Реферат: Современная химия:. Реферат современная химия


Реферат Современная химия

Введение. 31. Роль химии в современном мире. 5 2. Предмет химии. 9 3. Химический анализ и синтез. 10 4. Химические обозначения и законы. 13 5. Панорама современной химии. 16Заключение. 24Список литературы. 26 Целью данного реферата является рассмотрение вопроса о специфике химического знания и проблемах современной химии. Актуальность данной тематики обусловлена тем, что нa протяжении длительного развития человечество не раз сталкивалось с большим числом проблем, от которых нередко зависело само его существование. Чтобы выжить, наш предок научился изготавливать и использовать простейшие орудия труда, чем компенсировал свои природные недостатки. В дальнейшем первобытный человек, оказавшись перед проблемой обеспечения пищей, освоил охоту, а затем земледелие и скотоводство. Освоение все более сложных орудий и предметов труда вызвало энергетическую проблему, потребовало перехода от естественных источников энергии к более совершенным. Энергетическая проблема последовательно привела человека к освоению энергии пара, тепловой, электрической энергии, наконец, энергии атома. 1 Необходимость повышения производительности труда и эффективности производства, роста темпов добычи и переработки громадного объема минеральных ресурсов, наряду с необходимостью решения многих жизненно важных проблем вызвали к жизни использование химической технологии, всеобщую химизацию, а затем и компьютеризацию общественного производства и быта. Суммируя, можно сказать, что лейтмотивом, осью развития человеческой цивилизации была и есть проблема выживания человеческого общества в условиях окружающей среды, природы в целом. Мотив выживания, как представляется, есть ведущий мотив всей преобразующей деятельности человека на земле. Для своего выражения человек всегда будет вынужден решать вечные проблемы овладения веществом, энергией и информацией. Успехи человека в решении больших и малых проблем выживания в значительной мере были достигнуты благодаря развитию химии, становлению различных химических технологий. Успехи многих отраслей человеческой деятельности, таких как энергетика, металлургия, машиностроение, легкая и пищевая промышленность и других, во многом зависят от состояния и развития химии. Огромное значение химия имеет для успешной работы сельскохозяйственного производства, фармацевтической промышленности, обеспечения быта человека. Химическая промышленность производит десятки тысяч наименований продуктов, многие из которых по технологическим и экономическим характеристикам успешно конкурируют с традиционными материалами, а часть — являются уникальными по своим параметрам. Химия дает материалы с заранее заданными свойствами, в том числе и такими, которые не встречаются в природе. Подобные материалы позволяют проводить технологические процессы с большими скоростями, температурами, давлениями, в условиях агрессивных сред. Для промышленности химия поставляет такие продукты, как кислоты и щелочи, краски, синтетические волокна и т. п. Для сельского хозяйства химическая промышленность выпускает минеральные удобрения, средства защиты от вредителей, химические добавки и консерванты к кормам для животных. Для домашнего хозяйства и быта химия поставляет моющие средства, краски, аэрозоли и другие продукты[1]. Химия характерна не только тем, что обеспечивает производство многих необходимых продуктов, материалов, лекарств. Во многих отраслях промышленности и сельскохозяйственного производства широко используются также химические методы обработки: беление, крашение, печатание в текстильной промышленности; обезжиривание, травление, цианирование в машиностроении; кислородное дутье в металлургии; консервация, синтезирование витаминов и аминокислот — в пищевой и фармацевтической промышленности и т. д. Внедрение химических методов ведет к интенсификации технологических процессов, увеличению выхода полезного вещества, снижению отходов, повышению качества продукции. Таким образом, химизация, как процесс внедрения химических методов в общественное производство и быт, позволила человеку решить многие технические, экономические и социальные проблемы. Однако масштабность, а нередко и неуправляемость этого процесса обернулась «второй стороной медали». Химия прямо или опосредованно затронула практически все компоненты окружающей среды — сушу, атмосферу, воду Мирового океана, внедрилась в природные круговороты веществ. В результате этого нарушилось сложившееся в течение миллионов лет равновесие природных процессов на планете, химизация стала заметно отражаться на здоровье самого человека. Получилась ситуация, которую ученые обоснованно именуют химической войной против населения,3емли. За последние 30-40 лет в этой войне пострадали сотни миллионов жителей планеты. Возникла самостоятельная ветвь экологической науки — химическая экология. Основными источниками, загрязняющими окружающую среду, кроме собственно химической промышленности, являются металлургия, автомобильный транспорт, тепловые электростанции. Они дают большой объем газообразных отходов, загрязняют водоемы рек и озер сточными водами, используемыми в технологических целях. Газообразные отходы содержат оксиды углерода, серы, азота, соединения свинца, ртути, бензопирен, сероводород и другие вредные вещества. В связи со сжиганием топлива в больших объемах возникла проблема снижения концентрации кислорода и озона в атмосфере, получившая название «кислородного голодания». К твердым отходам относятся отходы горнодобывающей промышленности, строительный и бытовой мусор. Сточные воды содержат многие неорганические соединения — ионы ртути, цинка, кадмия, меди, никеля и т. д. Пятая часть вод Мирового океана загрязнена нефтью и нефтепродуктами. Значительный ущерб водоемам вследствие вымывания удобрений из почвы наносят загрязнения, связанные с сельскохозяйственным производством. Вредные вещества из воздуха и воды попадают в почву, в которой накапливаются тяжелые металлы, радиоактивные элементы. В организм человека вредные вещества попадают через воздух, воду и пищу. Таким образом, человечество, пройдя ряд этапов развития — от огня костра до термоядерной бомбы, — в начале XXI века оказалось в условиях, когда в очередной раз встал вопрос о его выживании. Угроза экологической катастрофы требует решительного пересмотра отношений современной «химической» цивилизации и природы в сторону оптимизации этих отношений. Задача заключается в том, чтобы через новые технологии гармонизировать отношения «общество — природа» таким образом, чтобы компенсаторных возможностей окружающей среды было достаточно для нейтрализации антропогенных воздействий на нее[2]. Новые технологии по своим параметрам должны приближаться к природным процессам, отличаться от промышленных своей безотходностью или малоотходностью. В безотходном производстве технологический цикл «сырье — производство — использование готовое продукта — вторичное сырье» вписывается в окружающую среду, не нарушая экономического развития. В настоящее время наметились следующие пути решения сложных экологических проблем: комплексная переработка сырья; пересмотр традиционных процессов и схем получения известных продуктов; внедрение бессточных и замкнутых схем водопотребления; очистка выбрасываемых газов; использование промышленных комплексов с замкнутой структурой материальных и энергетических потоков. Выше были изложены основные представления о химии, ее законах, месте в человеческой цивилизации. В заключение следует еще раз подчеркнуть, что химия — «палка о двух концах». С одной стороны, это благо для человека, без которого немыслимо дальнейшее развитие общества, с другой — бедствие для окружающей среды. Очевидно, что идеал покорения природы, сопутствовавший научно-технической революции в XIX веке, должен быть коренным образом пересмотрен, что предполагает формирование экологического сознания у всех людей, молодого поколения в первую очередь. Молодым предстоит решать трудные задачи ограждения природы от негативного воздействия человека — во избежание глобальной экологической катастрофы. Химическая технология — прикладная научная дисциплина о процессах, методах и средствах переработки сырья в конечный химический продукт. Основная задача химической технологии — оптимальное сочетание в единой технологической системе разнообразных химических преобразований с физико-химическими и механическими процессами типа измельчения твердых материалов, фильтрования, воздействия высоких или низких температур, электрических полей и т. п. Для решения задач химической технологии используют достижения всех разделов химии, физики, биологии, кибернетики, экономики. Химические технологии классифицируются по сырью (технология нефти, пластмасс), по виду товара (технология удобрений, красителей и т. п.). По группам элементов (технология щелочных металлов, технология тяжелых металлов и т. п.), по типам химических процессов (технология хлорирования и др.). 1. Альтшуллер Г.С. Найти идею. Новосибирск, 1999. С. 186. 2. Вернадский В.И. Биосфера. М., 1997. 3. Волков Ю.Г. Гуманистическое будущее. М., 1998. 4. Гудолл Дж. В природе. М., 2002. 5. Селье Г. Сдродмшг жизнь/ Цит. по: Холей Д. Тайна здоровья. М., 2000. 6. Шарден П.Т. ее. Феномен человека. М., 1997. 7. Шовен Р. Поведение животных. М., 2002. 8. Эфроимсон Р. Родословная альтруизма // Новый мир. 1999. № 11. 9. Южных С.И. Химия. М. 1993. 10. Яковлев И.А. Мир химии. М., 2001[1] Альтшуллер Г.С. Найти идею. Новосибирск, 1999. С. 186.[2] Вернадский В.И. Биосфера. М., 1997.

www.referater.ru

Реферат - Современная химия - Биология

Рождение современной химии

… нет науки, которая была бы замечательнее и поучительнее истории химии. Юстус фон Либих

Введение

Представления древнегреческих натурфилософов оставались основными идейными истоками естествознания вплоть до XVIII в. До начала эпохи Возрождения в науке господствовали представления Аристотеля. В дальнейшем стало расти влияние атомистических взглядов,

впервые высказанных Левкиппом и Демокритом. Алхимические работы опирались преимущественно на натурфилософские взгляды Платона и Аристотеля. Большинство экспериментаторов того периода были откровенными шарлатанами, которые пытались с помощью примитивных химических реакций получить или золото, или философский камень — вещество дающее бессмертие. Однако были и настоящие ученые, которые пытались систематизировать знания. Среди них Авиценна, Парацельс, Роджер Бэкон др. Некоторые химики считают, что алхимия — это зря потерянное время. Однако это не так: в процессе поиска золота было открыто множество химических соединений и изучены их свойства. Благодаря этим знаниям в конце XVII века была создана первая серьезная химическая теория — теория флогистона.

Теория флогистона и система Лавуазье

Творец теории флогистона — Георг Шталь. Он считал, что флогистон содержится во всех горючих и способных к окислению веществах. Горение или окисление рассматривалось им как процесс, при котором тело теряет флогистон. Воздух играет при этом особо важную роль. Он необходим для окисления, чтобы “вбирать” в себя флогистон. Из воздуха флогистон попадает в листья растений и в их древесину, из которых при восстановлении он вновь освобождается и возвращается телу. Так впервые была сформулирована теория, описывающая процессы горения. Ее особенности и новизна состояли в том, что одновременно рассматривались во взаимосвязи процессы окисления и восстановления. Теория флогистона развивала идеи Бехера и атомистические представления. Она позволяла объяснить протекание различных процессов в ремесленной химии и, в первую очередь, в металлургии и оказала громадное влияние на развитие химических ремесел и совершенствование методов «экспериментального искусства» в химии.

Теория флогистона способствовала и развитию учения об элементах. Приверженцы теории флогистона называли элементами оксиды металлов, рассматривая их как металлы, лишенные флогистона. Металлы же, напротив, считали соединениями элементов (оксидов металлов) с флогистоном. Потребовалось лишь поставить все положения этой теории “с головы на ноги”. Что и было сделано в дальнейшем. Для объяснения того, что масса оксидов больше чем масса металлов, Шталь предположил (а, вернее утверждал), что флогистон имеет отрицательный вес, т.е. флогистон соединившись с элементом “тянет” его вверх. Несмотря на одностороннюю, лишь качественную характеристику процессов, происходящих при горении, теория флогистона имела громадное значение для объяснения и систематизации именно этих превращений. На неверность флогистонной теории указывал Михаил Иванович Ломоносов.

Однако экспериментально доказать это смог Антуан Лоран Лавуазье. Лавуазье заметил, что при горении фосфора и серы же, как и при прокаливании металлов, происходит увеличение веса вещества. Казалось бы естественным сделать: увеличение веса сжигаемого вещества происходит при всех процессах горения. Однако этот вывод настолько противоречил положениям теории флогистона, что нужна была недюжинная смелость, чтобы высказать его хотя бы в виде гипотезы. Лавуазье решил проверить высказанные ранее Бойлем, Реем, Мэйоу и Ломоносовым гипотезы о роли воздуха в процессах горения. Он интересовался тем, увеличивается ли количество воздуха, если в нем происходит восстановление окисленного тела и выделение благодаря этому дополнительного воздуха.

Лавуазье удалось доказать, что действительно количество воздуха при этом возрастает. Это открытие Лавуазье назвал самым интересным со времени работ Шталя. Поэтому в ноябре 1772 г. Он направил в Парижскую Академию наук специальное сообщение о полученных им результатах. На следующем этапе исследований Лавуазье полагал выяснить, какова природа “воздуха”, соединяющегося с горючими телами при их окислении. Однако все попытки установить природу этого “воздуха” в 17721773 гг. Окончились безрезультатно.

Дело в том, что Лавуазье, так же как и Шталь, восстанавливал “металлические извести” путем непосредственного контакта с “углеобразной материей” и тоже получал при этом диоксид углерода, состав которого он не мог тогда установить. Как считал Лавуазье, “уголь сыграл с ним злую шутку”. Однако Лавуазье, как и многим другим химикам, не приходила мысль, что восстановление оксидов металлов можно осуществить нагреванием с помощью зажигательного стекла.

Но вот осенью 1774 г. Джозеф Пристли сообщил, что при восстановлении окиси ртути с помощью зажигательного стекла образуется новый вид воздуха — “дефлогистированный воздух”. Незадолго до этого кислород был открыт Шееле, но сообщение об этом было опубликовано с большим запозданием. Шееле и Пристли объясняли наблюдаемое ими явление выделения кислорода с позиций флогистонной теории. Только Лавуазье смог использовать открытие кислорода в качестве главного аргумента против теории флогистона. Весной 1775 г. Лавуазье воспроизвел опыт Пристли. Он хотел получить кислород и проверить, был ли кислород тем компонентом воздуха, благодаря которому происходило горение или окисление металлов. Лавуазье удалось не только выделить кислород, но и вновь получить оксид ртути. Одновременно Лавуазье определял весовые отношения вступающих в эту реакцию веществ. Ученому удалось доказать, что отношения количества веществ, участвующих в реакциях окисления и восстановления, остаются неизменными. Работы Лавуазье произвели в химии, пожалуй, такую же революцию, как два с половиной века до открытия Коперника в астрономии. Вещества, которые раньше считались элементами, как показал Лавуазье, оказались соединениями, состоящими в свою очередь из сложных “элементов”. Открытия и воззрения Лавуазье оказали громадное влияние не только на развитие химической теории, но и на всю систему химических знаний. Они так преобразовали саму основу химических знаний и языка, что следующие поколения химиков, по существу, не могли понять даже терминологию, которой пользовались до Лавуазье. На этом основании впоследствии стали считать, что о “подлинной” химии нельзя говорить до открытий Лавуазье.

Преемственность химических исследований при этом была забыта. Только историки химии начали вновь воссоздавать действительно существовавшие закономерности развития химии. При этом было выяснено, что “химическая революция” Лавуазье была бы невозможна без существования до него определенного уровня химических знаний.

Развитие химических знаний Лавуазье увенчал созданием новой системы, в которую вошли важнейшие достижения химии прошлых веков. Эта система, правда, в значительно расширенном и исправленном виде, стала основой научной химии. В 80х гг. XVIII в. Новая система Лавуазье получила признание у ведущих естествоиспытателей Франции — К.Бертолле, А. Де Фуркруа и Л.Гитона де Морво. Они поддержали новаторские идеи Лавуазье и совместно с ним разработали новую химическую номенклатуру и терминологию. В 1789 г. Лавуазье изложил основы разработанной им системы знаний в учебнике “Начальный курс химии, представленный в новом виде на основе новейших открытий”.

Лавуазье разделял элементы на металлы и неметаллы, а соединения на двойные и тройные. Двойные соединения, образуемые металлами с кислородом, он относил к основаниям, а соединения неметаллов с кислородом — к кислотам. Тройные соединения, получающиеся при взаимодействии кислот и оснований, он называл солями. Система Лавуазье основывалась на точных качественных и количественных исследованиях. Этот довольно новый вид аргументации он использовал, изучая многие спорные проблемы химии — вопросы теории горения, проблемы взаимного превращения элементов, которые были весьма актуальны в период становления научной химии.

Так, для проверки представления о возможности взаимного превращения элементов Лавуазье в течение нескольких дней нагревал воду в запаянной сосуде. В итоге он обнаружил в воде незначительное количество “земли”, установив при этом, что изменение общего веса сосуда вместе с водой не происходит. Образование “земель” Лавуазье объяснил не как результат их выделения из воды, а за счет разрушения стенок реакционного сосуда. Для ответа на этот вопрос шведский химик аптекарь К.Шееле в то же время использовал качественные методы доказательства, установив идентичность выделяющихся “земель” и материала сосуда.

Лавуазье, как и Ломоносов, учитывал существовавшие с древности наблюдения о сохранении веса веществ и систематически изучал весовые соотношения веществ, участвующих в химической реакции. Он обратил внимание на то, что, например, при горении серы или при образовании ржавчины на железе происходит увеличение веса исходных веществ. Это противоречило теории флогистона, согласно которой при горении должен был выделяться гипотетический флогистон. Лавуазье счел ошибочным объяснение, согласно которому флогистон обладал отрицательным весом, и окончательно отказался от этой идеи. Другие химики, например М.В.Ломоносов или Дж.Мэйоу, пытались объяснить окисление элементов и образование оксидов металлов (или, как тогда говорили, “известей”) как процесс, при котором частицы воздуха соединяются с какимлибо веществом. Этот воздух может быть “оттянут обратно” путем восстановления.

