147
ознакомиться с устройством, принципом действия, основными режимами работы генератора постоянного тока с независимым возбуждением;
приобрестипрактические навыки пуска, эксплуатации и остановки генератора постоянного тока;
экспериментально подтвердить теоретические сведения о характеристиках генератора постоянного тока.
Электрические машины постоянного тока могут работать как в режиме генератора, так и в режиме двигателя, т.е. обладают свойством обратимости.
Генератор постоянного тока — это электрическая машина, предназначенная для преобразования механической энергии в электрическую энергию постоянного тока.
Электродвигатель постоянного тока —электрическая машина, предназначенная для преобразования электрической энергии постоянного тока в механическую.
Общий вид электрической машины постоянного тока представлен на рис. 1.
Как и любая другая электрическая машина, машина постоянного тока состоит из неподвижной части — статора и вращающейся части —ротора 1, выполняющего функциюякоря, так как в его обмотках наводится ЭДС.
В статоре машины находится обмотка возбуждения, создающая необходимый магнитный поток Ф. Статор состоит из цилиндрической станины 2 (стальное литье, стальная труба или сваренная листовая сталь), к которой крепятся главные 3 и дополнительные 4 полюса с обмотками возбуждения. С торцов статор закрывают подшипниковые щиты 5. В них впрессовываются подшипники и укрепляется щеточная траверса с щетками 6.
Якорь состоит из цилиндрического пакета (набранного из лакированных листов электротехнической стали для ослабления вихревых токов). В пазы сердечника якоря укладывается обмотка, соединенная с коллектором7; все это закрепляется на валу якоря.
Рис. 1
Простейшую электрическую машину можно представить в виде витка, вращающегося в магнитном поле (рис. 2,а,б). Концы витка выведены на две пластины коллектора. К коллекторным пластинам прижимаются неподвижные щетки, к которым подключается внешняя цепь.
Рис. 2
Принцип работы электрической машины основан на явлении электромагнитной индукции. Рассмотрим принцип работы электрической машины в режиме генератора. Пусть виток приводится во вращение от внешнего приводного двигателя (ПД). Виток пересекает магнитное поле, и в нем по закону электромагнитной индукции наводится переменная ЭДС, направление которой определяется по правилу правой руки. Если внешняя цепь замкнута, то по ней потечет ток, направленный от нижней щетки к потребителю и от него - к верхней щетке. Нижняя щетка оказывается положительным выводом генератора, а верхняя щетка - отрицательным. При повороте витка на 1800 проводники из зоны одного полюса переходят в зону другого полюса и направление ЭДС в них изменится на обратное. Одновременно верхняя коллекторная пластина входит в контакт с нижней щеткой, а нижняя пластина—с верхней щеткой, направление тока во внешней цепи не изменяется. Таким образом, коллекторные пластины не только обеспечивают соединение вращающего витка с внешней цепью, но и выполняют роль переключающегося устройства, т.е. являются простейшим механическим выпрямителем.
Для уменьшения пульсаций в генераторе постоянного тока вместо одной катушки по окружности якоря размещается несколько равномерно разнесенных обмоток, которые образуют обмотку якоря, и присоединяются для изменения полярности ЭДС к коллектору, состоящему из большего числа сегментов. Поэтому ЭДС в цепи между выводами щеток пульсирует уже не так сильно, т.е. получается практически постоянной.
Для этой постоянной ЭДС справедливо выражение
Е=с1Фn ,
где с1—коэффициент, зависящий от конструктивных элементов якоря и числа полюсов электрической машины;Ф— магнитный поток;n— частота вращения якоря.
При работе машины в режиме генератора по замкнутой внешней цепи и витку обмотки якоря протекает ток i = Iя, направление которого совпадает с направлением ЭДС (см. рис. 2,б). По закону Ампера взаимодействие тока iи магнитного поляВсоздает силуf, которая направлена перпендикулярноВиi. Направление силыfопределяется правилом левой руки: на верхний проводник сила действует влево, на нижний—вправо. Эта пара сил создает вращающий моментМвр, направленный в данном случае против часовой стрелки и равный
М=с2ФIя.
Этот момент противодействует моменту привода, т.е. является тормозящим моментом.
Ток якоря Iявызывает в якорной обмотке с сопротивлениемRяпадение напряженияRяIя,так что при нагрузке напряжениеUна выводах щеток получается меньше, чемЭДС, а именно
U = E – RяIя.
studfiles.net
Эпоха электрификации началась не так давно и за пару столетий полностью изменила наш образ жизни. Посмотрите вокруг, везде, где только падает глаз, обязательно увидите какой-нибудь электрический прибор. Люди настолько привыкли к разным машинам, которые выполняют за них практически всю работу, что возникает иллюзия, будто бы так было всегда. Но заглянем за сторону завесы, скрывающей от нас процесс жизнедеятельности электрических друзей. Разберем принцип действия и устройство генератора постоянного тока.
