wreferat.baza-referat.ru

Свет

- чрезвычайно важный вид энергии. Жизнь на земле зависит от энергии солнечного света. Кроме того, свет - это излучение, которое дает нам зрительные ощущения. Лазерное излучение применяется во многих областях - от передачи информации до резки стали.

Мы видим предметы, когда свет от них достигает наших глаз. Эти предметы либо сами излучают свет, либо отражают свет излучаемый другими предметами, либо пропускают eго через себя. Мы видим, например, Солнце и звезды потому, что они излучают свет. Большинство же предметов вокруг нас мы видим благодаря отраженному ими свету. А некоторые материалы, такие, как витражи в окнах соборов, раскрывают богатство своих цветов, пропуская свет через себя.

Цвет

Яркий солнечный свет кажется нам чисто белым, то есть бесцветным. Но тут мы заблуждаемся, так как белый свет состоит из многих цветов. Они бывают видны, когда лучи солнца освещают дождевые капли и мы наблюдаем радугу. Разноцветная полоса образуйся и тогда когда солнечный свет отражается от скошенного края зеркала или проходит через стеклянное украшение либо сосуд. Эта полоса называется световым спектром. Начинается он с красного цвета и, постепенно меняясь, заканчивается на противоположном конце фиолетовым.

Обычно мы не принимаем во внимание более слабые оттенки цвета и поэтому считаем, что спектр состою всею из семи цветовых полос. Цвета спектра, называемые семью цветами радуги, включают красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый.

Призмы

В 60х годах ХVII столетия Исаак Ньютон про водил эксперименты со светом. Чтобы разложить свет на составляющие и получить спектр он использовал трехгранную стеклянную призму. Ученый обнаружил, что, собрав раздробленный луч с помощью второй призмы, можно опять получить белый свет. Так он доказал что белый свет является смесью разных цветов.

Основными цветами света являются красный, зеленый и синий. Их комбинация образует белый свет. Смешанные парами, они образуют цвета желтый, синий или пурпурный. Пигментными или основными цветами красок являются пурпурный, синий, желтый Их сочетание показано на рисунке.

Проходя через призму световые лучи преломляются. Но лучи разного цвета преломляются в разной степени - красный в наименьшей, фиолетовый в наибольшей. Именно по этому, проходя через призму, белый цвет дробится па составные цвета.

Преломление света называется рефракцией, а разложение белого света на разные цвета -дисперсией. Когда дождевые капли рассеивают солнечный свет, образуется радуга.

Электромагнитные волны

Световой спектр - лишь часть огромного диапазона излучений, который называется электромагнитным спектром. Он включает в себя гамма-, рентгеновское, ультрафиолетовое, инфракрасное (тепловое) излучение и радиоволны. Все виды электромагнитных излучений распространяются в форме волн электрических и магнитных колебаний со скоростью света - около 300 000 км/с. Электромагнитные волны различаются между собой главным образом длиной волны. Определяется она частотой, то есть скоростью, с которой образуются эти волны. Чем выше частота, тем ближе друг к другу они располагаются и тем меньше длина каждой из них. В спектре световые волны занимают место между областями инфракрасного и ультрафиолетового излучения.

Солнце испускает широкий спектр электромагнитных излучений. На шкале даны длины волн в нанометрах (одна миллиардная метра) и более крупных единицах.

Линзы

Изображение в фотоаппаратах и оптических инструментах получают, используя линзы и явление преломления в них световых лучей. Возможно, вы заметили, что в линзах дешевых телескопов, например, вокруг контуров изображения образуется цветная кайма. Происходит это потому что, подобно призме, простая линза, изготовленная из одного куска стекла или пластика, преломляет лучи разного цвета в разной степени. В более качественных приборах этот дефект устраняется путем использования двух линз, соединенных вместе. Первая часть такой составной линзы разлагает белый свет на разные цвета, а вторая опять соединяет их, убирая таким образом ненужную кайму.

Основные цвета

Как показал Ньютон, белый свеч можно получить, смешав семь цветов радуги. По это можно сделать и проще, смешав лишь три цвета -красный, зеленый и синий. Они называются основными цветами света. Другие цвета мы получим, комбинируя основные. Так, например, смесь красного с зеленым дает желтый.

Выпуклая линза фокусирует параллельные лучи. Поскольку белый свет состоит из более чем одного цвета, их лучи преломляются в разной степени и фокусируются на разных расстояниях от линзы. В результате вокруг контуров изображения образуется цветная кайма.

Линзу из двух сортов стекла можно использовать для получения изображений без цветной каймы. Первая часть линзы преломляет лучи разного цвета в разной степени, заставляя их расходиться. Вторая опять собирает их, устраняя цветовые искажения.

Тот факт, что белый свет состоит из нескольких цветов, объясняет, почему мы видим предметы в том или ином цвете. (Для простоты предположим, что белый свет состоит только из красного зеленою и синего). Мы видим предмет белым, если он отражает все три составляющие части белого света, и черным, если он не отражает ни одной из них. Но красный предмет, освещаемый белым светом, видится красным потому, что он отражает главным образом красную составляющую белого цвета и поглощает большинство синих и зеленых составляющих. В результат мы видим в основном красный цвет. Точно так же синий предмет отражает синие лучи, поглощая красные и зеленые. А зеленый предмет отражает зеленые лучи, поглощая красные и синие.

Фасеточные глаза мух состоят из тысяч линз. Каждая фокусирует свет лишь на нескольких светочувствительных клетках, так что муха не может разглядеть все детали объекта. Цветок глазами мухи выглядит как состоящая из тысяч кусочков картинка.

WebProm banner network

Если смешать краски разною цвета,то каждая будет поглощать (вбирать) различные составляющие белого света смесь будет становиться темнее. Таким образом смешивание красок - это процесс противоположный смешиванию цветовых лучей. Чтобы получить определенную гамму цветов надо использовать другой набор основных цветов. Основные цвета используемые в живописи, называются основными пигментными цветами. Это пурпурный цвет или "идеально красный", синий и желтый обычно (но неправильно) называемые красным, синим и желтым. Черный добавляют, чтобы увеличить плотность темных участков, а насыщенная смесь всех основных цветов все же отражает в какой-то степени свет. В результате вместо черного цвета получается темно-коричневый.

Волны и частицы

Как образуются и распространяются световые лучи, веками оставалось полнейшей тайной. И в наши дни это явление не до конца исследовано учеными.

В XVII веке Исаак Ньютон и другие ученые полагали, что свет состоит из быстро движущихся частиц, которые назвали корпускулами. Датский ученый Христиан Гюйгенс yтверждал, что свет состоит из волн

В 1801 г английский ученый Томас Янг произвел ряд опытов с дифракцией света Это явление состоит в том, что при прохождении через очень узкую щель свет слегка рассеивается, а не распространяется по прямой линии. Янг объяснил дифракцию распространением света в форме волн. А в 60-х годах XIX века шотландский ученый Джеймс Кларк Максвелл высказал предположение, что электромагнитная энергия распространяется волнами, и что свет является особым видом этой энергии.

Мираж - это оптический обман, наблюдаемый в жарких пустынях (вверху). Когда Солнце сильно нагревает землю, воздух над ней тоже нагревается. При изменениях температуры на разных высотах, свет в воздухе преломляется, как показано на картинке. Чтобы увидеть верхушку дерева, наблюдателю приходится смотреть вниз, так что дерево кажется перевернутым. Иногда падающий с неба свет выглядит, как разлитые на земле лужи. Слои холодного воздуха над морем может вызвать противоположное явление (внизу). Свет, отраженный от далекого корабля, преломляется так, что корабль кажется парящим в небе.

Однако к началу XX века немецкий ученый Макс Планк в своих работах доказал, что энергия излучения может существовать лишь в виде крошечных сгустков - квантов. Это доказательство лежит в основе квантовой теории Планка, за которую он в 1918 году получил Нобелевскую премию в области физики Квант светового излучения - это частица, называемая фотоном. При излучении или поглощении свет всегда ведет себя как поток фотонов.

Таким образом, иногда свет ведет себя как волны, иногда - как частицы. Поэтому считается, что он имеет двойственную природу. Ученые, объясняя данные наблюдений, могут пользоваться либо волновой теорией, либо теорией частиц.

Рыба хаулиод излучает биолюминесцентный свет из набрюшных органов (фотофоров). Рыба регулирует их яркость так, чтобы она соответствовала яркости света, проникающего с поверхности.

Генерирование света

Подобно электрическому току, свет может генерироваться другими видами энергии. Солнце генерирует свет и другие электромагнитные излучения путем мощных реакций синтеза, в процессе которых водород превращается в гелий. При сгорании угля или дерева химическая энергия топлива превращается в тепло и свет. Прохождение тока через тонкую нить накала в электрической лампочке дает тот же результат. Лампа дневного света работает по другому принципу. На концы трубки, наполненной парами (обычно ртути) под большим давлением, подается высокое напряжение. Пар начинает светиться, испуская ультрафиолетовое излучение, которое действует на химическое покрытие внутренних стенок трубки. Покрытие поглощает невидимое ультрафиолетовое излучение и само излучает энергию света. Этот процесс преобразования излучения называется флюоресценцией.

Фосфоресценция - явление того же рода, но свечение при этом продолжается довольно долго и после удаления источника излучения. Светящаяся краска фосфоресцирует. После кратковременного воздействия на нее яркого света она светится часами. Флюоресценция и фосфоресценция являются формами люминесценции - излучения света без влияния высокой температуры.

Биолюминесценция

Некоторые живые организмы, включая жуков-светляков, отдельные виды рыб, грибов и бактерий, генерируют свет способом биолюминесценции. В этом виде люминесценции источником света является химическая энергия, получаемая в результате окисления вещества, называемого люциферином.

Одним из наиболее полезных источников света является лазер. Это слово составлено из первых букв полного термина "усиление света методом индуцированного излучения" (по-английски light amplification by stimulated emission of radiation). В лазерной трубке под воздействием электричества из атомов высвобождаются фотоны. Они вылетают из трубки в виде узкого луча света или в какой-либо другой форме электромагнитного излучения в зависимости oт вещества, используемого для получения фотонов.

Захватывающие эффекты на рок-концертах получают при помощи генераторов дыма. Его частицы рассеивают лучи прожекторов, придавая им видимые очертания.

В отличие от обычного света лазерный свет является когерентным. Это означает, что выпущенные световые волны поднимаются и опускаются вместе. Получаемое таким образом световое излучение высокой направленности и большой плотности энергии имеет различные области применения, включая сшивание тканей в хирургии, резку стали, наведение ракет на цели, передачу информации.

www.coolreferat.com

Свет и человек - реферат

Описание.

Отношения между светом и человеком претерпели значительные изменения за последние 100 лет с началом индустриализации. Сейчас мы проводим большую часть своего времени в закрытых помещениях с искусственным светом.

Выдержка из работы.

Введение.

Все знают, что сила солнечного света столь велика, что  он способен контролировать циклы природы  и биоритмы человека. Свет, в действительности, связан с нашими эмоциями, с ощущением  комфорта, безопасности, а также  тревоги и беспокойства. Однако, во многих областях современной жизни свету не уделяется нужное внимание. 

На вопрос о том, что самое важное в жизни, большинство  людей отвечают - здоровье. В то время, как здоровое питание, фитнесс и вопросы экологии широко освещаются на страницах газет, журналов и интернет-сайтов, вопросы правильного и здорового освещения не затрагиваются вовсе. Наиболее известные аспекты освещения - это влияние УФ-излучения в летнее время, а также его способность бороться с зимней депрессией и некоторыми кожными заболеваниями. Остальные вопросы освещения обсуждаются лишь в узком кругу профессионалов, а большинство людей не задумываются о широких возможностях влияния света на наше физическое и моральное состояние.                       

Свет и человек. 

