Реферат: Оптические, звуковые и электрические явления в атмосфере. Электрические явления в атмосфере земли реферат


Электрические явления в атмосфере

 

Многочисленные наблюдения показывают, что осадки всех видов несут электрические заряды, размер которых зависит от размера капли, градины или снежинки. При замерзании слабых растворов ряда солей появляется разность потенциалов. Знак заряда льда зависит от типа соли и ее концентрации.

Электрические заряды элементов облака создают электрические поля. Мелкие ледяные частички, заряженные в результате электролизации положительно, сосредоточиваются в верхней части облака, а более крупные кристаллы, заряженные отрицательно, опускаются вниз. Попав в нижнюю часть облака, где температура выше 0°С, они тают и образуют капли воды. В хорошо развитом грозовом облаке в нижней его части развиты мощные турбулентные движения. Здесь происходит разрушение капель, в результате которого мельчайшие отрицательно заряженные капли поднимаются в среднюю часть облака, а крупные капли приобретают положительный заряд и образуют в самой нижней части облака ограниченную область больших положительных объемных зарядов – активный центр грозового облака.

В результате разделения и концентрации противоположных зарядов в грозовом облаке создаются мощные электрические поля, напряженность которых достигает несколько сотен киловольт на 1 км. Это приводит к тому, что между отдельными его частями, а также между облаком и Землей возникают искровые заряды – молнии.

Молния. По своему внешнему виду молнии делятся на линейные, плоские, четочные и шаровые. Наиболее часто возникает линейная молния и ее многочисленными разновидностями, представляющая собой гигантскую искру, иногда сильно разветвленную. Длина такой молнии 2-3 км, а иногда при разрядке между облаками - 15-20 км.

Такая молния состоит из ряда разрядов (импульсов), следующих друг за другом. Число импульсов бывает разным: чаще всего 1-5, реже – до нескольких десятков. Время между ними исчисляется сотыми долями секунды, общая продолжительность молнии около 0,2 с. Диаметр ее канала в среднем 16-20 см, иногда 40 см, сила тока в канале - сотни килоампер, а мгновенная мощность - миллионы киловатт. Температура стенок газового канала, по которому происходит разряд, мгновенно повышается до 20 х 103°К. Вода внутри канала разлагается на водород и кислород – образуется гремучий газ.

Быстрое нагревание воздуха в канале молнии вызывает резкое расширение воздуха, в результате возникают звуковые колебания - гром. Глухие раскаты грома относятся к звукам, имеющим небольшую частоту колебаний: большинство характеризуется частотой не более 100 Гц, а некоторые имеют лишь 2-5 Гц. Но так как молния имеет в длину несколько километров, то звуковые колебания приходят к наблюдателю не одновременно, а последовательно от различных участков молнии, что создает впечатление длительного грохота, раската грома. Кроме того, звуковые волны, отражаясь от облаков, земной поверхности, стены падающего дождя, усиливают громовые раскаты.

Гром представляет собой звук очень большой интенсивности, однако максимальное расстояние, на котором еще можно его услышать, редко превышает 25-30 км, что значительно меньше дальности слышимости артиллерийской канонады. Объясняется это двумя причинами: во-первых, быстрым затуханием звука в дожде и, во-вторых, рефракцией звука, обусловленной быстрым понижением температуры воздуха с высотой, имеющим место во время грозы.

По интервалу времени t (в секундах) между появлением молнии и приходом к наблюдателю звуковых волн, вызванных ею, можно определить расстояние до молнии по формуле Д = t/3 км. При разряде молния обычно сначала движется зигзагообразно, а затем по мере приближения к земле ее траектория выпрямляется. Молния стремится к более возвышенным точкам земной поверхности и к местам, где земная кора обладает большей электропроводностью. Поэтому она может ударить и в низины.

Удар молнии в судно может привести к возникновению пожара, к потерям личного состава. При разряде молнии на антенну может выйти из строя сама антенна, а также радиоприемные и передающие устройства. При мощных электрических разрядах магнитные приборы могут потерять свои свойства и даже перемагнититься. Для защиты от молнии на судах применяют различного типа молниеотводы.

В течение суток на поверхности Земли протекает около 50 000 гроз. Однако грозы по земному шару распределены весьма неравномерно. Особенно много их в тропических и субтропических зонах; в средних широтах на морском побережье они обычно наблюдаются только летом, а в океанах – и зимой. Грозы чаще развиваются во второй половине дня, реже – утром и вечером.