В 1772 г. Лавуазье собрал этот воздух, но не смог установить его природу. Первым об открытии кислорода сообщил Пристли. В 1775 г. Ему удалось доказать, что именно кислород соединяется с металлом и вновь выделяется из него при его восстановлении, как, например, при образовании “извести” ртути и ее восстановлении. Систематическим взвешиванием было установлено, что вес металла, участвующего в этих превращениях, не изменяется. Сегодня этот факт, казалось бы, убедительно доказывает справедливость предположений Лавуазье, а тогда большинство химиков отнеслись к нему скептически. Одной из причин такого отношения было то, что Лавуазье не мог объяснить процесс горения водорода.

В 1783 г. он узнал, что, используя электрическую дугу, Кавендиш доказал образование воды при сжигании смеси водорода и кислорода в закрытом сосуде. Повторив этот опыт, Лавуазье нашел, что вес воды соответствует весу исходных веществ. Затем он провел эксперимент, в котором пропускал водяной пар через железные стружки, помещенные в сильно нагреваемую медную трубку. Кислород соединялся с железными стружками, а водород собирался на конце трубки. Таким образом, воспользовавшись превращениями веществ, Лавуазье сумел объяснить процесс горения и качественно, и количественно, и для этого ему уже не нужна была теория флогистона.

Пристли же и Шееле, которые, открыв кислород, фактически создали основные предпосылки для появления кислородной теории Лавуазье, сами твердо придерживались позиций теории флогистона. Кавендиш, Пристли, Шееле и некоторые другие химики полагали, что расхождения между результатами опытов и положениями теории флогистона удастся устранить путем создания дополнительных гипотез. Надежность и полнота опытных данных, ясность аргументации и простота изложения способствовали быстрому распространению системы Лавуазье в Англии, Голландии, Германии, Швеции, Италии. В Германии представления Лавуазье были изложены в двух работах дра Гиртаннера “Новая химическая номенклатура на немецком языке” (1791 г.) и “Основы антифлогистонной химии” (1792 г.). Благодаря Гиртаннеру впервые появились немецкие обозначения веществ, соответствующие новой номенклатуре, например кислорода, водорода, азота. Работавший в Берлине Гермбштедт опубликовал в 1792 г. учебник Лавуазье в переводе на немецкий язык, а М.Клапрот после того, как он повторил опыты Лавуазье, признал, новое учение; взгляды Лавуазье разделял и знаменитый естествоиспытатель А.Гумбольдт.

В 1790х годах в Германии не раз публиковались работы Лавуазье. Большинство известных химиков Англии, Голландии, Швеции, талии разделяли взгляды Лавуазье. Нередко в историконаучной литературе можно прочесть, что для признания теории Лавуазье химикам понадобилось достаточно много времени. Однако по сравнению с 200 годами непризнания астрономами взглядов Коперника 1015летний период дискуссий в химии не так уж велик. В последней трети XVIII в. одной из важнейших была проблема, которая многие века интересовала ученых: химики хотели понять, почему и в каких соотношениях соединяются вещества друг с другом. К этой проблеме проявляли интерес еще греческие философы, а во времена Возрождения ученые выдвигали идею о сродстве веществ и даже строили ряды веществ по сродству.

Парацельс писал, что ртуть образует с металлами амальгамы, причем для разных металлов с различной скоростью ив такой последовательности: быстрее всего с золотом, затем ссеребром, свинцом, оловом, медью и, наконец, медленнее всего с железом. Парацельс считал, что причиной этого ряда химического сродства является не только “ненависть” и “любовь” веществ друг к другу. В соответствии с его представлениями металлы содержат серу, и, чем меньше ее содержание, тем чище металлы, ачистотавеществ в значительной мере определяет их сродство друг к другу. Г.Шталь

объяснял ряд осаждения металлов как результат различного содержания в них флогистона. До последней трети XVIII в. многочисленные исследования были направлены на то, чтобы расположить вещества по величине их “сродства”, и многие химики составляли соответствующие таблицы.

Для объяснения различного химического сродства веществ выдвигались и атомистические представления, а после того, как в конце XVIII — начале XIX вв. Ученые стали понимать влияние электричества на протекание некоторых химических процессов, для этой же цели пытались использовать и представления об электричестве. Основываясь на них, Берцелиус создал дуалистическую теорию состава веществ, в соответствии с, например, соли состоят из положительно и отрицательно заряженных “оснований” и “кислот”: при электролизе они притягиваются к противоположно заряженным электродам и могут распадаться при этом на элементы вследствие нейтрализации зарядов.

Со второй половины XVIII в. особенно много внимания ученые стали уделять вопросу: в каких количественных соотношениях взаимодействуют друг с другом вещества в химических реакциях? Уже давно было известно, что кислоты и основания могут нейтрализовать друг друга. Предпринимались также попытки установить содержание кислот и оснований в солях. Т.Бергман и Р.Кирван нашли, что, например, в реакции двойного обмена между химически нейтральными сульфатом калия и нитратом натрия образуются новые соли — сульфат натрия и нитрат калия, которые тоже являются химически нейтральными. Но ни один из исследователей не сделал из этого наблюдения общего вывода.

В 1767 г. Кавендиш обнаружил, что количество азотной и серной кислот, нейтрализующие одинаковые количества карбоната калия, нейтрализуют также одинаковое количество карбоната кальция. И.Рихтер первым сформулировал закон эквивалентов, объяснение которому было найдено позднее с позиций атомистической теории Дальтона. Рихтер установил, что раствор, получающийся при смешивании растворов двух химически нейтральных солей, тоже нейтрален. Он провел многочисленные определения количеств оснований и кислот, которые, соединяясь, дают химически нейтральные соли. Рихтер сделал следующий вывод: если одно и то же количество какойлибо кислоты нейтрализуется различными, строго определенными количествами разных оснований, то эти количества оснований эквивалентны и нейтрализуются одним и тем же количеством другой кислоты. Выражаясь современным языком, если к раствору сульфата калия, например, добавить раствор нитрата бария до полного осаждения сульфата бария, то раствор, содержащий нитрат калия, тоже будет нейтрален:

K2SO4 + Ba(NO3)2 = 2KNO3 + BaSO4. Следовательно, при образовании нейтральной соли эквивалентны друг другу следующие количества: 2K, 1Ba, 1SO4 и 2NO3. Полинг обобщил и сформулировал в современном виде этот закон соединительных весов”: “Весовые количества двух элементов (или их целочисленные кратные), которые, реагируют с одним и тем же количеством третьего элемента, реагируют друг с другом в тех же количествах”.

В начале работы Рихтера почти не привлекли внимания исследователей, поскольку он пользовался еще терминологией флогистонной теории. Кроме того, полученные ученым ряды эквивалентных весов были недостаточно наглядны, а предложенный им выбор относительных количеств оснований не имел серьезных доказательств. Положение исправил Э.Фишер, который среди эквивалентных весов Рихтер выбрал в качестве эталона эквивалент серной кислоты, приняв его равным 100, и составил, исходя из этого, таблицу “относительных весов” (эквивалентов) соединений. Но о таблице эквивалентов Фишера стало известно лишь благодаря Бертолле, который, критикуя Фишера, привел эти данные в своей книге “Опыт химической статики” (1803 г.).

Бертолле сомневался, что состав химических соединений постоянен. Он имел на это основание. Вещества, которые в начале XIX в. считались чистыми, на самом деле были либо смесями, либо равновесными системами различных веществ, а количественный состав химических соединений во многом зависел от количеств веществ, участвующих в реакциях их образования. Некоторые историки химии считают, что, подобно Венцелю, Бертолле также предвосхитил основные положения закона действия масс, который аналитически выражал влияние количеств взаимодействующих на скорость превращения.

Немецкий химик К.Венцель в 1777 г. показал, что скорость растворения металла в кислоте, измеряемая количеством металла, растворившегося за определенное время, пропорциональна “силе” кислоты. Бертолле сделал многое для учета влияния масс реагентов на ход превращения. Однако между работами Венцеля и даже Бертолле, с одной стороны, и точной формулировкой закона действия масс — с другой, существует качественное различие. Негативное отношение Бертолле к закону нейтрализации Рихтера не могло длиться долго, так как против положений Бертолле энергично выступил Пруст.

Проделав в течение 17991807 гг. массу анализов, Пруст доказал, что Бертолле сделал свои выводы о различном составе одних и тех же веществ, анализируя смеси, а не индивидуальные вещества, что он, например, не учитывал содержания воды в некоторых оксидах. Пруст убедительно доказал постоянство состава чистых химических соединений и завершил свою борьбу против взглядов Бертолле установлением закона постоянства состава веществ: состав одних и тех же веществ независимо от способа получения одинаков (постоянен).

Периодический закон

Рассматривая историю химии я не могу не упяуть об открытии периодического закона. Уже на ранних этапах развития химии было обнаружено, что различнымлементам присущи особые свойства. Вначале элементы разделяли всего на два типа — металлы и неметаллы. В 1829 г. немецкий химик Иоганн Деберейнер обнаружил существование нескольких групп из трех элементов (триад) со сходными химическими свойствами. Деберейнер обнаружил всего 5 триад, это:

1.

Cl, Br, I 2.

S, Se, Te

3.

Ca, Cr, Ba

4.

Li, Na, K

5.

Fe, Co, Ni

Это обнаружение свойств элементов побудило к дальнейшим исследованиям химиков, которые пытались найти рациональные способы классификации элементов.

В 1865 г. английский химик Джон Ньюлендс (18391898) заинтересовался проблемой периодической повторяемости свойств элементов. Он расположил из известных элементов в порядке возрастания их атомных масс следующим образом: H Li Be B C N O F Na Mg Al Si P S Cl K Ca Cr Ti Mn Fe Ньюлендс заметил, что в этой последовательности восьмой элемент (фтор) напоминает первый (водород), девятый элемент напоминает второй и т.д. Тем самым через каждые восемь элементов свойства повторялись. Однако в этой системе элементов было много неверного:

1) В таблице не нашлось места новым элементам.

2) Таблица не открывала возможности научного подхода к определению атомных масс и не позволяла сделать выбор между их вероятными наилучшими значениями.

3) Некоторые элементы представлялись неудачно размещенными в таблице. Например железо сопоставлялось с серой (!) и т.д. Несмотря на большое количество недостатков, попытка Ньюлендса явилась шагом в правильном направлении. Мы знаем, открытие периодического закона принадлежит Дмитрию Ивановичу Менделееву. Давайте рассмотрим историюего открытия. В 1869 году Н.А.Меншуткин представил членам Русского химического общества небольшую работу Д.И.Менделеева “Соотношение свойств с атомным весом элементов”. (Сам Д.И.Менделеев на заседании не присутствовал.)

На этом заседании работа Д.И.Менделеева не была воспринята всерьез. Пауль Вальден писал впоследствии: “Большие события слишком часто встречают незначительный отклик, и тот день, который должен был стать знаменательным днем для молодого Русского химического общества, а в действительности оказался будничным днем”. Д.И.Менделеев любил дерзкие идеи. Обнаруженная им закономерность гласила: химические и физические свойства элементови их соединений находятся в периодической зависимости от атомных весов элементов. Подобно своим предшественникам, Д.И.Менделеев выделил наиболее типичные элементы. Однако он предположил наличие пустот в таблице и осмелился утверждать, что они должны быть заполнены не открытыми еще элементами. В одно и тоже время с Менделеевым над этой же проблемой работал Лотарь Мейер, который опубликовал свою работу в 1870 году.

Однако приоритет в открытиипериодического заслуженно остается за Дмитрием Ивановичем Менделеевым, т.к. даже сам Л.Мейер не помышлял отрицать выдающуюся роль Д.И.Менделеева в открытии периодического закона. В своих воспоминаниях Л.Мейер указывал, что пользовался при написании своей работы рефератом статьи Д.И.Менделеева.

В 1870 году Менделеев внес в таблицу некоторые изменения: как любая закономерность, в основе которой лежит bepm` идея, новая система оказалась жизнеспособной, поскольку в ней предусматривалась возможность уточнений. Как я уже говорил, гениальность теории Менделеева состояла в том, что он оставил пустоты в своей таблице. Тем самым он предположил (а точнее был уверен), что еще не все элементы открыты. Однако Дмитрий Иванович не остановился на достигнутом. С помощью периодического закона он даже описал химические и физические свойства еще не открытых химических элементов, например: галлия, германия, скандия, которые полностью подтвердились.

После этого большинство ученых убедилось в правильности теории Д.И.Менделеева. В наше время периодический закон имеет огромное значение. С помощью его предсказывают свойства химических соединений, продукты реакций. С помощью периодического закона и в наше время предсказывают свойства элементов — это элементы которые нельзя получить в весомых количествах.

Заключение

После работ Лавуазье, Пруста, Ломоносова и Менделеева, уже в нашем веке было сделано много важнейших открытий в области химии и физики. Это работы по термодинамике, строению атома и молекул, электрохимии, — этот список можно продолжить до бесконечности. Однако открытия Лавуазье и Д.И.Менделеева остаются фундаментом химических знаний.

www.ronl.ru

Реферат: Современная химия

Рождение современной химии

 

...нет науки, которая была бы замечательнее и поучительнее истории химии. Юстус фон Либих

 

 Введение

Представления древнегреческих натурфилософов оставались основными идейными истоками естествознания вплоть до XVIII в. До начала эпохи Возрождения в науке господствовали представления Аристотеля. В дальнейшем стало расти влияние атомистических взглядов,

впервые высказанных Левкиппом и Демокритом. Алхимические работы опирались преимущественно на натурфилософские взгляды Платона и Аристотеля. Большинство экспериментаторов того периода были откровенными шарлатанами, которые пытались с помощью примитивных химических реакций получить или золото, или философский камень - вещество дающее бессмертие. Однако были и настоящие ученые, которые пытались систематизировать знания. Среди них Авиценна, Парацельс, Роджер Бэкон др. Некоторые химики считают, что алхимия - это зря потерянное время. Однако это не так: в процессе поиска золота было открыто множество химических соединений и изучены их свойства. Благодаря этим знаниям в конце XVII века была создана первая серьезная химическая теория - теория флогистона.

 Теория флогистона и система Лавуазье

Творец теории флогистона - Георг Шталь. Он считал, что флогистон содержится во всех горючих и способных к окислению веществах. Горение или окисление рассматривалось им как процесс, при котором тело теряет флогистон. Воздух играет при этом особо важную роль. Он необходим для окисления, чтобы “вбирать” в себя флогистон. Из воздуха флогистон попадает в листья растений и в их древесину, из которых при восстановлении он вновь освобождается и возвращается телу. Так впервые была сформулирована теория, описывающая процессы горения. Ее особенности и новизна состояли в том, что одновременно рассматривались во взаимосвязи процессы окисления и восстановления. Теория флогистона развивала идеи Бехера и атомистические представления. Она позволяла объяснить протекание различных процессов в ремесленной химии и, в первую очередь, в металлургии и оказала громадное влияние на развитие химических ремесел и совершенствование методов "экспериментального искусства" в химии.

Теория флогистона способствовала и развитию учения об элементах. Приверженцы теории флогистона называли элементами оксиды металлов, рассматривая их как металлы, лишенные флогистона. Металлы же, напротив, считали соединениями элементов (оксидов металлов) с флогистоном. Потребовалось лишь поставить все положения этой теории “с головы на ноги”. Что и было сделано в дальнейшем. Для объяснения того, что масса оксидов больше чем масса металлов, Шталь предположил (а, вернее утверждал), что флогистон имеет отрицательный вес, т.е. флогистон соединившись с элементом “тянет” его вверх. Несмотря на одностороннюю, лишь качественную характеристику процессов, происходящих при горении, теория флогистона имела громадное значение для объяснения и систематизации именно этих превращений. На неверность флогистонной теории указывал Михаил Иванович Ломоносов.

Однако экспериментально доказать это смог Антуан Лоран Лавуазье. Лавуазье заметил, что при горении фосфора и серы же, как и при прокаливании металлов, происходит увеличение веса вещества. Казалось бы естественным сделать: увеличение веса сжигаемого вещества происходит при всех процессах горения. Однако этот вывод настолько противоречил положениям теории флогистона, что нужна была недюжинная смелость, чтобы высказать его хотя бы в виде гипотезы. Лавуазье решил проверить высказанные ранее Бойлем, Реем, Мэйоу и Ломоносовым гипотезы о роли воздуха в процессах горения. Он интересовался тем, увеличивается ли количество воздуха, если в нем происходит восстановление окисленного тела и выделение благодаря этому дополнительного воздуха.

Лавуазье удалось доказать, что действительно количество воздуха при этом возрастает. Это открытие Лавуазье назвал самым интересным со времени работ Шталя. Поэтому в ноябре 1772 г. Он направил в Парижскую Академию наук специальное сообщение о полученных им результатах. На следующем этапе исследований Лавуазье полагал выяснить, какова природа “воздуха”, соединяющегося с горючими телами при их окислении. Однако все попытки установить природу этого “воздуха” в 17721773 гг. Окончились безрезультатно.

Дело в том, что Лавуазье, так же как и Шталь, восстанавливал “металлические извести” путем непосредственного контакта с “углеобразной материей” и тоже получал при этом диоксид углерода, состав которого он не мог тогда установить. Как считал Лавуазье, “уголь сыграл с ним злую шутку”. Однако Лавуазье, как и многим другим химикам, не приходила мысль, что восстановление оксидов металлов можно осуществить нагреванием с помощью зажигательного стекла.