Отношения между  светом и человеком претерпели значительные изменения за последние 100 лет с  началом индустриализации. Сейчас мы проводим большую часть своего времени  в закрытых помещениях с искусственным  светом. Многие составные части спектра  естественного света важные для  нашего здоровья, теряются, проходя  через стекло. По мнению светотерапевта Александра Вунша, человек на протяжении всей эволюции приспосабливался к спектру солнечного излучения и для хорошего здоровья ему необходимо получать именно полный спектр. Многие возмещают недостаток солнечного света прогулками в парке, по пляжу или отдыхом на балконе. Впервые эффект сезонного расстройства описал доктор Норманн Розенталь. Позднее был проведен эксперимент среди жителей Норвегии, где 49 дней в году длится ночь. Люди, живущие в таких условиях, часто чувствуют себя уставшими, им трудно просыпаться и приниматься за работу, многих преследуют дипрессии и апатичные состояния. Зато день, когда возвращается солнце, отмечается как праздник "День Солнца" и встречается слезами радости.  

Свет в архитектуре. 

Наблюдения показывают, что существует специфическая связь  между освещением и чувством комфорта. Также они показывают, что естественное освещение всегда более благоприятное и удобное для всех обычных видов деятельности. Многие архитектурные проекты демонстрируют абсолютное пренебрежение дневным светом. Офисные и торговые здания без окон, в которых люди проводят многие часы, не видя солнца и не понимая какое время суток и года снаружи. Увеличивая проникновение дневного света в офисы можно в конечном счете сократить число пропусков из-за болезней сотрудников и улучшить рабочую атмосферу в офисе.  

Постепенно ситуация со световыми аспектами в архитектуре  улучшается, однако, ввиду недостаточно качественного образования в  этой области, многие архитекторы не в полной мере учитывают важность работы и планирования освещенности. По мнению профессора Университета Прикладных Наук Hildesheim в Германии, Андреаса Шульца, все зависит от архитектора, однако, подавляющее большинство проектов, строится без привлечения специалиста по дизайну освещения.  

Качество электрического света. 

Поскольку внутри зданий количество дневного света недостаточное  для того, чтобы удовлетворять  потребности человека в нем, электрические  источники призваны компенсировать этот недостаток. Все источники искусственного света в той или иной степени  пытаются имитировать дневной свет, некоторые делают это очень хорошо. Александр Вунш изучал влияние различного света на человека и пришел к выводам, что любое отклонение от спектра естественного света несет в себе вредный для здоровья потенциал. Эксперименты на эту тему проводились уже давно, в 1973 году Джон Отт изучал две группы детей, занимающихся в комнатах без окон. В одной комнате освещение было максимально приближенным к естественному, за счет использования ламп полного спектра, а в другой использовались обычными люминесцентные лампы. В результате, дети, занимающиеся в комнате с люминесцентными лампами, были сперва гиперактивны, а затем сильно уставали и теряли способность к концентрации, также отмечалось и повышение давления.  

Александр Вунш недавно протестировал ряд современных искусственных источников света на предмет биологического влияния, которое они оказывают на человека в сравнении с естественным светом. Профессор пришел к выводу, что наиболее близким к естественному спектром, обладает лампа накаливания. 

Результаты подобных исследования редко становятся известны широкой публике. Дело в том, что большинство людей мало понимают в таких вопросах. Кроме того, в разных культурах по разному ценят окружающую среду и ее дары. Для большинства из нас свет настолько привычное сопровождение нашей жизни, что мы не задумываемся над его разнообразными свойствами, которые влияют на нашу жизнь в моральном и физическом плане. Подобно воздуху, который мы не замечаем, свет воспринимается как данность, до тех пор, пока мы не почувствуем его недостаток или дискомфорт при контакте, например, со слишком яркой лампочкой. Многие не отдают себе отчета, что испытывают усталость на рабочем месте из-за плохой освещенности, поскольку это не всегда очевидно. 

Общая неграмотность  в вопросах качественного освещения  обсуждается профессионалами, в  том числе, в дискуссиях по поводу необходимости запрета традиционных ламп накаливания. В свете актуальных вопросов энергосбережения, традиционная лампа накаливания не выдерживает  никакой критики и все идет к тому, чтобы запретить ее использование. Однако, мало кто говорит о плохих спектральных и токсикологических показателях компактных люминесцентных ламп, которые должны будут прийти на смену лампе накаливания. Среди подобных дискуссий все-таки слышны голоса тех, кто выступает не только за экономию энергетических ресурсов, но также говорит о здоровье людей и качестве жизни.  

Немецкий дизайнер света Инго Маурер говорит: "Свет - это чувство, и чувство должно быть правильным. Плохой свет делает людей несчастными" по словам Инго Маурера "лампочка Эдисона - это символ промышленности и поэзии". Ничто не может заставить дизайнера отказаться от использования ламп накаливания.  

Роль световой промышленности. 

"На лампочке  накаливания не заработать больших  денег" - говорит представитель  компании Philips Берн Глэйзер. Ему вторит и представитель Osram: "Люминесцентные лампы намного более прибыльны для компании". Конечно, производители стремятся увеличить свои доходы и с экономической точки зрения это совершенно понятно. Но все таки, компании реагируют на спрос, который диктует потребность в более эффективной продукции. И только наше желание получать более качественное и здоровое освещение может повлечь за собой производство таких источников освещения массовыми производителями. Все это, впрочем, не умаляет экономичных свойств современных ламп, которые во много раз лучше, чем у лампы накаливания.  

Светодизайн - взгляд в будущее. 

В любом проекте, будь то квартира, магазин или офис, освещение во многом определяет атмосферу  и ощущение, которое вызывает у  нас интерьер. Поскольку световые эффекты воспринимаются подсознательно, мы часто не отдаем себе отчета откуда берется то или иное ощущение. Те, кто осознанно применяет свет, получают инструмент для моделирования чувства комфорта, что особенно ценно в местах с угнетающей атмосферой, например в тоннелях.  

Многие люди чувствуют  дискомфорт, двигаясь в тоннеле. В  одном из самых длинных туннелей в мире, 24,5 километровом Laerdal Tunnel между Бергеном и Осло дизайнеры применили интересное решение. Дизайнер Эрик Сэлмер разделил тоннель на три участка, в конце каждого путешественника ждет имитация пещерных стен с освещением, напоминающим скандинавский восход. Таким образом, складывается ощущение, что ты проезжаешь три тоннеля, а не один, а картина прекрасного восхода солнца успокаивает и вызывает приятные ассоциации. На остальных участках было использована обычная схема освещения. Многие не могут объяснить феномен естественного света, но эффект, который мы ощущаем, когда видим картину-иммитацию всегда срабатывает, потому, что взывает к тем же чувствам. По словам Эрика Сэлмера: "Все были в восторге и никто не мог объяснить это логически. Получилась просто потрясающая атмосфера".  

Взаимодействие и  общение. 

Существует масса  областей знаний, в которых профессионалы  освещения могут черпать информацию. Знания о свете можно приобретать  в области биологии, физики, медицины и других. Иногда специалисты этих областей встречаются на конференциях, но зачастую с трудом могут быть полезными друг другу, поскольку  не имеют общего языка и слишком  мало общаются друг с другом.  

Одна группа экспертов  заняты в своих лабораториях разработкой  новых источников света, которые  становятся все меньше и эффективнее. 

Другая группа работает над применением инноваций в  архитектурных проектах. 

Есть, однако, еще  одна многочисленная группа, которая  испытывает преимущества и недостатки качества освещения на себе - потребители.  

В то время как, ученые понимают под светом определенную длину  волны, которую можно измерить, дизайнеры  и архитекторы говорят о восприятии и психологии. Однако, для эффективного и благотворного развития светодизайна необходимо учитывать знания из всех областей во время работы над продуктами и интерьерами. 

Свет и растения.   

наибольшее значение имеют красные (720-600 нм) и оранжевые  лучи (620-595 нм). Именно они являются основными  поставщиками энергии для фотосинтеза  и влияют на процессы, связанные  с изменением скорости развития растения (избыток красной и оранжевой  составляющей спектра задерживает  переход растения к цветению). 

Синие и фиолетовые (490-380нм) лучи, кроме непосредственного  участия в фотосинтезе, стимулируют  образование белков и регулируют скорость развития растения. У растений, живущих в природе в условиях короткого дня, эти лучи ускоряют наступление периода цветения. 

Ультрафиолетовые  лучи с длиной волны 315-380 нм задерживают  «вытягивание» растений и стимулируют  синтез некоторых витаминов, а ультрафиолетовые лучи с длиной волны 280-315 нм повышают холодостойкость. 

Лишь желтые (595-565 нм) и зеленые (565-490 нм) не играют особой роли в жизни растений. 

Учет потребностей растений в определенном спектральном составе света необходим при  правильном подборе источников искусственного освещения. В комнатных условиях в качестве таковых наиболее удобно использовать люминесцентные лампы ЛБ и ЛДЦ. 

Почти все комнатные  растения светолюбивы, т.е. лучше развиваются  при полном освещение, но различаются по теневыносливости. Принимая во внимание отношение растений к свету, их принято подразделять на три основные группы: светолюбивые, теневыносливые и тенеиндифферентные. 

Как и все живые  организмы, растения обладают способностью адаптироваться к изменяющимся условиям. Эта способность различна у разных видов. Есть растения, довольно легко  приспосабливающиеся к достаточному или избыточному свету, но встречаются  и такие, которые хорошо развиваются  только при строго определенных параметрах освещенности. В результате адаптации  растения к пониженной освещенности несколько меняется его облик. Листья становятся темно-зелеными и немного  увеличиваются в размерах (линейные листья удлиняются и становятся уже), начинается вытягивание междоузлий стебля, который при этом теряет свою прочность. Затем их рост постепенно уменьшается, т.к. резко снижается  производство продуктов фотосинтеза, идущих на посторенние тела растения. При недостатке света многие растения перестают цвести.  

При избытке света  хлорофилл частично разрушается, и  цвет листьев становится желто-зеленым. На сильном свету рост растений замедляется, они получаются более приземистыми с короткими междоузлиями и широкими короткими листьями. 

Появление бронзово-желтой окраски листьев указывает на значительный избыток света, который  вреден растениям. Если срочно не принять  соответствующие меры, может возникнуть ожог.  

Важными характеристиками светового режима является суточная и сезонная динамика. 

Длина светового  дня меняется в течение года. В  умеренных широтах самый короткий день равен 8 ч., а самый длинный  – более 16 ч.  

наверх 

наверх

Расположение окон и количества света 

В помещениях растения получают односторонний свет – из окон. Даже на одном окне условия  освещенности неодинаковы. Правая сторона  окна, обращенного на запад, получает больше света, чем левая. 

На подвесной полке  у верхней фрамуги освещение  только боковое, а на подоконнике  отчасти и верхнее.  

Количество прямого  солнечного света, попадающего в  комнату, зависит от расположения окон. Больше всего солнечных лучей  проникает в так называемые «фонари» с трехсторонним освещением, затем  в угловые комнаты с окнами на восток и на юг или на запад. 

Дольше всего солнце находиться на южных (открыты к солнцу в течение 6-9 часов и пропускают максимум солнечного света), затем на юго-восточных и юго-западных окнах; окна, обращенные на восток, освещаются солнцем с утра до полудня, западные – только во второй половине дня.  

Окна, обращенные на север, пропускают ровный, почти неизменной интенсивности свет в течение  всего дня. 

В условиях нашей  географической широты большую часть  дня растения освещаются не прямым, а рассеянным солнечным светом.  

Количество рассеянного  солнечного, попадающего в комнату, определяется размерами части неба, видного через окно (или окна). Если окна выходят на большие открытые пространства (набережные, широкие  улицы и т.д.), то в такие помещения  попадает гораздо больше света, чем  в те, через окна которых видны  только стены соседних домов. Часть  солнечного света, особенно если в комнате  темные обои и мебель, поглощается.  

В светлых комнатах с окнами, обращенными на юг, восток или запад, можно успешно выращивать любые комнатные растения.

Положение к источнику  света 

Многие растения очень чувствительны к перемене положения по отношению к источнику  света (особенно зигокактус, герани, фуксии). Поэтому, после того как растению будет отведено в комнате постоянное место, следует избегать перестановок. 