Электричество наблюдали еще древние греки. Было замечено свойство янтаря притягивать к себе разные частицы. Люди считали это магнетизмом, присущим смоле. Но позже заметили способность и других материалов приобретать магнетизм. Например, стекло при натирании тоже начинало привлекать к себе мелкие легкие элементы: частицы бумаги, волоски и пыль. Так стало понятным, что магнитный эффект возникает по какому-то закону.
Впоследствии, в XVIII веке, был создан прототип современного конденсатора, окрещенный по имени изобретателя «лейденской банкой». Этот несложный механизм умел накапливать заряд, который в то время считали своеобразной жидкостью, насыщающей твердые тела и способной перетекать от одного тела к другому с поразительной скоростью – на несколько миль за доли секунд.
Когда был открыт атом и его составляющие ядро и электрон, все стало на свои места. Люди поняли, что именно электроны и являются теми зарядами, которые создавали такие необъяснимые явления, как электрические разряды. Но пока это были лишь статические заряды. С опытов Фарадея и Эрстеда берет свое начало электричество, которое мы знаем сейчас. Они изобрели макет-генератор постоянного тока, устройство и принцип действия которого основаны на явлении электродвижущей силы ЭДС.
Как воды реки приводит в движение притяжение земли, так заряженные частицы в проводнике заставляет перемещаться ЭДС. Эта сила тесно связана с магнитным явлением, а именно появляется, как только меняется поток, создаваемый магнитом. ЭДС способна работать только в веществе, где всегда в наличии есть свободные заряды. Таким свойством обладают металлы и солевые растворы.
ЭДС тем больше, чем быстрее изменяется интенсивность магнитных волн. Как известно, магнит два полюса имеет всегда. В соответствии с тем, в каком направлении изменяется поток относительно проводника, ток в проводнике течет в ту или иную сторону. Положительные и отрицательные заряды сами создают между собой энергетическое поле, которое мы называем напряжением, оно тем больше, чем сильнее суммарный электрический заряд одноименного полюса.
Конструкция или машина, которая способна преобразовывать любую механическую силу в электрическую энергию, получила название генератора электричества. Принцип действия и устройство генератора постоянного тока связаны с магнетизмом. Если взять постоянный магнит и пересекать поле его напряженности проводником, то в последнем появляется сила, заставляющая двигаться в одном направлении заряженные частицы – появляется ток. То же самое будет происходить при неподвижном проводнике и движущемся магните.
Экспериментально учеными установлено, что величина тока тем больше, чем больше:
Если же перемещать проводник параллельно тому, как идет поток, то индукции в нем не наблюдается. Из этого вывели закон правой руки, который помогает понять, в каком направлении движется ток. При расположении руки правой части тела ладонью так, чтобы в нее входили магнитные линии напряженного поля, а палец большой был отогнут и указывал туда, куда происходит движение проводника, оставшиеся четыре пальца покажут путь тока. В магните вектор движения поля направлен от севера к югу.
Принцип действия и устройство генератора постоянного тока простого типа следующие: рамка изготовлена из токоведущего материала, насажена на ось и производит вращение между полюсами магнита. Каждый свободный конец рамки подсоединен к своему контакту, имеющему вид дугообразной пластины. Вместе контакты составляют окружность, разорванную в двух точках (коллектор). Эти полукруглые контакты подвижно соединены с подпружиненными проводящими щетками. Они снимают ток.
В пространстве рамка относительно контактов ориентирована так, что при пересечении каждой ее половины участков наибольшей величины магнитного потока щетки замкнуты на контактах. Когда же элементы рамки проходят фазу движения вдоль линий – щеточные контакты разомкнуты с коллектором.
Если подключить осциллограф, видно, что генератор постоянного тока устройство и принцип действия имеет такой, что выдает чередование полуволн, находящихся по одну сторону координат и изменяющих свое значение от нулевого к наивысшему и снова к нулю. Частота следования их зависит от скорости поворота рамки. Это означает, что ток в такой системе движется в одном направлении (постоянный), но имеет пульсирующий вид.
Реальный генератор тока постоянного устроен более сложно, хотя принцип его действия ничем не отличается от рассмотренного выше. Вместо одной рамки и пары полукруглых контактов он имеет множество рамок и контактов коллектора. Это, во-первых, повышает мощность такой машины, во-вторых, сглаживает пульсации тока, так как каждая рамка создает свою полуволну, которые, налаживаясь друг на друга, образуют суммарный ток. Такая вращающаяся система получила название якоря или ротора.
Магнит генератора тоже видоизменен. Его роль выполняет электромагнит, состоящий из обмотки и сердечника. Используя электромагниты, можно создавать большой магнитный поток, который не под силу для обычного постоянного. К тому же величину потока можно легко менять. Неподвижная часть генератора названа статором.
