Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

14. Свободные и вынужденные колебания. Резонанс и его учет в технике. Реферат свободные и вынужденные колебания


Реферат Вынужденные колебания

скачать

Реферат на тему:

План:

    Введение
  • 1 Вынужденные колебания гармонического осциллятора
    • 1.1 Консервативный гармонический осциллятор
    • 1.2 Резонанс
    • 1.3 Затухающий гармонический осциллятор
  • Литература

Введение

Вынужденные колебания — колебания, происходящие под воздействием внешних сил, меняющихся во времени.

Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого воздействия, в то время как возникновение автоколебаний и их частота определяются внутренними свойствами самой автоколебательной системы.

Наиболее простой и содержательный пример вынужденных колебаний можно получить из рассмотрения гармонического осциллятора и вынуждающей силы, которая изменяется по закону: F(t) = F_0 \cos\left(\Omega t\right).

1. Вынужденные колебания гармонического осциллятора

1.1. Консервативный гармонический осциллятор

Второй закон Ньютона для такого осциллятора запишется в виде:  ma = -kx + F_0 \cos\left(\Omega t\right). Если ввести обозначения: \omega_0^2=\frac km, \quad \Phi_0=\frac{F_0}{m} и заменить ускорение на вторую производную от координаты по времени, то получим следующее обыкновенное дифференциальное уравнение:

 \ddot x + \omega_0^2 x = \Phi_0 \cos (\Omega t)

Решением этого уравнения будет сумма общего решения однородного уравнения и частного решения неоднородного. Общее решение однородного уравнения было уже получено здесь и оно имеет вид:

x(t) = A \sin\left(\omega_0 t + \varphi\right),

где A,φ — произвольные постоянные, которые определяются из начальных условий.

Найдём частное решение. Для этого подставим в уравнение решение вида: x(t)=B \cos \left(\Omega t \right) и получим значение для константы:

 B = \frac{\Phi_0}{\omega_0^2 - \Omega^2}

Тогда окончательное решение запишется в виде:

x(t)= A \sin\left(\omega_0 t + \phi\right) + \frac{\Phi_0}{\omega_0^2 - \Omega^2}\cos\left(\Omega t \right)

Эффект резонанса для разных частот внешнего воздействия и коэффициентов затухания

1.2. Резонанс

Из решения видно, что при частоте вынуждающей силы, равной частоте свободных колебаний, оно не пригодно — возникает резонанс, то есть «неограниченный» линейный рост амплитуды со временем. Из курса математического анализа известно, что решение в этом случае надо искать в виде: x(t)=t \left(A \sin \left(\Omega t \right) + B \cos \left(\Omega t \right)\right). Подставим этот анзац в дифференциальное уравнение и получим, что :

A = 0 \qquad B = \frac{\Phi_0}{2\Omega}

Таким образом, колебания в резонансе будут описываться следующим соотношением:

 x(t) = \frac{\Phi_0}{2\Omega} t \sin \left(\Omega t \right)

1.3. Затухающий гармонический осциллятор

Второй закон Ньютона:

 ma = -kx - \alpha v + F_0 \cos\left(\Omega t\right).

Переобозначения:

\omega_0^2=\frac km, \qquad \Phi_0=\frac{F_0}{m}, \qquad \zeta = \frac {\alpha}{2\sqrt{k m}}

Дифференциальное уравнение:

\ddot x + 2\zeta\omega_0 \dot x + \omega_0^2 x = \Phi_0 \cos\left(\Omega t\right)

Его решение будет строиться, как сумма решений однородного уравнения и частного решения неоднородного. Анализ однородного уравнения приведён здесь. Получим и проанализируем частное решение.

Запишем вынуждающую силу следующим образом: \Phi_0 \cos \Omega t = \Phi_0 Re\, e^{-i\Omega t}, тогда решение будем искать в виде:  x(t)=A e^{-i\Omega t}, \text{где} A \in \mathbb C. Подставим это решение в уравнение и найдём выражение для A:

A=\frac{\Phi_0}{\omega_0^2-\Omega^2 - 2i\beta\Omega}=\frac{\Phi_0\left(\omega_0^2-\Omega^2 + 2i\beta\Omega\right)}{\left(\omega_0^2-\Omega^2\right)^2+4\beta^2\Omega^2}=|A|e^{-i\varphi}