Цветы и травы  тянутся к свету и поворачивают к нему свои листья, в результате в комнатах они принимают однобокую  форму. Вечнозеленые декоративно-лиственные растения, если их постепенно поворачивать к свету, разрастаются равномерно во все стороны.  

Для закладывания цветочных  почек, цветения и созревания плодов большинству растений нужен солнечный  свет, но есть и такие, которым необходима темнота.  

По степени отношения  к световому режиму выделяют растения длинного дня, которые могут расти, цвести, и плодоносит круглый год, темнота им совершенно не нужна. В средних широтах (гортензия, глоксиния, сенполия, кальцеолярия, цинерария т.д.) цветут с ранней весны, (т.е. с наступлением длинного дня и короткой ночи), до начала осени.  

Растениям короткого  дня (зигокактус, каланхое и др.), для того чтобы зацвести, необходим 8-10 часовой световой день.  

Растения, не требовательные к длине дня, цветут как при  длинном, так и при коротком световом дне (розы, бегония семперфлоренс, комнатный клен и др.) 

Растения чередования  длинных и коротких дней зацветают  лишь после того, как короткие зимние дни сменяются длинными весенними дня (пеларгония крупноцветковая) или требуют обратного чередования, т.е. цветут только зимой (камелия, цикламен).  

dipland.ru

 

Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Свет и человек. Реферат на тему свет и свет


Доклад - Свет - Наука и техника

Свет — чрезвычайно важный вид энергии. Жизнь на земле зависит от энергии солнечного света. Кроме того, свет — это излучение, которое дает нам зрительные ощущения. Лазерное излучение применяется во многих областях — от передачи информации до резки стали.

Мы видим предметы, когда свет от них достигает наших глаз. Эти предметы либо сами излучают свет, либо отражают свет излучаемый другими предметами, либо пропускают eго через себя. Мы видим, например, Солнце и звезды потому, что они излучают свет. Большинство же предметов вокруг нас мы видим благодаря отраженному ими свету. А некоторые материалы, такие, как витражи в окнах соборов, раскрывают богатство своих цветов, пропуская свет через себя.

Цвет

Яркий солнечный свет кажется нам чисто белым, то есть бесцветным. Но тут мы заблуждаемся, так как белый свет состоит из многих цветов. Они бывают видны, когда лучи солнца освещают дождевые капли и мы наблюдаем радугу. Разноцветная полоса образуйся и тогда когда солнечный свет отражается от скошенного края зеркала или проходит через стеклянное украшение либо сосуд. Эта полоса называется световым спектром. Начинается он с красного цвета и, постепенно меняясь, заканчивается на противоположном конце фиолетовым.

Обычно мы не принимаем во внимание более слабые оттенки цвета и поэтому считаем, что спектр состою всею из семи цветовых полос. Цвета спектра, называемые семью цветами радуги, включают красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый.

Призмы

В 60х годах ХVII столетия Исаак Ньютон про водил эксперименты со светом. Чтобы разложить свет на составляющие и получить спектр он использовал трехгранную стеклянную призму. Ученый обнаружил, что, собрав раздробленный луч с помощью второй призмы, можно опять получить белый свет. Так он доказал что белый свет является смесью разных цветов.

Основными цветами света являются красный, зеленый и синий. Их комбинация образует белый свет. Смешанные парами, они образуют цвета желтый, синий или пурпурный. Пигментными или основными цветами красок являются пурпурный, синий, желтый Их сочетание показано на рисунке.

Проходя через призму световые лучи преломляются. Но лучи разного цвета преломляются в разной степени — красный в наименьшей, фиолетовый в наибольшей. Именно по этому, проходя через призму, белый цвет дробится па составные цвета.

Преломление света называется рефракцией, а разложение белого света на разные цвета -дисперсией. Когда дождевые капли рассеивают солнечный свет, образуется радуга.

Электромагнитные волны

Световой спектр — лишь часть огромного диапазона излучений, который называется электромагнитным спектром. Он включает в себя гамма-, рентгеновское, ультрафиолетовое, инфракрасное (тепловое) излучение и радиоволны. Все виды электромагнитных излучений распространяются в форме волн электрических и магнитных колебаний со скоростью света — около 300 000 км/с. Электромагнитные волны различаются между собой главным образом длиной волны. Определяется она частотой, то есть скоростью, с которой образуются эти волны. Чем выше частота, тем ближе друг к другу они располагаются и тем меньше длина каждой из них. В спектре световые волны занимают место между областями инфракрасного и ультрафиолетового излучения.

Солнце испускает широкий спектр электромагнитных излучений. На шкале даны длины волн в нанометрах (одна миллиардная метра) и более крупных единицах.

Линзы

Изображение в фотоаппаратах и оптических инструментах получают, используя линзы и явление преломления в них световых лучей. Возможно, вы заметили, что в линзах дешевых телескопов, например, вокруг контуров изображения образуется цветная кайма. Происходит это потому что, подобно призме, простая линза, изготовленная из одного куска стекла или пластика, преломляет лучи разного цвета в разной степени. В более качественных приборах этот дефект устраняется путем использования двух линз, соединенных вместе. Первая часть такой составной линзы разлагает белый свет на разные цвета, а вторая опять соединяет их, убирая таким образом ненужную кайму.

Основные цвета

Как показал Ньютон, белый свеч можно получить, смешав семь цветов радуги. По это можно сделать и проще, смешав лишь три цвета -красный, зеленый и синий. Они называются основными цветами света. Другие цвета мы получим, комбинируя основные. Так, например, смесь красного с зеленым дает желтый.

Выпуклая линза фокусирует параллельные лучи. Поскольку белый свет состоит из более чем одного цвета, их лучи преломляются в разной степени и фокусируются на разных расстояниях от линзы. В результате вокруг контуров изображения образуется цветная кайма.

Линзу из двух сортов стекла можно использовать для получения изображений без цветной каймы. Первая часть линзы преломляет лучи разного цвета в разной степени, заставляя их расходиться. Вторая опять собирает их, устраняя цветовые искажения.

Тот факт, что белый свет состоит из нескольких цветов, объясняет, почему мы видим предметы в том или ином цвете. (Для простоты предположим, что белый свет состоит только из красного зеленою и синего). Мы видим предмет белым, если он отражает все три составляющие части белого света, и черным, если он не отражает ни одной из них. Но красный предмет, освещаемый белым светом, видится красным потому, что он отражает главным образом красную составляющую белого цвета и поглощает большинство синих и зеленых составляющих. В результат мы видим в основном красный цвет. Точно так же синий предмет отражает синие лучи, поглощая красные и зеленые. А зеленый предмет отражает зеленые лучи, поглощая красные и синие.

Фасеточные глаза мух состоят из тысяч линз. Каждая фокусирует свет лишь на нескольких светочувствительных клетках, так что муха не может разглядеть все детали объекта. Цветок глазами мухи выглядит как состоящая из тысяч кусочков картинка.

WebProm banner network

Если смешать краски разною цвета, то каждая будет поглощать (вбирать) различные составляющие белого света смесь будет становиться темнее. Таким образом смешивание красок — это процесс противоположный смешиванию цветовых лучей. Чтобы получить определенную гамму цветов надо использовать другой набор основных цветов. Основные цвета используемые в живописи, называются основными пигментными цветами. Это пурпурный цвет или «идеально красный», синий и желтый обычно (но неправильно) называемые красным, синим и желтым. Черный добавляют, чтобы увеличить плотность темных участков, а насыщенная смесь всех основных цветов все же отражает в какой-то степени свет. В результате вместо черного цвета получается темно-коричневый.

Волны и частицы

Как образуются и распространяются световые лучи, веками оставалось полнейшей тайной. И в наши дни это явление не до конца исследовано учеными.

В XVII веке Исаак Ньютон и другие ученые полагали, что свет состоит из быстро движущихся частиц, которые назвали корпускулами. Датский ученый Христиан Гюйгенс yтверждал, что свет состоит из волн

В 1801 г английский ученый Томас Янг произвел ряд опытов с дифракцией света Это явление состоит в том, что при прохождении через очень узкую щель свет слегка рассеивается, а не распространяется по прямой линии. Янг объяснил дифракцию распространением света в форме волн. А в 60-х годах XIX века шотландский ученый Джеймс Кларк Максвелл высказал предположение, что электромагнитная энергия распространяется волнами, и что свет является особым видом этой энергии.

Мираж — это оптический обман, наблюдаемый в жарких пустынях (вверху). Когда Солнце сильно нагревает землю, воздух над ней тоже нагревается. При изменениях температуры на разных высотах, свет в воздухе преломляется, как показано на картинке. Чтобы увидеть верхушку дерева, наблюдателю приходится смотреть вниз, так что дерево кажется перевернутым. Иногда падающий с неба свет выглядит, как разлитые на земле лужи. Слои холодного воздуха над морем может вызвать противоположное явление (внизу). Свет, отраженный от далекого корабля, преломляется так, что корабль кажется парящим в небе.

Однако к началу XX века немецкий ученый Макс Планк в своих работах доказал, что энергия излучения может существовать лишь в виде крошечных сгустков — квантов. Это доказательство лежит в основе квантовой теории Планка, за которую он в 1918 году получил Нобелевскую премию в области физики Квант светового излучения — это частица, называемая фотоном. При излучении или поглощении свет всегда ведет себя как поток фотонов.

Таким образом, иногда свет ведет себя как волны, иногда — как частицы. Поэтому считается, что он имеет двойственную природу. Ученые, объясняя данные наблюдений, могут пользоваться либо волновой теорией, либо теорией частиц.

Рыба хаулиод излучает биолюминесцентный свет из набрюшных органов (фотофоров). Рыба регулирует их яркость так, чтобы она соответствовала яркости света, проникающего с поверхности.

Генерирование света

Подобно электрическому току, свет может генерироваться другими видами энергии. Солнце генерирует свет и другие электромагнитные излучения путем мощных реакций синтеза, в процессе которых водород превращается в гелий. При сгорании угля или дерева химическая энергия топлива превращается в тепло и свет. Прохождение тока через тонкую нить накала в электрической лампочке дает тот же результат. Лампа дневного света работает по другому принципу. На концы трубки, наполненной парами (обычно ртути) под большим давлением, подается высокое напряжение. Пар начинает светиться, испуская ультрафиолетовое излучение, которое действует на химическое покрытие внутренних стенок трубки. Покрытие поглощает невидимое ультрафиолетовое излучение и само излучает энергию света. Этот процесс преобразования излучения называется флюоресценцией.

Фосфоресценция — явление того же рода, но свечение при этом продолжается довольно долго и после удаления источника излучения. Светящаяся краска фосфоресцирует. После кратковременного воздействия на нее яркого света она светится часами. Флюоресценция и фосфоресценция являются формами люминесценции — излучения света без влияния высокой температуры.

Биолюминесценция

Некоторые живые организмы, включая жуков-светляков, отдельные виды рыб, грибов и бактерий, генерируют свет способом биолюминесценции. В этом виде люминесценции источником света является химическая энергия, получаемая в результате окисления вещества, называемого люциферином.

Одним из наиболее полезных источников света является лазер. Это слово составлено из первых букв полного термина «усиление света методом индуцированного излучения» (по-английски light amplification by stimulated emission of radiation). В лазерной трубке под воздействием электричества из атомов высвобождаются фотоны. Они вылетают из трубки в виде узкого луча света или в какой-либо другой форме электромагнитного излучения в зависимости oт вещества, используемого для получения фотонов.

Захватывающие эффекты на рок-концертах получают при помощи генераторов дыма. Его частицы рассеивают лучи прожекторов, придавая им видимые очертания.

