Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Реферат: Поверхности второго порядка. Реферат поверхности второго порядка


Реферат Поверхность второго порядка

скачать

Реферат на тему:

План:

    Введение
  • 1 Типы поверхностей второго порядка
    • 1.1 Цилиндрические поверхности
    • 1.2 Конические поверхности
    • 1.3 Поверхности вращения
    • 1.4 Гиперболический параболоид
    • 1.5 Эллиптический параболоид
    • 1.6 Центральные поверхности
  • Литература

Введение

Поверхность второго порядка — геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида

a11x2 + a22y2 + a33z2 + 2a12xy + 2a23yz + 2a13xz + 2a14x + 2a24y + 2a34z + a44 = 0

в котором по крайней мере один из коэффициентов a11, a22, a33, a12, a23, a13 отличен от нуля.

1. Типы поверхностей второго порядка

1.1. Цилиндрические поверхности

Поверхность S называется цилиндрической поверхностью с образующей \vec{l}, если для любой точки M0 этой поверхности прямая, проходящая через эту точку параллельно образующей \vec{l}, целиком принадлежит поверхности S.

Теорема (об уравнении цилиндрической поверхности).Если в некоторой декартовой прямоугольной системе координат поверхность S имеет уравнение f(x,y) = 0, то S — цилиндрическая поверхность с образующей, параллельной оси OZ.

Кривая, задаваемая уравнением f(x,y) = 0 в плоскости z = 0, называется направляющей цилиндрической поверхности.

Если направляющая цилиндрической поверхности задаётся кривой второго порядка, то такая поверхность называется цилиндрической поверхностью второго порядка.

1.2. Конические поверхности

Коническая поверхность.

Поверхность S называется конической поверхностью с вершиной в точке O, если для любой точки M0 этой поверхности прямая, проходящая через M0 и O, целиком принадлежит этой поверхности.

Функция F(x,y,z) называется однородной порядка m, если \forall t \in \mathbb{R}\;\forall x,y,z выполняется следующее: F(tx,ty,tz)=t^mF(x,y,z)\!

Теорема (об уравнении конической поверхности).Если в некоторой декартовой прямоугольной системе координат поверхность S задана уравнением F(x,y,z) = 0, где F(x,y,z) — однородная функция, то S — коническая поверхность с вершиной в начале координат.

Если поверхность S задана функцией F(x,y,z), являющейся однородным алгебраическим многочленом второго порядка, то S называется конической поверхностью второго порядка.

  • Каноническое уравнение конуса второго порядка имеет вид:
\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=0\!

1.3. Поверхности вращения

Поверхность S называется поверхностью вращения вокруг оси OZ, если для любой точки M0(x0,y0,z0) этой поверхности окружность, проходящая через эту точку в плоскости z = z0 с центром в (0,0,z0) и радиусом r=\sqrt{x_0^2+y_0^2}, целиком принадлежит этой поверхности.

Теорема (об уравнении поверхности вращения).Если в некоторой декартовой прямоугольной системе координат поверхность S задана уравнением F(x2 + y2,z) = 0, то S — поверхность вращения вокруг оси OZ.

В случае, если a=b\neq 0, перечисленные выше поверхности являются поверхностями вращения.

1.4. Гиперболический параболоид

Гиперболический параболоид.

Ввиду геометрической схожести гиперболический параболоид часто называют «седлом».

Уравнение гиперболического параболоида:

\frac{x^2}{a^2}-\frac{y^2}{b^2}=2pz\!

При сечении гиперболического параболоида плоскостью z = z0 поверхность порождает гиперболу.

При сечении гиперболического параболоида плоскостью x = x0 или y = y0 поверхность порождает параболу.

1.5. Эллиптический параболоид

Эллиптический параболоид

Уравнение эллиптического параболоида:

\frac {x^2}{a^2} + \frac {y^2}{b^2} = 2pz

Если a = b то эллиптический параболоид представляет собой поверхность вращения, образованную вращением параболы вокруг вертикальной оси, проходящей через вершину данной параболы.

При сечении эллиптический параболоида плоскостью z = z0 поверхность порождает эллипс.

При сечении эллиптический параболоида плоскостью x = x0 или y = y0 поверхность порождает параболу.

1.6. Центральные поверхности

Если центр поверхности второго порядка существует и единственен, то его координаты \left(x_0,\;y_0\;z_0\right) можно найти решив систему уравнений:

\begin{cases} a_{11}x_0 + a_{12}y_0 + a_{13}z_0 + a_{14} = 0 \\ a_{21}x_0 + a_{22}y_0 + a_{23}z_0 + a_{24} = 0 \\ a_{31}x_0 + a_{32}y_0 + a_{33}z_0 + a_{34} = 0 \end{cases}

Литература

  • В. А. Ильин, Э. Г. Позняк. Аналитическая геометрия.. — М.: ФИЗМАТЛИТ, 2002. — 240 с.
  • П. С. Александров. Курс аналитической геометрии и линейной алгебры.. — М.: ФИЗМАТЛИТ, 1979. — 511 с.
  • Шаль. Исторический обзор происхождения и развития геометрических методов. Гл. 5, § 46-54. М., 1883.

wreferat.baza-referat.ru

Реферат Поверхности второго порядка

скачать

Реферат на тему:

План:

    Введение
  • 1 Типы поверхностей второго порядка
    • 1.1 Цилиндрические поверхности
    • 1.2 Конические поверхности
    • 1.3 Поверхности вращения
    • 1.4 Гиперболический параболоид
    • 1.5 Эллиптический параболоид
    • 1.6 Центральные поверхности
  • Литература

Введение

Поверхность второго порядка — геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида

a11x2 + a22y2 + a33z2 + 2a12xy + 2a23yz + 2a13xz + 2a14x + 2a24y + 2a34z + a44 = 0

в котором по крайней мере один из коэффициентов a11, a22, a33, a12, a23, a13 отличен от нуля.

1. Типы поверхностей второго порядка

1.1. Цилиндрические поверхности

Поверхность S называется цилиндрической поверхностью с образующей \vec{l}, если для любой точки M0 этой поверхности прямая, проходящая через эту точку параллельно образующей \vec{l}, целиком принадлежит поверхности S.

Теорема (об уравнении цилиндрической поверхности).Если в некоторой декартовой прямоугольной системе координат поверхность S имеет уравнение f(x,y) = 0, то S — цилиндрическая поверхность с образующей, параллельной оси OZ.

Кривая, задаваемая уравнением f(x,y) = 0 в плоскости z = 0, называется направляющей цилиндрической поверхности.

Если направляющая цилиндрической поверхности задаётся кривой второго порядка, то такая поверхность называется цилиндрической поверхностью второго порядка.

1.2. Конические поверхности

Коническая поверхность.

Поверхность S называется конической поверхностью с вершиной в точке O, если для любой точки M0 этой поверхности прямая, проходящая через M0 и O, целиком принадлежит этой поверхности.

Функция F(x,y,z) называется однородной порядка m, если \forall t \in \mathbb{R}\;\forall x,y,z выполняется следующее: F(tx,ty,tz)=t^mF(x,y,z)\!

Теорема (об уравнении конической поверхности).Если в некоторой декартовой прямоугольной системе координат поверхность S задана уравнением F(x,y,z) = 0, где F(x,y,z) — однородная функция, то S — коническая поверхность с вершиной в начале координат.

Если поверхность S задана функцией F(x,y,z), являющейся однородным алгебраическим многочленом второго порядка, то S называется конической поверхностью второго порядка.

  • Каноническое уравнение конуса второго порядка имеет вид:
\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=0\!

1.3. Поверхности вращения

Поверхность S называется поверхностью вращения вокруг оси OZ, если для любой точки M0(x0,y0,z0) этой поверхности окружность, проходящая через эту точку в плоскости z = z0 с центром в (0,0,z0) и радиусом r=\sqrt{x_0^2+y_0^2}, целиком принадлежит этой поверхности.

Теорема (об уравнении поверхности вращения).Если в некоторой декартовой прямоугольной системе координат поверхность S задана уравнением F(x2 + y2,z) = 0, то S — поверхность вращения вокруг оси OZ.

В случае, если a=b\neq 0, перечисленные выше поверхности являются поверхностями вращения.

1.4. Гиперболический параболоид

Гиперболический параболоид.

Ввиду геометрической схожести гиперболический параболоид часто называют «седлом».

Уравнение гиперболического параболоида:

\frac{x^2}{a^2}-\frac{y^2}{b^2}=2pz\!

При сечении гиперболического параболоида плоскостью z = z0 поверхность порождает гиперболу.

При сечении гиперболического параболоида плоскостью x = x0 или y = y0 поверхность порождает параболу.

1.5. Эллиптический параболоид

Эллиптический параболоид

Уравнение эллиптического параболоида:

\frac {x^2}{a^2} + \frac {y^2}{b^2} = 2pz

Если a = b то эллиптический параболоид представляет собой поверхность вращения, образованную вращением параболы вокруг вертикальной оси, проходящей через вершину данной параболы.

При сечении эллиптический параболоида плоскостью z = z0 поверхность порождает эллипс.

При сечении эллиптический параболоида плоскостью x = x0 или y = y0 поверхность порождает параболу.

1.6. Центральные поверхности

Если центр поверхности второго порядка существует и единственен, то его координаты \left(x_0,\;y_0\;z_0\right) можно найти решив систему уравнений:

\begin{cases} a_{11}x_0 + a_{12}y_0 + a_{13}z_0 + a_{14} = 0 \\ a_{21}x_0 + a_{22}y_0 + a_{23}z_0 + a_{24} = 0 \\ a_{31}x_0 + a_{32}y_0 + a_{33}z_0 + a_{34} = 0 \end{cases}

Литература

  • В. А. Ильин, Э. Г. Позняк. Аналитическая геометрия.. — М.: ФИЗМАТЛИТ, 2002. — 240 с.
  • П. С. Александров. Курс аналитической геометрии и линейной алгебры.. — М.: ФИЗМАТЛИТ, 1979. — 511 с.
  • Шаль. Исторический обзор происхождения и развития геометрических методов. Гл. 5, § 46-54. М., 1883.

wreferat.baza-referat.ru

Реферат: Поверхности второго порядка

Содержание.