где |A|=\frac{\Phi_0}{\sqrt{\left(\omega_0^2-\Omega^2\right)^2+4\beta^2\Omega^2}}, \qquad \varphi=-\arctan\frac{2\beta\Omega}{\omega_0^2-\Omega^2}

Полное решение имеет вид:

x (t) = e^{- \zeta \omega_0 t} (c_1 \cos( \omega_\mathrm{d} t) + c_2 \sin( \omega_\mathrm{d} t )) + Re\left[\frac{\Phi_0\left(\omega_0^2-\Omega^2 + 2i\beta\Omega\right)}{\left(\omega_0^2-\Omega^2\right)^2+4\beta^2\Omega^2} e^{-i\Omega t}\right],

где  \omega_\mathrm{d}=\omega_0 \sqrt{1- \zeta^2 } — собственная частота затухающих колебаний.

Константы c1 и c2 в каждом из случаев определяются из начальных условий: \left\{\begin{array}{ccc}x(0) &=& x_0 \\ \dot{x}(0) &=& v_0 \end{array}\right.

В этом случае, в отличие от осциллятора без трения, амплитуда колебаний в резонансе имеет конечную величину.

Если мы рассмотрим устоявший процесс, то есть ситуацию при  t\, \to\, \infty , то решение однородного уравнения будет стремиться к нулю и останется только частное решение:

x(t \to \infty)=\Phi_0 \frac{\left(\omega_0^2-\Omega^2\right)\cos{\Omega t}+2\beta\Omega\sin{\Omega t}}{\left(\omega_0^2-\Omega^2\right)^2+4\beta^2\Omega^2} = \frac{\Phi_0}{\sqrt{(\omega_0^2 - \Omega^2)^2 + 4 \zeta^2\omega_0^2 \Omega^2 }} \cos (\Omega t - \varphi )

Это означает, что при  t\, \to\, \infty система «забывает» начальные условия, и характер колебаний зависит только от вынуждающей силы.

Работа, совершаемая вынуждающей силой F(t) = F_0 \cos\left(\Omega t\right) за время  dt\ , равна  F dx\ , а мощность  P = F \frac{dx}{dt} . Из уравнения

\ddot x + 2\zeta\omega_0 \dot x + \omega_0^2 x = \Phi_0 \cos\left(\Omega t\right)

следует, что

 P(t) = F \dot x = ( \ddot x + 2\zeta\omega_0 \dot x + \omega_0^2 x )m \dot x

Если учесть, что при установившихся вынужденных колебаниях

 x\, = A\, \cos ( \Omega t - \varphi )  \dot x = - A \Omega \sin ( \Omega t - \varphi )  \ddot x = - A \Omega ^2 \cos ( \Omega t - \varphi )

то тогда средняя за период  T = \frac{2 \pi }{ \Omega } мощность:

 P = \frac{m}{T} \int_0^T ( \ddot x + 2\zeta\omega_0 \dot x + \omega_0^2 x ) \dot x dt = A^2 m \zeta\omega_0 \Omega ^2

Работа за период

 A = m \int_0^T ( \ddot x + 2\zeta\omega_0 \dot x + \omega_0^2 x ) \dot x dt = A^2 m \zeta\omega_0 \Omega ^2 T =2\pi A^2 m \zeta\omega_0 \Omega

Литература

  • Бутиков Е.И. Собственные колебания линейного осциллятора. Учебное пособие.
  • Рабинович М.И. Трубецков Д.И. Введение в теорию колебаний и волн.

wreferat.baza-referat.ru

14. Свободные и вынужденные колебания. Резонанс и его учет в технике.

Если колебания совершаются в системе за счет первоначально сообщенной энергии, то они называются свободными. Примером таких систем являются модели колеблющихся тел:математическиймаятник ипружинный.

Вынужденные колебания– колебания, происходящие под действием меняющейся во времени внешней силы, которая совершает работу. За счет этого энергия колебательной системы увеличивается. Такой процесс можно описывать как процесс притока энергии в систему извне в ходе самих колебаний. Примером систем, в которых происходят вынужденные колебания, являются качели, раскачиваемые человеком, груз, висящий на пружине, точку подвеса которой периодически поднимают и опускают.

Если внешняя сила, действующая на систему, изменяется с течением времени по закону косинуса или синуса, то возникающие в системе вынужденные колебания будут гармоническими. При этом частота вынужденных колебаний будет совпадать с частотой изменения внешней силы.