В отличие от обычного света лазерный свет является когерентным. Это означает, что выпущенные световые волны поднимаются и опускаются вместе. Получаемое таким образом световое излучение высокой направленности и большой плотности энергии имеет различные области применения, включая сшивание тканей в хирургии, резку стали, наведение ракет на цели, передачу информации.

www.ronl.ru

Реферат : Свет (работа 1)

ЦВЕТ, СВЕТ И ЗРЕНИЕ

СОДЕРЖАНИЕ

Введение

1. Свет

2. Органы зрения

2.1. Основные тенденции развития органов зрения в животном мире

2.2. Цветовое зрение

3. Зрительный анализатор человека

3.1. Строение глаза

3.2. Оптическая система

3.3. Адаптация

3.4. Световая и цветовая чувствительность

4. Фотохимическая теория зрения

5. Объяснение цвета тел

Заключение

Список использованной литературы

Приложения

ВВЕДЕНИЕ

Учение о свете и световых явлениях составляет раздел физики, называемый оптикой.

Знание основных оптических законов имеем большое познавательное и практическое значение.

Мы живем в мире разнообразных световых явлений. Многие из ни, например такие, как вечерние зори, когда небо и облака над горизонтом как будто пылают в огне; радуга, простирающаяся от горизонта до горизонта, или полярные сияния, наблюдающиеся в полярных широтах, весьма красочны. Тем, кто не знаком с причинами их возникновения, эти световые явления кажутся необыкновенными и загадочными.

Чтобы выяснить причины тех или иных световых явлений, нужно обнаружить связь наблюдаемого явления с другими явлениями и объяснить его на основании определенного закона природы. Тогда загадочность явления исчезнет, и мы приобретем о нем научное знание.

В повседневной жизни мы встречаемся со многими световыми явлениями, но обычно не задумываемся над ними – настолько они привычны для нас, а вот объяснить их часто затрудняемся. Например,

чайная ложка, опущенная в стакан с водой, кажется нам надломленной или сломанной, в зависимости от того, с какой стороны мы смотрим на ложку.

А вот пример более сложного светового явления. Мы видим окружающие нас предметы многоцветными при освещении солнцем или яркой лампой, но с наступлением сумерек или при ослаблении света цветность предметов блекнет.

На основе законов оптики возникла оптическая и осветительная техника.

Оптическая техника получила свое развитие благодаря изобретению и использованию линз. Линзы составляют главную основу оптических приборов. Каждому теперь известны очки, лупа, микроскоп, бинокль, телескоп и др.

Но самым главным и ценнейшим для нас является живой оптический – наш орган зрения – глаз.

1. СВЕТ – ИСТОЧНИК ЗРЕНИЯ

Когда мы при дневном свете смотрим на различные тела, Тела окружающие нас, мы видим их окрашенными в различные цвета. Так трава и листья деревьев – зеленые, цветы – красные или синие или желтые или фиолетовые. Есть также черные, белые, серые тела. Вс6е это не может не вызывать удивление. Казалось бы, все тела освещены одним и тем же светом – светом Солнца. Почему же различны их цвета

Будем исходить из того , что свет – электромагнитная волна, то есть распространяющая переменное электромагнитное поле. В солнечном свете содержаться волны, в которых электрическое и магнитное поля колеблются с различными частотами.

Всякое же вещество состоит из атомов и молекул, содержащих заряженые частицы, которые взаимодействуют друг с другом. Поскольку частицы заряжены под действием электрического поля они могут двигаться, а если поле переменное – то они могут совершать колебания, причем каждая частица в теле имеет определенную собственную частоту колебаний.

Это простая, хотя не слишком точная картина позволит нам понять, что происходит при взаимодействии света с веществом.

Когда на тело падает свет, электрическое поле, ‘принесенное’ им, заставляет заряженные частицы в теле совершать вынужденные колебания (поле световой волны переменное). При этом у некоторых частиц их собственная частота колебаний может совпадать с какой-то частотой колебаний поля световой волны. Тогда, как известно, произойдет явление резонанса – резкого увеличения амплитуды колебаний. При резонансе энергия, принесенная волной, передается атомам тела, что в конечном счете вызывает его нагревание. О свете, частота которого попала в резонанс говорят, что он поглотился теплом.

Но какие то волны из падающего света не попадают в резонанс. Однако они тоже заставляют колебаться с малой амплитудой. Эти частицы сами становятся источником так называемых вторичных электромагнитных волн тлой же частоты. Вторичные волны, складываясь с падающей волной, составляют отраженный или проходящий свет.

Если тело непрозрачное, то поглощение и отражение все, что может произойти с падающим на тело светом: не попавший в резонанс свет отражается, попавший – поглощается. В этом и состоит “секрет” цветности тел. Если например из состава падающего солнечного света в резонанс попали колебания, соответствующий красному цвету, то в отраженном свете их не будет. А наш глаз устроен так, что солнечный свет, лишенный своей красной части, вызывает ощущение зеленого цвета. Окраска непрозрачных тел зависит, таким образом, от того, какие частоты падающего света отсутствуют в свете, отраженным телом.

Существуют тела, в которых заряженные частийы имеют так много различных собственных частот колебаний, что каждая или почти каждая частота в падающем свете попадает в резонанс. Тогда ведь падающий свет поглощается, и отражаться просто нечему. Такие тела называют черными, то есть телами черного цвета.

2.ОРГАНЫ ЗРЕНИЯ И ИХ ЭВОЛЮЦИЯ.

2.1Основные тенденции развития органов зрения в животном мире.

Органы многоклеточных животных (кроме губок), обеспечивают восприятие световых раздражений. Основные элементы органов зрения - светочувствительные клетки (фоторецепторы). Простые органы зрения (например, у дождевых червей) состоят из светочувствительных клеток без пигмента, рассеяных среди эпителиальных клеток наружного покрова. Они воспринимают лишь изменения в интенсивности освещения и не реагируют на направление падаюшего света. У пиявок образуются скопления светочувствительных клеток, подостланные или заэкранированные пигментными клетками, которые изолируют светочувствительные клетки от боковых лучей, что позволяет различать не только интенсивность, но и направление падающего света. У некоторых медуз и плоских червей органы зрения - разрозненные светочувствительные клетки, концентрирующиеся в глазные пятна (стигмы). Дальнейшее усложнение органов зрения привело к углублению эпителия глазного пятна в глазной бокал. Если края его смыкаются, органы зрения принимают форму пузырька, заполненного студнеобразным веществом, образующим стекловидное тело. Такое постепенное развитие органов зрения характерно для многощетинковых червей и молюсков. Зрительные клетки таких органов зрения лежат под эпителием и вместе с пигментными клетками образуют сетчатку. У многих членистоногих органы зрения представлены фасеточными глазами. Дальнейшее усовершенствование пузырчатого органа зрения приводит к увеличению числа фоторецепторов, появлению роговицы, радужной оболочки со зрачком хрусталика, особого аккомодационного приспособления и мускулатуры, служащей для движения самого глаза. Органы зрения развиваясь независимо в различных филогенетических ветвях животного мира, на высших ступенях приобретают сходное строение. При этом ведущим фактором эволюции органов зрения по-видимому, была тенденция оптимального сочетания процессов как большего использования энергии светового потока, таки улучшение избирательной чувствительности

Каждое животное видит мир по-своему. Сидя в засаде, лягушка видит только движущиеся предметы: насекомых, на которых они охотятся, или своих врагов. Чтобы увидеть все остальное, она должна сама начать двигаться.

Сумеречные и ночные животные (например, волки и другие хищные звери), как правило, почти не различают цветов.

А вот стрекоза хорошо различает цвета, но только... нижней половиной глаз. Верхняя половина смотрит в небо, на фоне которого добыча и так хорошо заметна.

О хорошем зрении насекомых мы можем судить хотя бы по красоте цветков растений - ведь эта красота предназначена природой именно для насекомых-опылителей. Но мир, какими они его видят, сильно отличается от привычного нам.

Цветки, которые опыляют пчелы, обычно не окрашены в красный цвет: пчела этот цвет воспринимает, как мы - черный. Зато, вероятно, многие невзрачные на наш взгляд цветы приобретают неожиданное великолепие в ультрофиолетовом спектре, в котором видят насекомые. На крыльях некоторых бабочек (например, лимонницы) имеются узоры, скрытые от человеческого глаза и видимые только в ультрофиолетовых лучах.

Удивительным образом используют особенности зрения насекомых некоторые пауки, поджидающие своих жертв внутри цветков. Разумеется, будущая жертва, садясь на цветок, не должна замечать паука, между тем, на брюшках многих таких пауков бросаются в глаза яркие красные пятна. Чем это объяснить? Оказывается, когда на тех же пауков взглянули, так сказать, глазами насекомых, пятна стали совершенно незаметными. Зато птицам, которые могут склевать пауков, отпугивающие пятна заметны превосходно. Значит, паук "загримирован" для насекомых, но "ярко раскрашен" для птиц.

Кстати говоря, насекомые определяют положение солнца, чтобы находить дорогу, даже в пасмурные дни. Ультрафиолетовые лучи свободно проходят сквозь слой облаков. Когда муравьев в ходе опыта стали облучать сильными ультрафиолетовыми лучами, они побежали укрываться "в тень" не под защиту пропускавшей ультрафиолет темной дощечки, а под прозрачное, на наш взгляд, стекло, задерживающее эти лучи.

2.2. Цветовое зрение.

Важное свойство зрительного восприятия человека – видение в цвете – объясняет теория цветного видения. Эта теория исходит из того, что в глазу есть три типа светочувствительных приемников, отличающихся друг от друга разной чувствительностью к разным частям спектра – красной, зеленой и сине-голубой. Цветовое ощущение возникает в колбочках. Пока не установлено, имеются ли приемники всех трех типов в каждой колбочке или существуют три различных вида колбочек.

Глаз обычного человека может различать около 160 цветов. Тренированный глаз художника и красильщика в состоянии различать свыше 10000 цветных тонов.

Встречаются люди (более 1% мужчин и около 0.1% женщин), зрение которых характеризуется отсутствием приемников одного из указанных выше типов. Еще реже (примерно один или миллион) встречаются люди, у которых есть приемники лишь одного типа. Первая группа людей – дихроматы – различают меньше цветов, чем люди с нормальным зрением; вторая – монохроматы – совсем не различают цвета.

Для получения цветного ощущения важен не только спектральный состав отраженного или испускаемого наблюдаемым объектом света, но и мощность излучения других расположенных рядом предметов.

Цвет многое значит в нашей жизни. Механизм цветного воздействия пока несет, хотя накоплено множество интересных экспериментальных факторов. Известно, что красный цвет возбуждает, черный угнетает, зеленый успокаивает, желтый создает хорошее настроение.

Способность человеческого организма реагировать на цвет – основа одного из направлений натуртерапии – лечение природными средствами. Доказано, что черный цвет может замедлить течение инсульта и малярии, красный помогает при лечении бронхиальной астмы, кори, рожистых заболеваний кожи, голубой замедляет пульс и понижает температуру. Больным глаукомой полезно носит очки с зелеными стеклами, а гипертоникам – с дымчатыми. Исследования показали, что при красном свете снижается слуховая чувствительность человека, а при зеленом отмечено ее повышение. “Холодные” тона стимулируют белковый обмен, а “теплые”, наоборот, тормозят. Если школьный класс окрасить в белый, бежевый или коричневый тона, то улучшится успеваемость и дисциплина учащихся. В производственных помещениях, окрашенных в голубой и бежевые цвета, повышается производительность труда.

3.ЗРИТЕЛЬНЫЙ АНОЛИЗАТОР ЧЕЛОВЕКА

3.1Строение глаза.

Глаз – орган зрения, воспринимающий световые раздражения; является частью зрительного анализатора, который включает также зрительный нерв и зрительные центры, расположенные в коре головного мозга.

Глаз, глаз или глазное яблоко, имеет шаровидную форму и помещается в костной воронке – глазнице. Сзади и с боков он защищен от внешних воздействий костными стенками глазницы, а спереди – веками.