·       Понятие поверхности второго порядка.1. Инварианты уравнения поверхности второго порядка.

·       Классификация поверхностей второго порядка.1. Классификация центральных поверхностей.

Ä  1°. Эллипсоид.

Ä  2°. Однополостный гиперболоид.

Ä  3°. Двуполостный гиперболоид.Ä  4°. Конус второго порядка.

2. Классификация нецентральных поверхностей.

Ä  1°. Эллиптический цилиндр, гиперболический цилиндр, эллиптический параболоид, гиперболиче­ский параболоид.

Ä  2°. Параболический цилиндр

 

•  Исследование формы поверхностей второго порядка по  их каноническим уравнениям.

 

1.    Эллипсоид. 2.  Гиперболоиды.

Ä  1°. Однополостный гиперболоид.

Ä  2°. Двуполостный гиперболоид.

3.  Параболоиды.

Ä  1°. Эллиптический параболоид.Ä  2°. Гиперболический пара­болоид.

4.  Конус и цилиндры второго порядка.

Ä  1°.  Конус второго порядка.Ä  2°.  Эллиптический цилиндр.Ä  3°. Гиперболический цилиндр.Ä  4°. Параболический цилиндр.

 

 

 

 

 

 

 

Список использованной литературы.

 

1.   «Аналитическая геометрия»      В.А. Ильин, Э.Г. Позняк

 

 

 

Поверхность  второго порядка -  геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида

a11х2 + а22у2 + a33z2+ 2a12xy + 2a23уz + 2a13xz + 2а14 x + 2а24у+2а34z +а44   = 0    (1)

в котором по крайней мере один из коэффициентов a11 , а22 , a33 , a12 , a23 , a13  отличен от нуля.

Уравнение (1) мы будем называть общим уравнением по­верхности второго порядка.

Очевидно, поверхность второго порядка, рассматриваемая как геометрический объект, не меняется, если от данной де­картовой прямоугольной системы координат перейти к другой декартовой системе координат. Отметим, что исходное уравне­ние (1) и уравнение, полученное после преобразования коор­динат, алгебраически эквивалентны.

 

1. Инварианты уравнения поверхности второго порядка.

Справедливо следующее утверждение.

 

являются инвариантами уравнения (1) поверхности второго-порядка относительно преобразований декартовой системы ко­ординат.

Доказательство этого утверждения приведено в выпуске «Линейная алгебра» настоящего курса.

 

1. Классификация центральных поверхностей. Пусть S — центральная поверхность второго порядка. Перенесем начало координат в центр этой поверхности, а затем произведем стан­дартное упрощение уравнения этой поверхности. В резуль­тате указанных операций уравнение поверхности примет вид

a11х2 + а22у2 + a33z2 + а44  = 0                 (2)

Так как инвариант I3  для центральной поверхности  отличен от ноля и его значение, вычисленное для уравнения (2) , равно a11 •  а22 •  a33 , то коэффициенты a11 ,а22 , a33  удовлетворяют условию :

 

 

Возможны следующие случаи :

 

Ä  1°.  Коэффициенты a11 ,а22 , a33    одного знака, а коэффициент а44 отличен от нуля. В этом случае поверхность S называется эллипсоидом.

Если коэффициенты a11 ,а22 , a33 , а44 одного знака, то левая часть (2) ни при каких значениях х, у, z не обращается в нуль, т. е. уравнению поверхности S не удовлетворяют коорди­наты никакой точки. В этом случае поверхность S называется мнимым эллипсоидом.

Если знак коэффициентов a11 ,а22 , a33  противоположен знаку коэффициента а44 , то поверхность S называется вещественным эллипсоидом. В дальнейшем термином «эллипсоид» мы будем называть лишь вещественный эллипсоид.

Обычно уравнение эллипсоида записывают в канонической форме. Очевидно, числа

 положительны. Обозначим эти числа соответственно а2, b2, с2. После не­сложных преобразований уравнение эллипсоида (2) можно записать в следующей форме:

                                                                  

 

Уравнение (3) называется каноническим уравнением эллип­соида.

Если эллипсоид задан своим каноническим уравнением (3), то оси Ох, Оу и Оz. называются его главными осями.

Ä  2°. Из четырех коэффициентов a11 ,а22 , a33 , а44 два одного зна­ка, а два других—противоположного. В этом случае поверх­ность S называется однополостным гиперболоидом.

Обычно уравнение однополостного гиперболоида записывают в канонической форме. Пусть, ради определенности, a11 > 0, а22  > 0,  a33  < 0,  а44 < 0. Тогда числа

  

положительны. Обозначим эти числа соответственно а2, b2, с2. После несложных преобразований уравнение (2) однополостного гиперболоида можно записать в следующей форме:

 

Уравнение (4) называется каноническим уравнением однопо­лостного гиперболоида.

Если однополостный гиперболоид задан своим каноническим уравнением (4), то оси Ох, Оу и Oz называются его глав­ными осями.

Ä  3°. Знак одного из первых трех коэффициентов a11 ,а22 , a33 , а44  противоположен знаку остальных коэффициентов. В этом случае поверхность S называется двуполостным гиперболоидом.

Запишем уравнение двуполостного гиперболоида в канониче­ской форме. Пусть, ради определенности, a11 < 0, а22  < 0,  a33  > 0,  а44 < 0. Тогда  :

Обозначим эти числа соответственно через a2, b2, с2. Поcли несложных преобразова­ний уравнение (2) двуполостного гиперболоида можно запи­сать в следующей форме:

 

 

Уравнение (5) называется каноническим уравнением двупо­лостного гиперболоида.

Если двуполостный гиперболоид задан своим каноническим

уравнением, то оси Ох, Оу и Оz называются его главными осями.

Ä   4°. Коэффициент а44 равен нулю. В этом случае поверхность S называется конусом второго порядка.

Если коэффициенты a11 , а22  , a33   одного знака, то левая часть (2) обращается в нуль (а44 = 0) лишь для х=у=z=0, т. е. уравнению поверхности S удовлетворяют координаты только едной точки. В этом случае поверхность S называется мнимым конусом второго порядка. Если коэффициенты a11 , а22  ,  a33  имеют разные знаки, то поверхность S является вещественным конусом второго порядка.

Обычно уравнение вещественного конуса второго порядка за­писывают в канонической форме. Пусть, ради определенности,

a11  > o, а22  > 0, a33  < 0. Обозначим

соответственно через а2, b2, с2. Тогда уравнение (2) можно записать в виде

 

 

 Уравнение (6) называется каноническим уравнением веще­ственного конуса второго порядка.

2. Классификация нецентральных поверхностей второго по­рядка.

Пусть S — нецентральная поверхность второго порядка, т. е. поверхность, для которой инвариант I3 равен нулю. Произведем стандартное упрощение урав­нения этой поверхности. В результате уравнение поверхности примет вид

a´11х´2 + а´22у´2 + a´33z´2 + 2а´14 x´ + 2а´24у´+2а´34z´ +а´44   = 0                            (7)

для  системы координат Ox´y´z´

Так как инвариант I3 = 0 и его значение, вы­численное для уравнения (7) , равно

a´11 • а´22 • a´33 , то один или два из коэффициентов a´11  , а´22  , a´33   равны нулю. В соответствии с этим рассмотрим следующие возможные случаи.

Ä   1°.  Один из коэффициентов a´11  , а´22  , a´33      равен нулю. Ради определенности будем считать, что  a´33  = 0  (если равен нулю ка­кой-либо другой из указанных коэффициентов, то можно перей­ти к рассматриваемому случаю путем переименования осей координат). Перейдем от координат х', у', z'  к новым координатам х, у, z по формулам

 

Подставляя х', у' и z', найденные из (8), в левую часть (7) и заменяя затем

a´11    на   a11  , а´22   на  а22  ,  а´34  на  p  и   а´44  на  q  , получим следующее уравнение поверхности S в новой системе ко­ординат Oxyz :

 

a11х2 + а22у2 + 2pz + q = 0                                     (9) 

      

1) Пусть р = 0, q = 0. Поверхность S распадается на пару пло­скостей

 

При этом, очевидно, эти плоскости будут мнимыми, если знаки a11  и а22   одинаковы, и вещественными, если знаки a11  и а22 различны.

2) Пусть р = 0, q ≠ 0. Уравнение (9) принимает вид

 

a11х2 + а22у2  + q = 0                                     (10)

 

Известно, что уравнение (10) яв­ляется уравнением цилиндра с образующими, параллельными оси Оz. При этом если a11  , а22  , q имеют одинаковый знак, то левая часть (10) отлична от нуля для любых х и y, т. е. ци­линдр будет мнимым. Если же среди коэффициентов a11  , а22  , q имеются коэффициенты разных знаков, то цилиндр будет ве­щественным. Отметим, что в случае, когда a11  и а22   имеют   одинаковые знаки, a q — противоположный, то величины

 

положительны.

  

 

 Обозначая их соответственно через а2  и b2, мы приведем уравнение (10) к виду

 

 

Таким образом, в отмеченном случае мы имеем эллиптический цилиндр. В случае, a11  и а22 имеют различные знаки, мы получим гиперболический цилиндр. Легко убедиться, что урав­нение гиперболического цилиндра может быть приведено к виду

 

 

3) Пусть р≠0. Произведем параллельный перенос системы координат, выбирая новое начало в точке с координатами

(0, 0,                 ).

 

При этом оставим старые обозначения координат  х, у, z. Очевидно, для того чтобы получить уравнение поверх­ности S в новой системе координат, достаточно заменить в урав­нении (9)

 

 

Получим следующее уравнение:

a11х2 + а22у2 + 2pz  = 0                          (13)

 

Уравнение (13) определяет так называемые параболоиды. Причем если a11  и а22  имеют одинаковый знак, то параболоид называется эллиптическим. Обычно уравнение эллиптического параболоида записывают в канонической форме:

 

 

 

Уравнение (14) легко получается из (13). Если a11  и а22  имеют разные знаки, то параболоид называется гиперболиче­ским. Каноническое уравнение гиперболического параболоида имеет вид

 

Это уравнение также легко может быть получено из (13).

