твердых тел, где перенос тепла осуществляется посредством гиперакустических колебаний среды (фононов). Здесь теплопроводность жидкости выражается соотношением:

/> (3.7)

где Uф — скорость звука, ℓф — средняя длина свободного пробега,

ρ – плотность.

Формула для жидкостей была предложена Л. Бриллиюэном в 1914 г.

Многие исследователи пользовались выражениями, которые являются упрощенными выражениями формулы для твердых тел Дебая. Первая в этом направлении работа была выполнена Н.П. Пашским. Формула Пашского может быть приведена к виду

/>(3.8)

гдеа - среднее расстояние между молекулами, L — характеристическая константа.

Эта формула аналогична формуле Дебая, если длина свободного пробега волн выражается соотношением

/> (3.9)

где b — эмпирический (поправочный) коэффициент.

Американский ученый Бриджмен предположил, что средняя длина свободного пробега волн ℓ равна среднему расстоянию между

молекулами а,

/> (3.10)

Для теплопроводности получается формула

/> (3.11)

    продолжение --PAGE_BREAK--

где Uф- скорость звука в жидкости.

Попытка учесть роль внутренних колебательных степеней свободы была сделана Е. Боровиком. Им получена формула для теплопроводности

/> (3.12)

где r — радиус молекулы.

При оценке работ рассматриваемого направления, возникает вопрос:

«В какой степени корректно использование общей формулы Дебая />для жидкостей?»

Экспериментальные данные показывают, что теплопроводность жидкостей тем больше, чем больше ее удельная теплоемкость CV. Следовательно, теплоемкость может входить в выражение для λ. Помимо этого, в жидкостях происходят явления, аналогичные тем, которые наблюдаются в твердых телах, а именно, коллективные колебания молекул распространяются со скоростью звука и область их распространения ограничивается «длиной свободного пробега».

Кроме того, представление о переносе тепла дебаевскими волнами отражает важную особенность жидкого состояния — коллективный характер колебаний части молекул жидкости (в отличие от газового состояния с хаотическиеми перескоками молекул).

Рассмотрим третье направление – полуэмпирические методы расчета теплопроводности жидкости.

В работе А.Миснара вывод формулы для теплопроводности сделан на основе общей формулы Дебая: λ ~ ρ ·Uф ·СV ·ℓф, выражающей зависимость коэффициента теплопроводности от плотности ρ, скорости звука U, удельной (объемной) теплоемкости СV и длины свободного пробега носителей энергии — фононов — ℓф.

По аналогии с приближенной формулой для скорости звука в твердом теле

/> (3.13)

А.Миснар предложил выразить скорость звука в жидкости через Ткип,

и плотность ρ, т.е

/> (3.14)

Однако сопоставление с экспериментом выявляет довольно значительное

расхождение с расчетом; при одинаковом числе атомов в молекуле отклонения тем больше, чем больше вязкость жидкости. Если ввести коэффициент динамической вязкости μ, то скорость звука можно представить следующей зависимостью Uф ~ (Ткип/ρ)1/2 ·μ1/15.

В формуле Дебая осталось выразить произведение СV ·ℓф черезфизические характеристики жидкости. При одинаковом числе атомовпроизведение СV ·ℓф, с точностью до постоянного множителя, равно

/>

Тогда формула для λ принимает следующий вид:

/> (3.15)

Пренебрегая членом, содержащим вязкость μ, Миснар получил следующее выражение для расчета теплопроводности жидкости:

/> (3.16)

Множитель В можно считать постоянным для жидкостей, имеющих одинаковое число атомов в молекуле. Множитель В уменьшается с увеличением числа атомов в молекуле. Подбор величины В ≈ 90/N1/4. Тогда окончательный вид выражения для расчета теплопроводности жидкостей при нормальных условиях будет равна:

/>,Дж/(м·с·К) (3.17)

где Ткип – температура кипения; ρ — плотность при t = 0 C иатмосферном давлении; Срo — удельная теплоемкость; N — число атомов в молекуле.

Расхождениес экспериментальнымиданными составляет менее 10%.

Заключение

В своей работе я рассматривал теплопроводность жидкостей и газов.

В общем случае я выяснил, что коэффициент теплопроводности /> длянекоторых газов, жидкостей и твёрдых тел при атмосферном давлении, зависит от агрегатного состояния вещества (что видно, если посмотреть таблицу в моей курсовой работе, а лучше, к примеру, книгу о теплопроводности жидкостей и газов где приведены все газы и жидкости и подсчитан /> для некоторой температуры), его атомно-молекулярного строения, температуры и давления, состава (в случае смеси или раствора).

Если подробно рассматривать /> газа и жидкости, то как и для газа так и для жидкостей было сделано много различных опытов, впоследствии которых были получены формулы для определения />.

Для различных газов, будь он, идеальный газ или реальный газ или ещё какой-то в конечном итоге видно что если к примеру взять газ идеальный, состоящий из твёрдых сферических молекул диаметром d, согласно кинетической теории газов, была получена конкретная формула для определения />, если взять реальный газ, то /> довольно сложная функция температуры и давления, причём с ростом Т и р значение /> возрастает, это я рассмотрел как пример для идеального и реального газа, (существуют газовые смеси, газ, состоящий из многоатомных молекул, для определения /> надо воспользоваться внутренними степенями свободы молекул, и другие примеры газов)

Теперь переду к теплопроводности жидкостей, как я уже говорил, было тоже сделано множество опытов и получено, благодаря опытных данных, формулы для определения />.Так вот в исследование посвященном теплопроводности жидкостей, как я уже писал в своей курсовой работе можно увидеть три основных направления: 1.Вычисление кинетических коэффициентов средствами статистической физики;2. Использование моделей теплового движения и механизмов переноса;3. Полуэмпирический подход. Не буду говорить подробно о каждом из них, так как более подробно я рассматривал это в своей курсовой работе, но если сказать кратко, то все эти направления были сделаны множеством учёных, основанных на предыдущих работах своих предшественников, и каждый привносил что новое для определения />, основываясь. Опять же на различных представлениях. Как видно, опять же из моей курсовой работе, именно для определения /> для жидкостей было получено и вправду большое количество формул для разных случаев определения /> жидкостей.

Список используемых источников

Нащокин В.В. Техническая термодинамика и теплопередача

А.К. Кикоин, И.К. Кикоин Общий Курс Физики – Молекулярная Физика

Миснар А. Теплопроводность твердых тел, жидкостей, газов и их композиций.

Интернет — wikipendia.ru (интернет энциклопедия)

Ссылки (links): www.cultinfo.ru/fulltext/1/001/008/061/207.htm

www.ronl.ru

Реферат Теплопроводность

Теплопроводность — это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией

   Механизм распространения тепла теплопроводностью зависит от физических свойств тела. В газах и жидкостях он происходит путем соударения частиц между собой, а также посредством диффузии молекул и атомов. В металлах теплопроводность осуществляется в результате диффузии свободных электронов и частично – упругих колебаний кристаллической решетки. В твердых телах – диэлектриках, в основном, за счет упругих колебаний кристаллической решетки.