Веки представляют собой две кожные складки. В толще век заложена плотная соединительно-тканная пластинка, а также круговая мышца, замыкающая глазную щель. По свободному краю век растут ресницы (100 – 150 на верхнем веке и 50 – 70 на нижнем) и открываются протоки сальных железок. Ресницы защищают глаз от попадания в него инородных тел (частиц пыли). Внутренняя поверхность век и передняя часть глазного яблока, за исключением роговицы, покрыта слизистой оболочкой – конъюнктивой. У верхненаружного края глазницы расположена слезная железа, которая выделяет слезную жидкость, омывающую глаз. Равномерному ее распределению на поверхности глазного яблока способствует мигание век. Слезы, увлажняя глазное яблоко, стекают по передней его поверхности к внутреннему углу глаза, где на верхнем и нижнем веках имеются отверстия слезных канальцев (слезные точки), вбирающие слезы. Слезные канальцы впадают в слезно носовой канал, открывающийся в нижний носовой ход.

Движение глазного яблока и их согласованность осуществляются при помощи шести глазных мышц. Глазное яблоко имеет несколько оболочек. Нижняя – склера, или белочная оболочка, - плотная непрозрачная ткань белого цвета. В передней части глаза она переходит в прозрачную роговицу, как бы вставленную в склеру подобно часовому стеклу. Под склерой расположена сосудистая оболочка глаза, состоящая из большого количества сосудов. В переднем отделе глазного яблока сосудистая оболочка переходит в ресничное (цилиарное) тело и радужную оболочку (радужку). В ресничном теле заложена так называемая цилиарная мышца, связанная с хрусталиком (прозрачное эластичное тело, имеющее форму двояковыпуклой линзы), и регулирующая его кривизну. Радужка расположена за роговицей. В центре радужки имеется круглое отверстие – зрачок. В радужке расположены мышцы, которые изменяют величину зрачка, и в зависимости от этого в глаз попадает большее или меньшее количество света. Ткань радужной оболочки сдержит особое красящее вещество (пигмент) – меланин. В зависимости от его количества цвет радужки колеблется от серого и голубого до коричневого, почти черного. Цветом радужки определяется цвет глаз. При отсутствии в ней меланина лучи света проникают в глаз не только через зрачок, но и через ткань радужки. При этом глаза имеют красноватый оттенок. Недостаток пигмента в радужке часто сочетается с недостаточной пигментацией остальных частей глаз, кожи, волос. Таких людей называют альбиносами. Зрение у них обычно значительно понижено.

Между роговицей и радужкой, а также между радужкой и хрусталиком имеются небольшие пространства, называемые соответственно передней и задней камерами глаза. В них находится прозрачная жидкость – так как называемая водянистая влага. Она снабжает питательными веществами роговицу и хрусталик, которые лишены кровеносных сосудов. В глазу происходит непрерывная циркуляция жидкости. Процесс ее обновления – необходимое условие правильного питания тканей глаза. Количество циркулирующей жидкости постоянно, что обеспечивает относительное постоянство внутриглазного давления. Полость глаза позади хрусталика заполнена прозрачной желеобразной массой – стекловидным телом. Внутренняя поверхность глаза выстлана тонкой, весьма сложной по строению, оболочкой – сетчаткой, или ретиной. Она содержит светочувствительные клетки, названные по их форме колбочками и палочками. Нервные волокна, отходящие от этих клеток, собираются вместе и образуют зрительный нерв, который направляется в головной мозг.

Глаз человека представляет собой своеобразную оптическую камеру, в которой можно выделить светочувствительный экран – сетчатку и светопреломляющие среды, главным образом роговицу и хрусталик. Хрусталик специальной связкой соединен с цилиарной мышцей, располагающейся широким кольцом позади радужки. С помощью этой мышцы хрусталик меняет свою форму – становится более или менее выпуклым и соответственно сильнее или слабее преломляет попадающие в глаз лучи света. Это способность хрусталика называется аккомодацией. Она позволяет отчетливо видеть предметы, расположенные на различном расстоянии, обеспечивая совмещение фокуса попадающих в глаз лучей от рассматриваемого предмета с сетчатой оболочкой.

Преломляющую способность глаза при покое аккомодации, то есть когда хрусталик максимально уплощен, называют рефракцией глаза. Различают три вида рефракции глаза: соразмерную (эмметропическую), дальнозоркую (гиперметропическую) и близорукую (миопическую). В глазу соразмерной рефракцией параллельный лучи, идущие от предметов, пересекаются на сетчатке. Это обеспечивает отчетливое видение предмета. Дальнозоркий глаз обладает относительно слабой преломляющей способностью. В нем параллельные лучи, идущие от далеких предметов, пересекаются за сетчаткой.

В близоруком глазу параллельные лучи, идущие от далеких предметов пересекаются впереди сетчатки, не доходя до нее.

Близорукий глаз хорошо видит только близко расположенные предметы. О степени дальнозоркости или близорукости судят по оптической силе линзы; приставленная к глазу в условиях покоя аккомодации, она так изменяет направление попадающих в него параллельных лучей, что они пересекаются на сетчатке. Оптическая сила линзы определяется в диоптриях. Различают дальнозоркость и близорукость слабой степени (до 3 дптр), средней (от 4 до 6 дптр) и высокой (более 6 дптр). Рефракция обоих глаз не всегда бывает одинаковой, например близорукость одного глаза и дальнозоркость другого глаза или разная их степень на обоих глазах. Такое состояние называют анизометропией.

Для ясного видения фокус попадающих в глаз лучей должен совпадать с сетчаткой. Но это не единственное условие. Для различения деталей предмета необходимо, чтобы его изображение попало на область желтого пятна сетчатки, расположенную прямо против зрачка. Центральный участок желтого пятна является местом наилучшего видения. Воображаемую линию, соединяющую рассматриваемый предмет с центром желтого пятна, называют зрительной линией, или зрительной осью, а способность одновременно направлять на рассматриваемый предмет зрительные линии обоих глаз – конвергенцией. Чем ближе зрительный объект, тем больше должна быть конвергенция, то есть степень схождения зрительных линий. Между аккомодацией и конвергенцией имеется известное соответствие: большее напряжение аккомодацией требует большей степени конвергенции и, наоборот, слабая аккомодация сопровождается меньшей степенью схождения зрительных линий обоих глаз.

3.2 Оптическая система глаза.

Зная, как устроен глаз позвоночных, фотоаппарат можно изобрести заново, настолько схожи основные принципы их устройства. Объектив нашего глаза как и у фотоаппарата, составной. Одна часть, роговица, - с неизменяемым фокусным расстоянием; другая, хрусталик, изменяет свою кривизну, автоматически устанавливая резкое изображение того предмета, который привлек наше внимание. О такой автоматике кино- и телеоператоры могут только мечтать.

У осьминога и некоторых рыб кривизна хрусталика постоянна, и они “наводят на резкость”, изменяя расстояние между хрусталиком и сетчаткой; именно этот принцип используют конструкторы фотоаппаратов. У моллюсков наутилус, живущих в тропических морях (другое название – кораблики), совсем нет линз, и они обходятся маленьким отверстием в глазе. Технический аналог – дырочка в стенке камеры-обскуры, фотоаппарата без линз, который многие годы из нас сами мастерили в детстве.

Хрусталик по совместительству выполняет роль светофильтра. Он не пропускает ультрафиолетовые лучи, которые могут повредить сетчатку, и поэтому слегка желтый на просвет. С годами хрусталик желтеет сильнее, и человек уже не видит всего богатства фиолетовой части спектра. Так что, когда говорится о яркости мира ребенка, надо иметь в виду не только психологическую свежесть восприятия, но и физически более широкий диапазон цветовой информации. Между прочим, и слуховой диапазон у детей шире. Они воспринимают ультразвук частотой до 40 кГц.

Но вернемся к зрению. Светосила нашего объектива (отношение площади зрачка к квадрату фокусного расстояния) до 1:3 – это неплохо для угла зрения около 100 в любой плоскости. У лучших фотообъективов светосила 0.8:1, но четкое изображение они дают только для угла около 45 . В прочем, наш объектив фокусирует изображение не на плоскость, а на часть сферы, что намного упрощает дело. Иногда из-за тех или иных дефектов глаза хрусталик не в состоянии “навести на резкость”. Приходится ему помогать – носить очки.

Чтобы делать хорошие снимки при разной освещенности, в фотоаппарате предусмотрена диафрагма. В глазу ее роль выполняет радужная оболочка – цветное колечко, середину которого называют зрачком. В зависимости от освещенности наш зрачок автоматически меняет диаметр от 2 до 8 мм. Точно так же, как у фотоаппарата, при этом уменьшается глубина резкости. Люди, страдающие близорукостью или дальнозоркостью в слабой степени, хорошо знают, что на ярком свету они хорошо видят и без очков, а в сумерках контуры предметов или букв расплываются.

Пигментный эпителий, расположенный за сетчаткой, эффективно поглощает свет, чтобы уменьшить его рассеяние, иначе четкость изображения ухудшилась бы. Все оптические приборы с той же целью чернят изнутри. В глазах некоторых ночных животных светочувствительность увеличивается за счет четкости изображения. У них глазное дно отражает лучи, прошедшие через сетчатку. Так как оптическая плотность сетчатки равна 0.3 (около половины падающего на нее света поглощается), то отражение от глазного дна увеличивает количество поглощенного света еще на 25%.

Тем, кто пользуется зрением при низких освещенностях, вообще нет смысла заботиться о четкости изображения. Шумы, обусловленные квантовой природой света, накладывают жесткие ограничения на число деталей, которые можно разглядеть при заданном контрасте и освещенности. Обсуждение этого вопроса отняло бы слишком много места, но важно отметить, что зерно нашей черно-белой “пленки” периферии сетчатки – имеет диаметр 30-40 мкм, что соответствует требованиям, необходимым для различения в сумерках предметов, если они отражают света на 10% больше, чем фон. При худшем освещении сетчатка избыточна: зернистость изображения, обусловленная флуктуациям светового потока, будет больше зрена сетчатки. При лучших освещенностях мы переходим на цветную “пленку” – желтое пятно в центре сетчатки. Здесь размер зерна около 2 мкм – это как раз размер дифракционного кольца, соответствующего диаметра зрачка 2 мм. Таким образом, зерно “пленки” соответствует максимально достижимому качеству изображения как при низких, так при высоких освещенностях.

Отметим, что в отличие от фотоаппарата глаз обладает постоянным временем экспозиции – около 0.1 секунды. У нас, правда, нет затвора. Время экспозиции – это промежуток, в течение которого все фотоны, попавшие в глаз, воспринимаются как одновременные. Поэтому две вспышки, интервал между которыми меньше 0.1 секунды, мы воспринимаем как одну. Для того чтобы определить это время поточнее, проводили такие эксперименты. Испытуемым предъявляли вспышки равной энергии, но разной длительности и, следовательно, различной интенсивности (мощности). При длительности вспышки меньше 0.1 секунды объективное восприятие ее яркости не зависело от длительности – весь свет воспринимался как мгновенная вспышка. При больших длительностях восприятия яркости становится обратно пропорциональным продолжительности вспышки, то есть определяется ее интенсивностью.

И наконец, роль колпачка играют веки, в один миг, в прямом смысле этого слова, прикрывающие глазное яблоко при малейшей опасности. (Миг длится приблизительно 0.1 секунда.) Слезные железы смывают пыль с оптики и защищают глаз от бактерий. Таков наш природный оптический прибор.

3.3 Адаптация

В абсолютной темноте глаз ничего не видит. Речь пойдет об очень слабом освещении: вечером в темной комнате, ночью на неосвещенной улице, в поле или в лесу при свете луны и звезд. В этих условиях отражается от предметов и попадает в наши глаза неизмеримо меньше света, чем солнечным, ясным днем. Зрачки в темноте предельно расширены, но это не намного увеличивает освещенность сетчатки. Расширение зрачков хотя и важный, но в данном случае второстепенный приспособительный механизм. Большее значение имеет он при ярком освещении, когда зрачки суживаются, ограничивая количество света, падающего на сетчатку.

“Ничто не вечно под луной”…В конце 50-х годов были проведены психофизические опыты, которые позволили специалистам предположить, что адаптация не сводится лишь к изменениям концентрации зрительного пигмента родопсина в фоторецепторах: процессы приспособления к разным условиям яркости света гораздо сложнее, в них непременно должны участвовать и нервные клетки сетчатки (надо сказать что, помимо палочек и колбочек, сетчатка включает в себя по меньшей мере четыре различных типа нервных клеток).

