Живая природа представляет собой целостную, но совсем неоднородную систему, для которой свойственна организация с четкой иерархией. Именно это свойство и отражают так называемые уровни организации жизни. В такой системе все части четко расположены, начиная от низшего порядка к высшему.
Уровни организации жизни – это иерархическая система с соподчиненными порядками, которая отображает не только характер биосистем, но и их постепенное усложнение в отношении друг к другу. На сегодняшний день принято выделять восемь основных уровней
Кроме того, выделяют следующие системы организации:
1. Микросистема – это некая доорганизменная ступень, которая включает в себя молекулярные и субклеточные уровни.
2. Мезосистема – это следующая, организменная ступень. Сюда относят клеточный, тканевой, органный, системный и организменные уровни организации жизни.
Существуют также и макросистемы, которые представляют собой надорганизменную совокупность уровней.
Стоит также отметить, что каждый уровень имеет собственные характеристики, которые и будут рассмотрены ниже.
Доорганизменные уровни организации жизни
Здесь принято выделять две основных ступени:
1. Молекулярный уровень организации жизни – представляет собой уровень работы и организации биологических макромолекул, включая белки, нуклеиновые кислоты, липиды и полисахариды. Именно здесь начинаются самые важные процессы жизнедеятельности любого организма – клеточное дыхание, превращение энергии, а также передача генетической информации.
2. Субклеточный уровень – сюда можно отнести организацию клеточных органелл, каждая из которых исполняет важную роль в существовании клетки.
Организменные уровни организации жизни
К этой группе можно отнести те системы, которые обеспечивают целостную работу всего организма. Принято выделять следующие:
1. Клеточный уровень организации жизни. Ни для кого не секрет, что именно клетка является структурной единицей любого живого организма. Этот уровень изучается с помощью цитологических, цитохимических, цитогенетических и микробиологических методов исследования.
2. Тканевый уровень. Здесь основное внимание стоит уделить строению, особенностям и функционированию разного рода тканей, из которых, собственно, и состоят органы. Исследованиями этих структур занимаются гистология и гистохимия.
3. Органный уровень. Многоклеточные организмы характеризируются новым уровнем организации. Здесь некоторые группы тканей объединяются, образовывая целостную структуру со специфическими функциями. Каждый орган является частью живого организма, но не может самостоятельно существовать вне его. Этот уровень изучают такие науки, как физиология, анатомия и в некой мере эмбриология.
Организменный уровень представляет собой как одноклеточные, так и многоклеточные организмы. Ведь каждый организм является целостной системой, внутри которой осуществляются все важные для жизнедеятельности процессы. Кроме того, во внимание берутся и процессы оплодотворения, развития и роста, а также старения отдельного организма. Изучением этого уровня занимаются такие науки, как физиология, эмбриология, генетика, анатомия, палеонтология.
Надорганизменные уровни организации жизни
Здесь во внимание берутся уже не организмы и их структурные части, а определенная совокупность живых существ.
1. Популяционно-видовой уровень. Основной единицей здесь является популяция – совокупность организмов определенного вида, которая заселяет четко ограниченную территорию. Все особи способны к свободному скрещиванию друг с другом. В исследовании этого уровня участвую такие науки, как систематика, экология, генетика популяций, биогеография, таксономия.
2. Экосистемный уровень – здесь во внимание берется устойчивое сообщество разных популяций, существование которых тесно связано между собой и зависит от неживой природы, климатических условий и т. д. В основном изучением такого уровня организации занимается экология
3. Биосферный уровень – это высшая форма организации жизни, которая представляет собой глобальный комплекс биогеоценозов всей планеты.
fb.ru
Реферат на тему:
Уровни организации жизни (уровни организации живой материи) — структурная организация биосистем, отражающая их уровневую иерархию в зависимости от степени сложности. Различают шесть основных структурных уровней жизни: молекулярный, клеточный, организменный, популяционно-видовой, биогеоценотический и биосферный.
Представлен разнообразными молекулами, находящимися в живой клетке.
Представлен свободно живущими клетками и клетками, входящими в многоклеточные организмы.
Представлен одноклеточными и многоклеточными организмами растений, животных, грибов и бактерий
Представлен в природе огромным разнообразием видов и их популяций
Представлен разнообразием естественных и культурных биогеоценозов во всех средах жизни
Представлен высшей, глобальной формой организации биосистем — биосферой
Категории: Экосистемы.
Текст доступен по лицензии Creative Commons Attribution-ShareAlike.wreferat.baza-referat.ru
Все живые организмы в природе состоят из одинаковых уровней организации, это общая для всех живых организмов характерная биологическая закономерность. Выделяют следующие уровни организации живых организмов — молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой, биогеоценотический, биосферный.
Рис. 1. Молекулярно-генетический уровень
1. Молекулярно-генетический уровень. Это наиболее элементарный характерный для жизни уровень (рис. 1). Как бы сложно или просто ни было строение любого живого организма, они все состоят из одинаковых молекулярных соединений. Примером этого являются нуклеиновые кислоты, белки, углеводы и другие сложные молекулярные комплексы органических и неорганических веществ. Их называют иногда биологическими макро- молекулярными веществами. На молекулярном уровне происходят различные процессы жизнедеятельности живых организмов: обмен веществ, превращение энергии. С помощью молекулярного уровня осуществляется передача наследственной информации, образуются отдельные органоиды и происходят другие процессы.
Рис. 2. Клеточный уровень
2. Клеточныйуровенъ. Клетка является структурной и функциональной единицей всех живых организмов на Земле (рис. 2). Отдельные органоиды в составе клетки имеют характерное строение и выполняют определенную функцию. Функции отдельных органоидов в клетке взаимосвязаны и выполняют единые процессы жизнедеятельности. У одноклеточных организмов (одноклеточные водоросли и простейшие) все жизненные процессы проходят в одной клетке, и одна клетка существует как отдельный организм. Вспомните одноклеточные водоросли, хламидомонады, хлореллу и простейших животных — амебу, инфузорию и др. У многоклеточных организмов одна клетка не может существовать как отдельный организм, но она является элементарной структурной единицей организма.
Рис. 3. Тканевый уровень
3. Тканевый уровень. Совокупность сходных по происхождению, строению и функциям клеток и межклеточных веществ образует ткань. Тканевый уровень характерен только для многоклеточных организмов. Также отдельные ткани не являются самостоятельным целостным организмом (рис. 3). Например, тела животных и человека состоят из четырех различных тканей (эпителиальная, соединительная, мышечная, нервная). Растительные ткани называются: образовательная, покровная, опорная, проводящая и выделительная. Вспомните строение и функции отдельных тканей.
Рис. 4. Органный уровень
4. Органный уровень. У многоклеточных организмов объединение нескольких одинаковых тканей, сходных по строению, происхождению и функциям, образует органный уровень (рис. 4). В составе каждого органа встречается несколько тканей, но среди них одна наиболее значительная. Отдельный орган не может существовать как целостный организм. Несколько органов, сходных по строению и функциям, объединяясь, составляют систему органов, например пищеварения, дыхания, кровообращения и т. д.
Рис. 5. Организменный уровень
5. Организменный уровень. Растения (хламидомонада, хлорелла) и животные (амеба, инфузория и т. д.), тела которых состоят из одной клетки, представляют собой самостоятельный организм (рис. 5). А отдельная особь многоклеточных организмов считается как отдельный организм. В каждом отдельном организме происходят все жизненные процессы, характерные для всех живых организмов, — питание, дыхание, обмен веществ, раздражимость, размножение и т. д. Каждый самостоятельный организм оставляет после себя потомство. У многоклеточных организмов клетки, ткани, органы и системы органов не являются отдельным организмом. Только целостная система органов, специализированно выполняющих различные функции, образует отдельный самостоятельный организм. Развитие организма, начиная с оплодотворения и до конца жизни, занимает определенный промежуток времени. Такое индивидуальное развитие каждого организма называется онтогенезом. Организм может существовать в тесной взаимосвязи с окружающей средой.