В зависимости от режима работы машины во время вращения вала, между статором и ротором наблюдаются следующие процессы:
Чтобы нивелировать магнитный поток якоря, в схему ротора вводят так называемые компенсационные обмотки, в которых образуется магнитный поток, ослабляющий реакцию якоря.
Принцип действия и устройство генераторов постоянного тока отличаются по исполнению схемы возбуждения. Они бывают:
Принцип обратимости электрических машин говорит о том, что любой электродвигатель может быть преобразован в генератор и наоборот. Ведь оба этих устройства используют ЭДС индукции, как основу своей работы. Только в двигателе на ротор подают электрический ток, который, создавая магнитный поток, отталкивается от полюсов магнита статора, совершая вращательное движение.
Если же вал двигателя вращать с определенной скоростью, в обмотках якоря начнет наводиться ЭДС индукции и потечет ток. Ограничение лишь в толщине провода обмотки якоря. Когда провод тонкий, то получить большую мощность у такого генератора не получится.
Несмотря на то что постоянное электричество можно получить методом выпрямления переменного, широко используют генератор постоянного тока. Принцип действия, схема такой машины незаменимы на металлургических предприятиях, в мощных электролизных установках заводов. В транспортной промышленности агрегаты работают в электровозах, пароходных судах. Для питания возбуждающих обмоток генераторов переменного тока на электростанциях также применимы источники постоянного напряжения. Для бытовых целей разработаны динамо-машины тока постоянного. Их можно увидеть на велосипедах, где они питают осветительные фары.
Генераторы тока постоянной полярности хороши тем, что могут вырабатывать электричество при разной скорости вращения вала. В них не нужно выдерживать четкую частоту, как, например, у генераторов переменного тока, где она должна быть в 50 Гц. Такие машины очень удобно использовать в качестве альтернативных источников электричества, например в ветрогенераторах.
fb.ru
Обмотка статора двигателя включается в трехфазную сеть, и пуск его производится так же, как и пуск асинхронных двигателей с короткозамкнутым ротором.
После того как двигатель разовьет скорость, близкую к синхронной (примерно 95%), обмотка возбуждения включается в сеть постоянного тока и двигатель входит в синхронизм, т. е. скорость ротора увеличивается до синхронной.
При пуске в ход двигателя обмотка возбуждения замыкается на сопротивление, примерно в 10—12 раз большее сопротивления самой обмотки. Нельзя обмотку возбуждения при пуске в ход оставить разомкнутой или замкнуть накоротко. Если при пуске в ход обмотка возбуждения окажется разомкнутой, то в ней будет индуктироваться очень большая э. д. с, опасная как для изоляции обмотки, так и для обслуживающего персонала. Создание э. д. с. большой величины объясняется тем, что при пуске в ход поле статора вращается с большой скоростью относительно неподвижного ротора и с большой скоростью пересекает проводники обмотки возбуждения, имеющей большое число витков.
Если обмотку возбуждения замкнуть накоротко при пуске в ход, то двигатель при пуске под нагрузкой может развить скорость, близкую к половине синхронной, и войти в синхронизм не сможет.
Работа синхронной машины с потреблением из сети опережающего тока дает возможность использовать ее в качестве компенсатора. Как выше было отмечено, синхронный двигатель для сети может являться конденсатором и повышать соs всей энергоустановки, компенсируя реактивную мощность других приемников энергии.
Повышение соs снижает потребление реактивной мощности электроустановок предприятия и уменьшает стоимость электроэнергии.
Компенсатором является синхронный двигатель, работающий без нагрузки и предназначенный для повышения соs предприятия. Таким образом, компенсатор является генератором реактивной мощности.
Конструктивно компенсатор отличается от синхронного двигателя незначительно. Компенсатор не несет механической нагрузки, поэтому его вал и ротор легче, а воздушный зазор меньше, чем у двигателя.
Основным недостатком синхронных двигателей является потребность в источнике как переменного, так и постоянного тока.
Потребность в источнике постоянного тока для питания обмотки возбуждения синхронного двигателя делает его крайне неэкономичным при небольших мощностях. Поэтому при малых мощностях синхронные двигатели с возбуждением постоянным током не находят применения.
При малых мощностях в случае необходимости получения постоянства скорости вращения (в устройствах автоматики, телемеханики, звукового кино и т. и.) широко используют реактивные синхронные двигатели.
Ротор реактивного синхронного двигателя имеет явно выраженные полюса. При очень малых мощностях ротор делают цилиндрическим из алюминия, в который при отливке закладываются стержни из мягкой стали, выполняющие функцию явно выраженных полюсов (рис. 132). Цилиндрическая форма ротора упрощает его обработку и балансировку, а также снижает потери на трение о воздух при работе машины, что существенно для двигателей очень малых мощностей.
В реактивных синхронных двигателях вращающий момент создается в результате стремления ротора ориентироваться в магнитном поле таким образом, чтобы магнитное сопротивление для этого поля было наименьшим. Поэтому ротор будет всегда занимать такое положение в пространстве, при котором магнитные линии вращающегося магнитного поля статора замкнутся через сталь ротора, так что он будет вращаться вместе с магнитным полем статора.