    В чистом виде теплопроводность встречается лишь в твердых телах. В таких телах, как стекло и кварц, часть энергии наряду с теплопроводностью передается излучением. В аморфных веществах теплота передается за счет упругих волн в материале. В газах и жидкостях теплопроводность дополняется передачей тепла конвекцией и излучением.

    Температурное поле – совокупность всех значений температуры в теле в данный момент времени.

    В общем случае уравнение температурного поля имеет вид (Значение температуры в любой точке пространства, определяемой координатами x, y, z в каждый момент времени τ) : t=f(x,y,z, τ )

    Температурные поля подразделяют на стационарные и нестационарные. Если температура тела является функцией координат и времени, то такое температурное поле будет нестационарным (t=f(x,y,z, τ )). В том случае, когда температура тела с течением времени не изменяется и является функцией только координат, температурное поле будет стационарным:  t =f (x, у, z).

   Изотермическая поверхность - геометрическое место точек в пространстве с одинаковой температурой.

   Наиболее резкое изменение температуры получается в направлении нормали  к изотермической поверхности.

   Предел отношения изменения температуры  к расстоянию между изотермами по нормали называется градиентом температур:  

                                                               

    Тепловой поток – количество теплоты, проходящей через изотермическую поверхность в единицу времени;

    Плотность теплового потока – тепловой поток, проходящий в единицу времени через единицу площади изотермической поверхности;

    Линейной плотностью теплового потока называют отношение теплового потока к длине изотермической поверхности цилиндрической формы.

   Согласно закону  Фурье для теплопроводности величина теплового потока dQ,  передаваемого через бесконечно малый элемент поверхности dA, пропорциональна градиенту температуры: dQ= -λ*grad t*dA

   Знак минус указывает на то, что теплота передается в направлении уменьшения температуры.

   Численно коэффициент теплопроводности равен количеству теплоты, проходящему в единицу времени через единицу изотермической поверхности при условии gradt=1. Его размерность Вт/(м×К).

   Для большинства материалов зависимость коэффициента теплопроводности от температуры приближенно можно выразить в виде линейной функции     

  Коэффициент теплопроводности зависит от большого числа факторов (химсостава, структуры, пористости и т.п.)

   С увеличением содержания углерода теплопроводность углеродистых сталей снижается.

   Теплоизоляционными материалы - элемент конструкции, предотвращающий передачу тепла.

   Теплопроводность теплоизоляционных и строительных материалов значительно растет с увеличением влажности. Основной особенностью теплоизоляционных материалов является их высокая пористость и, следовательно низкая теплопроводность.

   Термическое сопротивление, способность тела препятствовать распространению теплового движения молекул. Термическое сопротивление численно равно температурному напору, необходимому для передачи единичного теплового потока (равного 1 Вт/м2) к поверхности тела или через слой вещества; выражается в м2·К/Вт

   Когда речь идет о многослойной конструкции, то сопротивление слоев просто складываются.

   Теоретической базой основных стационарных методов определения коэффициента теплопроводности является решение одномерных задач теплопроводности для тел правильной геометрической формы (пластина, цилиндр, шар). В ходе экспериментов измеряют тепловой поток, температуры на поверхностях образца и его геометрические размеры.

   Преимуществом стационарных методов определения теплопроводности являются простота расчетных формул и надежность получаемых результатов, а к недостаткам относятся необходимость применения большого числа датчиков температуры и значительные затраты времени на выполнение опытов.

  

  

bukvasha.ru

Теплопроводность

Теплопроводность — это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией

   Механизм распространения тепла теплопроводностью зависит от физических свойств тела. В газах и жидкостях он происходит путем соударения частиц между собой, а также посредством диффузии молекул и атомов. В металлах теплопроводность осуществляется в результате диффузии свободных электронов и частично – упругих колебаний кристаллической решетки. В твердых телах – диэлектриках, в основном, за счет упругих колебаний кристаллической решетки.

    В чистом виде теплопроводность встречается лишь в твердых телах. В таких телах, как стекло и кварц, часть энергии наряду с теплопроводностью передается излучением. В аморфных веществах теплота передается за счет упругих волн в материале. В газах и жидкостях теплопроводность дополняется передачей тепла конвекцией и излучением.

    Температурное поле – совокупность всех значений температуры в теле в данный момент времени.

    В общем случае уравнение температурного поля имеет вид (Значение температуры в любой точке пространства, определяемой координатами x, y, z в каждый момент времени τ) : t=f(x,y,z, τ )

    Температурные поля подразделяют на стационарные и нестационарные. Если температура тела является функцией координат и времени, то такое температурное поле будет нестационарным (t=f(x,y,z, τ )). В том случае, когда температура тела с течением времени не изменяется и является функцией только координат, температурное поле будет стационарным:  t =f (x, у, z).

   Изотермическая поверхность - геометрическое место точек в пространстве с одинаковой температурой.

   Наиболее резкое изменение температуры получается в направлении нормали  к изотермической поверхности.

   Предел отношения изменения температуры  к расстоянию между изотермами по нормали называется градиентом температур:  

                                                               

    Тепловой поток – количество теплоты, проходящей через изотермическую поверхность в единицу времени;

    Плотность теплового потока – тепловой поток, проходящий в единицу времени через единицу площади изотермической поверхности;

    Линейной плотностью теплового потока называют отношение теплового потока к длине изотермической поверхности цилиндрической формы.

   Согласно закону  Фурье для теплопроводности величина теплового потока dQ,  передаваемого через бесконечно малый элемент поверхности dA, пропорциональна градиенту температуры: dQ= -λ*grad t*dA

   Знак минус указывает на то, что теплота передается в направлении уменьшения температуры.

   Численно коэффициент теплопроводности равен количеству теплоты, проходящему в единицу времени через единицу изотермической поверхности при условии gradt=1. Его размерность Вт/(м×К).

   Для большинства материалов зависимость коэффициента теплопроводности от температуры приближенно можно выразить в виде линейной функции     

  Коэффициент теплопроводности зависит от большого числа факторов (химсостава, структуры, пористости и т.п.)

   С увеличением содержания углерода теплопроводность углеродистых сталей снижается.

   Теплоизоляционными материалы - элемент конструкции, предотвращающий передачу тепла.

   Теплопроводность теплоизоляционных и строительных материалов значительно растет с увеличением влажности. Основной особенностью теплоизоляционных материалов является их высокая пористость и, следовательно низкая теплопроводность.