Если при вынужденных колебаниях энергия, поступающая непрерывно или периодически от внешнего источника, восполняет потери, возникающие за счет работы силы трения, то колебания оказываются незатухающими.

Амплитуда вынужденных колебаний определяется амплитудой колебаний внешней силы, а также соотношением между частотой изменения этой силы и собственной частотой колебательной системы.

При вынужденных колебаниях может наблюдаться явление резкого возрастания амплитуды Aвынужденных колебаний системы –резонанс. Это явление возникает тогда, когда частота вынуждающей силы приближается к собственной частоте колебаний этой системы. При этом энергия, поступающая в колебательную систему, также равна потерям энергии за счет работы силы трения, однако баланс энергий наступает при другой амплитуде колебаний.

Рис. 7

Резонанс может возникать и тогда, когда частота колебаний вынуждающей силы кратна собственной частоте колебаний системы.

Зависимость амплитуды колебаний системы от частоты вынуждающей силы (рис. 7) называется резонансной кривой.

В технике используются устройства, в которых незатухающие колебания поддерживаются за счет энергии источника, автоматически включаемого и выключаемого самой колебательной системой. Момент, когда требуется подать энергию в колеблющуюся систему, отслеживает система обратной связи, которая открывает и закрывает клапан поступления энергии. Такие системы с регулированием поступления энергии за счет обратной связи называются автоколебательными, а сами колебания в таких системах – автоколебаниями.Примером такой системы могут служить маятниковые часы, где источником энергии является гиря на цепочке, роль обратной связи и «клапана» выполняет анкерный механизм, а автоколебания совершает маятник, который имеет собственную частоту колебаний, равную 1с

15. Механические волны. Виды волн. Длина волны.

В среде между ее частицами существуют силы взаимодействия. Если за счет внешнего источника энергии (внешней силы) вызвать колебания одних частиц среды, то возникают вынужденные колебания соседних частиц, которые, в свою очередь, вызывают колебания следующих частиц среды. Процесс распространения колебанийчастиц среды или другого типа возмущения среды называютмеханической волной.

Волны, в которых колебания частиц происходят вдоль направления распространения волны, называются продольными.

Волны, в которых колебания частиц происходят перпендикулярно направлению распространения волны, называются поперечными.

В продольной волне возмущения представляют собой сжатие (или разрежение) среды, а в поперечной – смещение (сдвиг) одних слоев среды относительно других. Пример продольных волн – распространение звука (зон сжатия) в газах, жидкостях и твердых телах, пример поперечных волн – распространение звука в твердом теле, волны на поверхности воды, на веревке или на пружине.

Деформация сжатия всегда сопровождается возникновением силы упругости, в то время как деформация сдвига приводит к появлению сил упругости только в твердых телах; сдвиг слоев в газах и жидкостях возникновением сил упругости не сопровождается. Поэтому продольные волны могут распространяться во всех средах: жидких, твердых, газообразных, а поперечные – только в твердых.

Рис. 2

График зависимости смещения каждой частицы среды от времени представляет собой синусоиду, сдвинутую относительно синусоиды для частицы в другой точке в соответствии со сдвигом фаз (рис. 2,б) Минимальное расстояние между точками волны, колеблющимися в фазе, т.е. с разностью фаз, равной 2, называютдлиной волны.

Геометрическое место положений точек волны в момент времени tтакже представляет собой синусоиду (см. рис. 2,а) вида

y(x) = A sin (kx).

где

 = 2/T, k = 2/

Аналогичные соотношения можно записать и для продольной волны, только в ней y(t,x) будет смещением частиц среды относительно положения равновесия вдоль осиx, по которой распространяется волна.

studfiles.net

Реферат - Вынужденные колебания - Физика

Реферат

На тему «Вынужденные колебания»

Студента I –го курса гр. 107

Шлыковича Сергея

Минск 2001

Вначале рассмотримзатухающие колебания.

Во всякой реальной колебательной системе всег­да имеется сила трения (для механической систе­мы), или электрическое сопротивление (для колебательного контура), действие которых приводит к уменьшению энергии системы. Если убыль этой энергии не восполняется, то колебания будут затухать.

Рассмотрим механические колебания. В большинстве случаев сила трения пропорциональна скорости.

. (1.1)

Где r — постоянная, которая называется коэффициентом трения. Знак минус обуслов­лен тем, что сила F и скорость v направлены в про­тивоположные стороны.