Рис. 6. Популяционно-видовой уровень
6. Популяционно-видовой уровень. Совокупность особей одного вида или группы, которая длительно существует в определенной части ареала относительно обособленно от других совокупностей того же вида, составляет популяцию. На популяционном уровне осуществляются простейшие эволюционные преобразования, что способствует постепенному появлению нового вида (рис. 6).
Рис. 7 Биогеоценотический уровень
7. Биогеоценотический уровень. Совокупность организмов разных видов и различной сложности организации, приспособленных к одинаковым условиям природной среды, называется биогеоценозом, или природным сообществом. В состав биогеоценоза входят многочисленные виды живых организмов и условия природной среды. В природных биогеоценозах накапливается энергия и передается от одного организма к другому. Биогеоценоз включает неорганические, органические соединения и живые организмы (рис. 7).
Рис. 8. Биосферный уровень
8. Биосферный уровень. Совокупность всех живых организмов на нашей планете и общей природной среды их обитания составляет биосферный уровень (рис. 8). На биосферном уровне современная биология решает глобальные проблемы, например определение интенсивности образования свободного кислорода растительным покровом Земли или изменения концентрации углекислого газа в атмосфере, связанные с деятельностью человека. Главную роль в биосферном уровне выполняют "живые вещества", т. е. совокупность живых организмов, населяющих Землю. Также в биосферном уровне имеют значение "биокосные вещества", образовавшиеся в результате жизнедеятельности живых организмов и "косных" веществ (т. е. условий окружающей среды). На биосферном уровне происходит круговорот веществ и энергии на Земле с участием всех живых организмов биосферы.
Уровни организации жизни. Популяция. Биогеоценоз. Биосфера.
Заполните таблицу, показывающую структурные особенности каждого уровня организации:
Порядковый номер |
Уровни организации |
Особенности |
|
|
|
bioslogos.ru
Различают такие уровни организации живой материи - уровни биологической организации: молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой и экосистемный.
Молекулярный уровень организации - это уровень функционирования биологических макромолекул - биополимеров: нуклеиновых кислот, белков, полисахаридов, липидов, стероидов. С этого уровня начинаются важнейшие процессы жизнедеятельности: обмен веществ, превращение энергии, передача наследственной информации. Этот уровень изучают: биохимия, молекулярная генетика, молекулярная биология, генетика, биофизика.
Клеточный уровень - это уровень клеток (клеток бактерий, цианобактерий, одноклеточных животных и водорослей, одноклеточных грибов, клеток многоклеточных организмов). Клетка - это структурная единица живого, функциональная единица, единица развития. Этот уровень изучают цитология, цитохимия, цитогенетика, микробиология.
Тканевый уровень организации - это уровень, на котором изучается строение и функционирование тканей. Исследуется этот уровень гистологией и гистохимией.
Органный уровень организации - это уровень органов многоклеточных организмов. Изучают этот уровень анатомия, физиология, эмбриология.
Организменный уровень организации - это уровень одноклеточных, колониальных и многоклеточных организмов. Специфика организменного уровня в том, что на этом уровне происходит декодирование и реализация генетической информации, формирование признаков, присущих особям данного вида. Этот уровень изучается морфологией (анатомией и эмбриологией), физиологией, генетикой, палеонтологией.
Популяционно-видовой уровень - это уровень совокупностей особей - популяций и видов. Этот уровень изучается систематикой, таксономией, экологией, биогеографией, генетикой популяций. На этом уровне изучаются генетические и экологические особенности популяций, элементарные эволюционные факторы и их влияние на генофонд (микроэволюция), проблема сохранения видов.
Экосистемный уровень организации - это уровень микроэкосистем, мезоэкосистем, макроэкосистем. На этом уровне изучаются типы питания, типы взаимоотношений организмов и популяций в экосистеме, численность популяций, динамика численности популяций, плотность популяций, продуктивность экосистем, сукцессии. Этот уровень изучает экология.
Выделяют также биосферный уровень организации живой материи. Биосфера - это гигантская экосистема, занимающая часть географической оболочки Земли. Это мега-экосистема. В биосфере происходит круговорот веществ и химических элементов, а также превращение солнечной энергии.
Обмен веществ (метаболизм)
Обмен веществ (метаболизм) - совокупность протекающих в живых системах химических превращений, обеспечивающих их жизнедеятельность, рост, воспроизведение, развитие, самосохранение, постоянный контакт с окружающей средой, способность адаптироваться к ней и ее изменениям. В процессе обмена веществ происходит расщепление и синтез молекул, входящих в состав клеток; образование, разрушение и обновление клеточных структур и межклеточного вещества. В основе метаболизма лежат взаимосвязанные процессы ассимиляции (анаболизм) и диссимиляции (катаболизм). Ассимиляция - процессы синтеза сложных молекул из простых с расходованием энергии, запасенной в ходе диссимиляции (а также накопление энергии при отложении в запас синтезированных веществ). Диссимиляция - процессы расщепления (анаэробного или аэробного) сложных органических соединений, идущее с высвобождением энергии, необходимой для осуществления жизнедеятельности организма. В отличие от тел неживой природы обмен с окружающей средой для живых организмов является условием их существования. При этом происходит самообновление. Процессы обмена веществ, протекающие внутри организма, объединены в метаболические каскады и циклы химическими реакциями, которые строго упорядочены во времени и пространстве. Согласованное протекание большого количества реакций в малом объеме достигается путем упорядоченного распределения отдельных звеньев обмена веществ в клетке (принцип компартментализации). Процессы обмена веществ регулируются с помощью биокатализаторов - особых белков-ферментов. Каждый фермент обладает субстратной специфичностью катализировать превращение лишь одного субстрата. В основе этой специфичности лежит своеобразное "узнавание" субстрата ферментом. Ферментативный катализ отличается от небиологического чрезвычайно высокой эффективностью, в результате чего скорость соответствующей реакции повышается в 1010 - 1013 раз. Каждая молекула фермента способна осуществлять от нескольких тысяч до нескольких миллионов операций в минуту, не разрушаясь в процессе участия в реакциях. Еще одно характерное отличие ферментов от небиологических катализаторов состоит в том, что ферменты способны ускорять реакции при обычных условиях (атмосферном давлении, температуре тела организма и т.п.). Все живые организмы могут быть разделены на две группы - автотрофы и гетеротрофы, отличающиеся источниками энергии и необходимых веществ для своей жизнедеятельности. Автотрофы - организмы, синтезирующие из неорганических веществ органические соединения с использованием энергии солнечного света (фотосинтетики - зеленые растения, водоросли, некоторые бактерии) или энергии, получаемой при окислении неорганического субстрата (хемосинтетики - серо-, железобактерии и некоторые другие), Автотрофные организмы способны синтезировать все компоненты клетки. Роль фотосинтезирующих автотрофов в природы является определяющей - являясь первичным продуцентом органического вещества в биосфере, они обеспечивают существование всех других организмов и ход биогеохимических циклов в круговороте веществ на Земле. Гетеротрофы (все животные, грибы, большинство бактерий, некоторые бесхлорофилльные растения) - организмы, нуждающиеся для своего существования в готовых органических веществах, которые, поступая в качестве пищи, служат как источником энергии, так и необходимым "строительным материалом". Характерной чертой гетеротрофов является наличие у них амфиболизма, т.е. процесса образования мелких органических молекул (мономеров), образующихся при переваривании пищи (процесс деградации сложных субстратов). Такие молекулы - мономеры используются для сборки собственных сложных органических соединений.