   Термическое сопротивление, способность тела препятствовать распространению теплового движения молекул. Термическое сопротивление численно равно температурному напору, необходимому для передачи единичного теплового потока (равного 1 Вт/м2) к поверхности тела или через слой вещества; выражается в м2·К/Вт

   Когда речь идет о многослойной конструкции, то сопротивление слоев просто складываются.

   Теоретической базой основных стационарных методов определения коэффициента теплопроводности является решение одномерных задач теплопроводности для тел правильной геометрической формы (пластина, цилиндр, шар). В ходе экспериментов измеряют тепловой поток, температуры на поверхностях образца и его геометрические размеры.

   Преимуществом стационарных методов определения теплопроводности являются простота расчетных формул и надежность получаемых результатов, а к недостаткам относятся необходимость применения большого числа датчиков температуры и значительные затраты времени на выполнение опытов.

  

  

www.coolreferat.com

Реферат - Теплопроводность твердых тел

ОГЛАВЛЕНИЕ

Введение

Глава 1. Нормальные колебания атомов решетки

Глава 2. Теплопроводность кристаллической решетки твердого тела

Глава 3. Фононы. Фононный газ

Глава 4. Электронная теплопроводность.

Заключение

Список использованной литературы

ВВЕДЕНИЕ

Тепловое движение частиц твердого тела, как конденсированной среды, отлично от движения частиц газов. В основу теории твердого тела положена модель бесконечного идеального монокристалла. Частицы твердого тела, связанные между собой силами взаимодействия, которые зависят от расстояния, совершают колебания около положений равновесия в узлах кристаллической решетки. На основе этого и разработана теория теплоемкости и теплопроводности твердого тела. Знание величин теплоемкости и коэффициента теплопроводности твердого тела необходимо для инженерных расчетов при создании новых машин, расчете их коэффициента полезного действия, они нужны в строительстве для расчета тепловых свойств строений, их теплоизоляционных свойств. В общем случае перенос тепла осуществляется двумя типами носителей: электронами проводимости и собственно фононами. Рассмотрим основные механизмы переноса тепла в твердом теле.

ГЛАВА 1.

НОРМАЛЬНЫЕ КОЛЕБАНИЯ АТОМОВ КРИСТАЛЛИЧЕСКОЙ РЕШЕТКИ.

Каждое нормальное колебание несет в себе энергию и импульс, а следовательно могут характеризоваться этими параметрами (энергией и импульсом). Можно доказать, что энергия отдельного нормального колебания кристаллической решетки равна энергии гармонического осциллятора, который имеет массу равную массе всех атомов кристаллической решетки участвующих в данных колебаниях и колеблющегося с частотой равной частоте нормальных колебаний, а следовательно полная энергия кристалла из N атомов равна 3N гармонических осцилляторов.

Энергия каждого колебания квантована. Минимальная порция или квант энергии колебания называется фононом. Энергия фонона:

Еф = `h w.

В зависимости от частоты (l) фононы бывают акустическими и оптическими.

Для описания процессов, связанных с упругими колебаниями, КР представляют в виде фононного газа. Увеличение энергии колебаний означает увеличение концентрации фононов nф. Рассеяние одной упругой волны на другой — фонон-фононное взаимодействие. Рассеяние упругой волны на дефектах КР — взаимодействие фонона с дефектом.

Максимальная частота колебаний атомов в кристалле называется характеристической или дебаевской wD частотой. Она определяет характеристическую или дебаевскую температуру — ту температуру, при которой в образце возбуждаются все возможные нормальные колебания вплоть до частоты wD:

QD = wD `h / k. (`h = h / 2π ),

где h – постоянная Планка, k – постоянная Больцмана.

Дебаевская температура QD используется как критерий величины температуры тела:

T > QD считаются высокоми, T < QD — низкими.

Т.е. при T > QD не возникает новых нормальных колебаний, а лишь увеличивается амплитуда существующих.

Передача тепловой энергии в неравномерно нагретом веществе (без теплового излучения) характеризуется теплопроводностью. В соответствии с законом Фурье, если в веществе имеется градиент температуры Ñ Т, то в направлении, противоположном ÑТ, возникает пропорциональный поток энергии плотностью:

jт = — K ÑT,

где К — коэффициент теплопроводности, [ Вт/ м град ] .

Перенос тепла осуществляется за счет фононной и электронной теплопроводности:

К = Кф + Кэл .

Для фононов

Кф = 1/3 Сф lф Vф ,

где lф — длина свободного пробега фононов, обратно пропорциональная концентрации фононов nф, Vф — скорость фононов (скорость звука)

Vф = Vзв = Ö` Е/r ,

Е — модуль упругости Юнга, r — плотность вещества.

Теплопроводность прямо пропорционально зависит от энергии связи Есв (степени жесткости связи): чем больше Есв, тем больше модуль Е и, следовательно, скорость звука Vзв. В отсутствии электронной теплопроводности передача тепловой энергии от одних точек тела к другим осуществляется только фононами [3].

Теория переноса тепла фононами находится в такой стадии, когда по ней еще нельзя установить количественную зависимость решеточной (фононной) теплопроводности от температуры. Поэтому для практических целей необходимо найти зависимость теплопроводности от температуры в виде эмпирических формул.

В передаче энергии, по нашему мнению, участвуют только фононы с энергией. Перенос энергии фононами происходит путем их переброса от осцилляторов с энергией hυ0к осцилляторам с меньшей энергией. В процессе переброса фононы с энергией могут дробиться на фононы с меньшей энергией.

Как известно, коэффициент теплового расширения обусловлен силами ангармонического взаимодействия между атомами. Однако, силы ангармонического взаимодействия- это только один из факторов, оказывающих влияние на решеточную теплопроводность.

Концентрация фононов n с энергией зависит только от температуры и описывается функцией распределения фононов от температуры. Такой характер температурной зависимости теплопроводности при низких температурах вызван наложением двух процессов: с одной стороны, резким снижением ангармонической составляющей сопротивления перемещению электронов и фононов, с другой,- уменьшением по экспоненте числа фононов способных принимать участие в процессах переброса энергии от одних точек к другим. На рисунках приведены зависимости теплопроводности металла (германия) от температуры в области низких температур а также зависимость теплопроводности алмаза в области от 0К до 300К. Эти зависимости имеют стандартный характер.

Рис. 1(2). Зависимость теплопроводности Ge от температуры (при низких температурах), полученная из опыта и рассчитанная по формуле.

Рис. 1(2). Зависимость теплопроводности алмаза от температуры (при низких температурах), полученная из опыта и рассчитанная по формуле.

РЕШЕТКИ ТВЕРДОГО ТЕЛА.