Уравнение второго закона Ньютона при наличии силы трения имеет вид

. (1.2)

Применим следующие обозначения

, (1.3)

Тогда

(1.4)

Где ω0— собственная частота коле­бательной системы.

Будем искать решение уравнения в виде

(1.5)

Найдём первую и вторую производные

Подставим выражения в уравнение (1.5)

Сократим на

(1.6)

Решение уравнения (1.6) зависит от знака коэф­фициента, стоящего при и. Рассмотрим случай, когда этот коэффициент положителен (т. е. b<ω0— тре­ние мало). Введя обозначение , придем к уравнению

Решением этого уравнения будет функция

Подставляя это выражение в уравнение (1.5), имеем

(1.7)

Здесь A0 и α — постоянные, значения которых зави­сят от начальных условий, ω — величина, определяе­мая формулой

.

Скорость затухания колебаний определяется ве­личиной , которую называют коэффи­циентом затухания.

Для характеристики колебательной системы употребляется также величина

называемая добротностью колебательной си­стемы. Она пропорциональна числу колебаний Ne, совершаемых системой за то время t, за которое амплитуда колебаний уменьшается в e раз.

Вынужденные колебания.

Допустим, что механическая колебательная система подвергается действию внешней силы, изме­няющейся со временем по гармоническому закону:

(2.1)

В этом случае уравнение второго закона Ньютона имеет вид

Введя обозначения (1.3), преобразуем уравнение приобретёт вид:

(2.2)

Здесь b — коэффициент затухания, ω0 — собственная частота колебательной системы, ω — частота выну­ждающей силы.

Дифференциальное уравнение (2.2) описывает вынужденные колебания. Решение этого уравнения равно сумме общего решения соответствующего однородного уравнения и частного решения неоднородного уравнения. Общее решение однородного уравнения уже найдено (1.7), оно имеет вид

(2.3)

Где .

Попробуем найти частное решение (2.2) в виде (2.4)

где — неизвестный пока сдвиг фаз между силой и вызываемыми ею колебаниями.

(2.5)

(2.6)

Развернем и по формулам для синуса и косинуса разности и подставим в формулу (2.2) :

Сгруппируем члены уравнения:

(2.7)

Уравнение (2.7) будет тождественно при любых значениях t тогда, когда коэффициенты при cosωt и sinωtв обеих частях уравнения будут оди­наковыми.

(2.8)

(2.9)

Найдём значения A и при которых функция (2.4) удовлетворяет уравне­нию (2.2). Для этого возведём равенства (2.8) и (2.9) в квадрат и сложим их друг с другом

(2.10)

Из (2.9) следует, что

(2.11)

Подставим значения A и в (2.4) и получим частное решение неоднородного уравнения (2.2):

(2.12)

Общее решение имеет вид

Первое слагаемое играет за­метную роль только в начальной стадии процесса, при установлении колебаний. С течением времени из-за экспоненциального множителя роль слагаемого уменьшается, и по прошест­вии достаточного времени им можно пренебречь, со­хранив в решении только второе.

Зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы (2.10) приводит к тому, что при некоторой частоте амплитуда достигает максимального значения. Колебательная система оказы­вается особенно отзывчивой на действие вынуждаю­щей силы при данной частоте. Это явление называет­ся резонансом, а соответствующая частота — резонансной частотой .

Для того чтобы определить резонансную частоту ωрез, нуж­но найти максимум функции (2.10), т.е. продифференцировать это выражение по ω и приравняв производную нулю:

Решения этого уравнения ω=0 и , но два из них исключаются, т.к. решение, равное нулю, соответст­вует максимуму знаменателя, а не имеет физического смысла (частота не может быть отрицательной).

(2.13). Следовательно (2.14)

Зависимость амплиту­ды вынужденных колеба­ний от частоты ко­лебаний показана графически на рисунке слева. Кривые на графике соответствуют различным значениям параметра b. Чем меньше b, тем выше и правее лежит максимум резонансной кривой. При очень большом затухании (таком, что b2 > ω0) выражение для ре­зонансной частоты становится мнимым. Это означает, что резонанс в этом случае не наблюдается — с увеличением частоты амплитуда монотонно убывает.

Изображенная на рисунке совокупность графиков функции (2.10) называется резонансными кривыми.