Самовоспроизведение (репродукция)
Способность к размножению (воспроизведению себе подобных, самовоспроизведению) относится к одному из фундаментальных свойств живых организмов. Размножение необходимо для того, чтобы обеспечить непрерывность существования видов, т.к. продолжительность жизни отдельного организма ограничена. Размножение с избытком компенсирует потери, обусловленные естественным отмиранием особей, и таким образом поддерживает сохранение вида в ряду поколений особей. В процессе эволюции живых организмов происходила эволюция способов размножения. Поэтому у ныне существующих многочисленных и разнообразных видов живых организмов мы обнаруживаем разные формы размножения. Многие виды организмов сочетают несколько способов размножения. Необходимо выделить два, принципиально отличающихся типа размножения организмов - бесполое (первичный и более древний тип размножения) и половое. В процессе бесполого размножения новая особь образуется из одной или группы клеток (у многоклеточных) материнского организма. При всех формах бесполого размножения потомки обладают генотипом (совокупность генов) идентичным материнскому. Следовательно, все потомство одного материнского организма оказывается генетически однородным и дочерние особи обладают одинаковым комплексом признаков. При половом размножении новая особь развивается из зиготы, образующейся путем слияния двух специализированных половых клеток (процесс оплодотворения), продуцируемых двумя родительскими организмами. Ядро в зиготе содержит гибридный набор хромосом, образующийся в результате объединения наборов хромосом слившихся ядер гамет. В ядре зиготы, таким образом, создается новая комбинация наследственных задатков (генов), привнесенных в равной мере обоими родителями. А развивающийся из зиготы дочерний организм будет обладать новым сочетанием признаков. Иными словами, при половом размножении происходит осуществление комбинативной формы наследственной изменчивости организмов, обеспечивающий приспособление видов к меняющимся условиям среды и представляющей собой существенный фактор эволюции. В этом заключается значительное преимущество полового размножения по сравнению с бесполым. Способность живых организмов к самовоспроизведению базируется на уникальном свойстве нуклеиновых кислот к репродукции и феномене матричного синтеза, лежащего в основе образования молекул нуклеиновых кислот и белков. Самовоспроизведение на молекулярном уровне обусловливает как осуществление обмена веществ в клетках, так и самовоспроизведение самих клеток. Клеточное деление (самовоспроизведение клеток) лежит в основе индивидуального развития многоклеточных организмов и воспроизведения всех организмов. Размножение организмов обеспечивает самовоспроизведение всех видов, населяющих Землю, что в свою очередь обусловливает существование биогеоценозов и биосферы.
Наследственность и изменчивость
Наследственность обеспечивает материальную преемственность (поток генетической информации) между поколениями организмов. Она тесно связана с репродукцией на молекулярном, субклеточном и клеточном уровнях. Генетическая информация, определяющая разнообразие наследственных признаков, зашифрована в молекулярной структуре ДНК (у некоторых вирусов - в РНК). В генах закодирована информация о структуре синтезируемых белков, ферментных и структурных. Генетический код - это система "записи" информации о последовательности расположения аминокислот в синтезируемых белках с помощью последовательности нуклеотидов в молекуле ДНК. Совокупность всех генов организма называется генотипом, а совокупность признаков - фенотипом. Фенотип зависит как от генотипа, так и факторов внутренней и внешней среды, которые влияют на активность генов и обусловливают регулярные процессы. Хранение и передача наследственной информации осуществляется у всех организмов с помощью нуклеиновых кислот, генетический код един для всех живых существ на Земле, т.е. он универсален. Благодаря наследственности из поколения в поколение передаются признаки, обеспечивающие приспособленность организмов к среде их обитания. Если бы при размножении организмов проявлялась только преемственность существующих признаков и свойств, то на фоне меняющихся условий внешней среды существование организмов было бы невозможно, так как необходимым условием жизни организмов является их приспособленность к условиям среды обитания. Проявляется изменчивость в разнообразии организмов, принадлежащих к одному и тому же виду. Изменчивость может реализовываться у отдельных организмов в ходе их индивидуального развития или в пределах группы организмов в ряду поколений при размножении. Выделяют две основные формы изменчивости, различающиеся по механизмам возникновения, характеру изменения признаков и, наконец, их значимости для существования живых организмов - генотипическую (наследственную) и модификационную (ненаследственную). Генотипическая изменчивость связана с изменением генотипа и приводит к изменению фенотипа. В основе генотипической изменчивости могут лежать мутации (мутационная изменчивость) или новые комбинации генов, возникающие в процессе оплодотворения при половом размножении. При мутационной форме изменения связаны, в первую очередь, с ошибками при репликации нуклеиновых кислот. Таким образом происходит возникновение новых генов, несущих новую генетическую информацию; происходит появление новых признаков. И если вновь возникающие признаки полезны организму в конкретных условиях, то они "подхватываются" и "закрепляются" естественным отбором. Таким образом, на наследственной (генотипической) изменчивости базируется приспособляемость организмов к условиям внешней среды, разнообразие организмов, создаются предпосылки для позитивной эволюции. При ненаследственной (модификационной) изменчивости происходят изменения фенотипа под действием факторов внешней среды и не связанные с изменением генотипа. Модификации (изменения признаков при модификационной изменчивости) происходят в пределах нормы реакции, находящейся под контролем генотипа. Модификации не передаются следующим поколениям. Значение модификационной изменчивости заключается в том, что она обеспечивает приспособляемость организма к факторам внешней среды в течение его жизни.
Индивидуальное развитие организмов
Всем живым организмам свойственен процесс индивидуального развития - онтогенез. Традиционно, под онтогенезом понимают процесс индивидуального развития многоклеточного организма (образующегося в результате полового размножения) от момента формирования зиготы до естественной смерти особи. За счет деления зиготы и последующих поколений клеток формируется многоклеточный организм, состоящий из огромного числа разных типов клеток, различных тканей и органов. Развитие организма базируется на "генетической программе" (заложенной в генах хромосом зиготы) и осуществляется в конкретных условиях среды, существенно влияющей на процесс реализации генетической информации в ходе индивидуального существования особи. На ранних этапах индивидуального развития происходит интенсивный рост (увеличение массы и размеров), обусловленный репродукцией молекул, клеток и других структур, и дифференцировка, т.е. появление различий в структуре и усложнение функций. На всех этапах онтогенеза существенное регулирующее влияние оказывают на развитие организма различные факторы внешней среды (температура, гравитация, давление, состав пищи по содержанию химических элементов и витаминов, разнообразные физические и химические агенты). Изучение роли этих факторов в процессе индивидуального развития животных и человека имеет огромное практическое значение, возрастающее по мере усиления антропогенного воздействия на природу. В различных областях биологии, медицины, ветеринарии и других наук широко проводятся исследования по изучению процессов нормального и патологического развития организмов, выяснению закономерностей онтогенеза.
Раздражимость
3 класса способов передачи информации, описываемые догмой | ||
Общие | Специальные | Неизвестные |
ДНК → ДНК | РНК → ДНК | белок → ДНК |
ДНК → РНК | РНК → РНК | белок → РНК |
РНК → белок | ДНК → белок | белок → белок |
4. Центральная догма молекулярной биологии — обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся от нуклеиновых кислот к белку, но не в обратном направлении. Правило было сформулировано Френсисом Криком в 1958 году и приведено в соответствие с накопившимися к тому времени данными в 1970 году. Переход генетической информации от ДНК к РНК и от РНК к белку является универсальным для всех без исключения клеточных организмов, лежит в основе биосинтеза макромолекул. Репликации генома соответствует информационный переход ДНК → ДНК. В природе встречаются также переходы РНК → РНК и РНК → ДНК (например у некоторых вирусов), а также изменение конформации белков, передаваемое от молекулы к молекуле.