Наряду с трехфазным широко используют и однофазные реактивные двигатели.
Контрольные вопросы
1. Поясните принцип работы синхронного генератора.
2. Каково устройство генератора с явно и неявно выраженными полюсами?
3. Объясните внешние и регулировочные характеристики синхронного генератора.
4. Какие условия необходимо выполнить для включения синхронного генератора в сеть?
5. Объясните принцип работы синхронного двигателя.
6. В чем состоит принцип работы реактивного двигателя?
ГЛАВА X МАШИНЫ ПОСТОЯННОГО ТОКА
§ 104. ПРИНЦИП ДЕЙСТВИЯ ГЕНЕРАТОРА ПОСТОЯННОГО ТОКА
Простейшим генератором является виток, вращающийся в магнитном поле полюсов N и S (см. рис. 125). В таком витке индуктируется переменная во времени э. д. с. Поэтому при соединении концов витка с контактными кольцами, вращающимися вместе с витком, в нагрузке через неподвижные щетки протекает переменный ток, т. е. такая машина является генератором переменного тока.
Для преобразования переменного тока в в постоянный применяют коллектор, принцип действия которого состоит в следующем. Концы витка 1 (рис. 133) присоединяются к двум медным полукольцам (сегментам), называемым коллекторными пластинами. Пластины жестко укрепляют на валу машины и изолируют как друг от друга, так и отвала. На пластинах помещают неподвижные щетки 2 и 3, электрически соединенные с приемником энергии.
При вращении витка коллекторные пластины также вращаются вместе с валом машины и каждая из неподвижных щеток 2 и 3 соприкасается то с одной, то с другой пластиной. Щетки на коллекторе устанавливают так, чтобы они переходили с
одной пластины на другую в тот момент, когда э. д. с, индуктируемая в витке, была равна нулю. В этом случае при вращении якоря в витке индуктируется переменная э. д. с, изменяющаяся синусоидально при равномерном распределении магнитного поля, но каждая из щеток соприкасается с той коллекторной пластиной и соответственно с тем из проводников, который в данный момент находится под полюсом определенной полярности.
Следовательно, э. д. с. на щетках 2 и 3 знака не меняет, и ток по внешнему участку замкнутой электрической цепи протекает в одном направлении от щетки 2 через сопротивление r к щетке 3
Однако несмотря на то, что направление э. д. с. во внешней цепи остается неизменным, величина ее меняется во времени, т. е. получена не постоянная, а пульсирующая э. д. с. Ток во внешней цепи будет также пульсирующим.
Если поместить на якоре два витка под углом 90° один к другому и концы этих витков соединить с четырьмя коллекторными пластинами, то пульсация э. д. с. и тока во внешней цепи значительно уменьшится. При увеличении числа коллекторных пластин пульсация быстро уменьшается и при 16 пластинах на пару полюсов становится менее 1%. Таким образом, при большом числе коллекторных пластин э. д. с. и ток практически постоянны.
§ 105. УСТРОЙСТВО ГЕНЕРАТОРА ПОСТОЯННОГО ТОКА
Неподвижная часть в машинах постоянного тока является индуктирующей, т. е. создающей магнитное поле, а вращающаяся часть является индуктируемой (якорем).
Неподвижная часть машины (рис. 134, а) состоит из главных полюсов 1, дополнительных полюсов 2 и станины 3. Главный полюс (рис. 134, б) представляет собой электромагнит, создающий магнитный поток. Он состоит из сердечника 4, обмотки возбуждения 7 и полюсного наконечника 8. Полюсы крепятся на станине 6 с помощью болта 5. Сердечник полюса отливается из стали и имеет поперечное сечение овальной формы. На сердечнике полюса помечена катушка обмотки возбуждения, намотанная из изолированного медного провода. Катушки всех полюсов соединяются последовательно, образуя обмотку возбуждения. Ток, протекающий по обмотке возбуждения, создает магнитный поток. Полюсный наконечник удерживает обмотку возбуждения на полюсе и обеспечивает равномерное распределение магнитного поля под полюсом. Полюсному наконечнику придают такую форму, при которой воздушный зазор между полюсами и якорем одинаков по всей длине полюсной дуги. Добавочные полюсы имеют также сердечник и обмотку.
Добавочные полюсы устанавливают в средних точках меж главными полюсами, и число их может быть либо равным число главных полюсов, либо вдвое меньшим. Добавочные полюсы устанавливают в машинах больших мощностей, и они служат для уст ранения искрения под щетками. В машинах малых мощности добавочных полюсов обычно нет.