Согласно формуле (2.14) при малом затухании (т. е. при b<<ω0) амплитуда при резонансе

Если разделить это выражение на смещение x 0 из положе­ния равновесия под действием постоянной силы F0, равное . В результате получим, что

где — логарифмический декремент затухания.

Следовательно, добротность Q показывает, во сколько раз амплитуда при резо­нансе превышает смещение системы из положения равновесия под действием постоянной силы, модуль которой равен амплитуде вынуждающей силы (это справедливо лишь при небольшом затухании).

Лит-ра:

И. В Савельев “Курс общей физики”.

P.S.

Данная лит-ра использовалась также при написании реферата на тему «Сложение колебаний».

www.ronl.ru

механические и электромагнитные. Свободные и вынужденные колебания. Характеристика :: SYL.ru

Одна из наиболее интересных тем в физике – колебания. Изучение механики тесно связано именно с ними, с тем, как ведут себя тела, на которые воздействуют те или иные силы. Так, изучая колебания, мы можем наблюдать за маятниками, видеть зависимость амплитуды колебания от длины нити, на которой висит тело, от жесткости пружины, веса груза. Несмотря на кажущуюся простоту, данная тема далеко не всем дается так легко, как хотелось бы. Поэтому мы решили собрать наиболее известные сведения о колебаниях, их видах и свойствах, и составить для вас краткий конспект по данной теме. Возможно, он будет вам полезен.

вынужденные колебания

Определение понятия

Прежде чем говорить о таких понятиях, как механические, электромагнитные, свободные, вынужденные колебания, об их природе, характеристиках и видах, условиях возникновения, следует дать определение данному понятию. Так, в физике колебанием называют постоянно повторяющийся процесс изменения состояния вокруг одной точки пространства. Наиболее простой пример – маятник. Каждый раз при колебании он отклоняется от некой вертикальной точки сначала в одну, затем в другую сторону. Занимается изучением явления теория колебаний и волн.

свободные и вынужденные колебания

Причины и условия возникновения

Как и любое другое явление, колебания возникают только в том случае, если выполнены определенные условия. Механические вынужденные колебания, как и свободные, возникают при выполнении таких условий, как:

1. Наличие силы, выводящей тело из состояния устойчивого равновесия. К примеру, толчка математического маятника, при котором начинается движение.

2. Наличие минимальной силы трения в системе. Как известно, трение замедляет те или иные физические процессы. Чем больше сила трения, тем меньше вероятность возникновения колебаний.

3. Одна из сил должна зависеть от координат. То есть тело изменяет свое положение в определенной системе координат относительно определенной точки.

Виды колебаний

Разобравшись с тем, что такое колебание, разберем их классификацию. Есть две наиболее известные классификации – по физической природе и по характеру взаимодействия с окружающей средой. Так, по первому признаку выделяют механические и электромагнитные, а по второму - свободные и вынужденные колебания. Выделяют также автоколебания, затухающие колебания. Но мы с вами поговорим лишь о первых четырех видах. Давайте разберем подробнее каждый из них, выясним их особенности, а также дадим весьма краткое описание их основных характеристик.

Механические

Именно с механических начинается изучение колебаний в школьном курсе физики. Свое знакомство с ними ученики начинают в таком разделе физики, как механика. Отметим, что данные физические процессы протекают в окружающей среде, и мы можем наблюдать за ними невооруженным глазом. При таких колебаниях тело неоднократно совершает одно и то же движение, проходя определенное положение в пространстве. Примеры таких колебаний - те же маятники, вибрация камертона или гитарной струны, движение листьев и веток на дереве, качелей.

Электромагнитные

вынужденные электромагнитные колебания

После того как прочно усвоено такое понятие, как механические колебания, начинается изучение электромагнитных колебаний, более сложных по своей структуре, так как данный вид протекает в различных электрических цепях. При этом процессе наблюдаются колебания в электрических, а также магнитных полях. Несмотря на то что электромагнитные колебания имеют несколько иную природу возникновения, законы для них такие же, как и для механических. При электромагнитных колебаниях может меняться не только напряжённость электромагнитного поля, но и такие характеристики, как сила заряда и тока. Важно также отметить, что существуют свободные и вынужденные электромагнитные колебания.