Универсальные способы передачи биологической информации
В живых организмах встречаются три вида гетерогенных, то есть состоящих из разных мономеров полимера — ДНК, РНК и белок. Передача информации между ними может осуществляться 3 х 3 = 9 способами. Центральная догма разделяет эти 9 типов передачи информации на три группы:
-Общий — встречающиеся у большинства живых организмов;
-Специальный — встречающиеся в виде исключения, у вирусов и у мобильных элементов генома или в условиях биологического эксперимента;
-Неизвестные — не обнаружены.
Репликация ДНК (ДНК → ДНК)
ДНК — основной способ передачи информации между поколениями живых организмов, поэтому точное удвоение (репликация) ДНК очень важна. Репликация осуществляется комплексом белков, которые расплетают хроматин, затем двойную спираль. После этого ДНК полимераза и ассоциированные с ней белки, строят на каждой из двух цепочек идентичную копию.
Транскрипция (ДНК → РНК)
Транскрипция — биологический процесс, в результате которого информация, содержащаяся в участке ДНК, копируется на синтезируемую молекулу информационной РНК. Транскрипцию осуществляют факторы транскрипции и РНК-полимераза. В эукариотической клетке первичный транскрипт (пре-иРНК) часто редактируется. Этот процесс называется сплайсингом.
Трансляция (РНК → белок)
Зрелая иРНК считывается рибосомами в процессе трансляции. В прокариотических клетках процесс транскрипции и трансляции не разделён пространственно, и эти процессы сопряжены. В эукариотических клетках место транскрипции клеточное ядро отделено от места трансляции (цитоплазмы) ядерной мембраной, поэтому иРНК транспортируется из ядра в цитоплазму. иРНК считывается рибосомой в виде трёхнуклеотидных «слов». Комплексы факторов инициации и факторов элонгации доставляют аминоацилированные транспортные РНК к комплексу иРНК-рибосома.
5. Обратная транскрипция — это процесс образования двуцепочечной ДНК на матрице одноцепочечной РНК. Данный процесс называется обратной транскрипцией, так как передача генетической информации при этом происходит в «обратном», относительно транскрипции, направлении.[1]
Идея обратной транскрипции вначале была очень непопулярна, так как противоречила центральной догме молекулярной биологии, которая предполагала, что ДНК транскрибируется в РНК и далее транслируется в белки. Встречается у ретровирусов, например, ВИЧ и в случае ретротранспозонов.
Трансдукция (от лат. transductio — перемещение) — процесс переноса бактериальной ДНК из одной клетки в другую бактериофагом. Общая трансдукция используется в генетике бактерий для картирования генома и конструирования штаммов. К трансдукции способны как умеренные фаги, так и вирулентные, последние, однако, уничтожают популяцию бактерий, поэтому трансдукция с их помощью не имеет большого значения ни в природе, ни при проведении исследований.
Векторная молекула ДНК — это молекула ДНК, которая выступает в роли носителя. Молекулу-носитель должен отличать ряд особенностей:
- Способность к автономной репликации в клетке хозяина (чаще бактериальной или дрожжевой)
- Наличие селективного маркера
- Наличие удобных сайтов рестрикции
В роли векторов чаще всего выступают бактериальные плазмиды.
studfiles.net
Мир живой природы представляет собой совокупность биологических систем разного уровня организации и различной соподченённости. Они находятся в непрерывном взаимодействии. Выделяют несколько уровней живой материи:
Молекулярный – любая живая система, как бы сложно она ни была организована, проявляется на уровне функционирования биологических макромолекул: нуклеиновых кислот, белков, полисахаридов, а также важных органических веществ. С этого уровня начинается важнейшие процессы жизнедеятельности организма: обмен веществ и превращение энергии, передача наследственной информации и др. – наиболее древний уровень структуры живой природы, граничащий с неживой природой.
Клеточный – клетка – структурная и функциональная единица, также единица размножения и развития всех живых организмов, обитающих на Земле. Не клеточных форм жизни нет, а существование вирусов лишь подтвержает это правило, так как они могут проявлять свойства живых систем только в клетках.
Тканевой — Ткань представляет собой совокупность сходных по строению клеток, объединённых выполнением общей функции.
Органный — у большинства животных орган- это структурно-функциональное объединение нескольких типов тканей. Например, кожа человека как орган включает эпителий и соединительную ткань, которые вместе выполняют целый ряд функций среди которых наиболее значительная — защитная.
Организменный — многоклеточный организм представляет собой целостную систему органов, специализированных для выполнения различных функций. Различия между растениями и животными в строении и способах питания. Связь организмов со средой обитания, их приспособленность к ней.
Популяционно-видовой – совокупность организмов одного итого же вида, объединённых общим местом обитания, создаёт популяцию как систему надорганизменного порядка. В этой системе осуществляются простейшие, элементарные эволюционные преобразования.
Биогеоценотический — биогеоценоз — совокупность организмов разных видов и различной сложности организации, всех факторов среды обитания.
Биосферный — биосфера -самый высокий уровень организации живой материи на нашей планете, включающая всё живое на Земле. Таким образом, живая природа представляет собой сложно организованную иерархическую систему.
Митоз (от греч.mitos— нить),тип клеточного деления, в результате которого дочерние клетки получают генетический материал, идентичный тому, который содержался в материнской клетке. Кариокинез, непрямое деление клетки, наиболее распространённый способ воспроизведения (репродукции)клеток, обеспечивающий тождественное распределение генетического материала между дочерними клетками и преемственность хромосом в ряду клеточных поколений.
Рис. 1. Схема митоза: 1, 2 – профаза; 3 – прометафаза; 4 – метафаза; 5– анафаза; 6 – ранняя телофаза; 7 – поздняя телофаза
Биологическое значение митоза определяется сочетанием в нём удвоения хромосом путём продольного расщепления их и равномерного распределения между дочерними клетками. Началу Митоз предшествует период подготовки, включающий накопление энергии, синтез дезоксирибонуклеиновой кислоты (днк) и репродукции центриолей. Источником энергии служат богатые энергией, или так называемые макроэргические соединения. Митоз не сопровождается усилением дыхания т.к окислительные процессы происходят в интерфазе (наполнение «энергетического резерву ара»). Периодическое наполнение и опустошения энергетического резерву ара-основа энергетики митоза.
Стадии митоза следующие. Единый процесс. Митоз обычно подразделяют на 4 стадии: профазу, метафазу, анафазу и телофазу.
Рис. 2. Митоз в меристематических клетках корешка лука (микрофотография). Интерфаза
Иногда описывают ещё одну стадию, предшествующую началу профазы — препрофазы (антефазу). Препрофаза — синтетическая стадия Митоз, соответствующая концу интерфазы (S- G2периоды) . включает удвоение ДНК и синтез материала МИТОТИЧЕСКОГО АППАРАТА. В ПРОФАЗЕ происходят РЕОРГАНИЗАЦИЯ ядра с КОНДЕНСАЦИЕЙ и спирализацией ХРОМОСОМ, разрушение ядерной оболочки и формирование митотического аппарата путём синтеза белков и «сборки» их в ориентированную систему ВЕРЕТЕНА ДЕЛЕНИЕ КЛЕТКИ.
Рис. 3. Митоз в меристематических клатках корешка лука (микрофотография). Профаза (фигура рыхлого клубка)
Рис. 4. Митоз в меристематических клетках корешка лука (микрофотография). Поздняя профаза (разрушение ядерной оболочки)
МЕТАФАЗА – заключается в движении ХРОМОСОМ к экваториальной плоскости (метакинез, или прометафаза),формировании экваториальной ПЛАСТИНКИ («материнской звезды») и в разъединении хроматид, или сестринских хромосом.