Но вот осенью 1774 г. Джозеф Пристли сообщил, что при восстановлении окиси ртути с помощью зажигательного стекла образуется новый вид воздуха - “дефлогистированный воздух”. Незадолго до этого кислород был открыт Шееле, но сообщение об этом было опубликовано с большим запозданием. Шееле и Пристли объясняли наблюдаемое ими явление выделения кислорода с позиций флогистонной теории. Только Лавуазье смог использовать открытие кислорода в качестве главного аргумента против теории флогистона. Весной 1775 г. Лавуазье воспроизвел опыт Пристли. Он хотел получить кислород и проверить, был ли кислород тем компонентом воздуха, благодаря которому происходило горение или окисление металлов. Лавуазье удалось не только выделить кислород, но и вновь получить оксид ртути. Одновременно Лавуазье определял весовые отношения вступающих в эту реакцию веществ. Ученому удалось доказать, что отношения количества веществ, участвующих в реакциях окисления и восстановления, остаются неизменными. Работы Лавуазье произвели в химии, пожалуй, такую же революцию, как два с половиной века до открытия Коперника в астрономии. Вещества, которые раньше считались элементами, как показал Лавуазье, оказались соединениями, состоящими в свою очередь из сложных “элементов”. Открытия и воззрения Лавуазье оказали громадное влияние не только на развитие химической теории, но и на всю систему химических знаний. Они так преобразовали саму основу химических знаний и языка, что следующие поколения химиков, по существу, не могли понять даже терминологию, которой пользовались до Лавуазье. На этом основании впоследствии стали считать, что о “подлинной” химии нельзя говорить до открытий Лавуазье.

Преемственность химических исследований при этом была забыта. Только историки химии начали вновь воссоздавать действительно существовавшие закономерности развития химии. При этом было выяснено, что “химическая революция” Лавуазье была бы невозможна без существования до него определенного уровня химических знаний.

Развитие химических знаний Лавуазье увенчал созданием новой системы, в которую вошли важнейшие достижения химии прошлых веков. Эта система, правда, в значительно расширенном и исправленном виде, стала основой научной химии. В 80х гг. XVIII в. Новая система Лавуазье получила признание у ведущих естествоиспытателей Франции - К.Бертолле, А. Де Фуркруа и Л.Гитона де Морво. Они поддержали новаторские идеи Лавуазье и совместно с ним разработали новую химическую номенклатуру и терминологию. В 1789 г. Лавуазье изложил основы разработанной им системы знаний в учебнике “Начальный курс химии, представленный в новом виде на основе новейших открытий”.

Лавуазье разделял элементы на металлы и неметаллы, а соединения на двойные и тройные. Двойные соединения, образуемые металлами с кислородом, он относил к основаниям, а соединения неметаллов с кислородом - к кислотам. Тройные соединения, получающиеся при взаимодействии кислот и оснований, он называл солями. Система Лавуазье основывалась на точных качественных и количественных исследованиях. Этот довольно новый вид аргументации он использовал, изучая многие спорные проблемы химии - вопросы теории горения, проблемы взаимного превращения элементов, которые были весьма актуальны в период становления научной химии.

Так, для проверки представления о возможности взаимного превращения элементов Лавуазье в течение нескольких дней нагревал воду в запаянной сосуде. В итоге он обнаружил в воде незначительное количество “земли”, установив при этом, что изменение общего веса сосуда вместе с водой не происходит. Образование “земель” Лавуазье объяснил не как результат их выделения из воды, а за счет разрушения стенок реакционного сосуда. Для ответа на этот вопрос шведский химик аптекарь К.Шееле в то же время использовал качественные методы доказательства, установив идентичность выделяющихся “земель” и материала сосуда.

Лавуазье, как и Ломоносов, учитывал существовавшие с древности наблюдения о сохранении веса веществ и систематически изучал весовые соотношения веществ, участвующих в химической реакции. Он обратил внимание на то, что, например, при горении серы или при образовании ржавчины на железе происходит увеличение веса исходных веществ. Это противоречило теории флогистона, согласно которой при горении должен был выделяться гипотетический флогистон. Лавуазье счел ошибочным объяснение, согласно которому флогистон обладал отрицательным весом, и окончательно отказался от этой идеи. Другие химики, например М.В.Ломоносов или Дж.Мэйоу, пытались объяснить окисление элементов и образование оксидов металлов (или, как тогда говорили, “известей”) как процесс, при котором частицы воздуха соединяются с какимлибо веществом. Этот воздух может быть “оттянут обратно” путем восстановления.

В 1772 г. Лавуазье собрал этот воздух, но не смог установить его природу. Первым об открытии кислорода сообщил Пристли. В 1775 г. Ему удалось доказать, что именно кислород соединяется с металлом и вновь выделяется из него при его восстановлении, как, например, при образовании “извести” ртути и ее восстановлении. Систематическим взвешиванием было установлено, что вес металла, участвующего в этих превращениях, не изменяется. Сегодня этот факт, казалось бы, убедительно доказывает справедливость предположений Лавуазье, а тогда большинство химиков отнеслись к нему скептически. Одной из причин такого отношения было то, что Лавуазье не мог объяснить процесс горения водорода.

В 1783 г. он узнал, что, используя электрическую дугу, Кавендиш доказал образование воды при сжигании смеси водорода и кислорода в закрытом сосуде. Повторив этот опыт, Лавуазье нашел, что вес воды соответствует весу исходных веществ. Затем он провел эксперимент, в котором пропускал водяной пар через железные стружки, помещенные в сильно нагреваемую медную трубку. Кислород соединялся с железными стружками, а водород собирался на конце трубки. Таким образом, воспользовавшись превращениями веществ, Лавуазье сумел объяснить процесс горения и качественно, и количественно, и для этого ему уже не нужна была теория флогистона.

Пристли же и Шееле, которые, открыв кислород, фактически создали основные предпосылки для появления кислородной теории Лавуазье, сами твердо придерживались позиций теории флогистона. Кавендиш, Пристли, Шееле и некоторые другие химики полагали, что расхождения между результатами опытов и положениями теории флогистона удастся устранить путем создания дополнительных гипотез. Надежность и полнота опытных данных, ясность аргументации и простота изложения способствовали быстрому распространению системы Лавуазье в Англии, Голландии, Германии, Швеции, Италии. В Германии представления Лавуазье были изложены в двух работах дра Гиртаннера “Новая химическая номенклатура на немецком языке” (1791 г.) и “Основы антифлогистонной химии” (1792 г.). Благодаря Гиртаннеру впервые появились немецкие обозначения веществ, соответствующие новой номенклатуре, например кислорода, водорода, азота. Работавший в Берлине Гермбштедт опубликовал в 1792 г. учебник Лавуазье в переводе на немецкий язык, а М.Клапрот после того, как он повторил опыты Лавуазье, признал, новое учение; взгляды Лавуазье разделял и знаменитый естествоиспытатель А.Гумбольдт.

В 1790х годах в Германии не раз публиковались работы Лавуазье. Большинство известных химиков Англии, Голландии, Швеции, талии разделяли взгляды Лавуазье. Нередко в историконаучной литературе можно прочесть, что для признания теории Лавуазье химикам понадобилось достаточно много времени. Однако по сравнению с 200 годами непризнания астрономами взглядов Коперника 1015летний период дискуссий в химии не так уж велик. В последней трети XVIII в. одной из важнейших была проблема, которая многие века интересовала ученых: химики хотели понять, почему и в каких соотношениях соединяются вещества друг с другом. К этой проблеме проявляли интерес еще греческие философы, а во времена Возрождения ученые выдвигали идею о сродстве веществ и даже строили ряды веществ по сродству.

Парацельс писал, что ртуть образует с металлами амальгамы, причем для разных металлов с различной скоростью ив такой последовательности: быстрее всего с золотом, затем ссеребром, свинцом, оловом, медью и, наконец, медленнее всего с железом. Парацельс считал, что причиной этого ряда химического сродства является не только “ненависть” и “любовь” веществ друг к другу. В соответствии с его представлениями металлы содержат серу, и, чем меньше ее содержание, тем чище металлы, ачистотавеществ в значительной мере определяет их сродство друг к другу. Г.Шталь

объяснял ряд осаждения металлов как результат различного содержания в них флогистона. До последней трети XVIII в. многочисленные исследования были направлены на то, чтобы расположить вещества по величине их “сродства”, и многие химики составляли соответствующие таблицы.

Для объяснения различного химического сродства веществ выдвигались и атомистические представления, а после того, как в конце XVIII - начале XIX вв. Ученые стали понимать влияние электричества на протекание некоторых химических процессов, для этой же цели пытались использовать и представления об электричестве. Основываясь на них, Берцелиус создал дуалистическую теорию состава веществ, в соответствии с, например, соли состоят из положительно и отрицательно заряженных “оснований” и “кислот”: при электролизе они притягиваются к противоположно заряженным электродам и могут распадаться при этом на элементы вследствие нейтрализации зарядов.

Со второй половины XVIII в. особенно много внимания ученые стали уделять вопросу: в каких количественных соотношениях взаимодействуют друг с другом вещества в химических реакциях? Уже давно было известно, что кислоты и основания могут нейтрализовать друг друга. Предпринимались также попытки установить содержание кислот и оснований в солях. Т.Бергман и Р.Кирван нашли, что, например, в реакции двойного обмена между химически нейтральными сульфатом калия и нитратом натрия образуются новые соли - сульфат натрия и нитрат калия, которые тоже являются химически нейтральными. Но ни один из исследователей не сделал из этого наблюдения общего вывода.

В 1767 г. Кавендиш обнаружил, что количество азотной и серной кислот, нейтрализующие одинаковые количества карбоната калия, нейтрализуют также одинаковое количество карбоната кальция. И.Рихтер первым сформулировал закон эквивалентов, объяснение которому было найдено позднее с позиций атомистической теории Дальтона. Рихтер установил, что раствор, получающийся при смешивании растворов двух химически нейтральных солей, тоже нейтрален. Он провел многочисленные определения количеств оснований и кислот, которые, соединяясь, дают химически нейтральные соли. Рихтер сделал следующий вывод: если одно и то же количество какойлибо кислоты нейтрализуется различными, строго определенными количествами разных оснований, то эти количества оснований эквивалентны и нейтрализуются одним и тем же количеством другой кислоты. Выражаясь современным языком, если к раствору сульфата калия, например, добавить раствор нитрата бария до полного осаждения сульфата бария, то раствор, содержащий нитрат калия, тоже будет нейтрален:

K2SO4 + Ba(NO3)2 = 2KNO3 + BaSO4. Следовательно, при образовании нейтральной соли эквивалентны друг другу следующие количества: 2K, 1Ba, 1SO4 и 2NO3. Полинг обобщил и сформулировал в современном виде этот закон соединительных весов”: “Весовые количества двух элементов (или их целочисленные кратные), которые, реагируют с одним и тем же количеством третьего элемента, реагируют друг с другом в тех же количествах”.

В начале работы Рихтера почти не привлекли внимания исследователей, поскольку он пользовался еще терминологией флогистонной теории. Кроме того, полученные ученым ряды эквивалентных весов были недостаточно наглядны, а предложенный им выбор относительных количеств оснований не имел серьезных доказательств. Положение исправил Э.Фишер, который среди эквивалентных весов Рихтер выбрал в качестве эталона эквивалент серной кислоты, приняв его равным 100, и составил, исходя из этого, таблицу “относительных весов” (эквивалентов) соединений. Но о таблице эквивалентов Фишера стало известно лишь благодаря Бертолле, который, критикуя Фишера, привел эти данные в своей книге “Опыт химической статики” (1803 г.).

Бертолле сомневался, что состав химических соединений постоянен. Он имел на это основание. Вещества, которые в начале XIX в. считались чистыми, на самом деле были либо смесями, либо равновесными системами различных веществ, а количественный состав химических соединений во многом зависел от количеств веществ, участвующих в реакциях их образования. Некоторые историки химии считают, что, подобно Венцелю, Бертолле также предвосхитил основные положения закона действия масс, который аналитически выражал влияние количеств взаимодействующих на скорость превращения.

Немецкий химик К.Венцель в 1777 г. показал, что скорость растворения металла в кислоте, измеряемая количеством металла, растворившегося за определенное время, пропорциональна “силе” кислоты. Бертолле сделал многое для учета влияния масс реагентов на ход превращения. Однако между работами Венцеля и даже Бертолле, с одной стороны, и точной формулировкой закона действия масс - с другой, существует качественное различие. Негативное отношение Бертолле к закону нейтрализации Рихтера не могло длиться долго, так как против положений Бертолле энергично выступил Пруст.

Проделав в течение 17991807 гг. массу анализов, Пруст доказал, что Бертолле сделал свои выводы о различном составе одних и тех же веществ, анализируя смеси, а не индивидуальные вещества, что он, например, не учитывал содержания воды в некоторых оксидах. Пруст убедительно доказал постоянство состава чистых химических соединений и завершил свою борьбу против взглядов Бертолле установлением закона постоянства состава веществ: состав одних и тех же веществ независимо от способа получения одинаков (постоянен).

 Периодический закон

 Рассматривая историю химии я не могу не упяуть об открытии периодического закона. Уже на ранних этапах развития химии было обнаружено, что различнымлементам присущи особые свойства. Вначале элементы разделяли всего на два типа - металлы и неметаллы. В 1829 г. немецкий химик Иоганн Деберейнер обнаружил существование нескольких групп из трех элементов (триад) со сходными химическими свойствами. Деберейнер обнаружил всего 5 триад, это:

 1.

Cl, Br, I 2.

S, Se, Te

3.

Ca, Cr, Ba

4.

Li, Na, K

5.

Fe, Co, Ni

 Это обнаружение свойств элементов побудило к дальнейшим исследованиям химиков, которые пытались найти рациональные способы классификации элементов.

В 1865 г. английский химик Джон Ньюлендс (18391898) заинтересовался проблемой периодической повторяемости свойств элементов. Он расположил из известных элементов в порядке возрастания их атомных масс следующим образом: H Li Be B C N O F Na Mg Al Si P S Cl K Ca Cr Ti Mn Fe Ньюлендс заметил, что в этой последовательности восьмой элемент (фтор) напоминает первый (водород), девятый элемент напоминает второй и т.д. Тем самым через каждые восемь элементов свойства повторялись. Однако в этой системе элементов было много неверного:

1) В таблице не нашлось места новым элементам.

2) Таблица не открывала возможности научного подхода к определению атомных масс и не позволяла сделать выбор между их вероятными наилучшими значениями.

3) Некоторые элементы представлялись неудачно размещенными в таблице. Например железо сопоставлялось с серой (!) и т.д. Несмотря на большое количество недостатков, попытка Ньюлендса явилась шагом в правильном направлении. Мы знаем, открытие периодического закона принадлежит Дмитрию Ивановичу Менделееву. Давайте рассмотрим историюего открытия. В 1869 году Н.А.Меншуткин представил членам Русского химического общества небольшую работу Д.И.Менделеева “Соотношение свойств с атомным весом элементов”. (Сам Д.И.Менделеев на заседании не присутствовал.)

На этом заседании работа Д.И.Менделеева не была воспринята всерьез. Пауль Вальден писал впоследствии: “Большие события слишком часто встречают незначительный отклик, и тот день, который должен был стать знаменательным днем для молодого Русского химического общества, а в действительности оказался будничным днем”. Д.И.Менделеев любил дерзкие идеи. Обнаруженная им закономерность гласила: химические и физические свойства элементови их соединений находятся в периодической зависимости от атомных весов элементов. Подобно своим предшественникам, Д.И.Менделеев выделил наиболее типичные элементы. Однако он предположил наличие пустот в таблице и осмелился утверждать, что они должны быть заполнены не открытыми еще элементами. В одно и тоже время с Менделеевым над этой же проблемой работал Лотарь Мейер, который опубликовал свою работу в 1870 году.

Однако приоритет в открытиипериодического заслуженно остается за Дмитрием Ивановичем Менделеевым, т.к. даже сам Л.Мейер не помышлял отрицать выдающуюся роль Д.И.Менделеева в открытии периодического закона. В своих воспоминаниях Л.Мейер указывал, что пользовался при написании своей работы рефератом статьи Д.И.Менделеева.

В 1870 году Менделеев внес в таблицу некоторые изменения: как любая закономерность, в основе которой лежит bepm` идея, новая система оказалась жизнеспособной, поскольку в ней предусматривалась возможность уточнений. Как я уже говорил, гениальность теории Менделеева состояла в том, что он оставил пустоты в своей таблице. Тем самым он предположил (а точнее был уверен), что еще не все элементы открыты. Однако Дмитрий Иванович не остановился на достигнутом. С помощью периодического закона он даже описал химические и физические свойства еще не открытых химических элементов, например: галлия, германия, скандия, которые полностью подтвердились.

После этого большинство ученых убедилось в правильности теории Д.И.Менделеева. В наше время периодический закон имеет огромное значение. С помощью его предсказывают свойства химических соединений, продукты реакций. С помощью периодического закона и в наше время предсказывают свойства элементов - это элементы которые нельзя получить в весомых количествах.