Подтверждение этой гипотезы не заставило себя ждать. На помощь нейрофизиологам пришли микроэлектроды – тончайшие (в сотни раз тоньше волоса) стеклянные трубочки, заполненные солевым раствором и соединенные с усилителем биопотенциалов. Проводя такую “микропипетку” к отдельным нервным клеткам и меняя при этом размер вспыхивающего на экране светового пятна, исследователи убедились, что нейтроны сетчатки действительно активно участвуют в процессе адаптации зрительной системы.

Под рецептивным полем нейтрона (и сетчатки, и подкорки, и коры) понимают совокупность фоторецепторов сетчатки, сигналы с которых приходят к данному нейтрону. Рецептивные поля есть у всех нейронов зрительной системы, это как бы окошко, через которое нейтрон видит мир. Собственно, видят свет в прямом смысле этого слова только фоторецепторы. Все другие зрительные нейтроны воспринимают информацию в форме потока электрических импульсов, бомбардирующих (не удивляйтесь, это обиходный нейрофизиологический термин) их входы.

Только вот, у нейтронов разных отделов зрительной системы рецептивные поля сильно различаются по размеру, а в коре человека, приматов и хищных животных еще по форме. Нейтроны сетчатки и подкоркового зрительного центра наблюдают мир как бы через круглые окошки-иллюминаторы.

Нейтроны сетчатки и подкоркового зрительного центра описывают изображение поточечно. Это значит, что каждая нервная клетка этих структур, глядя на мир через свое круглое рецептивное поле – точку, информирует о событиях в ней высшие отделы системы.

Суть действий нейтронов-детекторов сводится к тому, что они как бы разнимают на составные части, сводя к простым любое сложное изображение, чтобы раздельно, независимо и параллельно проанализировать отдельные его признаки. Естественно, что на следующих этапах переработки зрительной информации происходит синтез перекодированных сведений в единый зрительный образ, который затем сличается с “библиотекой” образов нашей памяти; мозговые механизмы подают команду моторным центрам, оттуда идут приказы речевой и мимической мускулатуре, и мы с широкой улыбкой восклицаем: ”Здравствуй, дорогой Петя!” или кисло мямлим: ”Ах это вы, Дарья Ивановна…”

До недавнего времени считалось, что свойства нейтронов-детекторов зрительной коры жестко “запаяны”, то есть их рецептивные поля не перестраиваются при изменении внешних условий, и поэтому эти нейтроны не вносят сколько-нибудь существенного вклада в зрительный адаптационный процесс. Убеждение это основывалось, в частности, на том что в период становления детекторной нейрофизиологии эксперименты проводились, как правило, при неизменном световом фоне; работа детекторов не исследовалась в разных состояниях, как самой зрительной системы, так и организма в целом.

Психологи провели интересный и убедительный опыт: маленького котенка превращали в “рикшу” – он мог бегать, куда хотел, все трогать, но постоянно возил при этом за собой легкую тележку. В ней восседал второй котенок, который видел все то же, что и “рикша”, но ничего не мог потрогать. Через некоторое время ученые убедились, что в зрительном поведении котенка-седока появились серьезные дефекты, а “рикша” развивался нормально. На основании этих данных специалисты сделали выводы: для полноценного развития зрительных функций в частности и познавательной деятельности в целом важно не только видеть различные объекты внешнего мира, но выходить с ними в непосредственный осязательный, тактильный контакт.

Очень много для понимания роли корковых детекторов в процессах адаптации дали также опыты. Исследуя рецептивные поля зрительных корковых нейронов кошки в условиях адаптации к темноте, ученые получили поразительный факт. Несмотря на то, что число исследованных нейтронов дошло до десятков, а потом и до сотен, среди них было крайне мало классических нейронов-детекторов. Экспериментаторы терялись в догадках: куда же они исчезали? Да и вообще те ли это клетки, поведение которых столь подробно описано в многочисленных научных публикациях?

Проверка была элементарной: стоило включить свет в камере и “странный” нейрон очень быстро становился хорошо знакомым детектором. И сколько раз повторяли переход от света к темноте и опять к свету, столько раз изменялись свойства поля нейрона, причем вся перестройка занимала не более десятков секунд.

Стало ясно, что в темноте нейроны не исчезают, а только резко меняют свой облик. И глядят они на мир не из узких “бойниц” и “щелей”, а через широкие окна круглой или эллиптической формы. Они как бы приближаются в этом отношении к нервным клеткам сетчатки, и поэтому и было предложено называть это явление ретинализацией зрительной коры (по латыни сетчатка – геtina). Дальнейшие опыты показали, что не все детекторы ретинализируются в темноте: 10% из них как бы игнорируют адаптацию и не меняют свои рецептивные поля, а еще 20-25 процентов нейронов ведут себя довольно ехидно – в темноте не только не снижают или утрачивают, но напротив, усиливают, обостряют свои детекторные свойства.

Ничто не дается даром, и потому в процессе адаптационных перестроек зрительная система и отдельные ее нейроны не только что-то приобретают, но и что-то теряют. В темноте они теряют тонкость зрительного анализа. Не говоря уже о цветовом зрении. В сумерках оно утрачивает, именно поэтому ночью все кошки серы.

3.4Световая и цветовая чувствительность.

В опытах Вавилова по квантовым флуктуациям света проводились наблюдения соседних участков интерференционного максимума и минимума при интерференции зеленого света. При обычных интенсивностях света интерференционная картина в этих участках не изменялась во времени. Затем интенсивность света уменьшалась до порога зрительного восприятия света. Учитывая, что зеленому свету соответствует длина волны около 500 нм, а диаметр адаптированного к темноте зрачка составляет около 8 мм, нетрудно убедиться, что пороговый интенсивности зеленого света соответствует 20-25 фотонов в секунду. При этом оказалось следующее: участки в темных полосах всегда оставались темными, а участки в светлых полосах иногда “гасли”, но тут же снова “вспыхивали”, причем эти колебания освещенности появлялись во времени беспорядочно, хаотически.

Результаты этих опытов по классическому эффекту – интерференции – объясняются квантовыми свойствами света. В самом деле, бывают случаи, когда в интерференционные максимумы попадает либо больше фотонов, чем соответствует порогу зрительного восприятия света, либо меньше его. Значит, плотность фотонов в световом потоке флуктуирует. Поэтому видны “вспышки” (если фотонов немного больше) или соответственно “гашение” света на отдельных участках (если фотонов немного меньше). Эти флуктуации имеют статистический характер, чем объясняется нерегулярное появление светлых участков.

4.ФОТОХИМИЧЕСКАЯ ТЕОРИЯ ЗРЕНИЯ

5.ОБЪЯСНЕНИЕ ЦВЕТА ТЕЛ

Окружающий нас мир красочен. Это объясняется сложностью солнечного света. Но как объяснить, что листья растений мы видим зелеными, пионерский галстук – красным, подсолнечник – желтым, Василек – синим, писчую бумагу – белой, а классную доску – черной? Обратимся к опыту.

Получим на экране с помощью треугольной стеклянной призмы спектр и закроем его лентой красного цвета. Мы видим, что только в

Красной части спектра лента выглядит ярко-красной. Во всех других частях спектра она черная. Это происходит потому, что лента, на которую падает свет всех спектральных цветов, отражает только красный свет, а свет других цветов поглощает.

Если проделать такой опыт с зеленой лентой, то окажется, что она только в зеленой части спектра выглядит ярко-зеленой. В других частях спектра она темная.

Опыт, показывает, что цвет тела, освещаемого белым светом, зависит только от того, свет какого цвета это тело рассеивает.

Если тело равномерно рассеивает все составные части белого света, то при обычном освещении оно кажется белым, например писчая бумага. Если тело, например сажа, поглощает весь падающий на него свет, то оно кажется черным.

Различные тела не только неодинаково рассеивают свет различной цветности, но также неодинаково и пропускают свет сквозь себя. Такие прозрачные тела называют светофильтрами.

В неодинаковой цветности прозрачных тел можно убедиться на опыте. Если за призмой на пути разложенного белого пучка света по очереди ставить цветные стекла, то цветность полоски спектра на экране будет изменяться.

ЗАКЛЮЧЕНИЕ

Свет имеет очень большое значение для жизни человека. Изучив данную тему можно сделать следующие выводы:

  • Свет обладает корпускулярно-волновым дуализмом: является электромагнитной волной, но при излучении и поглощении ведет себя как поток частиц – фотонов;

  • Понятие цвета связано с длиной волны и частотой. А так же способностью тел поглощать электромагнитные волны;

  • Глаз является сложной оптической системой. Он способен отличать электромагнитные волны оптического диапазона разной частоты, т. е. отличать свет.

  • Глаз человека наиболее чувствителен к волнам 546 Нм, что соответствует зеленому цвету.

  • Электромагнитные волны оптического диапазона разной частоты могут влиять на нервную систему.

  • Объяснение зрения дано на основе фотохимической теории света.

  • На основе физических законов можно объяснить такие явления как: - голубой цвет неба

- белый цвет облаков

- красные листья и т. д.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

  1. Багданов К. Б. Физика в гостях у биолога М:Наука, 1986

  2. Перышкин А. В., Чемакин В. П. Факультативный курс физики, 1980

  3. Глазунов А. Т., Курминский И. И., Пинский А. А., Квантовая физика, 1989

  4. Научно - популярный физико-математический журнал «Квант», 1987

  5. Попов Г. В., П-58, Спектроскопия и цвета тел в курсе физики средней школы. М: «Просвещение», 1971

  6. Чандаева С. А., Физика и человек, АО»Аспект пресс», 1994.-336с.

  7. Гриффин Д, Новиков Э, Живой организм. Пер. с англ. Б.Д.Васильева. М: «Мир», 1983

topref.ru

Реферат: Свет

Свет - чрезвычайно важный вид энергии. Жизнь на земле зависит от энергии солнечного света. Кроме того, свет - это излучение, которое дает нам зрительные ощущения. Лазерное излучение применяется во многих областях - от передачи информации до резки стали.

Мы видим предметы, когда свет от них достигает наших глаз. Эти предметы либо сами излучают свет, либо отражают свет излучаемый другими предметами, либо пропускают eго через себя. Мы видим, например, Солнце и звезды потому, что они излучают свет. Большинство же предметов вокруг нас мы видим благодаря отраженному ими свету. А некоторые материалы, такие, как витражи в окнах соборов, раскрывают богатство своих цветов, пропуская свет через себя.

Цвет

Яркий солнечный свет кажется нам чисто белым, то есть бесцветным. Но тут мы заблуждаемся, так как белый свет состоит из многих цветов. Они бывают видны, когда лучи солнца освещают дождевые капли и мы наблюдаем радугу. Разноцветная полоса образуйся и тогда когда солнечный свет отражается от скошенного края зеркала или проходит через стеклянное украшение либо сосуд. Эта полоса называется световым спектром. Начинается он с красного цвета и, постепенно меняясь, заканчивается на противоположном конце фиолетовым.

Обычно мы не принимаем во внимание более слабые оттенки цвета и поэтому считаем, что спектр состою всею из семи цветовых полос. Цвета спектра, называемые семью цветами радуги, включают красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый.

Призмы

В 60х годах ХVII столетия Исаак Ньютон про водил эксперименты со светом. Чтобы разложить свет на составляющие и получить спектр он использовал трехгранную стеклянную призму. Ученый обнаружил, что, собрав раздробленный луч с помощью второй призмы, можно опять получить белый свет. Так он доказал что белый свет является смесью разных цветов.

Возможно вы искали - Доклад: Вероятность

Основными цветами света являются красный, зеленый и синий. Их комбинация образует белый свет. Смешанные парами, они образуют цвета желтый, синий или пурпурный. Пигментными или основными цветами красок являются пурпурный, синий, желтый Их сочетание показано на рисунке.

Проходя через призму световые лучи преломляются. Но лучи разного цвета преломляются в разной степени - красный в наименьшей, фиолетовый в наибольшей. Именно по этому, проходя через призму, белый цвет дробится па составные цвета.