Рис. 5. Митоз в меристематических клетках корешка лука (микрофотография). Прометафаза
Рис.6. Митоз в меристематических клетках корешка лука (микрофотография). Метафаза
Рис. 7. Митоз в меристематических клетках корешка лука (микрофотография). Анафаза
АНАФАЗА — стадия расхождения хромосом к полюсам. Анафазное движение связано с удлинением центральных нитей ВЕРЕТИНА, раздвигающего митотические полюсы, и с укорочением хромосомальных МИКРОТРУБОЧЕК митотического аппарата. Удлинение центральных нитей ВЕРЕТЕНА происходит либо за счёт ПОЛЯРИЗАЦИИ «запасных макромолекул», достраивающих МИКРОТРУБОЧКИ веретина, либо за счёт дегидратации этой структуры. Укорочение хромосомальных микротрубочек обеспечивается СВОЙСТВАМИ сократительных белков митотического аппарата, способных к сокращению без утолщения. ТЕЛОФАЗА — заключается в реконструкции дочерних ядер из хромосом, собравшихся у полюсов, разделение клеточного тела (ЦИТОТИМИЯ, ЦИТОКИНЕЗ)и окончательном разрушении митотического аппарата с ОБРАЗОВАНИЕМ промежуточного тельца. Реконструкция дочерних ядер связана с десперализацией хромосом, ВОССТАНОВЛЕНИЕМ ядрышка и ядерной оболочки. Цитотомия осуществляется, путём образования клеточной ПЛАСТИНКИ (в растительной клетке) или путём образования борозды деления (в животной клетке).
Рис.8. Митоз в меристематических клетках корешка лука (микрофотография). Ранняя телофаза
Рис. 9. Митоз в меристематических клетках корешка лука (микрофотография). Поздняя телофаза
Механизм цитотомии связывают либо с сокращением желатинизированного кольца ЦИТОПЛАЗМЫ, опоясывающего ЭКВАТОР (гипотеза» сократимого кольца»),либо с расширением поверхности клетки вследствие распрямления петлеобразных белковых цепей (гипотеза «расширение МЕМБРАН»)
Продолжительность митоза — зависит от размеров клеток, их плоидности, числа ядер, а также от условий окружающей среды, в частности от температуры. В животных клетках Митоз длится 30 – 60 мин, в растительных 2-3 часа. Более длительные стадии митоза, связанные с процессами синтеза (препрофаза, профаза, телофаза) самодвижение хромосом (метакинез, анафаза) осуществляется быстро.
БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ МИТОЗА — постоянство строения и правильность функционирования органов и тканей многоклеточного организма были бы невозможны без сохранения одинакового набора генетического материала в бесчисленных клеточных поколениях. Митоз обеспечивает важные проявления жизнедеятельности: эмбриональное развитие, рост, восстановление органов и тканей после повреждения, поддержание структурной целостности тканей при постоянной утрате клеток в процессе их функционирования (замещение погибших эритроцитов, случившихся клеток кожи, эпителия кишечника и пр.) У простейших митоз обеспечивает бесполое размножение.
Половое клетки (гаметы) — мужские сперматозоиды и женские яйцеклетки (или яйца) развиваются в половых железах. В первом случае путь их развития называют СПЕРМАТОГЕНЕЗОМ (от греч. sperm — семя и genesis — происхождение), во втором – ОВОГЕНЕЗОМ (от. лат. оvо — яйцо)
Гаметы – половые клетки, участие их в оплодотворении, образовании зиготы (первая клетка нового организма). Результат оплодотворения – удвоение числа хромосом, восстановление их дип-лоидного набора в зиготе Особенности гамет – одинарный, гапло-идный набор хромосом по срав нению с диплоидным набором хромосом в клетках тела2. Этапы развития половых клеток: 1) увеличение путем мито за числа первичных половых кле ток с диплоидным набором хромосом, 2) рост первичных половых клеток, 3) созревание половых клеток.
СТАДИИ ГАМЕТОГЕНЕЗА — в процессе развития половых как сперматозоидов, так и яйцеклеток, выделяют стадий(рис). Первая стадия — период размножения, в котором первичные половые клетки делятся путём митоза, в результате чего увеличивается их количество. При сперматогенезе размножение первичных половых клеток очень интенсивное. Оно начинается с наступлением половой зрелости и протекает в течение всего репродуктивного периода. Размножение женских первичных половых клеток у низших позвоночных продолжается почти всю жизнь. У человека эти клетки с наибольшей интенсивностью размножаются лишь во внутриутробном периоде развития. После формирования женских половых желез — яичников, первичные половые клетки перестают делится, большая часть их погибает и рассасывается, остальные сохраняются в состоянии покоя до полового созревания.
Вторая стадия — период роста. У незрелых мужских гамет этот период выражен Нерезко. Размеры мужских гамет увеличиваются незначительно. Напротив, будущие яйцеклетки – овоциты увеличиваются иногда в сотни, тысячи и даже миллионы раз. У одних животных овоциты растут очень быстро — в течение нескольких дней или недель, у других видов рост продолжается месяцы и годы. Рост овоцитов осуществляется за счёт веществ, образуемых другими клетками организма.
Третья стадия-период созревания, или мейоз (рис1).
Рис. 9. Схема образования половых клеток
Клетки, вступающие в период мейоза, содержат диплоидный набор хромосом и уже удвоенное количество ДНК(2n 4с).
В процессе полового размножения у организмов любого вида из поколения в поколение сохраняется свойственное ему число хромосом. Это достигается тем, что перед слиянием половых клеток -оплодотворением — в процессе созревания в них уменьшается (редуцируется)число хромосом, т.е. из диплоидного набора (2n)образуется гаплоидный(n). Закономерности прохождения мейоза в мужских и женских половых клетках по существу одинаковы.
Горелов А. А. Концепции современного естествознания. — М.: Центр, 2008.
Дубнищева Т.Я. и др. Современное естествознание. — М.: Маркетинг, 2009.
Лебедева Н.В., Дроздов Н.Н., Криволуцкий Д.А. Биологическое разнообразие. М., 2004.
Мамонтов С.Г. Биология. М., 2007.
Ярыгин В. Биология. М., 2006.
bukvi.ru
Живая природа является целостной, но неоднородной системой, которой свойственна иерархическая организация. Под системой, в науке понимают единство, или целостность, составленное из множества элементов, которые находятся в закономерных отношениях и связях друг с другом. Главные биологические категории, такие, как геном (генотип), клетка, организм, популяция, биогеоценоз, биосфера, представляют собой системы. Иерархической называется система, в которой части, или элементы, расположены в порядке от низшего к высшему. Так, в живой природе биосфера слагается из биогеоценозов, представленных популяциями организмов разных видов, а тела организмов имеют клеточное строение.
Иерархический принцип организации позволяет выделить в живой природе отдельные уровни, что удобно с точки зрения изучения жизни как сложного природного явления.
В медико-биологической науке широко используют классификацию уровней в соответствии с важнейшими частями, структурами и компонентами организма, являющимися для исследователей разных специальностей непосредственными объектами изучения. Такими объектами могут быть организм как таковой, органы, ткани, клетки, внутриклеточные структуры, молекулы. Выделение уровней рассматриваемой классификации хорошо согласуется с разрешающей способностью методов, которыми пользуются биологи и врачи: изучение объекта невооруженным глазом, с помощью лупы, светооптического микроскопа, электронного микроскопа, современных физико-химических методов. Очевидна связь этих уровней и с типичными размерами изучаемых биологических объектов (табл. 1).