Тепловая энергия содержится в колебательных нормальных модах кристалла. В диэлектриках этот механизм является основным, поскольку свободных электронов в диэлектриках нет. При низких температурах разрешенные энергии нормальных мод квантованы и передача энергии, сопровождающая теплопроводность, осуществляется через механизм, описываемый в представлении о фононах. В идеальном гармоническом кристалле фононные состояния считаются стационарными. Поэтому, если установилось некоторое распределение фононов с направленными в одну сторону групповыми скоростями, то это распределение не будет меняться с течением времени, так что поток тепла не будет затухать. Т.е. идеальный гармонический кристалл имел бы бесконечную теплопроводность. Помимо несовершенств решетки, играющих роль рассеивающих центров, теплопроводность реальных диэлектриков принимает конечные значения из-за ангармонизма колебаний решетки. В отличие от гармонической, в ангармонической модели волны могут взаимодействовать. На квантовом языке — фононы могут рассеиваться с рождением и поглощением фононов. В процессах 3-го порядка фонон может распасться на два других, либо два фонона могут слиться и образовать третий. В процессах 4-го порядка участвуют 4 фонона. Т.е. один фонон может распасться на три, либо три фонона могут слиться с образованием одного, либо два фонона могут рассеяться друг на друге и сформироваться два новых. Все эти и аналогичные процессы более высокого порядка называются рассеянием, либостолкновением, либо переходами фононов. Теплопроводность металлов должна складываться из теплопроводности фононной (теплопроводность решетки) и электронной подсистем: = lat + e. Однако механизм решеточной теплопроводности в металлах в значительной мере маскируется электронным механизмом переноса тепла.

ГЛАВА 3. ФОНОНЫ. ФОНОННЫЙ ГАЗ.

Квантовый гармонический осциллятор имеет энергию равную:

где n = 1, 2, 3 … (3.1)

Минимальная порция энергии которую может поглотить или испустить кристаллическая решетка при тепловых колебаниях соответствует на этом рисунке переходу с одного энергетического уровня на другой равна и называется фононом.

Таким образом между светом и тепловыми колебаниями кристаллической решетки можно провести аналогию — упругие волны рассматриваются как распространение неких квазиупругих частиц – фононов.

Упругие волны рассматриваются как распространение неких квазичастиц – фононов. Для которых можно записать величину их импульса и энергии:

, где q – волновое число. (3.2)

Р. Паерлс в 1029 году ввел в теорию Дебая квантовые ( фононные ) явления ы показал, что тепловое сопротивление решетки обусловлено взаимодействием фононов. Фонон, в отличии от обычных частиц, может существовать лишь в некоторой среде, которая пребывает в состоянии теплового возбуждения. Нельзя вообразить фонон, который распространялся бы в вакууме, поскольку он описывает квантовый характер тепловых колебаний решетки и навечно замкнут в кристалле. Понятиефонона – исторически первой квазичистицы в квантовой теории твердого тела ввел И. Е. Тамм. Корпускулярный аспект малых колебаний атомов решетки кристалла приводит к понятию фонона, и распространениеупругих тепловых волн в кристалле можно рассматривать как перенесение фононов.

Тепловые колебания в кристаллической решетки являются термическим возбуждением фононов. Для определения средней энергии кристаллической решетки нужно найти среднюю энергию гармонического осциллятора:

— энергия квантового гармонического осциллятора (3.3).

Если учесть квантовую природу гармонического осцилятора, то для тела, которое состоит из N атомов можно записать его внутреннюю энергию, где на каждую степень Володи атома будет приходится энергия равная средней энергии квантового осцилятора:

(3.4)

Наиболее простой моделью для анализа температурной зависимости теплопроводности является модель газа фононов (МГФ). МГФ оперирует с такими понятиями, как средняя длина свободного пробега фонона ph, эффективное время релаксации = ph /vs, обратной величиной которого, 1/, является средняя частота столкновений фононов. Величина теплопроводности в модели фононного газа равна:

lat = 1/3 ph vs Cv = 1/3 vs2Cv, (3.5)

где Сv удельная теплоемкость, связанная с колебаниями решетки. Величины Сv, или ph определяют температурную зависимость решеточной теплопроводности. Зависимость от Т оказалась более сложной. Рассмотрим два случая.

а) Т >> D. Следовательно, длина свободного пробега фонона обратно пропорциональна температуре. Это согласуется с экспериментом. Обычно, lat ~ 1/Tx, где х = 1-2. Точная теория lat (Т) должна учитывать конкуренцию между процессами. б) Т<< D. В этом случае фононы будут иметь энергию s (k ) kB T << kBD = D, т.е. s << D и k << kD. Можно считать, что как до, так и после рассеяния, энергия как отдельного фонона, так и суммарная энергия остаются << D, волновой вектор << kD. Следовательно, если в начальный момент система фононов имела некоторый результирующий импульс, то этот импульс будет сохраняться даже в отсутствие градиента температуры, т.е. для совершенного бесконечного ангармонического кристалла при низких температурах теплопроводность бесконечна, точнее она может быть конечной только лишь за счет небольшой вероятности процессов переброса, нарушающих закон сохранения квазиимпульса, и которые уменьшают тепловой поток. При достижении температуры, где начинаются рост времени релаксации и, соответственно, длины свободного пробега фононов, теплопроводность решетки растет (подтверждается экспериментально). При дальнейшем снижении Т, длина свободного пробега становится сопоставимой со средней длиной свободного пробега, характеризующей рассеяние фононов на дефектах решетки, примесях или даже на торцах конечного образца. Для диэлектриков при очень низких температурах, Т<Tmax, теплопроводность ~ T3 , затем Tmax < Т <D~ exp(T0/T), далее темп уменьшения спадает и заменяется медленным спаданием ~ 1/T из-за увеличения числа рассеивающих фононов.

ГЛАВА 4. ЭЛЕКТРОННАЯ ТЕПЛОПРОВОДНОСТЬ.

В металлах значительную роль в процессе теплопроводимости играет электронная теплопроводимость. Она также существует и в полупроводниках, особенно легированных электронодонорными элементами. По величине электронная теплопроводность и фононная теплопроводности в металлах будут равны:

Сэл /Сф » 0.01, Vзв » 5 ·103 м/с, Vт » 106 м/с,

lф » 10-9 м, lэл » 10-8 м,

Кф / Кэл » 0.05.

В чистых металлах электронная теплопроводность больше за фононную в 20 раз. В сплавах фононная и электронная теплопроводности приблизительно равны. Например, бериллий Ве с низкой электропроводностью обладает теплопроводностью в 5 раз большей, чем у стали. Ве входит в состав теплопроводящих паст и подложек для мощных усилителей и генераторов.

В результате взаимодействия фононов между собой и с электронами рассеивается энергия. Это взаимодействие интерпретируется как тепловое сопротивление RT :

(4.1)

где L и S — длина и площадь образца или фрагмента конструкции.

Расчет теплового сопротивления сложной детали проводится по правилам, аналогичным законам Ома.

Коэффициент тепло проводимости для электронного газа в металех имеет значение:

Кэл = Сэл lэл Vт, (4.2)

где Сэл – теплоемкость электронного газа, lэл — длина свободного пробега электрона, Vт — тепловая скорость:

, где mе — масса электрона.