Атмосферики. Под этим термином понимают электромагнитные колебаний в диапазоне радиочастот, возникающие в атмосфере в виде нерегулярных (апериодических) и кратковременных импульсов. Атмосферики создаются грозовыми разрядами: канал молнии является своего рода радиопередатчиком. Распространяясь от места своего возникновения, они действуют на радиоприемные устройства, создавая шумы, которые в обиходе называют атмосфериками. Атмосферики могут прослушиваться в местах, находящихся за несколько тысяч миль от очага образования. В то же время значительное их усиление свидетельствует о приближении холодного фронта или вообще неустойчивой воздушной массы, приносящей ухудшение погоды. Частые и сильные атмосферики при плавании в тропической зоне являются признаком приближения тропического циклона.

Огни Эльма. Если атмосфера в сильной степени насыщена электричеством и напряжение электрического поля в ней достигает до 80 000 – 100 000 вольт/метр, то из металлических остриев, мачт, рей и других заостренных предметов происходит истечение электричества – тихий электрический разряд в виде светящихся кистей.

Огни Эльма чаще всего наблюдаются во время шквалов и гроз.

Полярные сияния. Солнце в периоды своей усиленной деятельности выбрасывает громадное количество заряженных электричеством частиц, которые достигают Земли через 1 ¸ 3 дня. Эти частицы, пронизывая разреженные верхние слои воздуха, вызывают в них свечение, называемое полярными сияниями ("аврора").

Цвет полярных сияний большей частью беловатый с различными оттенками (желтоватые, красноватые, реже фиолетовые).

Полярные сияния могут иметь разнообразную форму в виде дуг, полос, драпри (занавесей), лучей и т.д.

Лучисные и пылающие сияния сопровождаются магнитными бурями, при этом нарушается работа магнитных компасов и радиоприборов. Полярные сияния могут наблюдаться на различных высотах.

Сияния в виде дуг достигают высоты до 1000 км, высота других сияний меньше, обычно от 100 до 250 км.

Похожие статьи:

poznayka.org

Электрические явления в атмосфере

Горбанева Л.В.

Электрические явления в атмосфере

Совокупность электрических явлений в атмосфере называют атмосферным электричеством (также называют и раздел физики атмосферы). При исследовании атмосферного электричества изучают электрическое поле в атмосфере, её ионизацию и электрическую проводимость, электрические токи в ней, объёмные заряды, заряды облаков и осадков, грозовые разряды и многое другое. Все проявления атмосферного электричества тесно связаны между собой и на их развитие сильно влияют локальные метеорологические факторы. К области атмосферного электричества обычно относят процессы, происходящие в тропосфере и стратосфере (гроза, зарница, полярное сияние).

Начало изучению атмосферного электричества было положено в XVIII веке американским учёным Бенджамином Франклином, экспериментально установившим электрическую природу молнии, и русским учёным Михаилом Ломоносовым – автором первой гипотезы, объясняющей электризацию грозовых облаков.

Наблюдаемые в атмосфере электрические явления связаны с наличием в воздухе электрически заряженных атомов и молекул газов, носящих название ионов. Ионы бывают как с отрицательным, так и с положительным зарядом. Ионизация атмосферы происходит под воздействием коротковолновой части солнечной радиации, космических лучей и излучения радиоактивных веществ, содержащихся в земной коре и в самой атмосфере. Сущность ионизации заключается в том, что указанные ионизаторы передают нейтральной молекуле или атому газа воздуха энергию, под действием которой удаляется один из наружных электронов из сферы действия ядра. В результате этого атом, лишенный одного электрона, становится положительным легким ионом. Удалившийся из данного атома электрон быстро присоединяется к нейтральному атому и таким путем создается отрицательный легкий ион. Легкие ионы, встречаясь с взвешенными частицами воздуха, отдают им свой заряд и образуют, таким образом, тяжелые ионы.

Количество ионов в атмосфере с высотой увеличивается. В среднем на каждые 2 км высоты число их возрастает на тысячу ионов в одном кубическом сантиметре. В высоких слоях атмосферы максимальная концентрация ионов наблюдается на высотах около 100 и 250 км.

Наличие в атмосфере ионов создает электропроводимость воздуха и электрическое поле в атмосфере.

Проводимость атмосферы создается благодаря большой подвижности главным образом легких ионов. Тяжелые ионы играют в этом отношении небольшую роль. Чем выше в воздухе концентрация легких ионов, тем больше его проводимость. И так как с высотой увеличивается число легких ионов, то и проводимость атмосферы с высотой возрастает. Так, например, на высоте 7-8км проводимость, примерно, в 15-20 раз больше, чем у земной поверхности. На высоте около 100км проводимость очень большая.