 

Заключение

После работ Лавуазье, Пруста, Ломоносова и Менделеева, уже в нашем веке было сделано много важнейших открытий в области химии и физики. Это работы по термодинамике, строению атома и молекул, электрохимии, - этот список можно продолжить до бесконечности. Однако открытия Лавуазье и Д.И.Менделеева остаются фундаментом химических знаний.

www.referatmix.ru

Доклад - Современная химия - Биология

Рождение современной химии

… нет науки, которая была бы замечательнее и поучительнее истории химии. Юстус фон Либих

Введение

Представления древнегреческих натурфилософов оставались основными идейными истоками естествознания вплоть до XVIII в. До начала эпохи Возрождения в науке господствовали представления Аристотеля. В дальнейшем стало расти влияние атомистических взглядов,

впервые высказанных Левкиппом и Демокритом. Алхимические работы опирались преимущественно на натурфилософские взгляды Платона и Аристотеля. Большинство экспериментаторов того периода были откровенными шарлатанами, которые пытались с помощью примитивных химических реакций получить или золото, или философский камень — вещество дающее бессмертие. Однако были и настоящие ученые, которые пытались систематизировать знания. Среди них Авиценна, Парацельс, Роджер Бэкон др. Некоторые химики считают, что алхимия — это зря потерянное время. Однако это не так: в процессе поиска золота было открыто множество химических соединений и изучены их свойства. Благодаря этим знаниям в конце XVII века была создана первая серьезная химическая теория — теория флогистона.

Теория флогистона и система Лавуазье

Творец теории флогистона — Георг Шталь. Он считал, что флогистон содержится во всех горючих и способных к окислению веществах. Горение или окисление рассматривалось им как процесс, при котором тело теряет флогистон. Воздух играет при этом особо важную роль. Он необходим для окисления, чтобы “вбирать” в себя флогистон. Из воздуха флогистон попадает в листья растений и в их древесину, из которых при восстановлении он вновь освобождается и возвращается телу. Так впервые была сформулирована теория, описывающая процессы горения. Ее особенности и новизна состояли в том, что одновременно рассматривались во взаимосвязи процессы окисления и восстановления. Теория флогистона развивала идеи Бехера и атомистические представления. Она позволяла объяснить протекание различных процессов в ремесленной химии и, в первую очередь, в металлургии и оказала громадное влияние на развитие химических ремесел и совершенствование методов «экспериментального искусства» в химии.

Теория флогистона способствовала и развитию учения об элементах. Приверженцы теории флогистона называли элементами оксиды металлов, рассматривая их как металлы, лишенные флогистона. Металлы же, напротив, считали соединениями элементов (оксидов металлов) с флогистоном. Потребовалось лишь поставить все положения этой теории “с головы на ноги”. Что и было сделано в дальнейшем. Для объяснения того, что масса оксидов больше чем масса металлов, Шталь предположил (а, вернее утверждал), что флогистон имеет отрицательный вес, т.е. флогистон соединившись с элементом “тянет” его вверх. Несмотря на одностороннюю, лишь качественную характеристику процессов, происходящих при горении, теория флогистона имела громадное значение для объяснения и систематизации именно этих превращений. На неверность флогистонной теории указывал Михаил Иванович Ломоносов.

Однако экспериментально доказать это смог Антуан Лоран Лавуазье. Лавуазье заметил, что при горении фосфора и серы же, как и при прокаливании металлов, происходит увеличение веса вещества. Казалось бы естественным сделать: увеличение веса сжигаемого вещества происходит при всех процессах горения. Однако этот вывод настолько противоречил положениям теории флогистона, что нужна была недюжинная смелость, чтобы высказать его хотя бы в виде гипотезы. Лавуазье решил проверить высказанные ранее Бойлем, Реем, Мэйоу и Ломоносовым гипотезы о роли воздуха в процессах горения. Он интересовался тем, увеличивается ли количество воздуха, если в нем происходит восстановление окисленного тела и выделение благодаря этому дополнительного воздуха.

Лавуазье удалось доказать, что действительно количество воздуха при этом возрастает. Это открытие Лавуазье назвал самым интересным со времени работ Шталя. Поэтому в ноябре 1772 г. Он направил в Парижскую Академию наук специальное сообщение о полученных им результатах. На следующем этапе исследований Лавуазье полагал выяснить, какова природа “воздуха”, соединяющегося с горючими телами при их окислении. Однако все попытки установить природу этого “воздуха” в 17721773 гг. Окончились безрезультатно.

Дело в том, что Лавуазье, так же как и Шталь, восстанавливал “металлические извести” путем непосредственного контакта с “углеобразной материей” и тоже получал при этом диоксид углерода, состав которого он не мог тогда установить. Как считал Лавуазье, “уголь сыграл с ним злую шутку”. Однако Лавуазье, как и многим другим химикам, не приходила мысль, что восстановление оксидов металлов можно осуществить нагреванием с помощью зажигательного стекла.

Но вот осенью 1774 г. Джозеф Пристли сообщил, что при восстановлении окиси ртути с помощью зажигательного стекла образуется новый вид воздуха — “дефлогистированный воздух”. Незадолго до этого кислород был открыт Шееле, но сообщение об этом было опубликовано с большим запозданием. Шееле и Пристли объясняли наблюдаемое ими явление выделения кислорода с позиций флогистонной теории. Только Лавуазье смог использовать открытие кислорода в качестве главного аргумента против теории флогистона. Весной 1775 г. Лавуазье воспроизвел опыт Пристли. Он хотел получить кислород и проверить, был ли кислород тем компонентом воздуха, благодаря которому происходило горение или окисление металлов. Лавуазье удалось не только выделить кислород, но и вновь получить оксид ртути. Одновременно Лавуазье определял весовые отношения вступающих в эту реакцию веществ. Ученому удалось доказать, что отношения количества веществ, участвующих в реакциях окисления и восстановления, остаются неизменными. Работы Лавуазье произвели в химии, пожалуй, такую же революцию, как два с половиной века до открытия Коперника в астрономии. Вещества, которые раньше считались элементами, как показал Лавуазье, оказались соединениями, состоящими в свою очередь из сложных “элементов”. Открытия и воззрения Лавуазье оказали громадное влияние не только на развитие химической теории, но и на всю систему химических знаний. Они так преобразовали саму основу химических знаний и языка, что следующие поколения химиков, по существу, не могли понять даже терминологию, которой пользовались до Лавуазье. На этом основании впоследствии стали считать, что о “подлинной” химии нельзя говорить до открытий Лавуазье.

Преемственность химических исследований при этом была забыта. Только историки химии начали вновь воссоздавать действительно существовавшие закономерности развития химии. При этом было выяснено, что “химическая революция” Лавуазье была бы невозможна без существования до него определенного уровня химических знаний.

Развитие химических знаний Лавуазье увенчал созданием новой системы, в которую вошли важнейшие достижения химии прошлых веков. Эта система, правда, в значительно расширенном и исправленном виде, стала основой научной химии. В 80х гг. XVIII в. Новая система Лавуазье получила признание у ведущих естествоиспытателей Франции — К.Бертолле, А. Де Фуркруа и Л.Гитона де Морво. Они поддержали новаторские идеи Лавуазье и совместно с ним разработали новую химическую номенклатуру и терминологию. В 1789 г. Лавуазье изложил основы разработанной им системы знаний в учебнике “Начальный курс химии, представленный в новом виде на основе новейших открытий”.

Лавуазье разделял элементы на металлы и неметаллы, а соединения на двойные и тройные. Двойные соединения, образуемые металлами с кислородом, он относил к основаниям, а соединения неметаллов с кислородом — к кислотам. Тройные соединения, получающиеся при взаимодействии кислот и оснований, он называл солями. Система Лавуазье основывалась на точных качественных и количественных исследованиях. Этот довольно новый вид аргументации он использовал, изучая многие спорные проблемы химии — вопросы теории горения, проблемы взаимного превращения элементов, которые были весьма актуальны в период становления научной химии.

Так, для проверки представления о возможности взаимного превращения элементов Лавуазье в течение нескольких дней нагревал воду в запаянной сосуде. В итоге он обнаружил в воде незначительное количество “земли”, установив при этом, что изменение общего веса сосуда вместе с водой не происходит. Образование “земель” Лавуазье объяснил не как результат их выделения из воды, а за счет разрушения стенок реакционного сосуда. Для ответа на этот вопрос шведский химик аптекарь К.Шееле в то же время использовал качественные методы доказательства, установив идентичность выделяющихся “земель” и материала сосуда.

Лавуазье, как и Ломоносов, учитывал существовавшие с древности наблюдения о сохранении веса веществ и систематически изучал весовые соотношения веществ, участвующих в химической реакции. Он обратил внимание на то, что, например, при горении серы или при образовании ржавчины на железе происходит увеличение веса исходных веществ. Это противоречило теории флогистона, согласно которой при горении должен был выделяться гипотетический флогистон. Лавуазье счел ошибочным объяснение, согласно которому флогистон обладал отрицательным весом, и окончательно отказался от этой идеи. Другие химики, например М.В.Ломоносов или Дж.Мэйоу, пытались объяснить окисление элементов и образование оксидов металлов (или, как тогда говорили, “известей”) как процесс, при котором частицы воздуха соединяются с какимлибо веществом. Этот воздух может быть “оттянут обратно” путем восстановления.

В 1772 г. Лавуазье собрал этот воздух, но не смог установить его природу. Первым об открытии кислорода сообщил Пристли. В 1775 г. Ему удалось доказать, что именно кислород соединяется с металлом и вновь выделяется из него при его восстановлении, как, например, при образовании “извести” ртути и ее восстановлении. Систематическим взвешиванием было установлено, что вес металла, участвующего в этих превращениях, не изменяется. Сегодня этот факт, казалось бы, убедительно доказывает справедливость предположений Лавуазье, а тогда большинство химиков отнеслись к нему скептически. Одной из причин такого отношения было то, что Лавуазье не мог объяснить процесс горения водорода.

В 1783 г. он узнал, что, используя электрическую дугу, Кавендиш доказал образование воды при сжигании смеси водорода и кислорода в закрытом сосуде. Повторив этот опыт, Лавуазье нашел, что вес воды соответствует весу исходных веществ. Затем он провел эксперимент, в котором пропускал водяной пар через железные стружки, помещенные в сильно нагреваемую медную трубку. Кислород соединялся с железными стружками, а водород собирался на конце трубки. Таким образом, воспользовавшись превращениями веществ, Лавуазье сумел объяснить процесс горения и качественно, и количественно, и для этого ему уже не нужна была теория флогистона.

Пристли же и Шееле, которые, открыв кислород, фактически создали основные предпосылки для появления кислородной теории Лавуазье, сами твердо придерживались позиций теории флогистона. Кавендиш, Пристли, Шееле и некоторые другие химики полагали, что расхождения между результатами опытов и положениями теории флогистона удастся устранить путем создания дополнительных гипотез. Надежность и полнота опытных данных, ясность аргументации и простота изложения способствовали быстрому распространению системы Лавуазье в Англии, Голландии, Германии, Швеции, Италии. В Германии представления Лавуазье были изложены в двух работах дра Гиртаннера “Новая химическая номенклатура на немецком языке” (1791 г.) и “Основы антифлогистонной химии” (1792 г.). Благодаря Гиртаннеру впервые появились немецкие обозначения веществ, соответствующие новой номенклатуре, например кислорода, водорода, азота. Работавший в Берлине Гермбштедт опубликовал в 1792 г. учебник Лавуазье в переводе на немецкий язык, а М.Клапрот после того, как он повторил опыты Лавуазье, признал, новое учение; взгляды Лавуазье разделял и знаменитый естествоиспытатель А.Гумбольдт.

В 1790х годах в Германии не раз публиковались работы Лавуазье. Большинство известных химиков Англии, Голландии, Швеции, талии разделяли взгляды Лавуазье. Нередко в историконаучной литературе можно прочесть, что для признания теории Лавуазье химикам понадобилось достаточно много времени. Однако по сравнению с 200 годами непризнания астрономами взглядов Коперника 1015летний период дискуссий в химии не так уж велик. В последней трети XVIII в. одной из важнейших была проблема, которая многие века интересовала ученых: химики хотели понять, почему и в каких соотношениях соединяются вещества друг с другом. К этой проблеме проявляли интерес еще греческие философы, а во времена Возрождения ученые выдвигали идею о сродстве веществ и даже строили ряды веществ по сродству.

Парацельс писал, что ртуть образует с металлами амальгамы, причем для разных металлов с различной скоростью ив такой последовательности: быстрее всего с золотом, затем ссеребром, свинцом, оловом, медью и, наконец, медленнее всего с железом. Парацельс считал, что причиной этого ряда химического сродства является не только “ненависть” и “любовь” веществ друг к другу. В соответствии с его представлениями металлы содержат серу, и, чем меньше ее содержание, тем чище металлы, ачистотавеществ в значительной мере определяет их сродство друг к другу. Г.Шталь

объяснял ряд осаждения металлов как результат различного содержания в них флогистона. До последней трети XVIII в. многочисленные исследования были направлены на то, чтобы расположить вещества по величине их “сродства”, и многие химики составляли соответствующие таблицы.

Для объяснения различного химического сродства веществ выдвигались и атомистические представления, а после того, как в конце XVIII — начале XIX вв. Ученые стали понимать влияние электричества на протекание некоторых химических процессов, для этой же цели пытались использовать и представления об электричестве. Основываясь на них, Берцелиус создал дуалистическую теорию состава веществ, в соответствии с, например, соли состоят из положительно и отрицательно заряженных “оснований” и “кислот”: при электролизе они притягиваются к противоположно заряженным электродам и могут распадаться при этом на элементы вследствие нейтрализации зарядов.

Со второй половины XVIII в. особенно много внимания ученые стали уделять вопросу: в каких количественных соотношениях взаимодействуют друг с другом вещества в химических реакциях? Уже давно было известно, что кислоты и основания могут нейтрализовать друг друга. Предпринимались также попытки установить содержание кислот и оснований в солях. Т.Бергман и Р.Кирван нашли, что, например, в реакции двойного обмена между химически нейтральными сульфатом калия и нитратом натрия образуются новые соли — сульфат натрия и нитрат калия, которые тоже являются химически нейтральными. Но ни один из исследователей не сделал из этого наблюдения общего вывода.

В 1767 г. Кавендиш обнаружил, что количество азотной и серной кислот, нейтрализующие одинаковые количества карбоната калия, нейтрализуют также одинаковое количество карбоната кальция. И.Рихтер первым сформулировал закон эквивалентов, объяснение которому было найдено позднее с позиций атомистической теории Дальтона. Рихтер установил, что раствор, получающийся при смешивании растворов двух химически нейтральных солей, тоже нейтрален. Он провел многочисленные определения количеств оснований и кислот, которые, соединяясь, дают химически нейтральные соли. Рихтер сделал следующий вывод: если одно и то же количество какойлибо кислоты нейтрализуется различными, строго определенными количествами разных оснований, то эти количества оснований эквивалентны и нейтрализуются одним и тем же количеством другой кислоты. Выражаясь современным языком, если к раствору сульфата калия, например, добавить раствор нитрата бария до полного осаждения сульфата бария, то раствор, содержащий нитрат калия, тоже будет нейтрален:

K2SO4 + Ba(NO3)2 = 2KNO3 + BaSO4. Следовательно, при образовании нейтральной соли эквивалентны друг другу следующие количества: 2K, 1Ba, 1SO4 и 2NO3. Полинг обобщил и сформулировал в современном виде этот закон соединительных весов”: “Весовые количества двух элементов (или их целочисленные кратные), которые, реагируют с одним и тем же количеством третьего элемента, реагируют друг с другом в тех же количествах”.

В начале работы Рихтера почти не привлекли внимания исследователей, поскольку он пользовался еще терминологией флогистонной теории. Кроме того, полученные ученым ряды эквивалентных весов были недостаточно наглядны, а предложенный им выбор относительных количеств оснований не имел серьезных доказательств. Положение исправил Э.Фишер, который среди эквивалентных весов Рихтер выбрал в качестве эталона эквивалент серной кислоты, приняв его равным 100, и составил, исходя из этого, таблицу “относительных весов” (эквивалентов) соединений. Но о таблице эквивалентов Фишера стало известно лишь благодаря Бертолле, который, критикуя Фишера, привел эти данные в своей книге “Опыт химической статики” (1803 г.).

Бертолле сомневался, что состав химических соединений постоянен. Он имел на это основание. Вещества, которые в начале XIX в. считались чистыми, на самом деле были либо смесями, либо равновесными системами различных веществ, а количественный состав химических соединений во многом зависел от количеств веществ, участвующих в реакциях их образования. Некоторые историки химии считают, что, подобно Венцелю, Бертолле также предвосхитил основные положения закона действия масс, который аналитически выражал влияние количеств взаимодействующих на скорость превращения.

Немецкий химик К.Венцель в 1777 г. показал, что скорость растворения металла в кислоте, измеряемая количеством металла, растворившегося за определенное время, пропорциональна “силе” кислоты. Бертолле сделал многое для учета влияния масс реагентов на ход превращения. Однако между работами Венцеля и даже Бертолле, с одной стороны, и точной формулировкой закона действия масс — с другой, существует качественное различие. Негативное отношение Бертолле к закону нейтрализации Рихтера не могло длиться долго, так как против положений Бертолле энергично выступил Пруст.

Проделав в течение 17991807 гг. массу анализов, Пруст доказал, что Бертолле сделал свои выводы о различном составе одних и тех же веществ, анализируя смеси, а не индивидуальные вещества, что он, например, не учитывал содержания воды в некоторых оксидах. Пруст убедительно доказал постоянство состава чистых химических соединений и завершил свою борьбу против взглядов Бертолле установлением закона постоянства состава веществ: состав одних и тех же веществ независимо от способа получения одинаков (постоянен).