Особую сложность при использовании формулы (4.2) представляет вычисление величины длинны свободного пробега электрона, поскольку это величина статистическая и зависит от движения других электронов в металле.

Электронная теплопроводность запишется:

(4.3)

, (4.4)

где .

При температурах выше комнатной для большинства металлов можно сделать следующее допущение

, (4.5)

Формула для электронной теплопроводности принимает вид:

(4.6)

Формула (4.6) совпадает с законом Видемана-Франца.

Таким образом, пользоваться законом Видемана-Франца при расчете теплопроводности металлов можно только при температуре выше температуры Дебая. При температурах ниже температуры Дебая использование закона Видемана-Франца приведет к большим неточностям при вычислении теплопроводности металлов.

Характерный вид кривой зависимости λ(Т) приведен на рисунке 4.1. теоретические и экспериментальные исследования показали, что тепло проводимость кристаллических веществ в области максимума λ(Т) довольно сильно зависит от дефектов кристаллической решетки.

Рис. 4.1. Температурная зависимость коэффициента электронной теплопроводности.

I — Увеличивается тепловая скорость Vт.

II — Cущественно уменьшается длина свободного пробега lэл из-за роста концентрации фононов в результате электрон-фононного взаимодействия. При Т<< θD вероятность рассеивания фононов уменьшается за экспонентой, что приводит к быстрому росту теплопроводности: .

Ш — При высоких температурах устанавливается баланс между lэл и nф, электронная теплопроводность практически не зависит от температуры. При этом величины Сэл и Vт можно считать постоянными.

ЗАКЛЮЧЕНИЕ.

Теория теплопроводности твердого тела на сегодняшний день разработана недостаточно. Она прекрасно справилась с объяснением теоретических вопросов теплопроводности, ее зависимости от температуры в разных температурных диапазонах, но она не может пока что дать возможность вычислить теплопроводность разных материалов с достаточной точностью. Наибольшую сложность для вычисления теплопроводности представляют диэлектрические материалы, ведь теплопроводности кристаллических и аморфных тел значительно отличаются между собой. Это связано с отсутствием в аморфных телах трансляционной симметрии («дальнего порядка»). Качественно отличный также характер зависимостей λ(Т). Для аморфных тел максимум на кривых λ (Т) не наблюдается, для них характерно увеличение λ с повышением температуры Т. При высоких температурах λ стремится к насыщению. Значение описывается формулой Дебая:

, lФ равняется приблизительно расстоянию между структурными частицами аморфного тела. Но точное вычисление длины свободного пробега на данный момент невозможно.

Поэтому теория теплопроводимости в наше время активно развивается.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Дущенко В. П., Кучерук И. М. Общая физика. – К.: Высшая школа, 1995. – 430 с.

2. Зисман Г. А., Тодес О. М. Курс общей физики. В 3 т. – М.: Наука, 1995. – 343 с.

3. Кухлинг Х. Справочник по физике: Пер. с нем. – М.: Мир, 1983. – 520 с.

4. Яворский Б. М., Детлаф А. А. Справочник по физике. – М.: Наука, 1982. – 846 с.

5. Шебалин О. Д. Физические основы механики. – М.: Высшая школа, 1981. – 263 с.

www.ronl.ru

Реферат - Теплопроводность - Термодинамика

Введение Решающую роль в восприятии окружающего мира играют характеристики, сохраняющиеся (в замкнутых системах). Среди них имеются такие универсальные, как масса, количество движения, момент количества движения, энергия и энтропия. В учении о теплообмене рассматриваются процессы распространения теплоты в твердых, жидких и газообразных телах. Эти процессы по своей физико-механической природе весьма многообразны, отличаются большой сложностью и обычно развиваются в виде целого комплекса разнородных явлений. Перенос теплоты может осуществляться тремя способами: теплопроводностью, конвекцией и излучением, или радиацией. Эти формы глубоко различны по своей природе и характеризуются различными законами. Процесс переноса теплоты теплопроводностью происходит между непосредственно соприкасающимися телами или частицами тел с различной температурой. Учение о теплопроводности однородных и изотропных тел опирается на весьма прочный теоретический фундамент. Оно основано на простых количественных законах и располагает хорошо разработанным математическим аппаратом. Теплопроводность представляет собой, согласно взглядам современной физики, молекулярный процесс передачи теплоты. При определении переноса теплоты теплопроводностью в реальных телах встречаются известные трудности, которые на практике до сих пор удовлетворительно не решены. Эти трудности состоят в том, что тепловые процессы развиваются в неоднородной среде, свойства которой зависят от температуры и изменяются по объему; кроме того, трудности возникают с увеличением сложности конфигурации системы. Уравнение теплопроводности имеет вид: (1) выражает тот факт, что изменения теплосодержания определенной массы вещества, заключенного в единице объема, определяется различием между притоком и вытеканием энергии - дивергенцией плотности теплового потока, при условии что внутренних источников энергии нет. Тепловой поток пропорционален градиенту температуры и направлен в сторону ее падения; - коэффициент теплопроводности. При разработке методов иследования композиционных материалов весьма трудно и, по-видимому, не имеет смысла (в тех случаях, когда это можно практически реализовать) полностью учитывать структуру копмозита. В связи с этим возникла необходимость связать механику композитных материалов с механизмами элементов конструкций, развивающимися обычно в рамках континуальных процессах. Эта задача решается в процессе создания теории определения приведенных свойств композитных материалов различных структур (слоистые, волокнистые и др.), при описании их поведения в рамках континуальных представлений. Таким образом совершается переход от кусочно-однородной среды к однофазной. Рассмотрим двухфазный композитный материал, представляющий собой матрицу, в которой случайным образом распределены включения второй фазы (армирующий элемент), имеющий приблизительно равноосную форму. Количество включений достаточно велико на участке изменения температуры. Пусть некая характеристика матрицы -, а включений -. Тогда можно представить композит, как новый материал, с характеристиками промежуточными между характеристиками матрицы и включений, зависящей от объемной доли этих фаз. , (2) Где Подстановка (2) в (1) дает: (3) Имеем операторы: (4а) (4б) После преобразования Фурье получаем Уравнение для функции Грина и где (5) - ур. Дайсона. (6) Функция Грина описывает однородный материал со средними характеристиками определяемые по правилу смесей (2), а оператор можно назвать оператором возмущения, поскольку он определяет форму и расположение неоднородностей. Решим уравнение итерациями Вычислим сначала Здесь (7) Теперь определим Теперь необходимо вычислить Таким образом (8) Подставляем в (6) равенство (8) , где и (9) Подставляем (5) в (9) где и (10) (11) где, (12) (13) 1. Ограничимся первым приближением ` (14) Рассмотрим: (15) 2. Ограничимся вторым приближением (16) (17) Из (12) найдем: (18) Подставляя (18) с учетом (16) в (10), получим: (19) Теперь подставляем (19) с учетом (16) в (13), получим: Коэффициентами при, из-за малости произведения пренебрегаем А коэффициенты без обращаются в из-за (14) подставляя (17), найдем (20) Подставляя (18) в (11) с учетом (16), получим: (21) Теперь подставляем (21) с учетом (16) в (13), получим: Коэффициентами при, из-за малости произведения пренебрегаем А коэффициенты без обращаются в из-за (15) (22) 3. Ограничимся третьим приближением (23) Подставляя (18) с учетом (23) в (10), получим: (24) Теперь подставляем (24) с учетом (23) в (13), получим Коэффициентами при,, из-за малости произведения пренебрегаем А коэффициенты без обращаются в из-за (14), а с- из-за (18) (25) Подставляя (18) в (11) с учетом (23), получим: (26) Теперь подставляем (26) с учетом (23) в (13), получим: Коэффициентами при,, из-за малости произведения пренебрегаем А коэффициенты без обращаются в из-за (15), а с- из-за (22) (27) Анализ и показывает, что и дейсвительные коэффициенты, а - мнимые. Список литературы: 1. Т. Д. Шермергор “Теория упругости микронеоднородных сред” М., “Наука”, 1977. 2. Г.А. Шаталов “Эффективные характеристики изотропных композитов как задача многих тел” МКМ, №1, 1985.