Свободные колебания

вынужденные колебания

Данный вид колебаний возникает под воздействием внутренних сил тогда, когда система выводится из состояния устойчивого равновесия или покоя. Свободные колебания всегда являются затухающими, а значит, их амплитуда и частота со временем уменьшаются. Ярким примером подобного вида раскачиваний служит движение груза, подвешенного на нить и колеблющегося из одной стороны в другую; груза, прикрепленного к пружине, то опускающегося вниз под действием тяжести, то поднимающегося вверх под действием пружины. Кстати, именно такого рода колебаниям уделяют внимание при изучении физики. Да и большинство задач посвящено как раз-таки свободным колебаниям, а не вынужденным.

Вынужденные

Несмотря на то что такого рода процесс изучается школьниками не так подробно, именно вынужденные колебания наиболее часто встречаются в природе. Довольно ярким примером данного физического явления может быть движение веток на деревьях в ветреную погоду. Такие колебания всегда происходят под воздействием внешних факторов и сил, да и возникают они в любой момент.

Характеристики колебаний

свободные и вынужденные колебания

Как и любой другой процесс, колебания имеют свои характеристики. Можно выделить шесть основных параметров колебательного процесса: амплитуду, период, частоту, фазу, смещение и циклическую частоту. Естественно, каждая из них имеет свои обозначения, а также единицы измерения. Разберем их немного подробнее, остановившись на краткой характеристике. При этом мы не будем расписывать формулы, которые используются для вычисления той или иной величины, дабы не запутать читателя.

Смещение

Первая из них – смещение. Данная характеристика показывает отклонение тела от точки равновесия в данный момент времени. Измеряется в метрах (м), общепринятое обозначение - x.

Амплитуда колебания

Даная величина обозначает наибольшее смещение тела от точки равновесия. При наличии незатухающего колебания является постоянной величиной. Измеряется в метрах, общепринятое обозначение - хм.

Период колебания

Еще одна величина, которая обозначает время, за которое совершается одно полное колебание. Общепринятое обозначение - T, измеряется в секундах (с).

Частота

Последняя характеристика, о которой мы поговорим - частота колебаний. Данная величина указывает на число колебаний в определенный промежуток времени. Измеряется в герцах (Гц) и обозначается как ν.

Виды маятников

вынужденные колебания

Итак, мы с вами разобрали вынужденные колебания, поговорили о свободных, значит, нам следует также упомянуть о видах маятников, которые используются для создания и изучения свободных колебаний (в школьных условиях). Тут можно выделить два вида - математический и гармонический (пружинный). Первый представляет собой некое тело, подвешенное к нерастяжимой нити, размер которой равен l (основная значимая величина). Второй - груз прикрепленный к пружине. Тут важно знать массу груза (m) и жесткость пружины (k).

Выводы

Итак, мы с вами разобрались, что существуют механические и электромагнитные колебания, дали их краткую характеристику, описали причины и условия возникновения данных видов колебаний. Сказали пару слов об основных характеристиках данных физических явлений. Разобрались также и с тем, что бывают вынужденные колебания и свободные. Определили, в чем их отличие друг от друга. Кроме того, мы сказали пару слов о маятниках, используемых при изучении механических колебаний. Надеемся, данная информация была вам полезна.

www.syl.ru

Реферат : Вынужденные колебания (работа 1)

Реферат

На тему «Вынужденные колебания»

Студента I –го курса гр. 107

Шлыковича Сергея

Минск 2001

Вначале рассмотрим затухающие колебания.

Во всякой реальной колебательной системе всег­да имеется сила трения (для механической систе­мы), или электрическое сопротивление (для колебательного контура), действие которых приводит к уменьшению энергии системы. Если убыль этой энергии не восполняется, то колебания будут затухать.

Рассмотрим механические колебания. В большинстве случаев сила трения пропорциональна скорости.

. (1.1)

Где r — постоянная, которая называется коэффициентом трения. Знак минус обуслов­лен тем, что сила F и скорость v направлены в про­тивоположные стороны.

Уравнение второго закона Ньютона при наличии силы трения имеет вид

. (1.2)

Применим следующие обозначения

, (1.3)

Тогда

(1.4)

Где щ0 — собственная частота коле­бательной системы.

Будем искать решение уравнения в виде

(1.5)

Найдём первую и вторую производные

Подставим выражения в уравнение (1.5)

Сократим на

(1.6)

Решение уравнения (1.6) зависит от знака коэф­фициента, стоящего при и. Рассмотрим случай, когда этот коэффициент положителен (т. е. b<щ0 — тре­ние мало). Введя обозначение , придем к уравнению

Решением этого уравнения будет функция

Подставляя это выражение в уравнение (1.5), имеем

(1.7)

Здесь A0 и б — постоянные, значения которых зави­сят от начальных условий, щ — величина, определяе­мая формулой

.