Таблица 1. Уровни организации (изучения), выделяемые в многоклеточном организме (по Э. Дс. Робертсу и др., 1967, с изменениями)
Размеры объекта | Объект изучения | Уровень организации (по объекту изучения) | Уровень организации (по методу изучения) |
0,1 мм (100 мкм)и более | Организм, органы | Организменный, органный | Анатомический |
100–10 мкм | Ткани | Тканевый | Гистологический (светооптический) |
20–0,2 мкм (200 нм) | Клетки (эукариотические и прокариотические) | Клеточный | Цитологический |
200–1 нм | Клеточные компоненты | Субклеточный | Ультраструктурный (электронно-микроскопический) |
Менее 1 нм | Молекулы | Макромолекулярный | Физико-химический |
Взаимопроникновение идей и методов различных областей естествознания (физики, химии, биологии), возникновение наук на стыке этих областей (биофизика, биохимия, молекулярная биология) повлекли за собой расширение классификации, вплоть до выделения молекулярного и электронно-атомного уровней. Медико-биологические исследования, проводимые на этих уровнях, уже сейчас дают практический выход в здравоохранение. Так, приборы, основанные на явлениях электронного парамагнитного и ядерного магнитного резонанса, с успехом применяют для диагностики заболеваний и состояний организма.
Возможность исследовать фундаментальные биологические процессы, происходящие в организме, на клеточном, субклеточном и даже молекулярном уровнях является выдающейся, но не единственной отличительной чертой современной биологии. Для нее типичен углубленный интерес к процессам в сообществах организмов, которые определяют планетарную роль жизни.
Таким образом, классификация пополнилась надорганизменными уровнями, такими, как видовой, биогеоценотический, биосферный.
Разобранной выше классификации придерживается большинство конкретных медико-биологических и антропобиологических наук. Это неудивительно, так как она отражает уровни организации живой природы через исторически сложившиеся уровни ее изучения. В задачу курса биологии медицинского вуза входит преподать наиболее полную характеристику биологического «наследства» людей. Для решения этой задачи целесообразно воспользоваться классификацией, наиболее близко отражающей именно уровни организации жизни.
В названной классификации выделяются молекулярно-генетический, клеточный, Организменный, или онтогенетический, популяционно-видовой, биогеоценотический уровни. Особенность данной классификации заключается в том, что отдельные уровни иерархической системы жизни определяются в ней на общей основе выделения для каждого уровня элементарной единицы и элементарного явления. Элементарная единица – это структура или объект, закономерные изменения которых, обозначаемые как элементарное явление, составляют специфический для соответствующего уровня вклад в процесс сохранения и развития жизни. Соответствие выделяемых уровней узловым моментам эволюционного процесса, вне которого не стоит ни одно живое существо, делает их всеобщими, распространяющимися на всю область жизни, включая человека.
Элементарной единицей на молекулярно-генетическом уровне служит ген – фрагмент молекулы нуклеиновой кислоты, в котором записан определенный в качественном и количественном отношении объем биологической (генетической) информации. Элементарное явление заключается прежде всего в процессе конвариантной редупликации, или самовоспроизведении, с возможностью некоторых изменений в содержании закодированной в гене информации. Путем редупликации ДНК происходит копирование заключенной в генах биологической информации, что обеспечивает преемственность и сохранность (консерватизм) свойств организмов в ряду поколений. Редупликация, таким образом, является основой наследственности.
В силу ограниченной стабильности молекул или ошибок синтеза в ДНК (время от времени, но неизбежно) случаются нарушения, которые изменяют информацию генов. В последующей редупликации ДНК эти изменения воспроизводятся в молекулах-копиях и наследуются организмами дочернего поколения. Указанные изменения возникают и тиражируются закономерно, что и делает редупликацию ДНК конвариантной, т.е. происходящей иногда с некоторыми изменениями. Такие изменения в генетике получили название генных (или истинных) мутаций. Конвариантность редупликации, таким образом, служит основой мутационной изменчивости.
Биологическая информация, заключающаяся в молекулах ДНК, не участвует непосредственно в процессах жизнедеятельности. Она переходит в действующую форму, будучи перенесена в молекулы белков. Отмеченный перенос осуществляется благодаря механизму матричного синтеза, в котором исходная ДНК служит, как и в случае с редупликацией, матрицей (формой), но для образования не дочерней молекулы ДНК, а матричной РНК, контролирующей биосинтез белков. Отмеченное дает основание причислить матричный синтез информационных макромолекул также к элементарному явлению на молекулярно-генетическом уровне организации жизни.
Воплощение биологической информации в конкретные процессы жизнедеятельности требует специальных структур, энергии и разнообразных химических веществ (субстратов). Описанные выше условия в живой природе обеспечивает клетка, служащая элементарной структурой клеточного уровня. Элементарное явление представлено реакциями клеточного метаболизма, составляющими основу потоков энергии, веществ и информации. Благодаря деятельности клетки поступающие извне вещества превращаются в субстраты и энергию, которые используются (в соответствии с имеющейся генетической информацией) в процессе биосинтеза белков и других соединений, необходимых организму. Таким образом, на клеточном уровне сопрягаются механизмы передачи биологической информации и превращения веществ и энергии. Элементарное явление на этом уровне служит энергетической и вещественной основой жизни на всех других уровнях ее организации.
Элементарной единицей организма того уровня является особь в ее развитии от момента зарождения до прекращения существования в качестве живой системы, что позволяет также назвать этот уровень онтогенетическим. Закономерные изменения организма в индивидуальном развитии составляют элементарное явление данного уровня. Эти изменения обеспечивают рост организма, дифференциацию его частей и одновременно интеграцию развития в единое целое, специализацию клеток, органов и тканей. В ходе онтогенеза в определенных условиях внешней среды происходит воплощение наследственной информации в биологические структуры и процессы, на основе генотипа формируется фенотип организмов данного вида.
Элементарной единицей популяционно-видового уровня служит популяция – совокупность особей одного вида. Объединение особей в популяцию происходит благодаря общности генофонда, используемого в процессе полового размножения для создания генотипов особей следующего поколения. Популяция в силу возможности межпопуляционных скрещиваний представляет собой открытую генетическую систему. Действие на генофонд популяции элементарных эволюционных факторов, таких, как мутационный процесс, колебания численности особей, естественный отбор, приводит к эволюционно значимым изменениям генофонда, которые представляют элементарные явления на данном уровне.
Организмы одного вида населяют территорию с известными абиотическими показателями (климат, химизм почв, гидрологические условия) и взаимодействуют с организмами других видов. В процессе совместного исторического развития на определенной территории организмов разных систематических групп образуются динамичные, устойчивые во времени сообщества – биогеоценозы, которые служат элементарной единицей биогеоценотического (экосистемного) уровня. Элементарное явление на рассматриваемом уровне представлено потоками энергии и круговоротами веществ. Ведущая роль в этих круговоротах и потоках принадлежит живым организмам. Биогеоценоз – это открытая в вещественном и энергетическом плане система. Биогеоценозы, различаясь по видовому составу и характеристикам абиотической своей части, объединены на планете в единый комплекс – область распространения жизни, или биосферу.
Приведенные выше уровни отражают важнейшие биологические явления, без которых невозможны эволюция и, следовательно, само существование жизни. Хотя элементарные единицы и явления на выделяемых уровнях различны, все они тесно взаимосвязаны, решая свою специфическую задачу в рамках единого эволюционного процесса. С конвариантной редупликацией на молекулярно-генетическом уровне связаны элементарные основы этого процесса в виде явлений наследственности и истинной мутационной изменчивости. Особая роль клеточного уровня состоит в энергетическом, вещественном и информационном обеспечении происходящего на всех других уровнях. На онтогенетическом уровне биологическая информация, находящаяся в генах, преобразуется в комплекс признаков и свойств организма. Возникающий таким образом фенотип становится доступным действию естественного отбора. На популяционно-видовом уровне определяется эволюционная ценность изменений, относящихся к молекулярно-генетическому, клеточному и онтогенетическому уровням. Специфическая роль биогеоценотического уровня состоит в образовании сообществ организмов разных видов, приспособленных к совместному проживанию в определенной среде обитания. Важной отличительной чертой таких сообществ является их устойчивость во времени.