Ä   2°. Два из коэффициентов  a´11  , а´22  , a´33    равны нулю. Ради определенности будем считать, что   a´11 = 0   и   а´22 = 0  Перейдем от  х,', у', z'  к. новым  координатам х, у, z по формулам :

 

 

Подставляя х', у' и z' , найденные из (16) в левую часть (7) и заменяя затем a´33    на  a33   ,   a´14     на р , a´24    на   q  и  a´44  на  r , по­лучим следующее уравнение поверхности S в новой системе ко­ординат Охуz :

a33 z2 + 2px + 2qy + r = 0               (17)

 

1) Пусть р=0, q=0. Поверхность S распадается на пару па­раллельных плоскостей

При этом, очевидно, эти плоскости будут мнимыми, если знаки a33  и  r одинаковы, и вещественными, если знаки a33 и r различ­ны, причем при r = 0 эти плоскости сливаются в одну.

2) Хотя бы один из коэффициентов р или q отличен от нуля. В этом случае повернем систему координат вокруг оси Oz так, чтобы новая ось абсцисс стала параллельной плоскости 2рх+2qy+r=0. Легко убедиться, что при таком выборе системы координат, при условии сохранения обозначения х, у и z для новых координат точек, уравнение (17) примет вид

 

a33 z2 + 2q´y  = 0                                (19)

 

которое является уравнением параболического цилиндра с обра­зующими, параллельными новой оси Ох.

1. Эллипсоид.

 

 

 

Из уравнения (3) вытекает, что координатные плоскости яв­ляются плоскостями симметрии эллипсоида, а начало коорди­нат—центром симметрии. Числа а, b, с называются полуосями эллипсоида и представляют собой длины отрезков, от начала координат до точек пересечения эллипсоида с осями координат. Чтобы более наглядно представить себе форму эллипсоида, выясним форму линий пересечения его плоскостями, параллельными какой-либо из координатных плоскостей.

Ради определенности рассмотрим линии Lh пересечения эл­липсоида с плоскостями

z  =  h                                                            (20)

параллельными плоскости Оху. Уравнение проекции L*h   ли­нии Lh  на плоскость Оху получается из уравнения  (3), если положить в нем  z  =  h. Таким образом, уравнение этой проекции имеет вид

 

 

 

Если положить

то уравнение (21) можно записать в виде

 

 

т. е. L*h   представляет собой эллипс с полуосями а* и b*, которые могут быть вычислены по формулам (22). Так как Lh получается «подъемом» L*h  на высоту h по оси Оz  (см. (20)), то и Lh  представляет собой эллипс.

Представление об эллипсоиде можно получить следующим об­разом. Рассмотрим на плоскости Оху семейство эллипсов (23)  (рис. 1), полуоси а* и b* которых зависят от h (см. (22)), и каждый такой эллипс снабдим отметкой h, указывающей, на ка­кую высоту по оси Оz должен быть «поднят» этот эллипс. Мы  получим своего рода «карту» эллипсоида. Используя эту «кар­ту», легко представить себе пространственный вид эллипсоида.

(Метод представления формы фигуры  путем получения «карты» фигуры я привожу только для эллипсоида, представить форму других фигур этим методом можно аналогично)

 

Наглядное изображение эллипсоида находится на следующей странице.

 

 

 

Эллипсоид .

 

 

 

 

 

 

 

 

2. Гиперболоиды.

Ä  1°. Однополостный гиперболоид. Обратимся к каноническому

уравнению (4) однополостного гиперболоида

 

 

 

Из уравнения (4) вытекает, что координатные плоскости яв­ляются плоскостями симметрии, а начало координат — центром симметрии однополостного гиперболоида.

 

 

 

Ä  2°. Двуполостный гиперболоид.

                         

Из канонического уравнения (5) двуполостного гиперболоида вытекает, что координатные пло­скости являются его плоскостями симметрии, а начало коорди­нат — его центром симметрии.

 

3. Параболоиды.

Ä  1°. Эллиптический параболоид. Обращаясь к каноническому уравнению (14) эллиптического параболоида

 

 

мы видим, что для него Oxz и Оуz являются плоскостями симметрии. Ось Oz, представляющая линию пересечения этих плоскостей, называется осью эллиптического параболоида.

 

 

 

 

 

 

 

 

 

Ä  2°. Гиперболический пара­болоид.   Из   канонического уравнения  (15)

гиперболического параболои­да вытекает, что плоскости Oxz и Оуz являются плоско­стями симметрии. Ось Oz называется осью гиперболического пaраболоида.

 

Прим.: получение  «карты высот» для гиперболического пaраболоида несколько отличается от аналогичной процедуры для вышеприведенных поверхностей 2-го порядка, поэтому я также включил его в свой реферат.

 

Линии z=h пересечения гиперболического параболоида плоскостями z=h представляют собой при h>0 гиперболы

 

с полуосями

а при h < 0 —сопряженные гиперболы для гипербол (24)

 

 

 

 с полуосями

 

Используя формулы (24)—(27), легко построить «карту» гиперболического параболоида. Отметим еще, плоскость z=0 пересекает гиперболический параболоид по двум прямым :

 

Из формул (25) и (27) вытекает, что прямые (28) являются асимптотами гипербол (24) и (26).Карта гиперболического параболоида дает представление о его пространственной форме. Как и в случае эллип­тического параболоида, можно убедиться в том, что гиперболи­ческий параболоид может быть получен путем параллельного перемещения параболы, предста­вляющей собой сечение плоско­стью Oxz (Оуz), когда ее вер­шина движется вдоль параболы, являющейся сечением параболо­ида плоскостью Oyz (Oxz).

Прим.: Изображение гиперболического пaраболоида дано на следующей странице.

 

 

 

 

 

Гиперболический пара­болоид.

4. Конус и цилиндры второго порядка.

Ä  1°.  Конус второго порядка

Убедимся, что вещественный конус S образован прямыми ли­ниями, проходящими через начало О координат. Естественно на­зывать точку О вершиной конуса.

Для доказательства сформулированного утверждения, очевид­но, достаточно установить, что прямая L, соединяющая произвольную, отличную от начала координат точку М0(х0, у0, z0)  ко­нуса (6) и начало координат О , целиком распола­гается на конусе, т. е. координаты (х, у, z) любой точки М прямой L удовлетворяют уравнению (6).

Так как точка М0(х0, у0, z0)  лежит на конусе (6), то :

Координаты (х, у, z) любой точки М прямой L равны соответ­ственно tx0 , ty0 , tz0 , где t—некоторое число. Подставляя эти значения для х, у и z в левую часть (6), вынося затем  t2 за скоб­ку и учитывая (29), мы убедимся в том, что М лежит на ко­нусе. Таким образом, утверждение доказано. Представление о форме конуса может быть получено методом сечений. Легко убедиться, что сечения конуса плоскостями z = h представляют собой эллипсы с полуосями :

 

Ä  2°. Эллиптический цилиндр.

Состоит из прямых линий, параллельных оси Oz .

Ä  3°. Гиперболический цилиндр.

Состоит из прямых линий, параллельных оси Oz .

Ä  4°. Параболический цилиндр.

a33 z2 + 2q´y  = 0                                (19)Путем переименования осей координат и простых арифметических операций из уравнения, (19) мы получим новое, компактное уравнение параболического цилиндра.

 

That's all, folks !
 

 

www.referatmix.ru

Реферат: Поверхности второго порядка

Поверхности второго порядка

Поверхности второго порядка – это поверхности, которые в прямоугольной системе координат определяются алгебраическими уравнениями второй степени.

  1. Эллипсоид.

Эллипсоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением:

(1)

Уравнение (1) называется каноническим уравнением эллипсоида.

Установим геометрический вид эллипсоида. Для этого рассмотрим сечения данного эллипсоида плоскостями, параллельными плоскости Oxy. Каждая из таких плоскостей определяется уравнением вида z=h, где h – любое число, а линия, которая получается в сечении, определяется двумя уравнениями

(2)

Исследуем уравнения (2) при различных значениях h.

  1. Если > c (c>0), то и уравнения (2) определяют мнимый эллипс, т. е. точек пересечения плоскости z=h с данным эллипсоидом не существует.
  2. Если , то и линия (2) вырождается в точки (0; 0; + c) и (0; 0; - c) (плоскости касаются эллипсоида).
  3. Если
, то уравнения (2) можно представить в виде

откуда следует, что плоскость z=h пересекает эллипсоид по эллипсу с полуосями и . При уменьшении значения и увеличиваются и достигают своих наибольших значений при , т. е. в сечении эллипсоида координатной плоскостью Oxy получается самый большой эллипс с полуосями и .

Аналогичная картина получается и при пересечении данной поверхности плоскостями, параллельными координатным плоскостям Oxz и Oyz.

Таким образом, рассмотренные сечения позволяют изобразить эллипсоид как замкнутую овальную поверхность (рис. 156). Величины a, b, c называются полуосями эллипсоида. В случае a=b=c эллипсоид является сферой.

2. Однополосный гиперболоид.

Однополосным гиперболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением

(3)

Уравнение (3) называется каноническим уравнением однополосного гиперболоида.

Установим вид поверхности (3). Для этого рассмотрим сечение ее координатными плоскостями Oxy (y=0) и Oyx (x=0). Получаем соответственно уравнения

и

из которых следует, что в сечениях получаются гиперболы.

Теперь рассмотрим сечения данного гиперболоида плоскостями z=h, параллельными координатной плоскости Oxy. Линия, получающаяся в сечении, определяется уравнениями

или(4)

из которых следует, что плоскость z=h пересекает гиперболоид по эллипсу с полуосями и ,

достигающими своих наименьших значений при h=0, т.е. в сечении данного гиперболоида координатной осью Oxy получается самый маленький эллипс с полуосями a*=a и b*=b. При бесконечном возрастании величины a* и b* возрастают бесконечно.