Периодический закон

Рассматривая историю химии я не могу не упяуть об открытии периодического закона. Уже на ранних этапах развития химии было обнаружено, что различнымлементам присущи особые свойства. Вначале элементы разделяли всего на два типа — металлы и неметаллы. В 1829 г. немецкий химик Иоганн Деберейнер обнаружил существование нескольких групп из трех элементов (триад) со сходными химическими свойствами. Деберейнер обнаружил всего 5 триад, это:

1.

Cl, Br, I 2.

S, Se, Te

3.

Ca, Cr, Ba

4.

Li, Na, K

5.

Fe, Co, Ni

Это обнаружение свойств элементов побудило к дальнейшим исследованиям химиков, которые пытались найти рациональные способы классификации элементов.

В 1865 г. английский химик Джон Ньюлендс (18391898) заинтересовался проблемой периодической повторяемости свойств элементов. Он расположил из известных элементов в порядке возрастания их атомных масс следующим образом: H Li Be B C N O F Na Mg Al Si P S Cl K Ca Cr Ti Mn Fe Ньюлендс заметил, что в этой последовательности восьмой элемент (фтор) напоминает первый (водород), девятый элемент напоминает второй и т.д. Тем самым через каждые восемь элементов свойства повторялись. Однако в этой системе элементов было много неверного:

1) В таблице не нашлось места новым элементам.

2) Таблица не открывала возможности научного подхода к определению атомных масс и не позволяла сделать выбор между их вероятными наилучшими значениями.

3) Некоторые элементы представлялись неудачно размещенными в таблице. Например железо сопоставлялось с серой (!) и т.д. Несмотря на большое количество недостатков, попытка Ньюлендса явилась шагом в правильном направлении. Мы знаем, открытие периодического закона принадлежит Дмитрию Ивановичу Менделееву. Давайте рассмотрим историюего открытия. В 1869 году Н.А.Меншуткин представил членам Русского химического общества небольшую работу Д.И.Менделеева “Соотношение свойств с атомным весом элементов”. (Сам Д.И.Менделеев на заседании не присутствовал.)

На этом заседании работа Д.И.Менделеева не была воспринята всерьез. Пауль Вальден писал впоследствии: “Большие события слишком часто встречают незначительный отклик, и тот день, который должен был стать знаменательным днем для молодого Русского химического общества, а в действительности оказался будничным днем”. Д.И.Менделеев любил дерзкие идеи. Обнаруженная им закономерность гласила: химические и физические свойства элементови их соединений находятся в периодической зависимости от атомных весов элементов. Подобно своим предшественникам, Д.И.Менделеев выделил наиболее типичные элементы. Однако он предположил наличие пустот в таблице и осмелился утверждать, что они должны быть заполнены не открытыми еще элементами. В одно и тоже время с Менделеевым над этой же проблемой работал Лотарь Мейер, который опубликовал свою работу в 1870 году.

Однако приоритет в открытиипериодического заслуженно остается за Дмитрием Ивановичем Менделеевым, т.к. даже сам Л.Мейер не помышлял отрицать выдающуюся роль Д.И.Менделеева в открытии периодического закона. В своих воспоминаниях Л.Мейер указывал, что пользовался при написании своей работы рефератом статьи Д.И.Менделеева.

В 1870 году Менделеев внес в таблицу некоторые изменения: как любая закономерность, в основе которой лежит bepm` идея, новая система оказалась жизнеспособной, поскольку в ней предусматривалась возможность уточнений. Как я уже говорил, гениальность теории Менделеева состояла в том, что он оставил пустоты в своей таблице. Тем самым он предположил (а точнее был уверен), что еще не все элементы открыты. Однако Дмитрий Иванович не остановился на достигнутом. С помощью периодического закона он даже описал химические и физические свойства еще не открытых химических элементов, например: галлия, германия, скандия, которые полностью подтвердились.

После этого большинство ученых убедилось в правильности теории Д.И.Менделеева. В наше время периодический закон имеет огромное значение. С помощью его предсказывают свойства химических соединений, продукты реакций. С помощью периодического закона и в наше время предсказывают свойства элементов — это элементы которые нельзя получить в весомых количествах.

Заключение

После работ Лавуазье, Пруста, Ломоносова и Менделеева, уже в нашем веке было сделано много важнейших открытий в области химии и физики. Это работы по термодинамике, строению атома и молекул, электрохимии, — этот список можно продолжить до бесконечности. Однако открытия Лавуазье и Д.И.Менделеева остаются фундаментом химических знаний.

www.ronl.ru

Реферат : Современная химия

Рождение современной химии

...нет науки, которая была бы замечательнее и поучительнее истории химии. Юстус фон Либих

Введение

Представления древнегреческих натурфилософов оставались основными идейными истоками естествознания вплоть до XVIII в. До начала эпохи Возрождения в науке господствовали представления Аристотеля. В дальнейшем стало расти влияние атомистических взглядов,

впервые высказанных Левкиппом и Демокритом. Алхимические работы опирались преимущественно на натурфилософские взгляды Платона и Аристотеля. Большинство экспериментаторов того периода были откровенными шарлатанами, которые пытались с помощью примитивных химических реакций получить или золото, или философский камень - вещество дающее бессмертие. Однако были и настоящие ученые, которые пытались систематизировать знания. Среди них Авиценна, Парацельс, Роджер Бэкон др. Некоторые химики считают, что алхимия - это зря потерянное время. Однако это не так: в процессе поиска золота было открыто множество химических соединений и изучены их свойства. Благодаря этим знаниям в конце XVII века была создана первая серьезная химическая теория - теория флогистона.

Теория флогистона и система Лавуазье

Творец теории флогистона - Георг Шталь. Он считал, что флогистон содержится во всех горючих и способных к окислению веществах. Горение или окисление рассматривалось им как процесс, при котором тело теряет флогистон. Воздух играет при этом особо важную роль. Он необходим для окисления, чтобы “вбирать” в себя флогистон. Из воздуха флогистон попадает в листья растений и в их древесину, из которых при восстановлении он вновь освобождается и возвращается телу. Так впервые была сформулирована теория, описывающая процессы горения. Ее особенности и новизна состояли в том, что одновременно рассматривались во взаимосвязи процессы окисления и восстановления. Теория флогистона развивала идеи Бехера и атомистические представления. Она позволяла объяснить протекание различных процессов в ремесленной химии и, в первую очередь, в металлургии и оказала громадное влияние на развитие химических ремесел и совершенствование методов "экспериментального искусства" в химии.

Теория флогистона способствовала и развитию учения об элементах. Приверженцы теории флогистона называли элементами оксиды металлов, рассматривая их как металлы, лишенные флогистона. Металлы же, напротив, считали соединениями элементов (оксидов металлов) с флогистоном. Потребовалось лишь поставить все положения этой теории “с головы на ноги”. Что и было сделано в дальнейшем. Для объяснения того, что масса оксидов больше чем масса металлов, Шталь предположил (а, вернее утверждал), что флогистон имеет отрицательный вес, т.е. флогистон соединившись с элементом “тянет” его вверх. Несмотря на одностороннюю, лишь качественную характеристику процессов, происходящих при горении, теория флогистона имела громадное значение для объяснения и систематизации именно этих превращений. На неверность флогистонной теории указывал Михаил Иванович Ломоносов.

Однако экспериментально доказать это смог Антуан Лоран Лавуазье. Лавуазье заметил, что при горении фосфора и серы же, как и при прокаливании металлов, происходит увеличение веса вещества. Казалось бы естественным сделать: увеличение веса сжигаемого вещества происходит при всех процессах горения. Однако этот вывод настолько противоречил положениям теории флогистона, что нужна была недюжинная смелость, чтобы высказать его хотя бы в виде гипотезы. Лавуазье решил проверить высказанные ранее Бойлем, Реем, Мэйоу и Ломоносовым гипотезы о роли воздуха в процессах горения. Он интересовался тем, увеличивается ли количество воздуха, если в нем происходит восстановление окисленного тела и выделение благодаря этому дополнительного воздуха.

Лавуазье удалось доказать, что действительно количество воздуха при этом возрастает. Это открытие Лавуазье назвал самым интересным со времени работ Шталя. Поэтому в ноябре 1772 г. Он направил в Парижскую Академию наук специальное сообщение о полученных им результатах. На следующем этапе исследований Лавуазье полагал выяснить, какова природа “воздуха”, соединяющегося с горючими телами при их окислении. Однако все попытки установить природу этого “воздуха” в 17721773 гг. Окончились безрезультатно.

Дело в том, что Лавуазье, так же как и Шталь, восстанавливал “металлические извести” путем непосредственного контакта с “углеобразной материей” и тоже получал при этом диоксид углерода, состав которого он не мог тогда установить. Как считал Лавуазье, “уголь сыграл с ним злую шутку”. Однако Лавуазье, как и многим другим химикам, не приходила мысль, что восстановление оксидов металлов можно осуществить нагреванием с помощью зажигательного стекла.

Но вот осенью 1774 г. Джозеф Пристли сообщил, что при восстановлении окиси ртути с помощью зажигательного стекла образуется новый вид воздуха - “дефлогистированный воздух”. Незадолго до этого кислород был открыт Шееле, но сообщение об этом было опубликовано с большим запозданием. Шееле и Пристли объясняли наблюдаемое ими явление выделения кислорода с позиций флогистонной теории. Только Лавуазье смог использовать открытие кислорода в качестве главного аргумента против теории флогистона. Весной 1775 г. Лавуазье воспроизвел опыт Пристли. Он хотел получить кислород и проверить, был ли кислород тем компонентом воздуха, благодаря которому происходило горение или окисление металлов. Лавуазье удалось не только выделить кислород, но и вновь получить оксид ртути. Одновременно Лавуазье определял весовые отношения вступающих в эту реакцию веществ. Ученому удалось доказать, что отношения количества веществ, участвующих в реакциях окисления и восстановления, остаются неизменными. Работы Лавуазье произвели в химии, пожалуй, такую же революцию, как два с половиной века до открытия Коперника в астрономии. Вещества, которые раньше считались элементами, как показал Лавуазье, оказались соединениями, состоящими в свою очередь из сложных “элементов”. Открытия и воззрения Лавуазье оказали громадное влияние не только на развитие химической теории, но и на всю систему химических знаний. Они так преобразовали саму основу химических знаний и языка, что следующие поколения химиков, по существу, не могли понять даже терминологию, которой пользовались до Лавуазье. На этом основании впоследствии стали считать, что о “подлинной” химии нельзя говорить до открытий Лавуазье.

Преемственность химических исследований при этом была забыта. Только историки химии начали вновь воссоздавать действительно существовавшие закономерности развития химии. При этом было выяснено, что “химическая революция” Лавуазье была бы невозможна без существования до него определенного уровня химических знаний.

Развитие химических знаний Лавуазье увенчал созданием новой системы, в которую вошли важнейшие достижения химии прошлых веков. Эта система, правда, в значительно расширенном и исправленном виде, стала основой научной химии. В 80х гг. XVIII в. Новая система Лавуазье получила признание у ведущих естествоиспытателей Франции - К.Бертолле, А. Де Фуркруа и Л.Гитона де Морво. Они поддержали новаторские идеи Лавуазье и совместно с ним разработали новую химическую номенклатуру и терминологию. В 1789 г. Лавуазье изложил основы разработанной им системы знаний в учебнике “Начальный курс химии, представленный в новом виде на основе новейших открытий”.

Лавуазье разделял элементы на металлы и неметаллы, а соединения на двойные и тройные. Двойные соединения, образуемые металлами с кислородом, он относил к основаниям, а соединения неметаллов с кислородом - к кислотам. Тройные соединения, получающиеся при взаимодействии кислот и оснований, он называл солями. Система Лавуазье основывалась на точных качественных и количественных исследованиях. Этот довольно новый вид аргументации он использовал, изучая многие спорные проблемы химии - вопросы теории горения, проблемы взаимного превращения элементов, которые были весьма актуальны в период становления научной химии.

Так, для проверки представления о возможности взаимного превращения элементов Лавуазье в течение нескольких дней нагревал воду в запаянной сосуде. В итоге он обнаружил в воде незначительное количество “земли”, установив при этом, что изменение общего веса сосуда вместе с водой не происходит. Образование “земель” Лавуазье объяснил не как результат их выделения из воды, а за счет разрушения стенок реакционного сосуда. Для ответа на этот вопрос шведский химик аптекарь К.Шееле в то же время использовал качественные методы доказательства, установив идентичность выделяющихся “земель” и материала сосуда.

Лавуазье, как и Ломоносов, учитывал существовавшие с древности наблюдения о сохранении веса веществ и систематически изучал весовые соотношения веществ, участвующих в химической реакции. Он обратил внимание на то, что, например, при горении серы или при образовании ржавчины на железе происходит увеличение веса исходных веществ. Это противоречило теории флогистона, согласно которой при горении должен был выделяться гипотетический флогистон. Лавуазье счел ошибочным объяснение, согласно которому флогистон обладал отрицательным весом, и окончательно отказался от этой идеи. Другие химики, например М.В.Ломоносов или Дж.Мэйоу, пытались объяснить окисление элементов и образование оксидов металлов (или, как тогда говорили, “известей”) как процесс, при котором частицы воздуха соединяются с какимлибо веществом. Этот воздух может быть “оттянут обратно” путем восстановления.

В 1772 г. Лавуазье собрал этот воздух, но не смог установить его природу. Первым об открытии кислорода сообщил Пристли. В 1775 г. Ему удалось доказать, что именно кислород соединяется с металлом и вновь выделяется из него при его восстановлении, как, например, при образовании “извести” ртути и ее восстановлении. Систематическим взвешиванием было установлено, что вес металла, участвующего в этих превращениях, не изменяется. Сегодня этот факт, казалось бы, убедительно доказывает справедливость предположений Лавуазье, а тогда большинство химиков отнеслись к нему скептически. Одной из причин такого отношения было то, что Лавуазье не мог объяснить процесс горения водорода.

В 1783 г. он узнал, что, используя электрическую дугу, Кавендиш доказал образование воды при сжигании смеси водорода и кислорода в закрытом сосуде. Повторив этот опыт, Лавуазье нашел, что вес воды соответствует весу исходных веществ. Затем он провел эксперимент, в котором пропускал водяной пар через железные стружки, помещенные в сильно нагреваемую медную трубку. Кислород соединялся с железными стружками, а водород собирался на конце трубки. Таким образом, воспользовавшись превращениями веществ, Лавуазье сумел объяснить процесс горения и качественно, и количественно, и для этого ему уже не нужна была теория флогистона.

Пристли же и Шееле, которые, открыв кислород, фактически создали основные предпосылки для появления кислородной теории Лавуазье, сами твердо придерживались позиций теории флогистона. Кавендиш, Пристли, Шееле и некоторые другие химики полагали, что расхождения между результатами опытов и положениями теории флогистона удастся устранить путем создания дополнительных гипотез. Надежность и полнота опытных данных, ясность аргументации и простота изложения способствовали быстрому распространению системы Лавуазье в Англии, Голландии, Германии, Швеции, Италии. В Германии представления Лавуазье были изложены в двух работах дра Гиртаннера “Новая химическая номенклатура на немецком языке” (1791 г.) и “Основы антифлогистонной химии” (1792 г.). Благодаря Гиртаннеру впервые появились немецкие обозначения веществ, соответствующие новой номенклатуре, например кислорода, водорода, азота. Работавший в Берлине Гермбштедт опубликовал в 1792 г. учебник Лавуазье в переводе на немецкий язык, а М.Клапрот после того, как он повторил опыты Лавуазье, признал, новое учение; взгляды Лавуазье разделял и знаменитый естествоиспытатель А.Гумбольдт.

В 1790х годах в Германии не раз публиковались работы Лавуазье. Большинство известных химиков Англии, Голландии, Швеции, талии разделяли взгляды Лавуазье. Нередко в историконаучной литературе можно прочесть, что для признания теории Лавуазье химикам понадобилось достаточно много времени. Однако по сравнению с 200 годами непризнания астрономами взглядов Коперника 1015летний период дискуссий в химии не так уж велик. В последней трети XVIII в. одной из важнейших была проблема, которая многие века интересовала ученых: химики хотели понять, почему и в каких соотношениях соединяются вещества друг с другом. К этой проблеме проявляли интерес еще греческие философы, а во времена Возрождения ученые выдвигали идею о сродстве веществ и даже строили ряды веществ по сродству.

Парацельс писал, что ртуть образует с металлами амальгамы, причем для разных металлов с различной скоростью ив такой последовательности: быстрее всего с золотом, затем ссеребром, свинцом, оловом, медью и, наконец, медленнее всего с железом. Парацельс считал, что причиной этого ряда химического сродства является не только “ненависть” и “любовь” веществ друг к другу. В соответствии с его представлениями металлы содержат серу, и, чем меньше ее содержание, тем чище металлы, ачистотавеществ в значительной мере определяет их сродство друг к другу. Г.Шталь

объяснял ряд осаждения металлов как результат различного содержания в них флогистона. До последней трети XVIII в. многочисленные исследования были направлены на то, чтобы расположить вещества по величине их “сродства”, и многие химики составляли соответствующие таблицы.

Для объяснения различного химического сродства веществ выдвигались и атомистические представления, а после того, как в конце XVIII - начале XIX вв. Ученые стали понимать влияние электричества на протекание некоторых химических процессов, для этой же цели пытались использовать и представления об электричестве. Основываясь на них, Берцелиус создал дуалистическую теорию состава веществ, в соответствии с, например, соли состоят из положительно и отрицательно заряженных “оснований” и “кислот”: при электролизе они притягиваются к противоположно заряженным электродам и могут распадаться при этом на элементы вследствие нейтрализации зарядов.