Преломление света называется рефракцией, а разложение белого света на разные цвета -дисперсией. Когда дождевые капли рассеивают солнечный свет, образуется радуга.

Электромагнитные волны

Световой спектр - лишь часть огромного диапазона излучений, который называется электромагнитным спектром. Он включает в себя гамма-, рентгеновское, ультрафиолетовое, инфракрасное (тепловое) излучение и радиоволны. Все виды электромагнитных излучений распространяются в форме волн электрических и магнитных колебаний со скоростью света - около 300 000 км/с. Электромагнитные волны различаются между собой главным образом длиной волны. Определяется она частотой, то есть скоростью, с которой образуются эти волны. Чем выше частота, тем ближе друг к другу они располагаются и тем меньше длина каждой из них. В спектре световые волны занимают место между областями инфракрасного и ультрафиолетового излучения.

Солнце испускает широкий спектр электромагнитных излучений. На шкале даны длины волн в нанометрах (одна миллиардная метра) и более крупных единицах.

Линзы

Похожий материал - Реферат: Паровые машины

Изображение в фотоаппаратах и оптических инструментах получают, используя линзы и явление преломления в них световых лучей. Возможно, вы заметили, что в линзах дешевых телескопов, например, вокруг контуров изображения образуется цветная кайма. Происходит это потому что, подобно призме, простая линза, изготовленная из одного куска стекла или пластика, преломляет лучи разного цвета в разной степени. В более качественных приборах этот дефект устраняется путем использования двух линз, соединенных вместе. Первая часть такой составной линзы разлагает белый свет на разные цвета, а вторая опять соединяет их, убирая таким образом ненужную кайму.

Основные цвета

Как показал Ньютон, белый свеч можно получить, смешав семь цветов радуги. По это можно сделать и проще, смешав лишь три цвета -красный, зеленый и синий. Они называются основными цветами света. Другие цвета мы получим, комбинируя основные. Так, например, смесь красного с зеленым дает желтый.

Выпуклая линза фокусирует параллельные лучи. Поскольку белый свет состоит из более чем одного цвета, их лучи преломляются в разной степени и фокусируются на разных расстояниях от линзы. В результате вокруг контуров изображения образуется цветная кайма.

Линзу из двух сортов стекла можно использовать для получения изображений без цветной каймы. Первая часть линзы преломляет лучи разного цвета в разной степени, заставляя их расходиться. Вторая опять собирает их, устраняя цветовые искажения.

Тот факт, что белый свет состоит из нескольких цветов, объясняет, почему мы видим предметы в том или ином цвете. (Для простоты предположим, что белый свет состоит только из красного зеленою и синего). Мы видим предмет белым, если он отражает все три составляющие части белого света, и черным, если он не отражает ни одной из них. Но красный предмет, освещаемый белым светом, видится красным потому, что он отражает главным образом красную составляющую белого цвета и поглощает большинство синих и зеленых составляющих. В результат мы видим в основном красный цвет. Точно так же синий предмет отражает синие лучи, поглощая красные и зеленые. А зеленый предмет отражает зеленые лучи, поглощая красные и синие.

Очень интересно - Доклад: Ветер

Фасеточные глаза мух состоят из тысяч линз. Каждая фокусирует свет лишь на нескольких светочувствительных клетках, так что муха не может разглядеть все детали объекта. Цветок глазами мухи выглядит как состоящая из тысяч кусочков картинка.

WebProm banner network

Если смешать краски разною цвета,то каждая будет поглощать (вбирать) различные составляющие белого света смесь будет становиться темнее. Таким образом смешивание красок - это процесс противоположный смешиванию цветовых лучей. Чтобы получить определенную гамму цветов надо использовать другой набор основных цветов. Основные цвета используемые в живописи, называются основными пигментными цветами. Это пурпурный цвет или "идеально красный", синий и желтый обычно (но неправильно) называемые красным, синим и желтым. Черный добавляют, чтобы увеличить плотность темных участков, а насыщенная смесь всех основных цветов все же отражает в какой-то степени свет. В результате вместо черного цвета получается темно-коричневый.

Волны и частицы

Как образуются и распространяются световые лучи, веками оставалось полнейшей тайной. И в наши дни это явление не до конца исследовано учеными.

В XVII веке Исаак Ньютон и другие ученые полагали, что свет состоит из быстро движущихся частиц, которые назвали корпускулами. Датский ученый Христиан Гюйгенс yтверждал, что свет состоит из волн

В 1801 г английский ученый Томас Янг произвел ряд опытов с дифракцией света Это явление состоит в том, что при прохождении через очень узкую щель свет слегка рассеивается, а не распространяется по прямой линии. Янг объяснил дифракцию распространением света в форме волн. А в 60-х годах XIX века шотландский ученый Джеймс Кларк Максвелл высказал предположение, что электромагнитная энергия распространяется волнами, и что свет является особым видом этой энергии.

Вам будет интересно - Доклад: Вертолет

Мираж - это оптический обман, наблюдаемый в жарких пустынях (вверху). Когда Солнце сильно нагревает землю, воздух над ней тоже нагревается. При изменениях температуры на разных высотах, свет в воздухе преломляется, как показано на картинке. Чтобы увидеть верхушку дерева, наблюдателю приходится смотреть вниз, так что дерево кажется перевернутым. Иногда падающий с неба свет выглядит, как разлитые на земле лужи. Слои холодного воздуха над морем может вызвать противоположное явление (внизу). Свет, отраженный от далекого корабля, преломляется так, что корабль кажется парящим в небе.

Однако к началу XX века немецкий ученый Макс Планк в своих работах доказал, что энергия излучения может существовать лишь в виде крошечных сгустков - квантов. Это доказательство лежит в основе квантовой теории Планка, за которую он в 1918 году получил Нобелевскую премию в области физики Квант светового излучения - это частица, называемая фотоном. При излучении или поглощении свет всегда ведет себя как поток фотонов.

Таким образом, иногда свет ведет себя как волны, иногда - как частицы. Поэтому считается, что он имеет двойственную природу. Ученые, объясняя данные наблюдений, могут пользоваться либо волновой теорией, либо теорией частиц.

Рыба хаулиод излучает биолюминесцентный свет из набрюшных органов (фотофоров). Рыба регулирует их яркость так, чтобы она соответствовала яркости света, проникающего с поверхности.

Генерирование света

Подобно электрическому току, свет может генерироваться другими видами энергии. Солнце генерирует свет и другие электромагнитные излучения путем мощных реакций синтеза, в процессе которых водород превращается в гелий. При сгорании угля или дерева химическая энергия топлива превращается в тепло и свет. Прохождение тока через тонкую нить накала в электрической лампочке дает тот же результат. Лампа дневного света работает по другому принципу. На концы трубки, наполненной парами (обычно ртути) под большим давлением, подается высокое напряжение. Пар начинает светиться, испуская ультрафиолетовое излучение, которое действует на химическое покрытие внутренних стенок трубки. Покрытие поглощает невидимое ультрафиолетовое излучение и само излучает энергию света. Этот процесс преобразования излучения называется флюоресценцией.

Похожий материал - Курсовая работа: Радиопередающие устройства

Фосфоресценция - явление того же рода, но свечение при этом продолжается довольно долго и после удаления источника излучения. Светящаяся краска фосфоресцирует. После кратковременного воздействия на нее яркого света она светится часами. Флюоресценция и фосфоресценция являются формами люминесценции - излучения света без влияния высокой температуры.

Биолюминесценция

Некоторые живые организмы, включая жуков-светляков, отдельные виды рыб, грибов и бактерий, генерируют свет способом биолюминесценции. В этом виде люминесценции источником света является химическая энергия, получаемая в результате окисления вещества, называемого люциферином.

Одним из наиболее полезных источников света является лазер. Это слово составлено из первых букв полного термина "усиление света методом индуцированного излучения" (по-английски light amplification by stimulated emission of radiation). В лазерной трубке под воздействием электричества из атомов высвобождаются фотоны. Они вылетают из трубки в виде узкого луча света или в какой-либо другой форме электромагнитного излучения в зависимости oт вещества, используемого для получения фотонов.

Захватывающие эффекты на рок-концертах получают при помощи генераторов дыма. Его частицы рассеивают лучи прожекторов, придавая им видимые очертания.

cwetochki.ru

Реферат Источники света

Опубликовать скачать

Реферат на тему:

План:

    Введение
  • 1 История развития искусственных источников света
    • 1.1 Древнее время — свечи, лучины и лампады
    • 1.2 Газовые фонари
    • 1.3 Появление электрических источников света
  • 2 Типы источников света
  • 3 Применение источников света
  • 4 Производство источников света
  • 5 Опасные факторы источников света
  • 6 Типовые параметры некоторых источников света
  • Примечания

Введение

Искусственные источники света — технические устройства различной конструкции и различными способами преобразования энергии, основным назначением которых является получение светового излучения (как видимого, так и с различной длиной волны, например, инфракрасного). В источниках света используется в основном электроэнергия, но также иногда применяется химическая энергия и другие способы генерации света (например, триболюминесценция, радиолюминесценция, биолюминесценция и др.). В отличие от искусственных источников света, естественные источники света представляют собой природные материальные объекты: Солнце, Луна, Полярные сияния, светлячки, молнии и проч.

1. История развития искусственных источников света

Свеча

1.1. Древнее время — свечи, лучины и лампады

Самым первым из используемых людьми в своей деятельности источником света был огонь (пламя) костра. С течением времени и ростом опыта сжигания различных горючих материалов люди обнаружили, что большее количество света может быть получено при сжигании каких либо смолистых пород дерева, природных смол, масел и воска. С точки зрения химических свойств подобные материалы содержат больший процент углерода по массе и при сгорании сажистые частицы углерода сильно раскаляются в пламени и излучают свет. В дальнейшем при развитии технологий обработки металлов, развития способов быстрого зажигания с помощью огнива позволили создать и в значительной степени усовершенствовать первые независимые источники света, которые можно было устанавливать в любом пространственном положении, переносить и перезаряжать горючим. А также определенный прогресс в переработке нефти, восков, жиров и масел и некоторых природных смол позволил выделять необходимые топливные фракции: очищенный воск, парафин, стеарин, пальмитин, керосин и т. п. Такими источниками стали прежде всего свечи, факелы, масляные, а позже нефтяные лампы и фонари. С точки зрения автономности и удобства, источники света, использующие энергию горения топлив, очень удобны, но с точки зрения пожаробезопасности (открытое пламя), выделений продуктов неполного сгорания (сажа, пары топлива, угарный газ) представляют известную опасность как источник возгорания. История знает великое множество примеров возникновения больших пожаров, причиной которых были масляные лампы и фонари, свечи и пр.

1.2. Газовые фонари

Газовый фонарь в Вроцлаве (Польша)

Дальнейший прогресс и развитие знаний в области химии, физики и материаловедения, позволили людям использовать также и различные горючие газы, отдающие при сгорании большее количество света. Газовое освещение было достаточно широко развито в Англии и ряде европейских стран. Особым удобством газового освещения было то, что появилась возможность освещения больших площадей в городах, зданий и др., за счёт того что газы очень удобно и быстро можно было доставить из центрального хранилища (баллонов) с помощью прорезиненных рукавов (шлангов), либо стальных или медных трубопроводов, а также легко отсекать поток газа от горелки простым поворотом запорного крана. Важнейшим газом для организации городского газового освещения стал так называемый «светильный газ», производимый с помощью пиролиза жира морских животных (китов, дельфинов, тюленей и др.), а несколько позже производимый в больших количествах из каменного угля при коксовании последнего на газосветильных заводах.

Одним из важнейших компонентов светильного газа, который давал наибольшее количество света, был бензол, открытый в светильном газе М. Фарадеем. Другим газом, который нашёл значительное применение в газосветильной промышленности, был ацетилен, но ввиду его значительной склонности к возгоранию при относительно низких температурах и большим концентрационным пределам воспламенения, он не нашёл широкого применения в уличном освещении и применялся в шахтерских и велосипедных «карбидных» фонарях. Другой причиной, затруднившей применение ацетилена в области газового освещения, была его исключительная дороговизна в сравнении с светильным газом.