Таким образом, рассмотренные сечения позволяют изобразить однополосный гиперболоид в виде бесконечной трубки, бесконечно расширяющейся по мере удаления (по обе стороны) от плоскости Oxy.

Величины a, b, c называются полуосями однополосного гиперболоида.

3. Двуполостный гиперболоид.

Двуполостным гиперболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением

(5)

Уравнение (5) называется каноническим уравнением двуполостного гиперболоида.

Установим геометрический вид поверхности (5). Для этого рассмотрим его сечения координатными плоскостями Oxy и Oyz. Получаем соответственно уравнения

и

из которых следует, что в сечениях получаются гиперболы.

Теперь рассмотрим сечения данного гиперболоида плоскостями z=h, параллельными координатной плоскости Oxy. Линия, полученная в сечении, определяется уравнениями

или (6)

из которых следует, что при >c (c>0) плоскость z=h пересекает гиперболоид по эллипсу с полуосями и . При увеличении величины a* и b* тоже увеличиваются.

При уравнениям (6) удовлетворяют координаты только двух точек: (0;0;+с) и (0;0;-с) (плоскости касаются данной поверхности).

При уравнения (6) определяют мнимый эллипс, т.е. точек пересечения плоскости z=h с данным гиперболоидом не существует.

Величина a, b и c называются полуосями двуполостного гиперболоида.

4. Эллиптический параболоид.

Эллиптическим параболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением

(7)

где p>0 и q>0.

Уравнение (7) называется каноническим уравнением эллиптического параболоида.

Рассмотрим сечения данной поверхности координатными плоскостями Oxy и Oyz. Получаем соответственно уравнения

и

из которых следует, что в сечениях получаются параболы, симметричные относительно оси Oz, с вершинами в начале координат.

Теперь рассмотрим сечения данного параболоида плоскостями z=h, параллельными координатной плоскости Oxy. Линия, получающаяся в сечении, определяется уравнениями

или (8)

из которых следует, что при плоскость z=h пересекает эллиптический параболоид по эллипсу с полуосями и . При увеличении h величины a и b тоже увеличиваются; при h=0 эллипс вырождается в точку (плоскость z=0 касается данного гиперболоида). При h<0 уравнения (8) определяют мнимый эллипс, т.е. точек пересечения плоскости z=h с данным гиперболоидом нет.

Таким образом, рассмотренные сечения позволяют изобразить эллиптический параболоид в виде бесконечно выпуклой чаши.

Точка (0;0;0) называется вершиной параболоида; числа p и q – его параметрами.

В случае p=q уравнение (8) определяет окружность с центром на оси Oz, т.е. эллиптический параболоид можно рассматривать как поверхность, образованную вращением параболы вокруг её оси (параболоид вращения).

5. Гиперболический параболоид.

Гиперболическим параболоидом называется поверхность, которая в некоторой прямоугольной системе координат, определяется уравнением

(9)

где p>0, q>0.

Уравнение (9) называется каноническим уравнением гиперболического параболоида.

Рассмотрим сечение параболоида плоскостью Oxz (y=0). Получаем уравнение

(10)

из которых следует, что в сечении получается парабола, направленная вверх, симметричная относительно оси Oz, с вершиной в начале координат. В сечениях поверхности плоскостями, параллельными плоскости Oxz (y=h), получаются так же направленные вверх параболы.

рассмотрим сечение данного параболоида плоскостью Oyz (x=0).

Получаем уравнение

из которых следует, что и в этом случае в сечении получается парабола, но теперь направленная вниз, симметричная относительно оси Oz, с вершиной в начале координат. Рассмотрев сечения параболоида плоскостями, параллельными плоскости Oyz (x=h), получим уравнения

из которых следует, что при любом h в сечении получается парабола, направленная вниз, а вершина её лежит на параболе, определённой уравнениями (10).

Рассмотрим сечения параболоида плоскостями z=h, параллельными плоскости Oxy . получим уравнения

или

из которых следует, что при h>0 в сечении получаются гиперболы, пересекающие плоскость Oxy; при h<0 – гиперболы, пересекающие плоскости Oyz; при h=0 – гипербола вырождается в пару пересекающихся прямых

и

точка (0;0;0) называется вершиной параболоида; числа p и q – его параметрами.

6. Конус второго порядка.

Конусом второго порядка называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением

(11)

Рассмотрим геометрические свойства конуса. В сечение этой поверхности плоскостью Oxy (y=0) получаем линию

распадающуюся на две пересекающиеся прямые

и

Аналогично, в сечении конуса плоскостью Oyz (x=0) также получаются две пересекающиеся прямые

и

Рассмотрим сечения поверхности плоскостями z=h, параллельными плоскости Oxy. Получим

или

из которых следует, что при h>0 и h<0 в сечениях получаются эллипсы с полуосями . При увеличении абсолютной величины h полуоси a* и b* также увеличиваются.

При h=0 линия пересечения поверхности с плоскостью z=h вырождается в точку (0;0;0).

Cписок использованной литературы:

1.Шипачёв В.С.:”Высшая математика”

geum.ru

Реферат: Поверхности второго порядка

Поверхности второго порядка

§ 1. Понятие поверхности второго порядка.

Поверхность второго порядка - геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида

a11х2 + а22у2 + a33z2+ 2a12xy + 2a23уz + 2a13xz + 2а14x + 2а24у+2а34z +а44  = 0  (1)

в котором по крайней мере один из коэффициентов a11 , а22 , a33 , a12 , a23 , a13 отличен от нуля.

Уравнение (1) мы будем называть общим уравнением поверхности второго порядка.

Очевидно, поверхность второго порядка, рассматриваемая как геометрический объект, не меняется, если от данной декартовой прямоугольной системы координат перейти к другой декартовой системе координат. Отметим, что исходное уравнение (1) и уравнение, полученное после преобразования координат, алгебраически эквивалентны.

 

1. Инварианты уравнения поверхности второго порядка.

Справедливо следующее утверждение.

являются инвариантами уравнения (1) поверхности второго-порядка относительно преобразований декартовой системы координат.

Доказательство этого утверждения приведено в выпуске «Линейная алгебра» настоящего курса.

§ 2. Классификация поверхностей второго порядка

1. Классификация центральных поверхностей. Пусть S — центральная поверхность второго порядка. Перенесем начало координат в центр этой поверхности, а затем произведем стандартное упрощение уравнения этой поверхности. В результате указанных операций уравнение поверхности примет вид

a11х2 + а22у2 + a33z2 + а44 = 0         (2)

Так как инвариант I3 для центральной поверхности отличен от ноля и его значение, вычисленное для уравнения (2) , равно a11 • а22 • a33 , то коэффициенты a11 ,а22 , a33 удовлетворяют условию :

Возможны следующие случаи :

1. Коэффициенты a11 ,а22 , a33  одного знака, а коэффициент а44 отличен от нуля. В этом случае поверхность S называется эллипсоидом.

Если коэффициенты a11 ,а22 , a33 , а44 одного знака, то левая часть (2) ни при каких значениях х, у, z не обращается в нуль, т. е. уравнению поверхности S не удовлетворяют координаты никакой точки. В этом случае поверхность S называется мнимым эллипсоидом.

Если знак коэффициентов a11 ,а22 , a33 противоположен знаку коэффициента а44 , то поверхность S называется вещественным эллипсоидом. В дальнейшем термином «эллипсоид» мы будем называть лишь вещественный эллипсоид.

Обычно уравнение эллипсоида записывают в канонической форме. Очевидно, числа

 положительны. Обозначим эти числа соответственно а2, b2, с2. После несложных преобразований уравнение эллипсоида (2) можно записать в следующей форме:

Уравнение (3) называется каноническим уравнением эллипсоида.

Если эллипсоид задан своим каноническим уравнением (3), то оси Ох, Оу и Оz. называются его главными осями.

2. Из четырех коэффициентов a11 ,а22 , a33 , а44 два одного знака, а два других—противоположного. В этом случае поверхность S называется однополостным гиперболоидом.

Обычно уравнение однополостного гиперболоида записывают в канонической форме. Пусть, ради определенности, a11 > 0, а22 > 0, a33 < 0, а44 < 0. Тогда числа

 

положительны. Обозначим эти числа соответственно а2, b2, с2. После несложных преобразований уравнение (2) однополостного гиперболоида можно записать в следующей форме:

Уравнение (4) называется каноническим уравнением однополостного гиперболоида.

Если однополостный гиперболоид задан своим каноническим уравнением (4), то оси Ох, Оу и Oz называются его главными осями.

3. Знак одного из первых трех коэффициентов a11 ,а22 , a33 , а44 противоположен знаку остальных коэффициентов. В этом случае поверхность S называется двуполостным гиперболоидом.

Запишем уравнение двуполостного гиперболоида в канонической форме. Пусть, ради определенности, a11 < 0, а22 < 0, a33 > 0, а44 < 0. Тогда :

Обозначим эти числа соответственно через a2, b2, с2. Поcли несложных преобразований уравнение (2) двуполостного гиперболоида можно записать в следующей форме:

Уравнение (5) называется каноническим уравнением двуполостного гиперболоида.

Если двуполостный гиперболоид задан своим каноническим уравнением, то оси Ох, Оу и Оz называются его главными осями.

4. Коэффициент а44 равен нулю. В этом случае поверхность S называется конусом второго порядка.

Если коэффициенты a11 , а22 , a33  одного знака, то левая часть (2) обращается в нуль (а44 = 0) лишь для х=у=z=0, т. е. уравнению поверхности S удовлетворяют координаты только едной точки. В этом случае поверхность S называется мнимым конусом второго порядка. Если коэффициенты a11 , а22 , a33 имеют разные знаки, то поверхность S является вещественным конусом второго порядка.

Обычно уравнение вещественного конуса второго порядка записывают в канонической форме. Пусть, ради определенности,

a11 > o, а22 > 0, a33 < 0. Обозначим

соответственно через а2, b2, с2. Тогда уравнение (2) можно записать в виде

Уравнение (6) называется каноническим уравнением вещественного конуса второго порядка.

2. Классификация нецентральных поверхностей второго порядка.