Станина отливается из стали и является остовом машины, На станине крепят главные и добавочные полюсы, а также на торцовых сторонах боковые щиты с подшипниками, удерживающими вал машины. С помощью станины машина крепится на фундаменте.
fiziku5.ru
Количество просмотров публикации Принцип действия генератора постоянного тока - 142
Электрические машины постоянного тока
Электрические машины постоянного тока по своему назначению делятся на электрические генераторы (или просто генераторы), преобразующие механическую энергию в электрическую при постоянном напряжении (генераторы являются источниками электрической энергии), и электрические двигатели (электродвигатели), преобразующие электрическую энергию постоянного тока в механическую энергию. Эта механическая энергия используется для приведения во вращение какого-либо исполнительного механизма (станок, лебедка, колеса трамвая, электропоезда и т. д.).
Вместе с тем, существуют некоторые специальные виды машин, к примеру машины, предназначенные для преобразования электроэнергии постоянного тока в электроэнергию переменного тока или наоборот; микромашины, используемые в системах автоматического регулирования, в измерительных и счетно-решающих устройствах в качестве датчиков (к примеру, датчиков скорости) и др.
Электротехнической промышленностью выпускаются машины постоянного тока различной мощности и напряжения. Условно их можно подразделить на следующие группы по мощности:
1) микромашины, мощность которых измеряется от долей ватта до 500 Вт;
2) машины малой мощности – 0,5 ÷ 10 кВт;
3) машины средней мощности – от 10 до нескольких сотен киловатт;
4) машины большой мощности – свыше нескольких сотен киловатт.
Напряжение машин постоянного тока изменяется от 6-12 В для используемых на автотранспорте до 30 кВ для используемых в радиотехнических установках.
Большое применение находят машины постоянного тока мощностью до 200 кВт на напряжение 110-440 В с частотой вращения 550-2870 об/мин. Микромашины имеют частоты вращения от нескольких оборотов до 30000 об/мин.
В промышленности, на транспорте и в сельском хозяйстве наиболее широко используют электродвигатели. Генераторы применяют для питания устройств связи, радиотехнических установок и т.д. В последние годы в качестве источников постоянного тока все более широко применяют более экономичные и простые в эксплуатации статические полупроводниковые преобразователи.
Работа генератора основана на использовании закона электромагнитной индукции, согласно которому в проводнике, движущемся в магнитном поле ипересекающем магнитный поток, индуцируется ЭДС.
Одной из базовых частей машины постоянного тока является магнитопровод, по которому замыкается магнитный поток. Магнитная цепь машины постоянного тока состоит из неподвижной части - статора 1 и вращающейся части – ротора 4. Статор представляет собой стальной корпус, к которому крепятся другие детали машины, в т.ч. магнитные полюсы 2. На магнитные полюсы насаживается обмотка возбуждения 3, питаемая постоянным током и создающая основной магнитный поток Ф0.
Ротор машины набирают из стальных штампованных листов с пазами по окружности и с отверстиями для вала и вентиляции.В пазы 5 ротора закладывается рабочая обмотка машины постоянного тока, т. е. обмотка, в которой основным магнитным потоком индуцируется ЭДС. Эту обмотку называют обмоткой якоря (в связи с этим ротор машины постоянного тока принято называть якорем).
Полюсы постоянного магнита создают магнитный поток. Представим, что обмотка якоря состоит из одного витка, концы которого присоединены к различным полукольцам, изолированным друг от друга. Эти полукольца образуют коллектор, который вращается вместе с витком обмотки якоря. По коллектору при этом скользят неподвижные щетки.
При вращении витка в магнитном поле в нем индуцируется э. д. с
где В – магнитная индукция; l – длина проводника; v – его линейная скорость.
Когда плоскость витка совпадает с плоскостью осевой линии полюсов (виток расположен вертикально), проводники пересекают максимальный магнитный поток и в них индуцируется максимальное значение ЭДС. Когда виток занимает горизонтальное положение, ЭДС в проводниках равна нулю.
Направление ЭДС в проводнике определяется по правилу правой руки. Когда при вращении витка проводник переходит под другой полюс, направление ЭДС в нем меняется на обратное. Но так как вместе с витком вращается коллектор, а щетки неподвижны, то с верхней щеткой всегда соединен проводник, находящийся под северным полюсом, ЭДС которого направлена от щетки. В результате полярность щеток остается неизменной, а следовательно, остается неизменной по направлению ЭДС на щетках - ещ.
Хотя ЭДС простейшего генератора постоянного тока постоянна по направлению, по значению она изменяется, принимая за один оборот витка два раза максимальное и два раза нулевое значения. ЭДС с такой большой пульсацией непригодна для большинства приемников постоянного тока и в строгом смысле слова ее нельзя назвать постоянной.