Рассмотренные уровни отражают общую структуру эволюционного процесса, закономерным результатом которого является человек. Поэтому типичные для этих уровней элементарные структуры и явления распространяются и на людей, правда, с некоторыми особенностями в силу их социальной сущности.
Среди перечисленных выше свойств дискретность, структурированность, вещественно-энергетическая открытость, противоэнтропийная направленность характеризуют в равной степени гены, клетки, особи, популяции, биогеоценозы, проявляясь, таким образом, на всех уровнях. Вместе с тем такое свойство, как наличие генотипа и фенотипа, прямо относится лишь к организменному уровню и, возможно, к клеточному. Нетрудно, однако, видеть, что и оно является всеобщим, определяющим жизнь как таковую. Действительно, генотипы представляют собой совокупность генов. С другой стороны, генотипы особей, принадлежащих одной популяции, образуют ее генофонд. Именно этот генофонд служит источником генотипов организмов каждого следующего поколения.
Биоценозы, в свою очередь, представляют собой не случайные ассоциации организмов разных видов, а исторически сложившиеся сообщества взаимоприспособленных организмов. Взаимоприспособленность складывалась в процессе эволюции живого населения определенной территории и закреплена наследственно в генофондах соответствующих популяций. Совокупность таких генофондов составляет генофонд биогеоценоза. Непосредственными носителями биологической (генетической) информации являются нуклеиновые кислоты и белки, составляющие элементарную основу соответственно генотипа и фенотипа. С учетом рассуждении, приведенных выше, наличие информационных макромолекул с полным основанием рассматривают как специфическую общую характеристику не только клетки или организма, но и жизни в целом.
Традиционно способность к росту как одно из свойств живого относят к организму, связывая его с индивидуальным развитием последнего. На самом деле закономерные циклы развития, включающие изменения размеров, характеризуют элементарные структуры всех уровней. Редупликация ДНК, образование четвертичных структур белков за счет объединения отдельных полипептидов в функциональный комплекс, рост клетки между делениями и особи в процессе онтогенеза, изменение численности особей в популяции, сукцессия биогеоценоза с достижением им климаксного состояния – вот примеры, обосновывающие приложимость названного свойства ко всей области жизни.
Результатом закономерных циклов развития элементарные структур разных уровней организации жизни нередко, действительно, бывает увеличение их количества, т.е. размножение в буквальном смысле. Редупликация приводит к увеличению числа молекул ДНК, клеточные циклы – количества клеток, размножение на популяционном уровне – числа особей. Вместе с тем размножение в биологическом понимании – это обязательно воспроизведение в известных пределах колебаний определенной внутренней организации. Принцип воспроизведения «себе подобного» лежит в основе сохранения во времени элементарных структур всех уровней и, следовательно, тех элементарных явлений, которые с ними связаны. На молекулярно-генетическом уровне это двойная спираль ДНК, клеточном – клетка, онтогенетическом – особь данного биологического вида, популяционно-видовом – популяция с присущим ей генофондом, возрастной и половой структурой, биогеоценотическом – определенный видовой состав, включающий продуценты, консументы, деструкторы.
Любая упорядоченность возникает на основе информации, которая и воспроизводится в соответствующей структуре. Первичная биологическая информация записана в молекулах нуклеиновых кислот. Расчеты показывают, однако, что ее одной недостаточно для кодирования всего многообразия живых структур от белковых молекул до различных биоценозов. Необходимая дополнительная информация появляется в биологических структурах в процессе их развития вследствие того, что они являются самоорганизующимися системами. Законы, которым следуют эти системы, изучает междисциплинарное направление науки – синергетика.
Самоорганизующиеся системы отличаются низкими значениями энтропии, т.е. находятся далеко от состояния термодинамического равновесия. Подобное неравновесное состояние поддерживается благодаря потокам энергии и веществ, проходящих через названные системы. Процессы в самоорганизующихся системах сопровождаются рассеиванием энергии, в связи с чем их называют диссипативными.
Важная черта диссипативных систем – целостность. Она проявляется в том, что поведение элементов в этих системах определяется в большей мере структурой самой системы и в меньшей – их собственными свойствами. В своем развитии системы проходят ряд устойчивых состояний, разделенных периодами неустойчивости, с которыми связано возникновение новой информации. В каждом из таких периодов возможен выбор между несколькими вариантами дальнейшего развития, однако в целом процессу развития свойственна эквифинальность, т.е. закономерное достижение определенного конечного результата. В периоды неустойчивости система отличается повышенной чувствительностью к действию разнообразных факторов (критические периоды ).
Описанными выше чертами обладают такие биологические системы, как геном, клетка, организм, популяция, биогеоценоз. Всем им присуща способность к воспроизведению собственной структуры.
В основе проявлений жизни как особого явления лежит генетическая информация ДНК клеток. В ходе развертывания этой информации по законам, характерным для самоорганизующихся диссипативных систем, воссоздается иерархия биологических структур соответственно главным уровням организации жизни с типичными для них элементарными единицами и явлениями. Благодаря последним происходит процесс эволюции живой природы, сохраняющий жизнь на планете вот уже более 3,5 млрд. лет.
На планете среди других существ людям принадлежит уникальное место, что обусловлено приобретением ими в процессе антропогенеза особого качества – социальной сущности. Это означает, что уже не биологические механизмы, а в первую очередь общественное устройство, интеллект, производство, труд обеспечивают выживание, всесветное и даже космическое расселение, благополучие человечества. Социальность, однако, не противопоставляет людей остальной живой природе. Приобретение этого качества указывает лишь на то, что отныне историческое развитие представителей вида Homo sapiens , т.е. человечества, подчиняется законам общественного, а не биологического развития.
Человек остается включенным в систему органического мира. Этот мир складывался и развивался на протяжении большей части истории планеты независимо от человеческого фактора, более того, на определенном этапе своего развития он этот фактор породил. Человечество составляет своеобразный, но неотъемлемый компонент биосферы. Благодаря животному происхождению жизнедеятельность человеческого организма основывается на фундаментальных биологических механизмах, которые составляют его биологическое наследство. Биологическому наследству, формировавшемуся в процессе эволюции жизни, отводится видная роль в патологии человека. Крупный отечественный патолог И.В. Давыдовский писал, что естественность и законность болезней вытекают из основных свойств жизни, а именно из универсального и важнейшего свойства организмов – приспосабливаться к меняющимся условиям внешней среды. По его мнению, полнота такого приспособления и есть полнота здоровья.
Развитие жизни в одной из ее ветвей привело к появлению современного человека, объединяющего в себе биологическое и социальное. Характер взаимоотношения социального и биологического в человеке нельзя представить как простое сочетание в некоторой пропорции или прямое подчинение одного другому. Особенностью человеческого биологического является то, что оно проявляется в условиях определяющего действия законов общественного развития. Биологические процессы с необходимостью совершаются в организме человека, и им принадлежит фундаментальная роль в определении важнейших сторон жизнеобеспечения и развития. Вместе с тем эти процессы в популяциях людей не дают результата, закономерного и обязательного для популяций остальных представителей мира живых существ.