Пусть S — нецентральная поверхность второго порядка, т. е. поверхность, для которой инвариант I3 равен нулю. Произведем стандартное упрощение уравнения этой поверхности. В результате уравнение поверхности примет вид

a´11х´2 + а´22у´2 + a´33z´2 + 2а´14x´ + 2а´24у´+2а´34z´ +а´44  = 0              (7)

для системы координат Ox´y´z´

Так как инвариант I3 = 0 и его значение, вычисленное для уравнения (7) , равно

a´11 • а´22 • a´33 , то один или два из коэффициентов a´11 , а´22 , a´33  равны нулю. В соответствии с этим рассмотрим следующие возможные случаи.

1. Один из коэффициентов a´11 , а´22 , a´33   равен нулю. Ради определенности будем считать, что a´33 = 0 (если равен нулю какой-либо другой из указанных коэффициентов, то можно перейти к рассматриваемому случаю путем переименования осей координат). Перейдем от координат х', у', z' к новым координатам х, у, z по формулам

Подставляя х', у' и z', найденные из (8), в левую часть (7) и заменяя затем

a´11  на  a11 , а´22  на а22 , а´34 на p и  а´44 на q , получим следующее уравнение поверхности S в новой системе координат Oxyz :

a11х2 + а22у2 + 2pz + q = 0                   (9)

1) Пусть р = 0, q = 0. Поверхность S распадается на пару плоскостей

При этом, очевидно, эти плоскости будут мнимыми, если знаки a11 и а22  одинаковы, и вещественными, если знаки a11 и а22 различны.

2) Пусть р = 0, q ≠ 0. Уравнение (9) принимает вид

a11х2 + а22у2 + q = 0                   (10)

Известно, что уравнение (10) является уравнением цилиндра с образующими, параллельными оси Оz. При этом если a11 , а22 , q имеют одинаковый знак, то левая часть (10) отлична от нуля для любых х и y, т. е. цилиндр будет мнимым. Если же среди коэффициентов a11 , а22 , q имеются коэффициенты разных знаков, то цилиндр будет вещественным. Отметим, что в случае, когда a11 и а22  имеют  одинаковые знаки, a q — противоположный, то величины положительны.

 

Обозначая их соответственно через а2 и b2, мы приведем уравнение (10) к виду

Таким образом, в отмеченном случае мы имеем эллиптический цилиндр. В случае, a11 и а22 имеют различные знаки, мы получим гиперболический цилиндр. Легко убедиться, что уравнение гиперболического цилиндра может быть приведено к виду

3) Пусть р≠0. Произведем параллельный перенос системы координат, выбирая новое начало в точке с координатами

(0, 0,         ).

При этом оставим старые обозначения координат х, у, z. Очевидно, для того чтобы получить уравнение поверхности S в новой системе координат, достаточно заменить в уравнении (9)

 

 

Получим следующее уравнение:

a11х2 + а22у2 + 2pz = 0             (13)

Уравнение (13) определяет так называемые параболоиды. Причем если a11 и а22 имеют одинаковый знак, то параболоид называется эллиптическим. Обычно уравнение эллиптического параболоида записывают в канонической форме:

Уравнение (14) легко получается из (13). Если a11 и а22 имеют разные знаки, то параболоид называется гиперболическим. Каноническое уравнение гиперболического параболоида имеет вид

 

Это уравнение также легко может быть получено из (13).

Ä  2°. Два из коэффициентов a´11 , а´22 , a´33  равны нулю. Ради определенности будем считать, что  a´11 = 0  и  а´22 = 0 Перейдем от х,', у', z' к. новым координатам х, у, z по формулам :

Подставляя х', у' и z' , найденные из (16) в левую часть (7) и заменяя затем a´33  на a33  ,  a´14   на р , a´24  на  q и a´44 на r , получим следующее уравнение поверхности S в новой системе координат Охуz :

a33 z2 + 2px + 2qy + r = 0        (17)

1) Пусть р=0, q=0. Поверхность S распадается на пару параллельных плоскостей

При этом, очевидно, эти плоскости будут мнимыми, если знаки a33 и r одинаковы, и вещественными, если знаки a33 и r различны, причем при r = 0 эти плоскости сливаются в одну.

2) Хотя бы один из коэффициентов р или q отличен от нуля. В этом случае повернем систему координат вокруг оси Oz так, чтобы новая ось абсцисс стала параллельной плоскости 2рх+2qy+r=0. Легко убедиться, что при таком выборе системы координат, при условии сохранения обозначения х, у и z для новых координат точек, уравнение (17) примет вид

a33 z2 + 2q´y = 0                (19)

которое является уравнением параболического цилиндра с образующими, параллельными новой оси Ох.

§ 3. Исследование формы поверхностей второго порядка по их каноническим уравнениям

1. Эллипсоид.

Из уравнения (3) вытекает, что координатные плоскости являются плоскостями симметрии эллипсоида, а начало координат—центром симметрии. Числа а, b, с называются полуосями эллипсоида и представляют собой длины отрезков, от начала координат до точек пересечения эллипсоида с осями координат. Чтобы более наглядно представить себе форму эллипсоида, выясним форму линий пересечения его плоскостями, параллельными какой-либо из координатных плоскостей.

Ради определенности рассмотрим линии Lh пересечения эллипсоида с плоскостями

z = h                              (20)

параллельными плоскости Оху. Уравнение проекции L*h  линии Lh на плоскость Оху получается из уравнения (3), если положить в нем z = h. Таким образом, уравнение этой проекции имеет вид

Если положить

то уравнение (21) можно записать в виде

т. е. L*h  представляет собой эллипс с полуосями а* и b*, которые могут быть вычислены по формулам (22). Так как Lh получается «подъемом» L*h на высоту h по оси Оz (см. (20)), то и Lh представляет собой эллипс.

Представление об эллипсоиде можно получить следующим образом. Рассмотрим на плоскости Оху семейство эллипсов (23) (рис. 1), полуоси а* и b* которых зависят от h (см. (22)), и каждый такой эллипс снабдим отметкой h, указывающей, на какую высоту по оси Оz должен быть «поднят» этот эллипс. Мы получим своего рода «карту» эллипсоида. Используя эту «карту», легко представить себе пространственный вид эллипсоида.

(Метод представления формы фигуры путем получения «карты» фигуры я привожу только для эллипсоида, представить форму других фигур этим методом можно аналогично)

Наглядное изображение эллипсоида находится на следующей странице.

Эллипсоид .

2. Гиперболоиды.

1. Однополостный гиперболоид. Обратимся к каноническому уравнению (4) однополостного гиперболоида

Из уравнения (4) вытекает, что координатные плоскости являются плоскостями симметрии, а начало координат — центром симметрии однополостного гиперболоида.

2. Двуполостный гиперболоид.

 

 

            

 

 

Из канонического уравнения (5) двуполостного гиперболоида вытекает, что координатные плоскости являются его плоскостями симметрии, а начало координат — его центром симметрии.

3. Параболоиды.

1. Эллиптический параболоид. Обращаясь к каноническому уравнению (14) эллиптического параболоида

мы видим, что для него Oxz и Оуz являются плоскостями симметрии. Ось Oz, представляющая линию пересечения этих плоскостей, называется осью эллиптического параболоида.

2. Гиперболический параболоид.  Из  канонического уравнения (15)  гиперболического параболоида вытекает, что плоскости Oxz и Оуz являются плоскостями симметрии. Ось Oz называется осью гиперболического пaраболоида.

Прим.: получение «карты высот» для гиперболического пaраболоида несколько отличается от аналогичной процедуры для вышеприведенных поверхностей 2-го порядка, поэтому я также включил его в свой реферат.

Линии z=h пересечения гиперболического параболоида плоскостями z=h представляют собой при h>0 гиперболы

с полуосями

а при h < 0 —сопряженные гиперболы для гипербол (24)

 с полуосями

 

Используя формулы (24)—(27), легко построить «карту» гиперболического параболоида. Отметим еще, плоскость z=0 пересекает гиперболический параболоид по двум прямым :

Из формул (25) и (27) вытекает, что прямые (28) являются асимптотами гипербол (24) и (26).

Карта гиперболического параболоида дает представление о его пространственной форме. Как и в случае эллиптического параболоида, можно убедиться в том, что гиперболический параболоид может быть получен путем параллельного перемещения параболы, представляющей собой сечение плоскостью Oxz (Оуz), когда ее вершина движется вдоль параболы, являющейся сечением параболоида плоскостью Oyz (Oxz).

Прим.: Изображение гиперболического пaраболоида дано на следующей странице.

Гиперболический параболоид.

4. Конус и цилиндры второго порядка.

Ä 1°. Конус второго порядка

 

 

Убедимся, что вещественный конус S образован прямыми линиями, проходящими через начало О координат. Естественно называть точку О вершиной конуса.

Для доказательства сформулированного утверждения, очевидно, достаточно установить, что прямая L, соединяющая произвольную, отличную от начала координат точку

М0(х0, у0, z0) конуса (6) и начало координат О , целиком располагается на конусе, т. е. координаты (х, у, z) любой точки М прямой L удовлетворяют уравнению (6).

Так как точка М0(х0, у0, z0) лежит на конусе (6), то :

Координаты (х, у, z) любой точки М прямой L равны соответственно tx0 , ty0 , tz0 , где t—некоторое число. Подставляя эти значения для х, у и z в левую часть (6), вынося затем t2 за скобку и учитывая (29), мы убедимся в том, что М лежит на конусе. Таким образом, утверждение доказано. Представление о форме конуса может быть получено методом сечений. Легко убедиться, что сечения конуса плоскостями z = h представляют собой эллипсы с полуосями :

 

Ä 2°. Эллиптический цилиндр.

Состоит из прямых линий, параллельных оси Oz .

3. Гиперболический цилиндр.

 

Состоит из прямых линий, параллельных оси Oz .

4. Параболический цилиндр.

a33 z2 + 2q´y = 0                (19)

Путем переименования осей координат и простых арифметических операций из уравнения, (19) мы получим новое, компактное уравнение параболического цилиндра.

Список литературы.