Для уменьшения пульсаций обмотку якоря генератора постоянного тока выполняют из большого числа витков (катушек), а коллектор – из большого числа коллекторных пластин, изолированных друг от друга. В результате этого пульсации ЭДС обмотки якоря уменьшаются. При увеличении числа витков и коллекторных пластин можно получить практически постоянную ЭДС обмотки якоря.
referatwork.ru
Содержание
Введение 3
1 Генератор постоянного тока 4
1.1 Основные элементы конструкции МПТ 5
2 Принцип действия генератора постоянного тока 6
1. 3 Математическое описание генератора постоянного тока 7
2 Представление устройства в виде структурной схемы 11
3 Общие сведения об основных характеристиках СРП 12
4 Синтез интегральной передаточной функции СРП 16
Заключение 22
Список использованной литературы 23
Введение
Есть среды, которые не могут быть описаны в сосредоточенных параметрах (электромагнитное поле, электростатическое поле, течение потока, гравитационное поле, температура и т.д.). Система с распределенными параметрами (СРП) - это система, в которой практически все сигналы (особенно входной и выходной) зависят от пространственных координат и времени. Система с сосредоточенными параметрами является частным случаем СРП и вводится для упрощения и решения задач на первом (нулевом) этапе.
Цель курсовой работы - синтез интегральной передаточной функции для объектов управления с распределенными параметрами. В данной работе решается вопрос построения математической модели генератора постоянного тока
Электрические машины постоянного тока широко применяются в различных отраслях промышленности.
Значительное распространение электродвигателей постоянного тока объясняется их ценными качествами: высокими пусковым, тормозным и перегрузочным моментами, сравнительно высоким быстродействием, что важно при реверсировании и торможении, возможностью широкого и плавного регулирования частоты вращения.
Электродвигатели постоянного тока используют для регулируемых приводов, например, для приводов различных станков и механизмов. Мощности этих электродвигателей достигают сотен киловатт. В связи с автоматизацией управления производственными процессами и механизмами расширяется область применения маломощных двигателей постоянного тока общего применения мощностью от единиц до сотен ватт.
Генераторы постоянного тока общего применения в настоящее время используются реже, чем электродвигатели, поскольку значительное распространение получают ионные и полупроводниковые преобразователи.
Электродвигатели и генераторы постоянного тока составляют значительную часть электрооборудования летательных аппаратов, Генераторы постоянного тока применяют в качестве источников питания; максимальная мощность их достигает 30 КВт. Электродвигатели летательных аппаратов используют для привода различных механизмов; мощность их имеет значительный диапазон – от долей до десятков киловатт. На самолетах, например, устанавливается более 200 различных электродвигателей постоянного тока. Двигатели постоянного тока широко используются в электрической тяге, в приводе подъемных устройств, для привода металлорежущих станков. Мощные двигатели постоянного тока применяются для привода прокатных станов и на судах для вращения гребных винтов. Постоянный ток для питания двигателей получается с помощью генераторов постоянного тока или выпрямительных установок, преобразующих переменный ток в постоянный.
Генераторы постоянного тока являются источником питания для промышленных установок, потребляющих постоянный ток низкого напряжения (электролизные и гальванические установки). Питание обмоток возбуждения мощных синхронных генераторов осуществляется во многих случаях от генераторов постоянного тока (возбудителей).
В зависимости от схемы питания обмотки возбуждения машины постоянного тока разделяются на несколько типов ( с независимым, параллельным, последовательным и смешанным возбуждением).
Ежегодный выпуск машин постоянного тока в РФ значительно меньше выпуска машин переменного тока, что обусловлено дороговизной двигателей постоянного тока.
В машинах постоянного тока насажанный на вал роторный сердечник вместе с заложенной в его пазах якорной обмоткой обычно называется якорем. Якорь машины постоянного тока вращается в магнитном поле, создаваемом обмотками возбуждения 1, надетыми на неподвижные полюсы 2 (рис 1). По проводникам 6 нагруженной якорной обмотки проходит ток. В результате взаимодействия полей обмоток возбуждения и якорной создается электромагнитный момент, возникновение которого можно также объяснить взаимодействием тока якорной обмотки с магнитным потоком машины.
Из технологических соображений сердечник полюсов обычно набирается на шпильках из листов электротехнической стали толщиной 0,5—1 мм (рис. 2). Одна сторона полюса прикрепляется к станине, часто при помощи болтов, другая — располагается
Рис. 2. Полюс машины постоянного тока:
2 — полюсный сердечник; 2 — воздушный зазор; 3 — полюсный наконечник; 4 — обмотка возбуждения 5 — болт для крепления полюса; 6 — ярмо
Рис. 1. Устройство машины постоянного тока:
1 — обмотка возбуждения; 2 — полюсы; 3 — ярмо; 4 — полюсный наконечник; 5 — якорь; 6 — проводники якорной обмотки; 7 — зубец якорного сердечника; 8 — воздушный зазор машины
вблизи якоря. Зазор между полюсом и якорным сердечником является рабочим воздушным зазором машины. Со стороны, обращенной к якорю, полюс заканчивается так называемым полюсным наконечником, форма и размер которого выбираются таким образом, чтобы способствовать лучшему распределению потока в воздушном зазоре. На полюсе размещается катушка обмотки возбуждения. Иногда в малых машинах полюсы не имеют обмотки возбуждения и выполняются из постоянных магнитов. Часть станины, по которой проходит постоянный магнитный поток, называется ярмом.