www.ronl.ru

Доклад - Теплопроводность жидкостей и газов

Московский Государственный Строительный Университет

Кафедра Физики

КУРСОВАЯ РАБОТА

по физике на тему

Теплопроводность. Теплопроводность жидкостей и газов

Москва 2008 г.

Содержание

Введение

1. Основной закон теплопроводности

2. Физический смысл коэффициента теплопроводности

3. Теплопроводность жидкостей и газов

4. Теплопроводность газов

5. Теплопроводность жидкости

Заключение

Список используемых источников

Введение

В учении о теплообмене рассматриваются процессы распространения теплоты в твердых, жидких и газообразных телах. Эти процессы по своей физико-механической природе весьма многообразны, отличаются большой сложностью и обычно развиваются в виде целого комплекса разнородных явлений.

Перенос теплоты может осуществляться тремя способами: теплопроводностью, конвекцией и излучением, или радиацией. Эти формы глубоко различны по своей природе и характеризуются различными законами.

Процесс переноса теплоты теплопроводностью происходит между непосредственно соприкасающимися телами или частицами тел с различной температурой. Учение о теплопроводности однородных и изотропных тел опирается на весьма прочный теоретический фундамент. Оно основано на простых количественных законах и располагает хорошо разработанным математическим аппаратом. Теплопроводность представляет собой, согласно взглядам современной физики, молекулярный процесс передачи теплоты.

Известно, что при нагревании тела кинетическая энергия его молекул возрастает. Частицы более нагретой части тела, сталкиваясь при своем беспорядочном движении с соседними частицами, сообщают им часть своей кинетической энергии. Этот процесс постепенно распространяется по всему телу. Перенос теплоты теплопроводностью зависит от физических свойств тела, от его геометрических размерах, а также от разности температур между различными частями тела. При определении переноса теплоты теплопроводностью в реальных телах встречаются известные трудности, которые на практике до сих пор удовлетворительно не решены. Эти трудности состоят в том, что тепловые процессы развиваются в неоднородной среде, свойства которой зависят от температуры и изменяются по объему.

1. Основной закон теплопроводности

Для распространения теплоты в любом теле или пространстве необходимо наличие разности температур в различных точках тела. Это условие относится и к передаче теплоты теплопроводностью, при которой градиент температуры в различных точках тела не должен быть равен нулю.

Связь между количеством теплоты , проходящим за промежуток времени через элементарную площадку dS, расположенную на изотермической поверхности, и градиентом температуры устанавливается гипотезой Фурье, согласно которой

.(2.1)

Минус в правой части показывает, что в направлении теплового потока температура убывает и gradT является величиной отрицательной. Коэффициент пропорциональности называется коэффициентом теплопроводности или более кратко теплопроводностью. Справедливость гипотезы Фурье подтверждено многочисленными опытными данными, поэтому эта гипотеза в настоящее время носит название основного уравнения теплопроводности или закона Фурье.

Отношение количества теплоты, проходящего через заданную поверхность, ко времени называют тепловым потоком. Тепловой поток обозначают q и выражают в ваттах (Вт):

. (2.2)

Если относительное изменение температуры Т на расстоянии средней длины свободного пробега частиц l мало, то выполняется основной закон теплопроводности (закон Фурье): плотность теплового потока q пропорциональна градиенту температуры grad T, то есть

(2.3)

(где — коэффициент теплопроводности или просто теплопроводности) Отношение теплового потока dq через малый элемент поверхности к площади dS этой поверхности называют поверхностной плотностью теплового потока (или вектором плотности теплового потока), обозначают j и выражают в ваттах на квадратный метр (Вт/м2 ):

.(2.4)

Вектор плотности теплового потока направлен по нормали к поверхности в сторону убывания температуры. Векторы j и gradT лежат на одной прямой, но направлены в противоположные стороны.

Тепловой поток q, прошедший сквозь произвольную поверхность S, находят из выражения

.(2.5)

Количество теплоты, прошедшее через эту поверхность в течение времени t, определяется интегралом

.(2.6)

Таким образом, для определения количества теплоты, проходящего через какую-либо произвольную поверхность твердого тела, необходимо знать температурное поле внутри рассматриваемого тела. Нахождение температурного поля и составляет основную задачу аналитической теории теплопроводности.

2. Физический смысл коэффициента теплопроводности

Вспомним ещё раз, что основным законом передачи тепла теплопроводностью является закон Фурье. Согласно этому закону количество тепла dQ, передаваемое посредством теплопроводности через элемент поверхности dF, перпендикулярный тепловому потоку, за время dt прямопропорционально температурному градиенту ¶t/¶n, поверхности dF и времени dt:

(3.1)

Коэффициент пропорциональности l называется коэффициентом теплопроводности, при выражении Q в ккал/ч:

Таким образом, коэффициент теплопроводности l показывает, какое количество тепла проходит вследствие теплопроводности в единицу времени

через единицу поверхности теплообмена при падении температуры на 1 град на единицу длины нормали к изотермической поверхности.

Коэффициенты теплопроводности l сплошных однородных сред зависят от физико-химических свойств вещества (структура вещества, его природа). Значения теплопроводности для многих веществ табулированы и могут быть легко найдены в справочной литературе.

Значения коэффициента теплопроводности для некоторых газов, жидкостей и твёрдых тел при атмосферном давлении, зависит от агрегатного состояния вещества (см. табл. ), его атомно-молекулярного строения, температуры и давления, состава (в случае смеси или раствора) и т. д.].