В.А. Ильин, Э.Г. Позняк «Аналитическая геометрия»

www.referatmix.ru

Реферат - Поверхности второго порядка

Поверхности второго порядка

§ 1. Понятие поверхности второго порядка.

Поверхность второго порядка — геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида

a11х2 + а22у2 + a33z2+ 2a12xy + 2a23уz + 2a13xz + 2а14x + 2а24у+2а34z +а44 = 0 (1)

в котором по крайней мере один из коэффициентов a11, а22, a33, a12, a23, a13 отличен от нуля.

Уравнение (1) мы будем называть общим уравнением поверхности второго порядка.

Очевидно, поверхность второго порядка, рассматриваемая как геометрический объект, не меняется, если от данной декартовой прямоугольной системы координат перейти к другой декартовой системе координат. Отметим, что исходное уравнение (1) и уравнение, полученное после преобразования координат, алгебраически эквивалентны.

/>1. Инварианты уравнения поверхности второго порядка.

Справедливо следующее утверждение.

являются инвариантами уравнения (1) поверхности второго-порядка относительно преобразований декартовой системы координат.

Доказательство этого утверждения приведено в выпуске «Линейная алгебра» настоящего курса.

§ 2. Классификация поверхностей второго порядка

1. Классификация центральных поверхностей. Пусть S — центральная поверхность второго порядка. Перенесем начало координат в центр этой поверхности, а затем произведем стандартное упрощение уравнения этой поверхности. В результате указанных операций уравнение поверхности примет вид

a11х2 + а22у2 + a33z2 + а44 = 0 (2)

Так как инвариант I3 для центральной поверхности отличен от ноля и его значение, вычисленное для уравнения (2), равно a11 • а22 • a33, то коэффициенты a11, а22, a33 удовлетворяют условию :

/>Возможны следующие случаи :

1. Коэффициенты a11, а22, a33одного знака, а коэффициент а44отличен от нуля. В этом случае поверхность Sназывается эллипсоидом.

Если коэффициенты a11, а22, a33, а44одного знака, то левая часть (2) ни при каких значениях х, у, z не обращается в нуль, т. е. уравнению поверхности S не удовлетворяют координаты никакой точки. В этом случае поверхность S называется мнимым эллипсоидом.

Если знак коэффициентов a11, а22, a33противоположен знаку коэффициента а44 , то поверхность S называется вещественным эллипсоидом. В дальнейшем термином «эллипсоид» мы будем называть лишь вещественный эллипсоид.

Обычно уравнение эллипсоида записывают в канонической форме. Очевидно, числа

/>

положительны. Обозначим эти числа соответственно а2, b2, с2. После несложных преобразований уравнение эллипсоида (2) можно записать в следующей форме:

/>

Уравнение (3) называется каноническим уравнением эллипсоида.

Если эллипсоид задан своим каноническим уравнением (3), то оси Ох, Оу и Оz. называются его главными осями.

2. Из четырех коэффициентов a11, а22, a33, а44два одного знака, а два других—противоположного. В этом случае поверхность S называется однополостным гиперболоидом.

Обычно уравнение однополостного гиперболоида записывают в канонической форме. Пусть, ради определенности, a11> 0, а22 > 0, a33 < 0, а44 < 0. Тогда числа

/>

положительны. Обозначим эти числа соответственно а2, b2, с2. После несложных преобразований уравнение (2) однополостного гиперболоида можно записать в следующей форме:

/>

Уравнение (4) называется каноническим уравнением однополостного гиперболоида.

Если однополостный гиперболоид задан своим каноническим уравнением (4), то оси Ох, Оу и Ozназываются его главными осями.

3. Знак одного из первых трех коэффициентов a11, а22, a33, а44противоположен знаку остальных коэффициентов. В этом случае поверхность S называется двуполостным гиперболоидом.

Запишем уравнение двуполостного гиперболоида в канонической форме. Пусть, ради определенности, a11< 0, а22 < 0, a33 > 0, а44 < 0. Тогда:

/>

Обозначим эти числа соответственно через a2, b2, с2. Поcли несложных преобразований уравнение (2) двуполостного гиперболоида можно записать в следующей форме:

/>

Уравнение (5) называется каноническим уравнением двуполостного гиперболоида.

Если двуполостный гиперболоид задан своим каноническим уравнением, то оси Ох, Оу и Оz называются его главными осями.

4. Коэффициент а44равен нулю. В этом случае поверхность Sназывается конусом второго порядка.

Если коэффициенты a11, а22 , a33 одного знака, то левая часть (2) обращается в нуль (а44 = 0) лишь для х=у=z=0, т. е. уравнению поверхности Sудовлетворяют координаты только едной точки. В этом случае поверхность S называется мнимым конусом второго порядка. Если коэффициенты a11, а22 , a33 имеют разные знаки, то поверхность S является вещественным конусом второго порядка.

Обычно уравнение вещественного конуса второго порядка записывают в канонической форме. Пусть, ради определенности,

a11 > o, а22 > 0, a33 < 0. Обозначим

/>

соответственно через а2, b2, с2. Тогда уравнение (2) можно записать в виде

/>

Уравнение (6) называется каноническим уравнением вещественного конуса второго порядка.

2. Классификация нецентральных поверхностей второго порядка.

Пусть S — нецентральная поверхность второго порядка, т. е. поверхность, для которой инвариант I3 равен нулю. Произведем стандартное упрощение уравнения этой поверхности. В результате уравнение поверхности примет вид

a´11х´2 + а´22у´2 + a´33z´2 + 2а´14x´ + 2а´24у´+2а´34z´ +а´44 = 0 (7)

для системы координат Ox´y´z´

Так как инвариант I3 = 0 и его значение, вычисленное для уравнения (7), равно

a´11 • а´22 • a´33, то один или два из коэффициентов a´11, а´22, a´33 равны нулю. В соответствии с этим рассмотрим следующие возможные случаи.

/>1. Один из коэффициентов a´11 , а´22 , a´33 равен нулю. Ради определенности будем считать, что a´33 = 0 (если равен нулю какой-либо другой из указанных коэффициентов, то можно перейти к рассматриваемому случаю путем переименования осей координат). Перейдем от координат х', у', z' к новым координатам х, у, zпо формулам

Подставляя х', у' и z', найденные из (8), в левую часть (7) и заменяя затем

a´11 на a11, а´22 на а22, а´34на pи а´44на q, получим следующее уравнение поверхности Sв новой системе координат Oxyz:

a11х2+ а22у2+ 2pz+ q= 0 (9)

/>1) Пусть р = 0, q = 0. Поверхность Sраспадается на пару плоскостей

При этом, очевидно, эти плоскости будут мнимыми, если знаки a11 и а22 одинаковы, и вещественными, если знаки a11 и а22различны.

2) Пусть р = 0, q≠ 0. Уравнение (9) принимает вид

a11х2+ а22у2+ q= 0 (10)

Известно, что уравнение (10) является уравнением цилиндра с образующими, параллельными оси Оz. При этом если a11, а22, q имеют одинаковый знак, то левая часть (10) отлична от нуля для любых х и y, т. е. цилиндр будет мнимым. Если же среди коэффициентов a11, а22, q имеются коэффициенты разных знаков, то цилиндр будет вещественным. Отметим, что в случае, когда a11 и а22 имеют одинаковые знаки, a q — противоположный, то величины положительны.

/>

Обозначая их соответственно через а2и b2, мы приведем уравнение (10) к виду

/>

Таким образом, в отмеченном случае мы имеем эллиптический цилиндр. В случае, a11 и а22имеют различные знаки, мы получим гиперболический цилиндр. Легко убедиться, что уравнение гиперболического цилиндра может быть приведено к виду

/>

3) Пусть р≠0. Произведем параллельный перенос системы координат, выбирая новое начало в точке с координатами

/>

(0, 0, ).

При этом оставим старые обозначения координат х, у, z. Очевидно, для того чтобы получить уравнение поверхности S в новой системе координат, достаточно заменить в уравнении (9)

/>

Получим следующее уравнение:

a11х2+ а22у2+ 2pz= 0 (13)

Уравнение (13) определяет так называемые параболоиды. Причем если a11 и а22имеют одинаковый знак, то параболоид называется эллиптическим. Обычно уравнение эллиптического параболоида записывают в канонической форме:

/>

Уравнение (14) легко получается из (13). Если a11 и а22имеют разные знаки, то параболоид называется гиперболическим. Каноническое уравнение гиперболического параболоида имеет вид

/>

Это уравнение также легко может быть получено из (13).

Ä2°. Два из коэффициентов a´11 , а´22 , a´33 равны нулю. Ради определенности будем считать, что a´11= 0 и а´22= 0 Перейдем от х,', у', z' к. новым координатам х, у, zпо формулам :

/>

Подставляя х', у' и z', найденные из (16) в левую часть (7) и заменяя затем a´33 на a33, a´14 на р, a´24 на q и a´44 на r, получим следующее уравнение поверхности Sв новой системе координат Охуz :

a33 z2+ 2px + 2qy + r = 0 (17)

/>

1) Пустьр=0, q=0. Поверхность S распадается на пару параллельных плоскостей

При этом, очевидно, эти плоскости будут мнимыми, если знаки a33и r одинаковы, и вещественными, если знаки a33и r различны, причем при r= 0 эти плоскости сливаются в одну.

2) Хотя бы один из коэффициентов р или q отличен от нуля. В этом случае повернем систему координат вокруг оси Ozтак, чтобы новая ось абсцисс стала параллельной плоскости 2рх+2qy+r=0. Легко убедиться, что при таком выборе системы координат, при условии сохранения обозначения х, у и z для новых координат точек, уравнение (17) примет вид

a33 z2+ 2q´y= 0 (19)

которое является уравнением параболического цилиндра с образующими, параллельными новой оси Ох.

--PAGE_BREAK--§ 3. Исследование формы поверхностей второго порядка по их каноническим уравнениям

/>

1. Эллипсоид.

Из уравнения (3) вытекает, что координатные плоскости являются плоскостями симметрии эллипсоида, а начало координат—центром симметрии. Числа а, b, с называются полуосями эллипсоида и представляют собой длины отрезков, от начала координат до точек пересечения эллипсоида с осями координат. Чтобы более наглядно представить себе форму эллипсоида, выясним форму линий пересечения его плоскостями, параллельными какой-либо из координатных плоскостей.