studfiles.net
Генераторы постоянного тока являются источниками постоянного тока, в которых осуществляется преобразование механической энергии в электрическую. Якорь генератора приводится во вращение каким-либо двигателем, в качестве которого могут быть использованы электрические двигатели внутреннего сгорания и т.д. Генераторы постоянного тока находят применение в тех отраслях промышленности, где по условиям производства необходим или является предпочтительным постоянный ток (на предприятиях металлургической и электролизной промышленности, на транспорте, на судах и др.). Используются они и на электростанциях в качестве возбудителей синхронных генераторов и источников постоянного тока.
В последнее время в связи с развитием полупроводниковой техники для получения постоянного тока часто применяются выпрямительные установки, но несмотря на это генераторы постоянного тока продолжают находить широкое применение.
Генераторы постоянного тока выпускаются на мощности от нескольких киловатт до 10 000 кВт.
Режим работы электрической машины в условиях, для которых она предназначена заводом-изготовителем, называется номинальным. Величины, соответствующие этому режиму работы (мощность, ток, напряжение, частота вращения и др.), являются номинальными данными машины. Они указываются в каталогах и выбиваются на табличке, прикрепленной к станине машины.
Рассмотрим принцип действия генератора постоянного тока, где подводимая механическая энергия преобразуется в электрическую энергию постоянного тока. Для этого воспользуемся упрощенной схемой генератора постоянного тока (рис. 5.2). В магнитном поле постоянного магнита вращается стальной сердечник, в продольных пазах которого расположен диаметральный виток abcd Начало d конец а этого витка присоединены к двум взаимно изолированным медным полукольцам. Образующим коллектор, который вращается вместе со стальным цилиндром. По коллектору скользят неподвижные контактные щетки А и В, от которых отходят провода к потребителю энергии R. Стальной сердечник с витком (обмоткой) и коллектором образует вращающуюся часть машины постоянного тока — якорь.
Если с помощью какой-либо внешней силы вращать якорь, то стороны витка будут пересекать магнитное поле и в обмотке якоря будет возникать ЭДС:
e = 2Blu
гдеВ — индукция; l — длина стороны витка; u — скорость перемещения пазовых сторон витка.
Рис. 5.2. Упрощенная схема генератора постоянного тока.
Так как длина и скорость перемещения пазовых сторон обмотки якоря неизменны, то е обмотки якоря прямо пропорциональна В, а форма графика ЭДС определяется законом распределения магнитной индукции S, размещенной в воздушном зазоре между поверхностью якоря и полюсом самого магнита. Так, например, магнитная индукция в точках зазора, лежащих на оси полюсов, имеет максимальные значения (рис. 5.3, а): под северным магнитным полюсом (N) — положительное значение и под южным магнитным полюсом (S) — отрицательное. В точках n и n’ лежащих на линии, проходящей через середину межполисного пространства, магнитная индукция равна нулю.
Допустим, что магнитная индукция в воздушном зазоре рассматриваемой схемы распределяется синусоидально:B=Bmaxsin£. Тогда ЭДС витка при вращении якоря будет также изменяться по синусоидальному закону. Угол а определяет изменение положения якоря относительно исходного положения. На рис. 3.3, а показан ряд положений витка abcd (обмотки) в различные моменты времени за один оборот якоря. При а, равном 360°, ЭДС якоря равна нулю, а при а, равном 270°, имеет максимальное значение, причем отрицательное. Таким образом, в обмотке якоря генератора постоянного тока наводится переменная ЭДС, и, следовательно, при подключении нагрузки в обмотке будет переменный ток (рис. 3.3, б, линия 7). За время второго полуоборота якоря, когда ЭДС и ток в обмотке якоря отрицательны, ЭДС и ток во внешней цепи генератора (в нагрузке) не меняют своего направления, т. е. остаются положительными, как и в течение первой половины оборота якоря.
Рис. 5.3. Принцип действия генератора постоянного тока: а — различные положения витка обмотки; б — преобразование переменного тока якоря в постоянный ток внешней цепи; 1 — ток в обмотке якоря; 2 — ток во внешней цепи
Действительно, приa = 90° щетка А соприкасается с коллекторной пластиной проводника d, расположенного под полюсом N, и имеет положительный потенциал, а щетка В — отрицательный, так как она соприкасается с пластиной коллектора, соединенной со стороной а витка, находящейся под полюсом S. При a = 270°, когда стороны а и d поменялись местами, щетки А и В сохраняют неизменной свою полярность, так как полукольца коллектора также поменялись местами и щетка А по-прежнему имеет контакт с коллекторной пластиной, связанной со стороной, находящейся под полюсом N9 а щетка В — с коллекторной пластиной, связанной со стороной, находящейся под полюсом 5. В результате ток во внешней цепи не изменяет своего направления (рис. 5.3, б, линия 2), т. е. переменный ток обмотки якоря с помощью коллектора и щеток преобразуется в постоянный. Ток во внешней цепи постоянен лишь по па-правлению, а его величина изменяется, т. е. ток пульсирует.