Вещество t, , вт/(мК)

Газы

Водород

Гелий

Кислород

Азот

Металлы

Серебро

Медь

Железо

Олово

Жидкости

Ртуть

Вода

Ацетон

Бензол

-3

20

16

22,5

0,1765

0,1411

0,0237

0,0226

403

86,5

68,2

35,6

0,190

0,167

0,158

6,9

3. Теплопроводность жидкостей и газов

Теплопроводность , один из видов переноса теплоты (энергии теплового движения микрочастиц) от более нагретых частей тела к менее нагретым, приводящий к выравниванию температуры. При теплопроводности перенос энергии в теле осуществляется в результате непосредственной передачи энергии от частиц (молекул, атомов, электронов), обладающих большей энергией, частицам с меньшей энергией.

Отклонения от закона Фурье могут появиться при очень больших значениях grad T (например, в сильных ударных волнах), при низких температурах (для жидкого гелия Не) и при высоких температурах порядка десятков и сотен тысяч градусов, когда в газах перенос энергии осуществляется не только в результате межатомных столкновений, но в основном за счёт излучения (лучистая теплопроводность). В разреженных газах, когда l сравнимо с расстоянием L между стенками, ограничивающими объём газа, молекулы чаще сталкиваются со стенками, чем между собой. При этом нарушается условие применимости закона Фурье, и само понятие локальной температуры газа теряет смысл. В этом случае рассматривают не процесс теплопроводности в газе, а теплообмен между телами, находящимися в газовой среде.

4. Теплопроводность газов

Для идеального газа, состоящего из твёрдых сферических молекул диаметром d, согласно кинетической теории газов, справедливо следующее выражение

(3.4)

где — плотность газа, cv — теплоёмкость единицы массы газа при постоянном объёме, V — средняя скорость движения молекул. Поскольку J пропорциональна 1/р, а ~ р (р — давление газа), то Т. такого газа не зависит от давления. Кроме того, коэффициент теплопроводности и вязкости связаны соотношением: . В случае газа, состоящего из многоатомных молекул, существенный вклад в дают внутренние степени свободы молекул, что учитывает соотношение:

,

где = ср/cv, ср — теплоёмкость при постоянном давлении. В реальных газах коэффициент теплопроводности — довольно сложная функция температуры и давления, причём с ростом Т и р значение возрастает. Для газовых смесей может быть как больше, так и меньше коэффициента теплопроводности компонентов смеси, то есть теплопроводности — нелинейная функция состава.

Если газ неравномерно нагрет, т. е. температура в одной его части выше или ниже, чем в другой, то наблюдается выравнивание температуры: более нагретая часть охлаждается, тогда, как более холодная нагревается.

Очевидно, что это связано с потоком тепла от более нагретой части газа к более холодной. Это явление возникновения потока тепла в газе называется теплопроводностью, В любом теле, в частности в газе, предоставленном самому себе, теплопроводность приводит к выравниванию температур, и этот процесс, конечно, нестационарный. Но часто встречаются и случаи, когда разность температур искусственно поддерживается постоянной.

Например, в электрической лампе накаливания газ, находящийся непосредственно около накаленной нити, имеет высокую температуру (равную температуре самой нити), тогда как газ, прилегающий к стенкам стеклянного баллона лампы, обладает значительно более низкой температурой. Через некоторое время после включения лампы устанавливается постоянная разность температур между нитью и стенками. Это постоянство обеспечивается, с одной стороны, электрической энергией, подводимой к нити из электрической сети, с другой стороны — отдачей тепла от стенок лампы к окружающему ее воздуху. При этих условиях в газе, находящемся в лампе, устанавливается стационарный, т. е. не изменяющийся со временем, поток тепла. Установившаяся стационарная разность температур зависит от теплопроводности газа (для лампы накаливания надо иметь в виду, что кроме отвода тепла через газ в данном частном случае отвод тепла происходит главным образом в результате излучения).

В приведенном примере лампы расчет потока тепла представляет большие трудности, связанные со сложной формой нити и сосуда, вследствие чего распределение температуры в газе тоже оказывается весьма сложным.

Чтобы найти количественные закономерности, характеризующие процесс теплопроводности, мы рассмотрим более простую задачу

Пусть вдоль какого-нибудь направления в газе, например, вдоль оси X, температура меняется от точки к точке, т. е. является функцией v. в то время как в плоскости, перпендикулярной к этой оси, температура всюду одинакова

Изменение температуры вдоль оси X характеризуется градиентом температуры .

Смысл градиента температуры заключается в том, что он равен изменению температуры от одной точки к другой, отнесенному к единице расстояния между ними. Существование градиента температуры и является необходимым условием для возникновения теплопроводности. Направление потока тепла совпадает с направлением падения температуры. Если возрастанию х (т. е. dx > 0) соответствует падение температуры (dТ<0), то тепло течет в направлении возрастающего х: поток тепла направлен так, чтобы уменьшить существующий градиент температуры, который его вызвал. Опыт показывает, что поток тепла Q пропорционален градиенту температуры (закон Фурье): (3.5)

При стационарных условиях количество тепла Q, протекающего в единицу времени через газ, равно мощности источника энергии, за счет которого поддерживается заданный градиент температуры. Эта мощность (обычно электрическая) и подлежит измерению при экспериментальном определении коэффициента теплопроводности. В тех случаях, когда газ, в котором существует градиент температуры, предоставлен самому себе, т. е. к нему извне не подводится энергия, теплопроводность приводит к выравниванию температуры. Сначала мы и рассмотрим такую нестационарную теплопроводность. Как мы увидим, закон выравнивания температуры весьма напоминает процесс выравнивания концентрации посредством диффузии.

5. Теплопроводность жидкости

В исследованиях, посвященных теории теплопроводности жидкостей, можно увидеть три основных направления:

1. Вычисление кинетических коэффициентов средствами статистической физики.

2. Использование моделей теплового движения и механизмов переноса.

3. Полуэмпирический подход.

Рассмотрим первое из этих направлений .

Исторически первой попыткой расчета коэффициента теплопроводности путем использования аппарата статистической физики можно считать работу Энскога. В теории Энскога используется модель молекул — жестких шаров, которая позволяет ограничиться учетом лишь парных соударений молекул и тем самым воспользоваться схемой кинетического уравнения Больцмана.

Непосредственно к жидкостям метод Энскога может быть применен в

качестве первого приближения теплопроводности по газу т.к. схема кинетического уравнения Больцмана не содержит основного элемента, свойственного жидкому состоянию — взаимодействия коллектива молекул.

Второе направление использует различные представления модельного характера о природе теплового движения и механизмах переноса. Так, например, существует группа работ, в основу которой положена решеточная модель жидкости. В них предполагается, что тепловое движение молекул, в основном, сводится к колебательным движениям вокруг временных положений равновесия в квазикристаллических «ячейках». В соответствии с этим предполагается, что перенос тепла происходит за счет обмена энергией при непосредственном «столкновении» колеблющихся соседних молекул.