Ради определенности рассмотрим линии Lhпересечения эллипсоида с плоскостями

z= h(20)

параллельными плоскости Оху. Уравнение проекции L*hлинии Lhна плоскость Оху получается из уравнения (3), если положить в нем z= h. Таким образом, уравнение этой проекции имеет вид

/>

/>Если положить

/>то уравнение (21) можно записать в виде

/>

т. е. L*hпредставляет собой эллипс с полуосями а* и b*, которые могут быть вычислены по формулам (22). Так как Lhполучается «подъемом» L*hна высоту h по оси Оz(см. (20)), то и Lhпредставляет собой эллипс.

Представление об эллипсоиде можно получить следующим образом. Рассмотрим на плоскости Оху семейство эллипсов (23) (рис. 1), полуоси а* и b* которых зависят от h(см. (22)), и каждый такой эллипс снабдим отметкой h, указывающей, на какую высоту по оси Оz должен быть «поднят» этот эллипс. Мы получим своего рода «карту» эллипсоида. Используя эту «карту», легко представить себе пространственный вид эллипсоида.

(Метод представления формы фигуры путем получения «карты» фигуры я привожу только для эллипсоида, представить форму других фигур этим методом можно аналогично)

Наглядное изображение эллипсоида находится на следующей странице.

Эллипсоид.

/>2. Гиперболоиды.

1. Однополостный гиперболоид. Обратимся к каноническому уравнению (4) однополостного гиперболоида

/>

Из уравнения (4) вытекает, что координатные плоскости являются плоскостями симметрии, а начало координат — центром симметрии однополостного гиперболоида.

/>2. Двуполостный гиперболоид.

Из канонического уравнения (5) двуполостного гиперболоида вытекает, что координатные плоскости являются его плоскостями симметрии, а начало координат — его центром симметрии.

/>

3. Параболоиды.

1. Эллиптический параболоид. Обращаясь к каноническому уравнению (14) эллиптического параболоида

/>

мы видим, что для него Oxzи Оуz являются плоскостями симметрии. Ось Oz, представляющая линию пересечения этих плоскостей, называется осью эллиптического параболоида.

/>/>2. Гиперболический параболоид. Из канонического уравнения (15) гиперболического параболоида вытекает, что плоскости Oxz и Оуz являются плоскостями симметрии. Ось Ozназывается осью гиперболического пaраболоида.

Прим.: получение «карты высот» для гиперболического пaраболоида несколько отличается от аналогичной процедуры для вышеприведенных поверхностей 2-го порядка, поэтому я также включил его в свой реферат.

Линии z=hпересечения гиперболического параболоида плоскостями z=hпредставляют собой при h>0 гиперболы

/>

с полуосями

/>

/>а при h< 0 —сопряженные гиперболы для гипербол (24)

/>с полуосями

/>/>

Используя формулы (24)—(27), легко построить «карту» гиперболического параболоида. Отметим еще, плоскость z=0 пересекает гиперболический параболоид по двум прямым :

Из формул (25) и (27) вытекает, что прямые (28) являются асимптотами гипербол (24) и (26).

Карта гиперболического параболоида дает представление о его пространственной форме. Как и в случае эллиптического параболоида, можно убедиться в том, что гиперболический параболоид может быть получен путем параллельного перемещения параболы, представляющей собой сечение плоскостью Oxz(Оуz), когда ее вершина движется вдоль параболы, являющейся сечением параболоида плоскостью Oyz(Oxz).

Прим.: Изображение гиперболического пaраболоида дано на следующей странице.

/>Гиперболический параболоид.

4. Конус и цилиндры второго порядка.

/>Ä1°. Конус второго порядка

Убедимся, что вещественный конус S образован прямыми линиями, проходящими через начало О координат. Естественно называть точку О вершиной конуса.

Для доказательства сформулированного утверждения, очевидно, достаточно установить, что прямая L, соединяющая произвольную, отличную от начала координат точку

М(х, у, z) конуса (6) и начало координат О, целиком располагается на конусе, т. е. координаты (х, у, z) любой точки М прямой Lудовлетворяют уравнению (6).

/>Так как точка М(х, у, z) лежит на конусе (6), то :

/>Координаты (х, у, z) любой точки М прямой L равны соответственно tx0 , ty0 , tz0 , где t—некоторое число. Подставляя эти значения для х, у и zв левую часть (6), вынося затем t2за скобку и учитывая (29), мы убедимся в том, что М лежит на конусе. Таким образом, утверждение доказано. Представление о форме конуса может быть получено методом сечений. Легко убедиться, что сечения конуса плоскостями z = hпредставляют собой эллипсы с полуосями :

Ä2°. Эллиптический цилиндр.

/>

/>Состоит из прямых линий, параллельных оси Oz.

/>3. Гиперболический цилиндр.

/>

Состоит из прямых линий, параллельных оси Oz.

4. Параболический цилиндр.

a33 z2+ 2q´y= 0 (19)

Путем переименования осей координат и простых арифметических операций из уравнения, (19) мы получим новое, компактное уравнение параболического цилиндра.

/>/>

Список литературы.

В.А. Ильин, Э.Г. Позняк «Аналитическая геометрия»

/>

www.ronl.ru

Курсовая работа: Поверхности второго порядка

§ 1. Понятие поверхности второго порядка.

Поверхность второго порядка - геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида

a11х2+ а22у2+ a33z2+ 2a12xy + 2a23уz + 2a13xz + 2а14x + 2а24у+2а34z +а44= 0 (1)

в котором по крайней мере один из коэффициентов a11, а22, a33, a12, a23 ,a13отличен от нуля.

Уравнение (1) мы будем называть общим уравнением поверхности второго порядка.

Очевидно, поверхность второго порядка, рассматриваемая как геометрический объект, не меняется, если от данной декартовой прямоугольной системы координат перейти к другой декартовой системе координат. Отметим, что исходное уравнение (1) и уравнение, полученное после преобразования координат, алгебраически эквивалентны.

1. Инварианты уравнения поверхности второго порядка.

Справедливо следующее утверждение.

являются инвариантами уравнения (1) поверхности второго-порядка относительно преобразований декартовой системы координат.

Доказательство этого утверждения приведено в выпуске «Линейная алгебра» настоящего курса.

§ 2. Классификация поверхностей второго порядка

1. Классификация центральных поверхностей. Пусть S — центральная поверхность второго порядка. Перенесем начало координат в центр этой поверхности, а затем произведем стандартное упрощение уравнения этой поверхности. В результате указанных операций уравнение поверхности примет вид

a11х2+ а22у2+ a33z2+ а44= 0 (2)

Так как инвариант I3для центральной поверхности отличен от ноля и его значение, вычисленное для уравнения (2) , равно a11• а22• a33, то коэффициенты a11,а22, a33удовлетворяют условию :

Возможны следующие случаи :

1. Коэффициенты a11,а22, a33одного знака, а коэффициент а44отличен от нуля. В этом случае поверхность S называется эллипсоидом.

Если коэффициенты a11,а22, a33, а44одного знака, то левая часть (2) ни при каких значениях х, у, z не обращается в нуль, т. е. уравнению поверхности S не удовлетворяют координаты никакой точки. В этом случае поверхность S называется мнимым эллипсоидом.

Если знак коэффициентов a11,а22, a33противоположен знаку коэффициента а44, то поверхность S называется вещественным эллипсоидом. В дальнейшем термином «эллипсоид» мы будем называть лишь вещественный эллипсоид.

Обычно уравнение эллипсоида записывают в канонической форме. Очевидно, числа

положительны. Обозначим эти числа соответственно а2, b2, с2. После несложных преобразований уравнение эллипсоида (2) можно записать в следующей форме:

Уравнение (3) называется каноническим уравнением эллипсоида.

Если эллипсоид задан своим каноническим уравнением (3), то оси Ох, Оу и Оz. называются его главными осями.

2. Из четырех коэффициентов a11,а22, a33, а44два одного знака, а два других—противоположного. В этом случае поверхность S называется однополостным гиперболоидом.

Обычно уравнение однополостного гиперболоида записывают в канонической форме. Пусть, ради определенности, a11> 0, а22> 0, a33< 0, а44< 0. Тогда числа

положительны. Обозначим эти числа соответственно а2, b2, с2. После несложных преобразований уравнение (2) однополостного гиперболоида можно записать в следующей форме:

Уравнение (4) называется каноническим уравнением однополостного гиперболоида.

Если однополостный гиперболоид задан своим каноническим уравнением (4), то оси Ох, Оу и Oz называются его главными осями.

3. Знак одного из первых трех коэффициентов a11,а22, a33, а44противоположен знаку остальных коэффициентов. В этом случае поверхность S называется двуполостным гиперболоидом.

Запишем уравнение двуполостного гиперболоида в канонической форме. Пусть, ради определенности, a11< 0, а22< 0, a33> 0, а44< 0. Тогда :

Обозначим эти числа соответственно через a2, b2, с2. Поcли несложных преобразований уравнение (2) двуполостного гиперболоида можно записать в следующей форме:

Уравнение (5) называется каноническим уравнением двуполостного гиперболоида.

Если двуполостный гиперболоид задан своим каноническим уравнением, то оси Ох, Оу и Оz называются его главными осями.

4. Коэффициент а44равен нулю. В этом случае поверхность S называется конусом второго порядка.

Если коэффициенты a11, а22, a33одного знака, то левая часть (2) обращается в нуль (а44= 0) лишь для х=у=z=0, т. е. уравнению поверхности S удовлетворяют координаты только едной точки. В этом случае поверхность S называется мнимым конусом второго порядка. Если коэффициенты a11, а22, a33имеют разные знаки, то поверхность S является вещественным конусом второго порядка.

Обычно уравнение вещественного конуса второго порядка записывают в канонической форме. Пусть, ради определенности,

a11> o, а22> 0, a33< 0. Обозначим

соответственно через а2, b2, с2. Тогда уравнение (2) можно записать в виде

Уравнение (6) называется каноническим уравнением вещественного конуса второго порядка.