Рис. 5.4. Генератор с двумя витками в обмотке якоря:a — схема генератора; б — пульсация тока; 1,2 — ток в обмотках якоря; 3 — ток во внешней цепи
Пульсации тока и ЭДС значительно ослабляются, если обмотку якоря выполнить из большого числа равномерно распределенных по поверхности сердечника витков и увеличить соответственно число коллекторных пластин. Например, при двух витках на сердечнике якоря (четырех пазовых сторонах), оси которых смещены относительно друг друга на угол 90°, и четырех пластинах в коллекторе (рис. 5.4, а). В этом случае ток во внешней цепи генератора пульсирует с удвоенной частотой, но глубина пульсации значительно меньше (рис. 5.4, б). Если витков в обмотке якоря от 12 до 16, то ток на выходе генератора практически постоянен.
На рис. 5.5 представлена конструкция генератора постоянного тока.
Рис. 5.5. Генератор постоянного тока: 1 и 16 — крышки; 2 и 12 — шариковые подшипники; 3 и 10 —масленки; 4 — корпус; 5 — соединительный провод; 6 — защитная лента; 7 и 11 — стяжные болты; 8 — щеткодержатель положительной щетки; 9 и 25— уплотнительные манжеты; 13 — защитный колпачок; 14— отражательная шайба; 15— отрицательная щетка; 17 — щеткодержатель отрицательной щетки; 18— коллектор; 19 — обмотка якоря; 20— конец обмотки возбуждения; 21 — сердечник якоря; 22 — вал якоря; 23 — полюсный сердечник; 24 — катушка обмотки возбуждения; 26— крыльчатка шкива; 27— шкив.
studfiles.net
Количество просмотров публикации Устройство и принцип действия генератора постоянного тока - 221
Электрические машины постоянного тока
Генераторы и двигатели постоянного тока по устройству не отличаются и состоят из следующих базовых частей: неподвижные статора, подвижного якоря с коллектором и неподвижных щёток.
Статор служит для создания магнитного поля и представляет собой электромагнит с полюсами. Электромагнит состоит из полюсных сердечников и полюсных катушек. Полюсные катушки состоят из медного изолированного провода, надеваются на полюсные сердечники и являются обмоткой возбужденной машины.
Якорь состоит из сердечника, набранного из листов электротехнической стали, и обмотки, вложенной в пазы сердечника в виде витков. Якорь крепиться на валу, установленном в подшипниках, концы витков обмотки якоря припаиваются к коллектору.
Коллектор состоит из медных пластин, изолированных друг от друга.
В генераторах постоянного тока коллектор служит для преобразования переменного тока в постоянный ток, а в двигателях постоянного тока, постоянного тока в переменный ток.
Неподвижные щетки предназначены для снятия напряжения с якоря и состоят из брусков, изготовленных из медно-графитовых порошков. Щётки имеют скользящий контакт с пластинами коллектора.
Модель генератора постоянного тока показана на рис.5.1.
Рис.5.1. Модель генератора постоянного тока
В основу действия генератора положен закон электромагнитной индукции. При вращении витка рамки якоря в магнитном поле полюсов NS статора,
индуктируется переменная ЭДС якоря е и появляется мгновенный ток i. Когда проводник АВ рамки проходит около северного полюса N статора, индуктированная переменная ЭДС якоря е направлена по правилу правой руки от зрителя. При прохождении проводника СД рамки около южного полюса S статора, индуктированная переменная ЭДС якоря е направлена к зрителю. Аналогично будет направлен переменный ток i в проводниках рамки якоря.
Во внешней цепи постоянный ток якоря будет проходить от щетки Щ1 к щётке Щ2. Следовательно, при вращении рамки через нагрузкупроходит постоянный по направлению, но меняющийся во времени ток.
На рис.5.2 приведён график тока якоря для двух рамок якоря, расположенных под прямым углом. Важно заметить, что для сглаживания пульсаций тока якоря в генераторах постоянного тока якорь имеет обмотку, состоящую из ряда одинаковых рамок, а коллектор состоит из большого числа пластинок.
Электродвижущая сила якоря генератора постоянного тока определяется из выражения где с - конструктивная постоянная машины; n - частота вращения якоря в об/с; Ф – величина магнитного потока, измеряемая в веберах.
Рис.5.2. График временной зависимости тока якоря для двух рамок якоря, расположенных под прямым угло
По второму закону Кирхгофа для цепи с нагрузкой
, (5.1)
откуда
. (5.2)
Умножив обе части уравнения (5.2) на , получим:
или , (5.3)
где - полезная мощность; - электромагнитная мощность; - мощность потерь генератора.
referatwork.ru