Теплопроводность жидкости предлагается рассчитывать по формуле

(3.6)

где νк — частота колебаний, aкол — амплитуда колебаний,

Далее рассмотрим работы, где использовано представление о колебательном характере теплового движения в жидкостях по аналогии с теорией Дебая для твердых тел, где перенос тепла осуществляется посредством гиперакустических колебаний среды (фононов). Здесь теплопроводность жидкости выражается соотношением:

(3.7)

где Uф — скорость звука, ℓф — средняя длина свободного пробега,

ρ – плотность.

Формула для жидкостей была предложена Л. Бриллиюэном в 1914 г.

Многие исследователи пользовались выражениями, которые являются упрощенными выражениями формулы для твердых тел Дебая. Первая в этом направлении работа была выполнена Н.П. Пашским. Формула Пашского может быть приведена к виду

( 3.8)

гдеа - среднее расстояние между молекулами, L — характеристическая константа.

Эта формула аналогична формуле Дебая, если длина свободного пробега волн выражается соотношением

(3.9)

где b — эмпирический (поправочный) коэффициент.

Американский ученый Бриджмен предположил, что средняя длина свободного пробега волн ℓ равна среднему расстоянию между

молекулами а,

(3.10)

Для теплопроводности получается формула

(3.11)

где Uф- скорость звука в жидкости.

Попытка учесть роль внутренних колебательных степеней свободы была сделана Е. Боровиком. Им получена формула для теплопроводности

(3.12)

где r — радиус молекулы.

При оценке работ рассматриваемого направления, возникает вопрос:

В какой степени корректно использование общей формулы Дебая для жидкостей?"

Экспериментальные данные показывают, что теплопроводность жидкостей тем больше, чем больше ее удельная теплоемкость CV. Следовательно, теплоемкость может входить в выражение для λ. Помимо этого, в жидкостях происходят явления, аналогичные тем, которые наблюдаются в твердых телах, а именно, коллективные колебания молекул распространяются со скоростью звука и область их распространения ограничивается «длиной свободного пробега».

Кроме того, представление о переносе тепла дебаевскими волнами отражает важную особенность жидкого состояния — коллективный характер колебаний части молекул жидкости (в отличие от газового состояния с хаотическиеми перескоками молекул).

Рассмотрим третье направление – полуэмпирические методы расчета теплопроводности жидкости.

В работе А.Миснара вывод формулы для теплопроводности сделан на основе общей формулы Дебая: λ ~ ρ ·Uф ·СV ·ℓф, выражающей зависимость коэффициента теплопроводности от плотности ρ, скорости звука U, удельной (объемной) теплоемкости СV и длины свободного пробега носителей энергии — фононов — ℓф. По аналогии с приближенной формулой для скорости звука в твердом теле

(3.13)

А.Миснар предложил выразить скорость звука в жидкости через Ткип,

и плотность ρ, т.е

(3.14)

Однако сопоставление с экспериментом выявляет довольно значительное расхождение с расчетом; при одинаковом числе атомов в молекуле отклонения тем больше, чем больше вязкость жидкости. Если ввести коэффициент динамической вязкости μ, то скорость звука можно представить следующей зависимостью Uф ~ (Ткип/ρ)1/2 ·μ1/15.

В формуле Дебая осталось выразить произведение СV ·ℓф через физические характеристики жидкости. При одинаковом числе атомов произведение СV ·ℓф, с точностью до постоянного множителя, равно

Тогда формула для λ принимает следующий вид:

(3.15)

Пренебрегая членом, содержащим вязкость μ, Миснар получил следующее выражение для расчета теплопроводности жидкости:

(3.16)

Множитель В можно считать постоянным для жидкостей, имеющих одинаковое число атомов в молекуле. Множитель В уменьшается с увеличением числа атомов в молекуле. Подбор величины В ≈ 90/N1/4. Тогда окончательный вид выражения для расчета теплопроводности жидкостей при нормальных условиях будет равна:

, Дж/(м·с·К) (3.17)

где Ткип – температура кипения; ρ — плотность при t = 0 C иатмосферном

давлении; Срo — удельная теплоемкость; N — число атомов в молекуле.

Расхождениес экспериментальнымиданными составляет менее 10%.

Заключение

В своей работе я рассматривал теплопроводность жидкостей и газов. В общем случае я выяснил, что коэффициент теплопроводности для некоторых газов, жидкостей и твёрдых тел при атмосферном давлении, зависит от агрегатного состояния вещества (что видно, если посмотреть таблицу в моей курсовой работе, а лучше, к примеру, книгу о теплопроводности жидкостей и газов где приведены все газы и жидкости и подсчитан для некоторой температуры), его атомно-молекулярного строения, температуры и давления, состава (в случае смеси или раствора).

Если подробно рассматривать газа и жидкости, то как и для газа так и для жидкостей было сделано много различных опытов, впоследствии которых были получены формулы для определения .

Для различных газов, будь он, идеальный газ или реальный газ или ещё какой-то в конечном итоге видно что если к примеру взять газ идеальный, состоящий из твёрдых сферических молекул диаметром d, согласно кинетической теории газов, была получена конкретная формула для определения , если взять реальный газ, то довольно сложная функция температуры и давления, причём с ростом Т и р значение возрастает, это я рассмотрел как пример для идеального и реального газа, (существуют газовые смеси, газ, состоящий из многоатомных молекул, для определения надо воспользоваться внутренними степенями свободы молекул, и другие примеры газов)

Теперь переду к теплопроводности жидкостей, как я уже говорил, было тоже сделано множество опытов и получено, благодаря опытных данных, формулы для определения .Так вот в исследование посвященном теплопроводности жидкостей, как я уже писал в своей курсовой работе можно увидеть три основных направления: 1.Вычисление кинетических коэффициентов средствами статистической физики;2. Использование моделей теплового движения и механизмов переноса;3. Полуэмпирический подход. Не буду говорить подробно о каждом из них, так как более подробно я рассматривал это в своей курсовой работе, но если сказать кратко, то все эти направления были сделаны множеством учёных, основанных на предыдущих работах своих предшественников, и каждый привносил что новое для определения , основываясь. Опять же на различных представлениях. Как видно, опять же из моей курсовой работы, именно для определения для жидкостей было получено и вправду большое количество формул для разных случаев определения жидкостей.

Список используемых источников

1. Нащокин В.В. Техническая термодинамика и теплопередача

2. А.К. Кикоин, И.К. Кикоин Общий Курс Физики – Молекулярная Физика

3. Миснар А. Теплопроводность твердых тел, жидкостей, газов и их композиций.

4. Интернет — wikipendia.ru (интернет энциклопедия)

www.ronl.ru


Смотрите также