2. Классификация нецентральных поверхностей второго порядка.

Пусть S — нецентральная поверхность второго порядка, т. е. поверхность, для которой инвариант I3равен нулю. Произведем стандартное упрощение уравнения этой поверхности. В результате уравнение поверхности примет вид

a´11х´2+ а´22у´2+ a´33z´2+ 2а´14x´ + 2а´24у´+2а´34z´ +а´44= 0 (7)

для системы координат Ox´y´z´

Так как инвариант I3= 0 и его значение, вычисленное для уравнения (7) , равно

a´11• а´22• a´33, то один или два из коэффициентов a´11, а´22, a´33равны нулю. В соответствии с этим рассмотрим следующие возможные случаи.

1. Один из коэффициентов a´11, а´22, a´33равен нулю. Ради определенности будем считать, что a´33= 0 (если равен нулю какой-либо другой из указанных коэффициентов, то можно перейти к рассматриваемому случаю путем переименования осей координат). Перейдем от координат х', у', z' к новым координатам х, у, z по формулам

Подставляя х', у' и z', найденные из (8), в левую часть (7) и заменяя затем

a´11на a11, а´22на а22, а´34на pи а´44на q, получим следующее уравнение поверхности S в новой системе координат Oxyz :

a11х2+ а22у2+ 2pz + q = 0 (9)

1) Пусть р = 0, q = 0. Поверхность S распадается на пару плоскостей

При этом, очевидно, эти плоскости будут мнимыми, если знаки a11и а22одинаковы, и вещественными, если знаки a11и а22различны.

2) Пусть р = 0, q ≠ 0. Уравнение (9) принимает вид

a11х2+ а22у2+ q = 0 (10)

Известно, что уравнение (10) является уравнением цилиндра с образующими, параллельными оси Оz. При этом если a11, а22, q имеют одинаковый знак, то левая часть (10) отлична от нуля для любых х и y, т. е. цилиндр будет мнимым. Если же среди коэффициентов a11, а22, q имеются коэффициенты разных знаков, то цилиндр будет вещественным. Отметим, что в случае, когда a11и а22имеют одинаковые знаки, aq — противоположный, то величины положительны.

Обозначая их соответственно через а2и b2, мы приведем уравнение (10) к виду

Таким образом, в отмеченном случае мы имеем эллиптический цилиндр. В случае, a11и а22имеют различные знаки, мы получим гиперболический цилиндр. Легко убедиться, что уравнение гиперболического цилиндра может быть приведено к виду

3) Пусть р≠0. Произведем параллельный перенос системы координат, выбирая новое начало в точке с координатами

(0, 0, ).

При этом оставим старые обозначения координат х, у, z. Очевидно, для того чтобы получить уравнение поверхности S в новой системе координат, достаточно заменить в уравнении (9)

Получим следующее уравнение:

a11х2+ а22у2+ 2pz= 0 (13)

Уравнение (13) определяет так называемые параболоиды. Причем если a11и а22имеют одинаковый знак, то параболоид называется эллиптическим. Обычно уравнение эллиптического параболоида записывают в канонической форме:

Уравнение (14) легко получается из (13). Если a11и а22имеют разные знаки, то параболоид называется гиперболическим. Каноническое уравнение гиперболического параболоида имеет вид

Это уравнение также легко может быть получено из (13).

- 2°. Два из коэффициентов a´11, а´22, a´33равны нулю. Ради определенности будем считать, что a´11= 0 и а´22= 0 Перейдем от х,', у', z' к. новым координатам х, у, z по формулам :

Подставляя х', у' и z' , найденные из (16) в левую часть (7) и заменяя затем a´33на a33 ,a´14на р , a´24на q и a´44на r , получим следующее уравнение поверхности S в новой системе координат Охуz :

a33z2+ 2px + 2qy + r = 0 (17)

1) Пустьр=0, q=0. Поверхность S распадается на пару параллельных плоскостей

При этом, очевидно, эти плоскости будут мнимыми, если знаки a33и r одинаковы, и вещественными, если знаки a33и r различны, причем при r = 0 эти плоскости сливаются в одну.

2) Хотя бы один из коэффициентов р или q отличен от нуля. В этом случае повернем систему координат вокруг оси Oz так, чтобы новая ось абсцисс стала параллельной плоскости 2рх+2qy+r=0. Легко убедиться, что при таком выборе системы координат, при условии сохранения обозначения х, у и z для новых координат точек, уравнение (17) примет вид

a33z2+ 2q´y= 0 (19)

которое является уравнением параболического цилиндра с образующими, параллельными новой оси Ох.

§ 3. Исследование формы поверхностей второго порядка по их каноническим уравнениям

1. Эллипсоид.

Из уравнения (3) вытекает, что координатные плоскости являются плоскостями симметрии эллипсоида, а начало координат—центром симметрии. Числа а, b, с называются полуосями эллипсоида и представляют собой длины отрезков, от начала координат до точек пересечения эллипсоида с осями координат. Чтобы более наглядно представить себе форму эллипсоида, выясним форму линий пересечения его плоскостями, параллельными какой-либо из координатных плоскостей.

Ради определенности рассмотрим линии Lhпересечения эллипсоида с плоскостями

z= h (20)

параллельными плоскости Оху. Уравнение проекции L*hлинии Lhна плоскость Оху получается из уравнения (3), если положить в нем z= h. Таким образом, уравнение этой проекции имеет вид

Если положить

то уравнение (21) можно записать в виде

т. е. L*hпредставляет собой эллипс с полуосями а* и b*, которые могут быть вычислены по формулам (22). Так как Lhполучается «подъемом» L*hна высоту h по оси Оz(см. (20)), то и Lhпредставляет собой эллипс.

Представление об эллипсоиде можно получить следующим образом. Рассмотрим на плоскости Оху семейство эллипсов (23) (рис. 1), полуоси а* и b* которых зависят от h (см. (22)), и каждый такой эллипс снабдим отметкой h, указывающей, на какую высоту по оси Оz должен быть «поднят» этот эллипс. Мы получим своего рода «карту» эллипсоида. Используя эту «карту», легко представить себе пространственный вид эллипсоида.

(Метод представления формы фигуры путем получения «карты» фигуры я привожу только для эллипсоида, представить форму других фигур этим методом можно аналогично)

Наглядное изображение эллипсоида находится на следующей странице.

Эллипсоид.

2. Гиперболоиды.

1. Однополостный гиперболоид. Обратимся к каноническому уравнению (4) однополостного гиперболоида

Из уравнения (4) вытекает, что координатные плоскости являются плоскостями симметрии, а начало координат — центром симметрии однополостного гиперболоида.

2. Двуполостный гиперболоид.

Из канонического уравнения (5) двуполостного гиперболоида вытекает, что координатные плоскости являются его плоскостями симметрии, а начало координат — его центром симметрии.

3. Параболоиды.

1. Эллиптический параболоид. Обращаясь к каноническому уравнению (14) эллиптического параболоида

мы видим, что для него Oxz и Оуz являются плоскостями симметрии. Ось Oz, представляющая линию пересечения этих плоскостей, называется осью эллиптического параболоида.

2. Гиперболический параболоид. Из канонического уравнения (15) гиперболического параболоида вытекает, что плоскости Oxz и Оуz являются плоскостями симметрии. Ось Oz называется осью гиперболического пaраболоида.

Прим.: получение «карты высот» для гиперболического пaраболоида несколько отличается от аналогичной процедуры для вышеприведенных поверхностей 2-го порядка, поэтому я также включил его в свой реферат.

Линии z=h пересечения гиперболического параболоида плоскостями z=h представляют собой при h>0 гиперболы

с полуосями

а при h < 0 —сопряженные гиперболы для гипербол (24)

с полуосями

Используя формулы (24)—(27), легко построить «карту» гиперболического параболоида. Отметим еще, плоскость z=0 пересекает гиперболический параболоид по двум прямым :

Из формул (25) и (27) вытекает, что прямые (28) являются асимптотами гипербол (24) и (26).

Карта гиперболического параболоида дает представление о его пространственной форме. Как и в случае эллиптического параболоида, можно убедиться в том, что гиперболический параболоид может быть получен путем параллельного перемещения параболы, представляющей собой сечение плоскостью Oxz (Оуz), когда ее вершина движется вдоль параболы, являющейся сечением параболоида плоскостью Oyz (Oxz).

Прим.: Изображение гиперболического пaраболоида дано на следующей странице.

Гиперболический параболоид.

4. Конус и цилиндры второго порядка.

- 1°. Конус второго порядка

Убедимся, что вещественный конус S образован прямыми линиями, проходящими через начало О координат. Естественно называть точку О вершиной конуса.

Для доказательства сформулированного утверждения, очевидно, достаточно установить, что прямая L, соединяющая произвольную, отличную от начала координат точку

М0(х0, у0, z0) конуса (6) и начало координат О , целиком располагается на конусе, т. е. координаты (х, у, z) любой точки М прямой L удовлетворяют уравнению (6).

Так как точка М0(х0, у0, z0) лежит на конусе (6), то :

Координаты (х, у, z) любой точки М прямой L равны соответственно tx0, ty0, tz0, где t—некоторое число. Подставляя эти значения для х, у и z в левую часть (6), вынося затем t2за скобку и учитывая (29), мы убедимся в том, что М лежит на конусе. Таким образом, утверждение доказано. Представление о форме конуса может быть получено методом сечений. Легко убедиться, что сечения конуса плоскостями z = h представляют собой эллипсы с полуосями :

- 2°. Эллиптический цилиндр.

Состоит из прямых линий, параллельных оси Oz.

3. Гиперболический цилиндр.

Состоит из прямых линий, параллельных оси Oz.

4. Параболический цилиндр.

a33z2+ 2q´y= 0 (19)

Путем переименования осей координат и простых арифметических операций из уравнения, (19) мы получим новое, компактное уравнение параболического цилиндра.

Список литературы.

В.А. Ильин, Э.Г. Позняк «Аналитическая геометрия»

superbotanik.net


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.