Параллельно с развитием применения самых разнообразных топлив в химических источниках света, совершенствовалась их конструкция и наиболее выгодный способ сжигания (регулирование притока воздуха), а также конструкция и материалы для усиления отдачи света и питания (фитили, газокалильные колпачки и др.). На смену недолговечным фитилям из растительных материалов(пенька) стали применять пропитку растительных фитилей борной кислотой и волокна асбеста, а с открытием минерала монацита обнаружили его замечательное свойство при накаливании очень ярко светиться и способствовать полноте сгорания светильного газа. В целях повышения безопасности использования рабочее пламя стали ограждать металлическими сетками и стеклянными колпаками различной формы.

1.3. Появление электрических источников света

Свеча Яблочкова

Дальнейший прогресс в области изобретения и конструирования источников света в значительной степени был связан с открытием электричества и изобретением источников тока. На этом этапе научно-технического прогресса стало совершенно очевидно, что необходимо для увеличения яркости источников света увеличить температуру области, излучающей свет. Если в случае применения реакций горения разнообразных топлив на воздухе температура продуктов сгорания достигает 1500—2300 °C, то при использовании электричества температура может быть ещё значительно увеличена. При нагревании электрическим током различных токопроводящих материалов с высокой температурой плавления они излучают видимый свет и могут служить в качестве источников света той или иной интенсивности. Такими материалами были предложены: графит (угольная нить), платина, вольфрам, молибден, рений и их сплавы. Для увеличения долговечности электрических источников света их рабочие тела (спирали и нити) стали размещать в специальных стеклянных баллонах (лампах), вакуумированных или заполненных инертными либо неактивными газами (водород, азот, аргон и др.). При выборе рабочего материала конструкторы ламп руководствовались максимальной рабочей температурой нагреваемой спирали, и основное предпочтение было отдано углероду (Лампа Лодыгина, 1873 год) и в дальнейшем вольфраму. Вольфрам и его сплавы с рением и по настоящее время являются наиболее широкоприменяемыми материалами для изготовления электрических ламп накаливания, так как в наилучших условиях они способны быть нагреты до температур в 2800-3200 °C. Параллельно с работой над лампами накаливания, в эпоху открытия и использования электричества также были начаты и значительно развиты работы по электродуговым источником света (свеча Яблочкова) и по источникам света на основе тлеющего разряда. Электродуговые источники света позволили реализовать возможность получения колоссальных по мощности потоков света (сотни тысяч и миллионы канделл), а источники света на основе тлеющего разряда — необычайно высокую экономичность. В настоящее время наиболее совершенные источники света на основе электрической дуги — криптоновые, ксеноновые и ртутные лампы, а на основе тлеющего разряда в инертных газах (гелий, неон, аргон, криптон и ксенон) с парами ртути и другие. Наиболее мощными и яркими источниками света в настоящее время являются лазеры. Очень мощными источниками света также являются разнообразные пиротехнические осветительные составы, применяемые для фотосъемки, освещения больших площадей в военном деле (фотоавиабомбы, осветительные ракеты и осветительные бомбы).

2. Типы источников света

Для получения света могут быть использованы различные формы энергии, и в этой связи можно указать на основные виды(по утилизации энергии) источников света.

  • Электрические: Электрический нагрев тел каления или плазмы. Джоулево тепло, вихревые токи, потоки электронов или ионов.
  • Ядерные: распад изотопов или деление ядер.
  • Химические: горение (окисление) топлив и нагрев продуктов сгорания или тел каления.
  • Электролюминесцентные: непосредственное преобразование электрической энергии в световую (минуя преобразование энергии в тепловую) в полупроводниках (светодиоды, лазерные светодиоды) или люминофорах, преобразующих в свет энергию переменного электрического поля (с частотой обычно от нескольких сотен Герц до нескольких Килогерц),либо преобразующих в свет энергию потока электронов (катодно-люминесцентные)
  • Триболюминесцентные: преобразования механических воздействий в свет.
  • Биолюминесцентные: бактериальные источники света в живой природе.

3. Применение источников света

Источники света востребованы во всех областях человеческой деятельности — в быту, на производстве, в научных исследованиях и т. п. В зависимости от той или иной области применения к источникам света предъявляются самые разные технические, эстетические и экономические требования, и подчас отдается предпочтение тому или иному параметру источника света или сумме этих параметров.

4. Производство источников света

5. Опасные факторы источников света

Источники света той или иной конструкции очень часто сопровождаются наличием опасных факторов, главными из которых являются:

  • Открытое пламя.
  • Яркое световое излучение опасное для органов зрения и открытых участков кожи.
  • Тепловое излучение и наличие раскаленных рабочих поверхностей способных привести к ожогу.
  • Высокоинтенсивное световое излучение, которое может привести к возгоранию, ожогу, и ранению — излучение лазеров, дуговых ламп и др.
  • Горючие газы или жидкости.
  • Высокое напряжение питания.
  • Радиоактивность.

6. Типовые параметры некоторых источников света

Сила света типовых источников:

Источник Мощность, Вт Примерная сила света, кд Цветовая температура, К КПД, % Наработка на отказ, ч
Свеча 1
Современная (2006 г) лампа накаливания 100 100 1000
Обычный светодиод 0.015 0.001 100 000
Сверхъяркий светодиод 2,4 12 100 000
Современная (2006 г) флюоресцентная(люминесцентная) лампа 20 100 15 000
Электродуговая ксеноновая лампа до 100 кВт
Лампа-вспышка до 10 кВт
Электродуговая ртутная лампа до 300 кВт
Ядерный взрыв (20Кт) 2,1×1021
Термоядерный взрыв (50Мт) 5,3×1024
Первый рубиновый лазер 0,1
Категория  тип  Световая отдача(Люмен/Ватт) КПД%[1]
На основе горения Свеча 0.3 [2] 0.04 %
газовая горелка 2 [3] 0.3 %
Лампа накаливания 5Вт лампа накаливания (120 В) 5 0.7 %
40Вт лампа накаливания (120 В) 12.6 [4] 1.9 %
100Вт лампа накаливания (120 В) 16.8 [5] 2.5 %
100Вт лампа накаливания (220 В) 13.8[6] 2.0 %
100Вт галогенная лампа (220 В) 16.7[7] 2.4 %
2.6Вт галогенная лампа (5.2 В) 19.2[8] 2.8 %
Кварцевая галогенная лампа (12-24 В) 24 3.5 %
Высокотемпературная лампа 35 [9] 5.1 %
Люминесцентная лампа 5-24Вт компактная флюорисцентная 45-60 [10] 6.6-8.8 %
T12 линейная, с магнитным балластом 60 [11] 9 %
T8 линейная, с электронным балластом 80-100 [11] 12-15 %
T5 линейная 70-100 [12] 10-15 %
Светодиод белый светодиод 10 — 90 [13][14][15] 1.5-13 %
белый OLED 102 [16] 15 %
Прототип светодиода до 208 [17][18][19][20] до 30 %
Дуговая лампа Ксеноновые газоразрядные лампы 30-50[21][22] 4.4-7.3 %
Дуговые ртутные металлогалогенные лампы 50-55 [21] 7.3-8.0 %
Газоразрядная лампа Натриевая лампа высокого давления 150 [23] 22 %
Натриевая лампа низкого давления 183 [23] — 200 [24] 27-29 %
Лампа на галогенидах металлов 65-115 [25] 9.5-17 %
1400Вт Серная лампа 100 15 %
Теоретически возможно 683.002 100 %

Примечания

  1. Defined such that the maximum value possible is 100 %.
  2. 1 candela*4π steradians/40 W
  3. Waymouth, John F., "Optical light source device", US patent # 5079473 - v3.espacenet.com/textdoc?DB=EPODOC&IDX=US5079473, published September 8, 1989, issued January 7, 1992. col. 2, line 34.
  4. Keefe, T.J. The Nature of Light - www.ccri.edu/physics/keefe/light.htm (2007).
  5. How Much Light Per Watt? - members.aol.com/ajaynejr/lumen.htm
  6. Bulbs: Gluehbirne.ch: Philips Standard Lamps (German) - www.bulbs.ch/index.php?cPath=49_41_55_61_94
  7. Osram halogen - www.osram.de/_global/pdf/osram_de/tools_services/downloads/allgemeinbeleuchtung/halogenlampen/haloluxhalopar.pdf (German) (PDF). www.osram.de. (недоступная ссылка)
  8. Osram Miniwatt-Halogen - www.ts-audio.biz/tsshop/WGS/411/PRD/LFH0324408/Osram_6406330_500mA_52V_E10_BLK1_MINIWATT-Halogen-Gluehlampe_f.Taschenl..htm. www.ts-audio.biz. (недоступная ссылка)
  9. Klipstein, Donald L. The Great Internet Light Bulb Book, Part I - freespace.virgin.net/tom.baldwin/bulbguide.html (1996).
  10. China energy saving lamp - www.coffj.com/veg1/lamp.htm.
  11. ↑ 12Federal Energy Management Program (December 2000)."How to buy an energy-efficient fluorescent tube lamp - www1.eere.energy.gov/femp/procurement/eep_fluortube_lamp.html". U.S. Department of Energy.
  12. Department of the Environment, Water, Heritage and the Arts, Australia Energy Labelling—Lamps - www.energyrating.gov.au/appsearch/download.asp.
  13. Klipstein, Donald L. The Brightest and Most Efficient LEDs and where to get them - members.misty.com/don/led.html. Don Klipstein's Web Site.
  14. Cree launches the new XLamp 7090 XR-E Series Power LED, the first 160-lumen LED! - cree.com/products/xlamp_new.asp.
  15. Luxeon K2 with TFFC; Technical Datasheet DS60 - www.lumileds.com/pdfs/DS60.pdf (PDF). PhilipsLumileds.
  16. Walko first=John UDC's white OLEDs break the 100 lm/W barrier - www.eetimes.com/news/latest/showArticle.jhtml?articleID=208700448. EE Times (2008-06-18).
  17. Improving White LED Efficiency Through Scattered Photon Extraction - www.lrc.rpi.edu/programs/solidstate/completedProjects.asp?ID=79. Rensselaer Polytechnic Institute.
  18. Cree Demonstrates 131 Lumens per Watt White LED - www.cree.com/press/press_detail.asp?i=1150834953712. Cree, Inc. Press Release (2006-06-20).
  19. Nichia Corp. claims white LED delivering 150 lumens/Watt efficiency - www.nichia.co.jp/about_nichia/2006/2006_122001.html. Nichia Corp. Press Release (2006-12-22).
  20. Cree Breaks 200 Lumen Per Watt Efficacy Barrier - www.cree.com/press/press_detail.asp?i=1265232091259. Cree, Inc. Press Release (2010-02-03).
  21. ↑ 12Technical Information on Lamps - www.pti-nj.com/UVvis/TechNotes/TechnicalInformationLamps.pdf (pdf). Optical Building Blocks. Note that the figure of 150 lm/W given for xenon lamps appears to be a typo. The page contains other useful information.
  22. OSRAM Sylvania Lamp and Ballast Catalog. — 2007.
  23. ↑ 12LED or Neon? A scientific comparison - www.signweb.com/index.php/channel/12/id/138/.
  24. Why is lightning coloured? (gas excitations) - webexhibits.org/causesofcolor/4.html.
  25. The Metal Halide Advantage - www.venturelighting.com/TechCenter/Metal-Halide-TechIntro.html. Venture Lighting (2007).
скачатьДанный реферат составлен на основе статьи из русской Википедии. Синхронизация выполнена 11.07.11 23:34:37Похожие рефераты: Катодолюминисцентные источники света, Естественные источники света, Собор Христа - Света от Света, Источники, Источники водоснабжения, Вещественные источники, Источники Крыма, Малкинские источники.

Категории: Оптика, Источники света, Искусственное освещение.

Текст доступен по лицензии Creative Commons Attribution-ShareAlike.

Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.