Со второй половины XVIII в. особенно много внимания ученые стали уделять вопросу: в каких количественных соотношениях взаимодействуют друг с другом вещества в химических реакциях? Уже давно было известно, что кислоты и основания могут нейтрализовать друг друга. Предпринимались также попытки установить содержание кислот и оснований в солях. Т.Бергман и Р.Кирван нашли, что, например, в реакции двойного обмена между химически нейтральными сульфатом калия и нитратом натрия образуются новые соли - сульфат натрия и нитрат калия, которые тоже являются химически нейтральными. Но ни один из исследователей не сделал из этого наблюдения общего вывода.

В 1767 г. Кавендиш обнаружил, что количество азотной и серной кислот, нейтрализующие одинаковые количества карбоната калия, нейтрализуют также одинаковое количество карбоната кальция. И.Рихтер первым сформулировал закон эквивалентов, объяснение которому было найдено позднее с позиций атомистической теории Дальтона. Рихтер установил, что раствор, получающийся при смешивании растворов двух химически нейтральных солей, тоже нейтрален. Он провел многочисленные определения количеств оснований и кислот, которые, соединяясь, дают химически нейтральные соли. Рихтер сделал следующий вывод: если одно и то же количество какойлибо кислоты нейтрализуется различными, строго определенными количествами разных оснований, то эти количества оснований эквивалентны и нейтрализуются одним и тем же количеством другой кислоты. Выражаясь современным языком, если к раствору сульфата калия, например, добавить раствор нитрата бария до полного осаждения сульфата бария, то раствор, содержащий нитрат калия, тоже будет нейтрален:

K2SO4 + Ba(NO3)2 = 2KNO3 + BaSO4. Следовательно, при образовании нейтральной соли эквивалентны друг другу следующие количества: 2K, 1Ba, 1SO4 и 2NO3. Полинг обобщил и сформулировал в современном виде этот закон соединительных весов”: “Весовые количества двух элементов (или их целочисленные кратные), которые, реагируют с одним и тем же количеством третьего элемента, реагируют друг с другом в тех же количествах”.

В начале работы Рихтера почти не привлекли внимания исследователей, поскольку он пользовался еще терминологией флогистонной теории. Кроме того, полученные ученым ряды эквивалентных весов были недостаточно наглядны, а предложенный им выбор относительных количеств оснований не имел серьезных доказательств. Положение исправил Э.Фишер, который среди эквивалентных весов Рихтер выбрал в качестве эталона эквивалент серной кислоты, приняв его равным 100, и составил, исходя из этого, таблицу “относительных весов” (эквивалентов) соединений. Но о таблице эквивалентов Фишера стало известно лишь благодаря Бертолле, который, критикуя Фишера, привел эти данные в своей книге “Опыт химической статики” (1803 г.).

Бертолле сомневался, что состав химических соединений постоянен. Он имел на это основание. Вещества, которые в начале XIX в. считались чистыми, на самом деле были либо смесями, либо равновесными системами различных веществ, а количественный состав химических соединений во многом зависел от количеств веществ, участвующих в реакциях их образования. Некоторые историки химии считают, что, подобно Венцелю, Бертолле также предвосхитил основные положения закона действия масс, который аналитически выражал влияние количеств взаимодействующих на скорость превращения.

Немецкий химик К.Венцель в 1777 г. показал, что скорость растворения металла в кислоте, измеряемая количеством металла, растворившегося за определенное время, пропорциональна “силе” кислоты. Бертолле сделал многое для учета влияния масс реагентов на ход превращения. Однако между работами Венцеля и даже Бертолле, с одной стороны, и точной формулировкой закона действия масс - с другой, существует качественное различие. Негативное отношение Бертолле к закону нейтрализации Рихтера не могло длиться долго, так как против положений Бертолле энергично выступил Пруст.

Проделав в течение 17991807 гг. массу анализов, Пруст доказал, что Бертолле сделал свои выводы о различном составе одних и тех же веществ, анализируя смеси, а не индивидуальные вещества, что он, например, не учитывал содержания воды в некоторых оксидах. Пруст убедительно доказал постоянство состава чистых химических соединений и завершил свою борьбу против взглядов Бертолле установлением закона постоянства состава веществ: состав одних и тех же веществ независимо от способа получения одинаков (постоянен).

Периодический закон

Рассматривая историю химии я не могу не упяуть об открытии периодического закона. Уже на ранних этапах развития химии было обнаружено, что различнымлементам присущи особые свойства. Вначале элементы разделяли всего на два типа - металлы и неметаллы. В 1829 г. немецкий химик Иоганн Деберейнер обнаружил существование нескольких групп из трех элементов (триад) со сходными химическими свойствами. Деберейнер обнаружил всего 5 триад, это:

1.

Cl, Br, I 2.

S, Se, Te

3.

Ca, Cr, Ba

4.

Li, Na, K

5.

Fe, Co, Ni

Это обнаружение свойств элементов побудило к дальнейшим исследованиям химиков, которые пытались найти рациональные способы классификации элементов.

В 1865 г. английский химик Джон Ньюлендс (18391898) заинтересовался проблемой периодической повторяемости свойств элементов. Он расположил из известных элементов в порядке возрастания их атомных масс следующим образом: H Li Be B C N O F Na Mg Al Si P S Cl K Ca Cr Ti Mn Fe Ньюлендс заметил, что в этой последовательности восьмой элемент (фтор) напоминает первый (водород), девятый элемент напоминает второй и т.д. Тем самым через каждые восемь элементов свойства повторялись. Однако в этой системе элементов было много неверного:

1) В таблице не нашлось места новым элементам.

2) Таблица не открывала возможности научного подхода к определению атомных масс и не позволяла сделать выбор между их вероятными наилучшими значениями.

3) Некоторые элементы представлялись неудачно размещенными в таблице. Например железо сопоставлялось с серой (!) и т.д. Несмотря на большое количество недостатков, попытка Ньюлендса явилась шагом в правильном направлении. Мы знаем, открытие периодического закона принадлежит Дмитрию Ивановичу Менделееву. Давайте рассмотрим историюего открытия. В 1869 году Н.А.Меншуткин представил членам Русского химического общества небольшую работу Д.И.Менделеева “Соотношение свойств с атомным весом элементов”. (Сам Д.И.Менделеев на заседании не присутствовал.)

На этом заседании работа Д.И.Менделеева не была воспринята всерьез. Пауль Вальден писал впоследствии: “Большие события слишком часто встречают незначительный отклик, и тот день, который должен был стать знаменательным днем для молодого Русского химического общества, а в действительности оказался будничным днем”. Д.И.Менделеев любил дерзкие идеи. Обнаруженная им закономерность гласила: химические и физические свойства элементови их соединений находятся в периодической зависимости от атомных весов элементов. Подобно своим предшественникам, Д.И.Менделеев выделил наиболее типичные элементы. Однако он предположил наличие пустот в таблице и осмелился утверждать, что они должны быть заполнены не открытыми еще элементами. В одно и тоже время с Менделеевым над этой же проблемой работал Лотарь Мейер, который опубликовал свою работу в 1870 году.

Однако приоритет в открытиипериодического заслуженно остается за Дмитрием Ивановичем Менделеевым, т.к. даже сам Л.Мейер не помышлял отрицать выдающуюся роль Д.И.Менделеева в открытии периодического закона. В своих воспоминаниях Л.Мейер указывал, что пользовался при написании своей работы рефератом статьи Д.И.Менделеева.

В 1870 году Менделеев внес в таблицу некоторые изменения: как любая закономерность, в основе которой лежит bepm` идея, новая система оказалась жизнеспособной, поскольку в ней предусматривалась возможность уточнений. Как я уже говорил, гениальность теории Менделеева состояла в том, что он оставил пустоты в своей таблице. Тем самым он предположил (а точнее был уверен), что еще не все элементы открыты. Однако Дмитрий Иванович не остановился на достигнутом. С помощью периодического закона он даже описал химические и физические свойства еще не открытых химических элементов, например: галлия, германия, скандия, которые полностью подтвердились.

После этого большинство ученых убедилось в правильности теории Д.И.Менделеева. В наше время периодический закон имеет огромное значение. С помощью его предсказывают свойства химических соединений, продукты реакций. С помощью периодического закона и в наше время предсказывают свойства элементов - это элементы которые нельзя получить в весомых количествах.

Заключение

После работ Лавуазье, Пруста, Ломоносова и Менделеева, уже в нашем веке было сделано много важнейших открытий в области химии и физики. Это работы по термодинамике, строению атома и молекул, электрохимии, - этот список можно продолжить до бесконечности. Однако открытия Лавуазье и Д.И.Менделеева остаются фундаментом химических знаний.

topref.ru

Реферат: Современная химия

Рождение современной химии

...нет науки, которая была бы замечательнее и поучительнее истории химии. Юстус фон Либих

Введение

Представления древнегреческих натурфилософов оставались основными идейными истоками естествознания вплоть до XVIII в. До начала эпохи Возрождения в науке господствовали представления Аристотеля. В дальнейшем стало расти влияние атомистических взглядов,

впервые высказанных Левкиппом и Демокритом. Алхимические работы опирались преимущественно на натурфилософские взгляды Платона и Аристотеля. Большинство экспериментаторов того периода были откровенными шарлатанами, которые пытались с помощью примитивных химических реакций получить или золото, или философский камень - вещество дающее бессмертие. Однако были и настоящие ученые, которые пытались систематизировать знания. Среди них Авиценна, Парацельс, Роджер Бэкон др. Некоторые химики считают, что алхимия - это зря потерянное время. Однако это не так: в процессе поиска золота было открыто множество химических соединений и изучены их свойства. Благодаря этим знаниям в конце XVII века была создана первая серьезная химическая теория - теория флогистона.

Теория флогистона и система Лавуазье

Творец теории флогистона - Георг Шталь. Он считал, что флогистон содержится во всех горючих и способных к окислению веществах. Горение или окисление рассматривалось им как процесс, при котором тело теряет флогистон. Воздух играет при этом особо важную роль. Он необходим для окисления, чтобы “вбирать” в себя флогистон. Из воздуха флогистон попадает в листья растений и в их древесину, из которых при восстановлении он вновь освобождается и возвращается телу. Так впервые была сформулирована теория, описывающая процессы горения. Ее особенности и новизна состояли в том, что одновременно рассматривались во взаимосвязи процессы окисления и восстановления. Теория флогистона развивала идеи Бехера и атомистические представления. Она позволяла объяснить протекание различных процессов в ремесленной химии и, в первую очередь, в металлургии и оказала громадное влияние на развитие химических ремесел и совершенствование методов "экспериментального искусства" в химии.

Теория флогистона способствовала и развитию учения об элементах. Приверженцы теории флогистона называли элементами оксиды металлов, рассматривая их как металлы, лишенные флогистона. Металлы же, напротив, считали соединениями элементов (оксидов металлов) с флогистоном. Потребовалось лишь поставить все положения этой теории “с головы на ноги”. Что и было сделано в дальнейшем. Для объяснения того, что масса оксидов больше чем масса металлов, Шталь предположил (а, вернее утверждал), что флогистон имеет отрицательный вес, т.е. флогистон соединившись с элементом “тянет” его вверх. Несмотря на одностороннюю, лишь качественную характеристику процессов, происходящих при горении, теория флогистона имела громадное значение для объяснения и систематизации именно этих превращений. На неверность флогистонной теории указывал Михаил Иванович Ломоносов.

Однако экспериментально доказать это смог Антуан Лоран Лавуазье. Лавуазье заметил, что при горении фосфора и серы же, как и при прокаливании металлов, происходит увеличение веса вещества. Казалось бы естественным сделать: увеличение веса сжигаемого вещества происходит при всех процессах горения. Однако этот вывод настолько противоречил положениям теории флогистона, что нужна была недюжинная смелость, чтобы высказать его хотя бы в виде гипотезы. Лавуазье решил проверить высказанные ранее Бойлем, Реем, Мэйоу и Ломоносовым гипотезы о роли воздуха в процессах горения. Он интересовался тем, увеличивается ли количество воздуха, если в нем происходит восстановление окисленного тела и выделение благодаря этому дополнительного воздуха.

Лавуазье удалось доказать, что действительно количество воздуха при этом возрастает. Это открытие Лавуазье назвал самым интересным со времени работ Шталя. Поэтому в ноябре 1772 г. Он направил в Парижскую Академию наук специальное сообщение о полученных им результатах. На следующем этапе исследований Лавуазье полагал выяснить, какова природа “воздуха”, соединяющегося с горючими телами при их окислении. Однако все попытки установить природу этого “воздуха” в 17721773 гг. Окончились безрезультатно.

Дело в том, что Лавуазье, так же как и Шталь, восстанавливал “металлические извести” путем непосредственного контакта с “углеобразной материей” и тоже получал при этом диоксид углерода, состав которого он не мог тогда установить. Как считал Лавуазье, “уголь сыграл с ним злую шутку”. Однако Лавуазье, как и многим другим химикам, не приходила мысль, что восстановление оксидов металлов можно осуществить нагреванием с помощью зажигательного стекла.

Но вот осенью 1774 г. Джозеф Пристли сообщил, что при восстановлении окиси ртути с помощью зажигательного стекла образуется новый вид воздуха - “дефлогистированный воздух”. Незадолго до этого кислород был открыт Шееле, но сообщение об этом было опубликовано с большим запозданием. Шееле и Пристли объясняли наблюдаемое ими явление выделения кислорода с позиций флогистонной теории. Только Лавуазье смог использовать открытие кислорода в качестве главного аргумента против теории флогистона. Весной 1775 г. Лавуазье воспроизвел опыт Пристли. Он хотел получить кислород и проверить, был ли кислород тем компонентом воздуха, благодаря которому происходило горение или окисление металлов. Лавуазье удалось не только выделить кислород, но и вновь получить оксид ртути. Одновременно Лавуазье определял весовые отношения вступающих в эту реакцию веществ. Ученому удалось доказать, что отношения количества веществ, участвующих в реакциях окисления и восстановления, остаются неизменными. Работы Лавуазье произвели в химии, пожалуй, такую же революцию, как два с половиной века до открытия Коперника в астрономии. Вещества, которые раньше считались элементами, как показал Лавуазье, оказались соединениями, состоящими в свою очередь из сложных “элементов”. Открытия и воззрения Лавуазье оказали громадное влияние не только на развитие химической теории, но и на всю систему химических знаний. Они так преобразовали саму основу химических знаний и языка, что следующие поколения химиков, по существу, не могли понять даже терминологию, которой пользовались до Лавуазье. На этом основании впоследствии стали считать, что о “подлинной” химии нельзя говорить до открытий Лавуазье.

Преемственность химических исследований при этом была забыта. Только историки химии начали вновь воссоздавать действительно существовавшие закономерности развития химии. При этом было выяснено, что “химическая революция” Лавуазье была бы невозможна без существования до него определенного уровня химических знаний.

Развитие химических знаний Лавуазье увенчал созданием новой системы, в которую вошли важнейшие достижения химии прошлых веков. Эта система, правда, в значительно расширенном и исправленном виде, стала основой научной химии. В 80х гг. XVIII в. Новая система Лавуазье получила признание у ведущих естествоиспытателей Франции - К.Бертолле, А. Де Фуркруа и Л.Гитона де Морво. Они поддержали новаторские идеи Лавуазье и совместно с ним разработали новую химическую номенклатуру и терминологию. В 1789 г. Лавуазье изложил основы разработанной им системы знаний в учебнике “Начальный курс химии, представленный в новом виде на основе новейших открытий”.

Лавуазье разделял элементы на металлы и неметаллы, а соединения на двойные и тройные. Двойные соединения, образуемые металлами с кислородом, он относил к основаниям, а соединения неметаллов с кислородом - к кислотам. Тройные соединения, получающиеся при взаимодействии кислот и оснований, он называл солями. Система Лавуазье основывалась на точных качественных и количественных исследованиях. Этот довольно новый вид аргументации он использовал, изучая многие спорные проблемы химии - вопросы теории горения, проблемы взаимного превращения элементов, которые были весьма актуальны в период становления научной химии.

Так, для проверки представления о возможности взаимного превращения элементов Лавуазье в течение нескольких дней нагревал воду в запаянной сосуде. В итоге он обнаружил в воде незначительное количество “земли”, установив при этом, что изменение общего веса сосуда вместе с водой не происходит. Образование “земель” Лавуазье объяснил не как результат их выделения из воды, а за счет разрушения стенок реакционного сосуда. Для ответа на этот вопрос шведский химик аптекарь К.Шееле в то же время использовал качественные методы доказательства, установив идентичность выделяющихся “земель” и материала сосуда.

Лавуазье, как и Ломоносов, учитывал существовавшие с древности наблюдения о сохранении веса веществ и систематически изучал весовые соотношения веществ, участвующих в химической реакции. Он обратил внимание на то, что, например, при горении серы или при образовании ржавчины на железе происходит увеличение веса исходных веществ. Это противоречило теории флогистона, согласно которой при горении должен был выделяться гипотетический флогистон. Лавуазье счел ошибочным объяснение, согласно которому флогистон обладал отрицательным весом, и окончательно отказался от этой идеи. Другие химики, например М.В.Ломоносов или Дж.Мэйоу, пытались объяснить окисление элементов и образование оксидов металлов (или, как тогда говорили, “известей”) как процесс, при котором частицы воздуха соединяются с какимлибо веществом. Этот воздух может быть “оттянут обратно” путем восстановления.