Скорость затухания колебаний определяется ве­личиной , которую называют коэффи­циентом затухания.

Для характеристики колебательной системы употребляется также величина

называемая добротностью колебательной си­стемы. Она пропорциональна числу колебаний Ne , совершаемых системой за то время t, за которое амплитуда колебаний уменьшается в e раз.

Вынужденные колебания.

Допустим, что механическая колебательная система подвергается действию внешней силы, изме­няющейся со временем по гармоническому закону:

(2.1)

В этом случае уравнение второго закона Ньютона имеет вид

Введя обозначения (1.3), преобразуем уравнение приобретёт вид:

(2.2)

Здесь b — коэффициент затухания, щ0 — собственная частота колебательной системы, щ — частота выну­ждающей силы.

Дифференциальное уравнение (2.2) описывает вынужденные колебания. Решение этого уравнения равно сумме общего решения соответствующего однородного уравнения и частного решения неоднородного уравнения. Общее решение однородного уравнения уже найдено (1.7), оно имеет вид

(2.3)

Где .

Попробуем найти частное решение (2.2) в виде (2.4)

где — неизвестный пока сдвиг фаз между силой и вызываемыми ею колебаниями.

(2.5)

(2.6)

Развернем и по формулам для синуса и косинуса разности и подставим в формулу (2.2) :

Сгруппируем члены уравнения:

(2.7)

Уравнение (2.7) будет тождественно при любых значениях t тогда, когда коэффициенты при cosщt и sinщt в обеих частях уравнения будут оди­наковыми.

(2.8)

(2.9)

Найдём значения A и при которых функция (2.4) удовлетворяет уравне­нию (2.2). Для этого возведём равенства (2.8) и (2.9) в квадрат и сложим их друг с другом

(2.10)

Из (2.9) следует, что

(2.11)

Подставим значения A и в (2.4) и получим частное решение неоднородного уравнения (2.2):

(2.12)

Общее решение имеет вид

Первое слагаемое играет за­метную роль только в начальной стадии процесса, при установлении колебаний. С течением времени из-за экспоненциального множителя роль слагаемого уменьшается, и по прошест­вии достаточного времени им можно пренебречь, со­хранив в решении только второе.

Зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы (2.10) приводит к тому, что при некоторой частоте амплитуда достигает максимального значения. Колебательная система оказы­вается особенно отзывчивой на действие вынуждаю­щей силы при данной частоте. Это явление называет­ся резонансом, а соответствующая частота — резонансной частотой.

Для того чтобы определить резонансную частоту щрез, нуж­но найти максимум функции (2.10), т.е. продифференцировать это выражение по щ и приравняв производную нулю:

Решения этого уравнения щ=0 и , но два из них исключаются, т.к. решение, равное нулю, соответст­вует максимуму знаменателя, а не имеет физического смысла (частота не может быть отрицательной).

(2.13). Следовательно (2.14)

Зависимость амплиту­ды вынужденных колеба­ний от частоты ко­лебаний показана графически на рисунке слева. Кривые на графике соответствуют различным значениям параметра b. Чем меньше b, тем выше и правее лежит максимум резонансной кривой. При очень большом затухании (таком, что b2 > щ0) выражение для ре­зонансной частоты становится мнимым. Это означает, что резонанс в этом случае не наблюдается — с увеличением частоты амплитуда монотонно убывает.

Изображенная на рисунке совокупность графиков функции (2.10) называется резонансными кривыми.

Согласно формуле (2.14) при малом затухании (т. е. при b<<щ0) амплитуда при резонансе

Если разделить это выражение на смещение x0 из положе­ния равновесия под действием постоянной силы F0, равное . В результате получим, что

где - логарифмический декремент затухания.

Следовательно, добротность Q показывает, во сколько раз амплитуда при резо­нансе превышает смещение системы из положения равновесия под действием постоянной силы, модуль которой равен амплитуде вынуждающей силы (это справедливо лишь при небольшом затухании).

Литература:

И. В Савельев “Курс общей физики”.

P.S.

Данная лит-ра использовалась также при написании реферата на тему «Сложение колебаний».

topref.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.