В качестве примера обратимся к процессу эволюции, которым в конечном итоге обусловливаются биологические механизмы главных уровней организации жизни – молекулярно-генетического, клеточного, онтогенетического, популяционно-видового, биогеоценотического. Генофонды популяций людей и в настоящее время изменяются в результате мутаций, комбинативной изменчивости, неслучайного подбора брачных пар, дрейфа генов, изоляции и некоторых форм естественного отбора. Однако благодаря действию в социальной сфере естественный отбор утратил здесь свою важнейшую биологическую функцию – видообразование. В таком случае среди людей исключается возможность завершенного эволюционного цикла путем достижения закономерного биологического результата – появления новых видов рода Человек. Сохраняющееся же действие элементарных эволюционных факторов, перечисленных выше, оборачивается в отношении человеческих популяций необычными с эволюционно-биологической точки зрения последствиями (например, не имеющим по масштабам равных в других видах организмов генетическим и, следовательно, фенотипическим разнообразием).
Знакомство с уже обширными, но еще мало систематизированными материалами, касающимися естественнонаучной стороны проблемы человека, указывает на неуклонный рост интереса к биологическим основам жизнедеятельности людей. Отчасти это обусловливается успехами биологической науки, открывающими перспективы активно влиять на ход многих физиологических процессов в организме. В немалой степени это связано с тем, что в условиях современной энергетической и технической оснащенности воздействие человечества на биосферу оказывается по своим результатам таким, что уже невозможно, даже с медицинской точки зрения, дальнейшее игнорирование людьми своей собственной биологии, своего биологического наследства.
www.ronl.ru
Рассмотрим отдельные уровни организации живой материи, начав с низшей ступени, на которой смыкаются биология и химия.
Молекулярно-генетический уровень.
Это тот уровень организации материи, на котором совершается скачок от атомно-молекулярного уровня неживой материи к макромолекулам живого. При изучении молекулярно-генетического уровня достигнута, видимо, наибольшая ясность в определении основных понятий, а также в выявлении элементарных структур и явлений. Развитие хромосомной теории наследственности, анализ мутационного процесса, изучение строения хромосом, фагов и вирусов вскрыли основные черты организации элементарных генетических структур и связанных с ними явлений.
Клеточный уровень.
Клеточный и субклеточный уровни отражают процессы специализации клеток, а также различные внутриклеточные включения. Любой живой организм состоит из клеток. В простейшем случае — из единственной клетки (бактерии, амебы). Клетка является мельчайшей элементарной живой системой и является первоосновой строения, жизнедеятельности и размножения всех организмов. Клетки всех организмов сходны по строению и составу веществ.
Тканевый уровень.
Совокупность клеток с одинаковым уровнем организации образует живую ткань. Из тканей состоят различные органы живых организмов.
Организменный уровень.
Система совместно функционирующих органов образует организм. В отличие от предыдущих уровней на организменном уровне проявляется большое разнообразие живых систем. Организменный уровень именуют также онтогенетическим.
Популяционно-видовой уровень.
Он образован совокупностью видов и популяций живых систем. Популяция — это совокупность организмов одного вида, обладающих единым генофондом (совокупностью генов). Она является надорганизменной живой системой, так же, как и вид, состоящий обычно из нескольких популяций. На этом уровне реализуется биологический эволюционный процесс.
Биогеоценотический уровень.
Он образован биоценозами — исторически сложившимися устойчивыми сообществами популяций, связанных друг с другом и окружающей средой обменом веществ.
Биосферный уровень.
Включает в себя всю совокупность живых организмов Земли вместе с окружающей их природной средой.
Разобранной выше классификации придерживается большинство конкретных медико-биологических и антропобиологических наук. Это неудивительно, так как она отражает уровни организации живой природы через исторически сложившиеся уровни ее изучения. Для решения этой задачи целесообразно воспользоваться классификацией, наиболее близко отражающей, а именно: структурные уровни организации живого.
15)
Позвоночный столб образует изгибы в сагиттальной плоскости. Изгибы в грудной части и в крестце направлены выпуклостно назад, а в шейном и поясничном отделах – вперед. Изгибы, выпуклые вперед называются лордозы lordosis, назад – кифозов, kyphosis. Когда ребенок начинает держать голову, то в области шеи образуется изгиб, голова стремится опуститься вниз, потому что позвоночный столб изгибается вперед. В результате образуется шейный лордоз. При сидении усиливается грудной кифоз, а когда ребенок научится стоять и ходить, образуется главный изгиб – поясничный лордоз. Позвоночный столб, чтобы оставаться в вертикальном положении, должен прогнуться в поясничном отделе. Появление двух лордозов обуславливает развитие двух кифозов, что связано с поддержанием равновесия при вертикальном положении тела. Изгибы смягчают толчки и сотрясения вдоль позвоночного столба. Еще существует боковое искривление позвоночного столба – сколиоз, skoliosis. В старости позвоночный столб теряет изгибы и вследствие потери эластичности позвоночный столб сгибается кпереди, длина позвоночного столба уменьшается.
Движение позвоночного столба:
1)
вокруг фронтальной оси сгибания и разгибания.
2)
вокруг сагиттальной – наклон вправо и влево.
3)
вокруг вертикальной оси – вращение туловища. Возможны и круговые движения и удлинение и укорочение позвоночного столба.
Движение позвоночника. Разгибание: аутохтонная мускулатура спины, m. spleniuscapitus et cerirlis и m. trapesius. Сгибание: m. sternoelei damastovollus, mm. scalem,m. langus colli, m. rectus abdominius и обе косые мышцы живота, m. psoas major. Наклоны вправо и влево производятся теми же мышцами, которые производят сгибание и разгибание им содействуют на одной стороне mm. levatores costarum, mm.intertransversalia и mm. quadratus limborum. Вращение производят мышцы, нижние косые пучки m. longus colli, косые пучки m. quntor spinae, m. obliquus abdomenisinterius на стороне, куда происходит поворот и m. obliquus abdomenis externus на другой.
Затылочный сустав. Разгибание: m. trapezius, верхние пучки глубоких мышц спины, прикрепляющиеся к черепу (m. splenius, m. longissimus capitus, m. semispinalis, mm.recti capitis posteriores major et minor, m. obliquus capitis superior). Разгибание головы: оба mm. sternocleidomastoidei, но шейный отдел позвоночника они сгибают. Сгибание (наклон вперед): m. rectus capitis anterior, m. rectus capitus lateradis, m.longus capitis и передние шейные мышцы. Наклон головы вправо и влево производят те же мышцы, которые производят сгибание и разгибание. Вращение головы: m.obliquus capitus superior, m. longus colli, m. specnius и m. sternocleidomastoideus на стороне, противоположной повороту. Все мышцы работают на одной стороне.
Приблизительно к 3 месяцам жизни у ребенка формируется шейный лордоз под влиянием развивающихся мышц шеи и спины во время приподнимания головы лежа на спине и сохранений данного положения в течение определенного времени.К 6 месяцам начинает формироваться грудной кифоз. У ребенка развивается умение переходить из положения лежа в положение сидя и самостоятельно сохранять данное положение.К 9— 12 месяцам начинает формироваться поясничный лордоз под действием мышц, обеспечивающих вертикальное положение туловища и конечностей во время стояния и ходьбы.
К 3 годам у ребенка имеются все изгибы позвоночника, характерные для взрослого человека, но они менее выражены, а точнее, сглажены.
До 5—7-летнего возраста форма позвоночника не закрепляется.
У 6-летнего ребенка, лежащего на спине, исчезают все изгибы позвоночника.
К 7 годам прочно закрепляются шейный и грудной изгибы, а поясничный — в пубертатном возрасте. У младших школьников завершается становление физиологических изгибов, которые поддерживаются соответствующим равновесием тяги мышц, прикрепленных к позвоночнику.
www.ronl.ru