В 1772 г. Лавуазье собрал этот воздух, но не смог установить его природу. Первым об открытии кислорода сообщил Пристли. В 1775 г. Ему удалось доказать, что именно кислород соединяется с металлом и вновь выделяется из него при его восстановлении, как, например, при образовании “извести” ртути и ее восстановлении. Систематическим взвешиванием было установлено, что вес металла, участвующего в этих превращениях, не изменяется. Сегодня этот факт, казалось бы, убедительно доказывает справедливость предположений Лавуазье, а тогда большинство химиков отнеслись к нему скептически. Одной из причин такого отношения было то, что Лавуазье не мог объяснить процесс горения водорода.

В 1783 г. он узнал, что, используя электрическую дугу, Кавендиш доказал образование воды при сжигании смеси водорода и кислорода в закрытом сосуде. Повторив этот опыт, Лавуазье нашел, что вес воды соответствует весу исходных веществ. Затем он провел эксперимент, в котором пропускал водяной пар через железные стружки, помещенные в сильно нагреваемую медную трубку. Кислород соединялся с железными стружками, а водород собирался на конце трубки. Таким образом, воспользовавшись превращениями веществ, Лавуазье сумел объяснить процесс горения и качественно, и количественно, и для этого ему уже не нужна была теория флогистона.

Пристли же и Шееле, которые, открыв кислород, фактически создали основные предпосылки для появления кислородной теории Лавуазье, сами твердо придерживались позиций теории флогистона. Кавендиш, Пристли, Шееле и некоторые другие химики полагали, что расхождения между результатами опытов и положениями теории флогистона удастся устранить путем создания дополнительных гипотез. Надежность и полнота опытных данных, ясность аргументации и простота изложения способствовали быстрому распространению системы Лавуазье в Англии, Голландии, Германии, Швеции, Италии. В Германии представления Лавуазье были изложены в двух работах дра Гиртаннера “Новая химическая номенклатура на немецком языке” (1791 г.) и “Основы антифлогистонной химии” (1792 г.). Благодаря Гиртаннеру впервые появились немецкие обозначения веществ, соответствующие новой номенклатуре, например кислорода, водорода, азота. Работавший в Берлине Гермбштедт опубликовал в 1792 г. учебник Лавуазье в переводе на немецкий язык, а М.Клапрот после того, как он повторил опыты Лавуазье, признал, новое учение; взгляды Лавуазье разделял и знаменитый естествоиспытатель А.Гумбольдт.

В 1790х годах в Германии не раз публиковались работы Лавуазье. Большинство известных химиков Англии, Голландии, Швеции, талии разделяли взгляды Лавуазье. Нередко в историконаучной литературе можно прочесть, что для признания теории Лавуазье химикам понадобилось достаточно много времени. Однако по сравнению с 200 годами непризнания астрономами взглядов Коперника 1015летний период дискуссий в химии не так уж велик. В последней трети XVIII в. одной из важнейших была проблема, которая многие века интересовала ученых: химики хотели понять, почему и в каких соотношениях соединяются вещества друг с другом. К этой проблеме проявляли интерес еще греческие философы, а во времена Возрождения ученые выдвигали идею о сродстве веществ и даже строили ряды веществ по сродству.

Парацельс писал, что ртуть образует с металлами амальгамы, причем для разных металлов с различной скоростью ив такой последовательности: быстрее всего с золотом, затем ссеребром, свинцом, оловом, медью и, наконец, медленнее всего с железом. Парацельс считал, что причиной этого ряда химического сродства является не только “ненависть” и “любовь” веществ друг к другу. В соответствии с его представлениями металлы содержат серу, и, чем меньше ее содержание, тем чище металлы, ачистотавеществ в значительной мере определяет их сродство друг к другу. Г.Шталь

объяснял ряд осаждения металлов как результат различного содержания в них флогистона. До последней трети XVIII в. многочисленные исследования были направлены на то, чтобы расположить вещества по величине их “сродства”, и многие химики составляли соответствующие таблицы.

Для объяснения различного химического сродства веществ выдвигались и атомистические представления, а после того, как в конце XVIII - начале XIX вв. Ученые стали понимать влияние электричества на протекание некоторых химических процессов, для этой же цели пытались использовать и представления об электричестве. Основываясь на них, Берцелиус создал дуалистическую теорию состава веществ, в соответствии с, например, соли состоят из положительно и отрицательно заряженных “оснований” и “кислот”: при электролизе они притягиваются к противоположно заряженным электродам и могут распадаться при этом на элементы вследствие нейтрализации зарядов.

Со второй половины XVIII в. особенно много внимания ученые стали уделять вопросу: в каких количественных соотношениях взаимодействуют друг с другом вещества в химических реакциях? Уже давно было известно, что кислоты и основания могут нейтрализовать друг друга. Предпринимались также попытки установить содержание кислот и оснований в солях. Т.Бергман и Р.Кирван нашли, что, например, в реакции двойного обмена между химически нейтральными сульфатом калия и нитратом натрия образуются новые соли - сульфат натрия и нитрат калия, которые тоже являются химически нейтральными. Но ни один из исследователей не сделал из этого наблюдения общего вывода.

В 1767 г. Кавендиш обнаружил, что количество азотной и серной кислот, нейтрализующие одинаковые количества карбоната калия, нейтрализуют также одинаковое количество карбоната кальция. И.Рихтер первым сформулировал закон эквивалентов, объяснение которому было найдено позднее с позиций атомистической теории Дальтона. Рихтер установил, что раствор, получающийся при смешивании растворов двух химически нейтральных солей, тоже нейтрален. Он провел многочисленные определения количеств оснований и кислот, которые, соединяясь, дают химически нейтральные соли. Рихтер сделал следующий вывод: если одно и то же количество какойлибо кислоты нейтрализуется различными, строго определенными количествами разных оснований, то эти количества оснований эквивалентны и нейтрализуются одним и тем же количеством другой кислоты. Выражаясь современным языком, если к раствору сульфата калия, например, добавить раствор нитрата бария до полного осаждения сульфата бария, то раствор, содержащий нитрат калия, тоже будет нейтрален:

K2SO4 + Ba(NO3)2 = 2KNO3 + BaSO4. Следовательно, при образовании нейтральной соли эквивалентны друг другу следующие количества: 2K, 1Ba, 1SO4 и 2NO3. Полинг обобщил и сформулировал в современном виде этот закон соединительных весов”: “Весовые количества двух элементов (или их целочисленные кратные), которые, реагируют с одним и тем же количеством третьего элемента, реагируют друг с другом в тех же количествах”.

В начале работы Рихтера почти не привлекли внимания исследователей, поскольку он пользовался еще терминологией флогистонной теории. Кроме того, полученные ученым ряды эквивалентных весов были недостаточно наглядны, а предложенный им выбор относительных количеств оснований не имел серьезных доказательств. Положение исправил Э.Фишер, который среди эквивалентных весов Рихтер выбрал в качестве эталона эквивалент серной кислоты, приняв его равным 100, и составил, исходя из этого, таблицу “относительных весов” (эквивалентов) соединений. Но о таблице эквивалентов Фишера стало известно лишь благодаря Бертолле, который, критикуя Фишера, привел эти данные в своей книге “Опыт химической статики” (1803 г.).

Бертолле сомневался, что состав химических соединений постоянен. Он имел на это основание. Вещества, которые в начале XIX в. считались чистыми, на самом деле были либо смесями, либо равновесными системами различных веществ, а количественный состав химических соединений во многом зависел от количеств веществ, участвующих в реакциях их образования. Некоторые историки химии считают, что, подобно Венцелю, Бертолле также предвосхитил основные положения закона действия масс, который аналитически выражал влияние количеств взаимодействующих на скорость превращения.

Немецкий химик К.Венцель в 1777 г. показал, что скорость растворения металла в кислоте, измеряемая количеством металла, растворившегося за определенное время, пропорциональна “силе” кислоты. Бертолле сделал многое для учета влияния масс реагентов на ход превращения. Однако между работами Венцеля и даже Бертолле, с одной стороны, и точной формулировкой закона действия масс - с другой, существует качественное различие. Негативное отношение Бертолле к закону нейтрализации Рихтера не могло длиться долго, так как против положений Бертолле энергично выступил Пруст.

Проделав в течение 17991807 гг. массу анализов, Пруст доказал, что Бертолле сделал свои выводы о различном составе одних и тех же веществ, анализируя смеси, а не индивидуальные вещества, что он, например, не учитывал содержания воды в некоторых оксидах. Пруст убедительно доказал постоянство состава чистых химических соединений и завершил свою борьбу против взглядов Бертолле установлением закона постоянства состава веществ: состав одних и тех же веществ независимо от способа получения одинаков (постоянен).

Периодический закон

Рассматривая историю химии я не могу не упяуть об открытии периодического закона. Уже на ранних этапах развития химии было обнаружено, что различнымлементам присущи особые свойства. Вначале элементы разделяли всего на два типа - металлы и неметаллы. В 1829 г. немецкий химик Иоганн Деберейнер обнаружил существование нескольких групп из трех элементов (триад) со сходными химическими свойствами. Деберейнер обнаружил всего 5 триад, это:

1.

Cl, Br, I 2.

S, Se, Te

3.

Ca, Cr, Ba

4.

Li, Na, K

5.

Fe, Co, Ni

Это обнаружение свойств элементов побудило к дальнейшим исследованиям химиков, которые пытались найти рациональные способы классификации элементов.

В 1865 г. английский химик Джон Ньюлендс (18391898) заинтересовался проблемой периодической повторяемости свойств элементов. Он расположил из известных элементов в порядке возрастания их атомных масс следующим образом: H Li Be B C N O F Na Mg Al Si P S Cl K Ca Cr Ti Mn Fe Ньюлендс заметил, что в этой последовательности восьмой элемент (фтор) напоминает первый (водород), девятый элемент напоминает второй и т.д. Тем самым через каждые восемь элементов свойства повторялись. Однако в этой системе элементов было много неверного:

1) В таблице не нашлось места новым элементам.

2) Таблица не открывала возможности научного подхода к определению атомных масс и не позволяла сделать выбор между их вероятными наилучшими значениями.

3) Некоторые элементы представлялись неудачно размещенными в таблице. Например железо сопоставлялось с серой (!) и т.д. Несмотря на большое количество недостатков, попытка Ньюлендса явилась шагом в правильном направлении. Мы знаем, открытие периодического закона принадлежит Дмитрию Ивановичу Менделееву. Давайте рассмотрим историюего открытия. В 1869 году Н.А.Меншуткин представил членам Русского химического общества небольшую работу Д.И.Менделеева “Соотношение свойств с атомным весом элементов”. (Сам Д.И.Менделеев на заседании не присутствовал.)

На этом заседании работа Д.И.Менделеева не была воспринята всерьез. Пауль Вальден писал впоследствии: “Большие события слишком часто встречают незначительный отклик, и тот день, который должен был стать знаменательным днем для молодого Русского химического общества, а в действительности оказался будничным днем”. Д.И.Менделеев любил дерзкие идеи. Обнаруженная им закономерность гласила: химические и физические свойства элементови их соединений находятся в периодической зависимости от атомных весов элементов. Подобно своим предшественникам, Д.И.Менделеев выделил наиболее типичные элементы. Однако он предположил наличие пустот в таблице и осмелился утверждать, что они должны быть заполнены не открытыми еще элементами. В одно и тоже время с Менделеевым над этой же проблемой работал Лотарь Мейер, который опубликовал свою работу в 1870 году.

Однако приоритет в открытиипериодического заслуженно остается за Дмитрием Ивановичем Менделеевым, т.к. даже сам Л.Мейер не помышлял отрицать выдающуюся роль Д.И.Менделеева в открытии периодического закона. В своих воспоминаниях Л.Мейер указывал, что пользовался при написании своей работы рефератом статьи Д.И.Менделеева.

В 1870 году Менделеев внес в таблицу некоторые изменения: как любая закономерность, в основе которой лежит bepm` идея, новая система оказалась жизнеспособной, поскольку в ней предусматривалась возможность уточнений. Как я уже говорил, гениальность теории Менделеева состояла в том, что он оставил пустоты в своей таблице. Тем самым он предположил (а точнее был уверен), что еще не все элементы открыты. Однако Дмитрий Иванович не остановился на достигнутом. С помощью периодического закона он даже описал химические и физические свойства еще не открытых химических элементов, например: галлия, германия, скандия, которые полностью подтвердились.

После этого большинство ученых убедилось в правильности теории Д.И.Менделеева. В наше время периодический закон имеет огромное значение. С помощью его предсказывают свойства химических соединений, продукты реакций. С помощью периодического закона и в наше время предсказывают свойства элементов - это элементы которые нельзя получить в весомых количествах.

Заключение

После работ Лавуазье, Пруста, Ломоносова и Менделеева, уже в нашем веке было сделано много важнейших открытий в области химии и физики. Это работы по термодинамике, строению атома и молекул, электрохимии, - этот список можно продолжить до бесконечности. Однако открытия Лавуазье и Д.И.Менделеева остаются фундаментом химических знаний.

superbotanik.net

Реферат: Современная химия

Рождение современной химии

...нет науки, которая была бы замечательнее и поучительнее истории химии. Юстус фон Либих

Введение

Представления древнегреческих натурфилософов оставались основными идейными истоками естествознания вплоть до XVIII в. До начала эпохи Возрождения в науке господствовали представления Аристотеля. В дальнейшем стало расти влияние атомистических взглядов,

впервые высказанных Левкиппом и Демокритом. Алхимические работы опирались преимущественно на натурфилософские взгляды Платона и Аристотеля. Большинство экспериментаторов того периода были откровенными шарлатанами, которые пытались с помощью примитивных химических реакций получить или золото, или философский камень - вещество дающее бессмертие. Однако были и настоящие ученые, которые пытались систематизировать знания. Среди них Авиценна, Парацельс, Роджер Бэкон др. Некоторые химики считают, что алхимия - это зря потерянное время. Однако это не так: в процессе поиска золота было открыто множество химических соединений и изучены их свойства. Благодаря этим знаниям в конце XVII века была создана первая серьезная химическая теория - теория флогистона.

Теория флогистона и система Лавуазье

Творец теории флогистона - Георг Шталь. Он считал, что флогистон содержится во всех горючих и способных к окислению веществах. Горение или окисление рассматривалось им как процесс, при котором тело теряет флогистон. Воздух играет при этом особо важную роль. Он необходим для окисления, чтобы “вбирать” в себя флогистон. Из воздуха флогистон попадает в листья растений и в их древесину, из которых при восстановлении он вновь освобождается и возвращается телу. Так впервые была сформулирована теория, описывающая процессы горения. Ее особенности и новизна состояли в том, что одновременно рассматривались во взаимосвязи процессы окисления и восстановления. Теория флогистона развивала идеи Бехера и атомистические представления. Она позволяла объяснить протекание различных процессов в ремесленной химии и, в первую очередь, в металлургии и оказала громадное влияние на развитие химических ремесел и совершенствование методов "экспериментального искусства" в химии.

Теория флогистона способствовала и развитию учения об элементах. Приверженцы теории флогистона называли элементами оксиды металлов, рассматривая их как металлы, лишенные флогистона. Металлы же, напротив, считали соединениями элементов (оксидов металлов) с флогистоном. Потребовалось лишь поставить все положения этой теории “с головы на ноги”. Что и было сделано в дальнейшем. Для объяснения того, что масса оксидов больше чем масса металлов, Шталь предположил (а, вернее утверждал), что флогистон имеет отрицательный вес, т.е. флогистон соединившись с элементом “тянет” его вверх. Несмотря на одностороннюю, лишь качественную характеристику процессов, происходящих при горении, теория флогистона имела громадное значение для объяснения и систематизации именно этих превращений. На неверность флогистонной теории указывал Михаил Иванович Ломоносов.

Однако экспериментально доказать это смог Антуан Лоран Лавуазье. Лавуазье заметил, что при горении фосфора и серы же, как и при прокаливании металлов, происходит увеличение веса вещества. Казалось бы естественным сделать: увеличение веса сжигаемого вещества происходит при всех процессах горения. Однако этот вывод настолько противоречил положениям теории флогистона, что нужна была недюжинная смелость, чтобы высказать его хотя бы в виде гипотезы. Лавуазье решил проверить высказанные ранее Бойлем, Реем, Мэйоу и Ломоносовым гипотезы о роли воздуха в процессах горения. Он интересовался тем, увеличивается ли количество воздуха, если в нем происходит восстановление окисленного тела и выделение благодаря этому дополнительного воздуха.

Лавуазье удалось доказать, что действительно количество воздуха при этом возрастает. Это открытие Лавуазье назвал самым интересным со времени работ Шталя. Поэтому в ноябре 1772 г. Он направил в Парижскую Академию наук специальное сообщение о полученных им результатах. На следующем этапе исследований Лавуазье полагал выяснить, какова природа “воздуха”, соединяющегося с горючими телами при их окислении. Однако все попытки установить природу этого “воздуха” в 17721773 гг. Окончились безрезультатно.

Дело в том, что Лавуазье, так же как и Шталь, восстанавливал “металлические извести” путем непосредственного контакта с “углеобразной материей” и тоже получал при этом диоксид углерода, состав которого он не мог тогда установить. Как считал Лавуазье, “уголь сыграл с ним злую шутку”. Однако Лавуазье, как и многим другим химикам, не приходила мысль, что восстановление оксидов металлов можно осуществить нагреванием с помощью зажигательного стекла.

Но вот осенью 1774 г. Джозеф Пристли сообщил, что при восстановлении окиси ртути с помощью зажигательного стекла образуется новый вид воздуха - “дефлогистированный воздух”. Незадолго до этого кислород был открыт Шееле, но сообщение об этом было опубликовано с большим запозданием. Шееле и Пристли объясняли наблюдаемое ими явление выделения кислорода с позиций флогистонной теории. Только Лавуазье смог использовать открытие кислорода в качестве главного аргумента против теории флогистона. Весной 1775 г. Лавуазье воспроизвел опыт Пристли. Он хотел получить кислород и проверить, был ли кислород тем компонентом воздуха, благодаря которому происходило горение или окисление металлов. Лавуазье удалось не только выделить кислород, но и вновь получить оксид ртути. Одновременно Лавуазье определял весовые отношения вступающих в эту реакцию веществ. Ученому удалось доказать, что отношения количества веществ, участвующих в реакциях окисления и восстановления, остаются неизменными. Работы Лавуазье произвели в химии, пожалуй, такую же революцию, как два с половиной века до открытия Коперника в астрономии. Вещества, которые раньше считались элементами, как показал Лавуазье, оказались соединениями, состоящими в свою очередь из сложных “элементов”. Открытия и воззрения Лавуазье оказали громадное влияние не только на развитие химической теории, но и на всю систему химических знаний. Они так преобразовали саму основу химических знаний и языка, что следующие поколения химиков, по существу, не могли понять даже терминологию, которой пользовались до Лавуазье. На этом основании впоследствии стали считать, что о “подлинной” химии нельзя говорить до открытий Лавуазье.

Преемственность химических исследований при этом была забыта. Только историки химии начали вновь воссоздавать действительно существовавшие закономерности развития химии. При этом было выяснено, что “химическая революция” Лавуазье была бы невозможна без существования до него определенного уровня химических знаний.

Развитие химических знаний Лавуазье увенчал созданием новой системы, в которую вошли важнейшие достижения химии прошлых веков. Эта система, правда, в значительно расширенном и исправленном виде, стала основой научной химии. В 80х гг. XVIII в. Новая система Лавуазье получила признание у ведущих естествоиспытателей Франции - К.Бертолле, А. Де Фуркруа и Л.Гитона де Морво. Они поддержали новаторские идеи Лавуазье и совместно с ним разработали новую химическую номенклатуру и терминологию. В 1789 г. Лавуазье изложил основы разработанной им системы знаний в учебнике “Начальный курс химии, представленный в новом виде на основе новейших открытий”.

Лавуазье разделял элементы на металлы и неметаллы, а соединения на двойные и тройные. Двойные соединения, образуемые металлами с кислородом, он относил к основаниям, а соединения неметаллов с кислородом - к кислотам. Тройные соединения, получающиеся при взаимодействии кислот и оснований, он называл солями. Система Лавуазье основывалась на точных качественных и количественных исследованиях. Этот довольно новый вид аргументации он использовал, изучая многие спорные проблемы химии - вопросы теории горения, проблемы взаимного превращения элементов, которые были весьма актуальны в период становления научной химии.

Так, для проверки представления о возможности взаимного превращения элементов Лавуазье в течение нескольких дней нагревал воду в запаянной сосуде. В итоге он обнаружил в воде незначительное количество “земли”, установив при этом, что изменение общего веса сосуда вместе с водой не происходит. Образование “земель” Лавуазье объяснил не как результат их выделения из воды, а за счет разрушения стенок реакционного сосуда. Для ответа на этот вопрос шведский химик аптекарь К.Шееле в то же время использовал качественные методы доказательства, установив идентичность выделяющихся “земель” и материала сосуда.

Лавуазье, как и Ломоносов, учитывал существовавшие с древности наблюдения о сохранении веса веществ и систематически изучал весовые соотношения веществ, участвующих в химической реакции. Он обратил внимание на то, что, например, при горении серы или при образовании ржавчины на железе происходит увеличение веса исходных веществ. Это противоречило теории флогистона, согласно которой при горении должен был выделяться гипотетический флогистон. Лавуазье счел ошибочным объяснение, согласно которому флогистон обладал отрицательным весом, и окончательно отказался от этой идеи. Другие химики, например М.В.Ломоносов или Дж.Мэйоу, пытались объяснить окисление элементов и образование оксидов металлов (или, как тогда говорили, “известей”) как процесс, при котором частицы воздуха соединяются с какимлибо веществом. Этот воздух может быть “оттянут обратно” путем восстановления.

В 1772 г. Лавуазье собрал этот воздух, но не смог установить его природу. Первым об открытии кислорода сообщил Пристли. В 1775 г. Ему удалось доказать, что именно кислород соединяется с металлом и вновь выделяется из него при его восстановлении, как, например, при образовании “извести” ртути и ее восстановлении. Систематическим взвешиванием было установлено, что вес металла, участвующего в этих превращениях, не изменяется. Сегодня этот факт, казалось бы, убедительно доказывает справедливость предположений Лавуазье, а тогда большинство химиков отнеслись к нему скептически. Одной из причин такого отношения было то, что Лавуазье не мог объяснить процесс горения водорода.

В 1783 г. он узнал, что, используя электрическую дугу, Кавендиш доказал образование воды при сжигании смеси водорода и кислорода в закрытом сосуде. Повторив этот опыт, Лавуазье нашел, что вес воды соответствует весу исходных веществ. Затем он провел эксперимент, в котором пропускал водяной пар через железные стружки, помещенные в сильно нагреваемую медную трубку. Кислород соединялся с железными стружками, а водород собирался на конце трубки. Таким образом, воспользовавшись превращениями веществ, Лавуазье сумел объяснить процесс горения и качественно, и количественно, и для этого ему уже не нужна была теория флогистона.

Пристли же и Шееле, которые, открыв кислород, фактически создали основные предпосылки для появления кислородной теории Лавуазье, сами твердо придерживались позиций теории флогистона. Кавендиш, Пристли, Шееле и некоторые другие химики полагали, что расхождения между результатами опытов и положениями теории флогистона удастся устранить путем создания дополнительных гипотез. Надежность и полнота опытных данных, ясность аргументации и простота изложения способствовали быстрому распространению системы Лавуазье в Англии, Голландии, Германии, Швеции, Италии. В Германии представления Лавуазье были изложены в двух работах дра Гиртаннера “Новая химическая номенклатура на немецком языке” (1791 г.) и “Основы антифлогистонной химии” (1792 г.). Благодаря Гиртаннеру впервые появились немецкие обозначения веществ, соответствующие новой номенклатуре, например кислорода, водорода, азота. Работавший в Берлине Гермбштедт опубликовал в 1792 г. учебник Лавуазье в переводе на немецкий язык, а М.Клапрот после того, как он повторил опыты Лавуазье, признал, новое учение; взгляды Лавуазье разделял и знаменитый естествоиспытатель А.Гумбольдт.

В 1790х годах в Германии не раз публиковались работы Лавуазье. Большинство известных химиков Англии, Голландии, Швеции, талии разделяли взгляды Лавуазье. Нередко в историконаучной литературе можно прочесть, что для признания теории Лавуазье химикам понадобилось достаточно много времени. Однако по сравнению с 200 годами непризнания астрономами взглядов Коперника 1015летний период дискуссий в химии не так уж велик. В последней трети XVIII в. одной из важнейших была проблема, которая многие века интересовала ученых: химики хотели понять, почему и в каких соотношениях соединяются вещества друг с другом. К этой проблеме проявляли интерес еще греческие философы, а во времена Возрождения ученые выдвигали идею о сродстве веществ и даже строили ряды веществ по сродству.

Парацельс писал, что ртуть образует с металлами амальгамы, причем для разных металлов с различной скоростью ив такой последовательности: быстрее всего с золотом, затем ссеребром, свинцом, оловом, медью и, наконец, медленнее всего с железом. Парацельс считал, что причиной этого ряда химического сродства является не только “ненависть” и “любовь” веществ друг к другу. В соответствии с его представлениями металлы содержат серу, и, чем меньше ее содержание, тем чище металлы, ачистотавеществ в значительной мере определяет их сродство друг к другу. Г.Шталь

объяснял ряд осаждения металлов как результат различного содержания в них флогистона. До последней трети XVIII в. многочисленные исследования были направлены на то, чтобы расположить вещества по величине их “сродства”, и многие химики составляли соответствующие таблицы.

Для объяснения различного химического сродства веществ выдвигались и атомистические представления, а после того, как в конце XVIII - начале XIX вв. Ученые стали понимать влияние электричества на протекание некоторых химических процессов, для этой же цели пытались использовать и представления об электричестве. Основываясь на них, Берцелиус создал дуалистическую теорию состава веществ, в соответствии с, например, соли состоят из положительно и отрицательно заряженных “оснований” и “кислот”: при электролизе они притягиваются к противоположно заряженным электродам и могут распадаться при этом на элементы вследствие нейтрализации зарядов.

Со второй половины XVIII в. особенно много внимания ученые стали уделять вопросу: в каких количественных соотношениях взаимодействуют друг с другом вещества в химических реакциях? Уже давно было известно, что кислоты и основания могут нейтрализовать друг друга. Предпринимались также попытки установить содержание кислот и оснований в солях. Т.Бергман и Р.Кирван нашли, что, например, в реакции двойного обмена между химически нейтральными сульфатом калия и нитратом натрия образуются новые соли - сульфат натрия и нитрат калия, которые тоже являются химически нейтральными. Но ни один из исследователей не сделал из этого наблюдения общего вывода.

В 1767 г. Кавендиш обнаружил, что количество азотной и серной кислот, нейтрализующие одинаковые количества карбоната калия, нейтрализуют также одинаковое количество карбоната кальция. И.Рихтер первым сформулировал закон эквивалентов, объяснение которому было найдено позднее с позиций атомистической теории Дальтона. Рихтер установил, что раствор, получающийся при смешивании растворов двух химически нейтральных солей, тоже нейтрален. Он провел многочисленные определения количеств оснований и кислот, которые, соединяясь, дают химически нейтральные соли. Рихтер сделал следующий вывод: если одно и то же количество какойлибо кислоты нейтрализуется различными, строго определенными количествами разных оснований, то эти количества оснований эквивалентны и нейтрализуются одним и тем же количеством другой кислоты. Выражаясь современным языком, если к раствору сульфата калия, например, добавить раствор нитрата бария до полного осаждения сульфата бария, то раствор, содержащий нитрат калия, тоже будет нейтрален:

K2SO4 + Ba(NO3)2 = 2KNO3 + BaSO4. Следовательно, при образовании нейтральной соли эквивалентны друг другу следующие количества: 2K, 1Ba, 1SO4 и 2NO3. Полинг обобщил и сформулировал в современном виде этот закон соединительных весов”: “Весовые количества двух элементов (или их целочисленные кратные), которые, реагируют с одним и тем же количеством третьего элемента, реагируют друг с другом в тех же количествах”.

В начале работы Рихтера почти не привлекли внимания исследователей, поскольку он пользовался еще терминологией флогистонной теории. Кроме того, полученные ученым ряды эквивалентных весов были недостаточно наглядны, а предложенный им выбор относительных количеств оснований не имел серьезных доказательств. Положение исправил Э.Фишер, который среди эквивалентных весов Рихтер выбрал в качестве эталона эквивалент серной кислоты, приняв его равным 100, и составил, исходя из этого, таблицу “относительных весов” (эквивалентов) соединений. Но о таблице эквивалентов Фишера стало известно лишь благодаря Бертолле, который, критикуя Фишера, привел эти данные в своей книге “Опыт химической статики” (1803 г.).

Бертолле сомневался, что состав химических соединений постоянен. Он имел на это основание. Вещества, которые в начале XIX в. считались чистыми, на самом деле были либо смесями, либо равновесными системами различных веществ, а количественный состав химических соединений во многом зависел от количеств веществ, участвующих в реакциях их образования. Некоторые историки химии считают, что, подобно Венцелю, Бертолле также предвосхитил основные положения закона действия масс, который аналитически выражал влияние количеств взаимодействующих на скорость превращения.

Немецкий химик К.Венцель в 1777 г. показал, что скорость растворения металла в кислоте, измеряемая количеством металла, растворившегося за определенное время, пропорциональна “силе” кислоты. Бертолле сделал многое для учета влияния масс реагентов на ход превращения. Однако между работами Венцеля и даже Бертолле, с одной стороны, и точной формулировкой закона действия масс - с другой, существует качественное различие. Негативное отношение Бертолле к закону нейтрализации Рихтера не могло длиться долго, так как против положений Бертолле энергично выступил Пруст.

Проделав в течение 17991807 гг. массу анализов, Пруст доказал, что Бертолле сделал свои выводы о различном составе одних и тех же веществ, анализируя смеси, а не индивидуальные вещества, что он, например, не учитывал содержания воды в некоторых оксидах. Пруст убедительно доказал постоянство состава чистых химических соединений и завершил свою борьбу против взглядов Бертолле установлением закона постоянства состава веществ: состав одних и тех же веществ независимо от способа получения одинаков (постоянен).

Периодический закон

Рассматривая историю химии я не могу не упяуть об открытии периодического закона. Уже на ранних этапах развития химии было обнаружено, что различнымлементам присущи особые свойства. Вначале элементы разделяли всего на два типа - металлы и неметаллы. В 1829 г. немецкий химик Иоганн Деберейнер обнаружил существование нескольких групп из трех элементов (триад) со сходными химическими свойствами. Деберейнер обнаружил всего 5 триад, это:

1.

Cl, Br, I 2.

S, Se, Te

3.

Ca, Cr, Ba

4.

Li, Na, K

5.

Fe, Co, Ni

Это обнаружение свойств элементов побудило к дальнейшим исследованиям химиков, которые пытались найти рациональные способы классификации элементов.

В 1865 г. английский химик Джон Ньюлендс (18391898) заинтересовался проблемой периодической повторяемости свойств элементов. Он расположил из известных элементов в порядке возрастания их атомных масс следующим образом: H Li Be B C N O F Na Mg Al Si P S Cl K Ca Cr Ti Mn Fe Ньюлендс заметил, что в этой последовательности восьмой элемент (фтор) напоминает первый (водород), девятый элемент напоминает второй и т.д. Тем самым через каждые восемь элементов свойства повторялись. Однако в этой системе элементов было много неверного:

1) В таблице не нашлось места новым элементам.

2) Таблица не открывала возможности научного подхода к определению атомных масс и не позволяла сделать выбор между их вероятными наилучшими значениями.

3) Некоторые элементы представлялись неудачно размещенными в таблице. Например железо сопоставлялось с серой (!) и т.д. Несмотря на большое количество недостатков, попытка Ньюлендса явилась шагом в правильном направлении. Мы знаем, открытие периодического закона принадлежит Дмитрию Ивановичу Менделееву. Давайте рассмотрим историюего открытия. В 1869 году Н.А.Меншуткин представил членам Русского химического общества небольшую работу Д.И.Менделеева “Соотношение свойств с атомным весом элементов”. (Сам Д.И.Менделеев на заседании не присутствовал.)

На этом заседании работа Д.И.Менделеева не была воспринята всерьез. Пауль Вальден писал впоследствии: “Большие события слишком часто встречают незначительный отклик, и тот день, который должен был стать знаменательным днем для молодого Русского химического общества, а в действительности оказался будничным днем”. Д.И.Менделеев любил дерзкие идеи. Обнаруженная им закономерность гласила: химические и физические свойства элементови их соединений находятся в периодической зависимости от атомных весов элементов. Подобно своим предшественникам, Д.И.Менделеев выделил наиболее типичные элементы. Однако он предположил наличие пустот в таблице и осмелился утверждать, что они должны быть заполнены не открытыми еще элементами. В одно и тоже время с Менделеевым над этой же проблемой работал Лотарь Мейер, который опубликовал свою работу в 1870 году.

Однако приоритет в открытиипериодического заслуженно остается за Дмитрием Ивановичем Менделеевым, т.к. даже сам Л.Мейер не помышлял отрицать выдающуюся роль Д.И.Менделеева в открытии периодического закона. В своих воспоминаниях Л.Мейер указывал, что пользовался при написании своей работы рефератом статьи Д.И.Менделеева.

В 1870 году Менделеев внес в таблицу некоторые изменения: как любая закономерность, в основе которой лежит bepm` идея, новая система оказалась жизнеспособной, поскольку в ней предусматривалась возможность уточнений. Как я уже говорил, гениальность теории Менделеева состояла в том, что он оставил пустоты в своей таблице. Тем самым он предположил (а точнее был уверен), что еще не все элементы открыты. Однако Дмитрий Иванович не остановился на достигнутом. С помощью периодического закона он даже описал химические и физические свойства еще не открытых химических элементов, например: галлия, германия, скандия, которые полностью подтвердились.

После этого большинство ученых убедилось в правильности теории Д.И.Менделеева. В наше время периодический закон имеет огромное значение. С помощью его предсказывают свойства химических соединений, продукты реакций. С помощью периодического закона и в наше время предсказывают свойства элементов - это элементы которые нельзя получить в весомых количествах.

Заключение

После работ Лавуазье, Пруста, Ломоносова и Менделеева, уже в нашем веке было сделано много важнейших открытий в области химии и физики. Это работы по термодинамике, строению атома и молекул, электрохимии, - этот список можно продолжить до бесконечности. Однако открытия Лавуазье и Д.И.Менделеева остаются фундаментом химических знаний.

www.yurii.ru


Смотрите также