В чистом воздухе мало взвешенных частиц, поэтому в нем больше легких ионов и меньше тяжелых. В связи с этим проводимость чистого воздуха выше, чем проводимость запыленного.

При ясной безоблачной погоде напряженность поля считается нормальной. По отношению к земной поверхности атмосфера заряжена положительно. Под влиянием электрического поля атмосферы и отрицательного поля земной поверхности устанавливается вертикальный ток положительных ионов от земной поверхности вверх, а отрицательных ионов из атмосферы вниз. Электрическое поле атмосферы вблизи земной поверхности чрезвычайно изменчиво и зависит от проводимости воздуха. Чем меньше проводимость атмосферы, тем больше напряженность электрического поля атмосферы. Проводимость же атмосферы в основном зависит от количества взвешенных в ней твердых и жидких частиц. Поэтому во время мглы, при осадках и тумане напряженность электрического поля атмосферы увеличивается и это нередко приводит к электрическим разрядам.

^ .

Гроза – атмосферное явление, при котором внутри облаков или между облаком и земной поверхностью возникают электрические разряды – молнии, сопровождаемые громом. Как правило, гроза образуется в мощных кучево-дождевых облаках и связана с ливневым дождём, градом и шквальным усилением ветра. Раскаты грома слышны на расстоянии до двадцати километров.

Уже в XVII веке высказывались предположения, что молния это гигантская искра, проскакивающая между разноименно заряженными грозовыми облаками или грозовым облаком и землей. Исследования проводились во многих странах, но наибольший вклад в создание теории атмосферного электричества внесли российские академики Михаил Васильевич Ломоносов, Георг Рихман. Летом 1752 году они построили «грозовую машину». Одна из «грозовых машин» была установлена на квартире Рихмана. При приближении грозы во время одного из опытов в 1753 году Рихман был убит шаровой молнией. Большой опасности подвергался и сам Ломоносов, который во время этой грозы проводил опыты с «грозовой машиной» у себя дома. Позже, вспоминая об этом, М.В. Ломоносов писал: «Внезапно гром чрезвычайно грянул в самое то время, как я руку держал у железа и искры трещали. Все от меня прочь бежали…». Через несколько минут Ломоносову сообщили, что Рихмана убила молния.

Электрическая природа молнии была раскрыта в исследованиях американского физика Б. Франклина, по идее которого был проведён опыт по извлечению электричества из грозового облака. Широко известен опыт Франклина по выяснению электрической природы молнии. В 1750 году им опубликована работа, в которой описан эксперимент с использованием воздушного змея, запущенного в грозу.

Электрические разряды во время грозы могут возникать межу облаками, внутри самих облаков, между облаками и поверхностью земли. Гроза бывает фронтальной при движении холодного или теплого фронта воздушных масс или внутримассовой. Внутримассовая гроза образуется при местном прогревании воздуха. Гроза является очень опасным природным явлением для человека. По количеству унесенных человеческих жизней гроза находится на втором месте после наводнений. Любопытные ученые определили, что одновременно на Земле происходит полторы тысячи гроз. Каждую секунду возникает сорок шесть молний. Только на полюсах и в полярных районах не бывает грозы.

В результате сложных термических и динамических процессов в грозовых облаках происходит разделение электрических зарядов: обычно отрицательные заряды располагаются в нижней части облака, положительные в верхней. В связи с таким разделением объемных зарядов внутри облаков создаются сильные электрические поля как внутри облаков, так и между ними. Напряженность поля у земной поверхности при этом может достигать нескольких сотен киловольт на 1 м. Большая напряженность электрического поля приводит к тому, что в атмосфере возникают электрические разряды. Сильные искровые электрические разряды, которые происходят между грозовыми облаками или между облаками и земной поверхностью, называются молниями.

Продолжительность вспышки молнии в среднем около 0,2 сек. Сила тока бывает очень большой; иногда она достигает 100-150 тыс. ампер, но в большинстве случаев не превышает 20 тыс. ампер. Большинство молний с отрицательным зарядом.

По внешнему виду искровой вспышки молнии разделяют на линейные, плоские, шаровые и четочные.

Наиболее часто наблюдаются линейные молнии, среди которых различают ряд разновидностей: зигзагообразные, разветвленные, ленточные, ракетовидные и др. Если линейная молния образуется между облаком и земной поверхностью, то ее средняя длина равна 2-3 км; молния между облаками может достигать 15-20 км. Разрядный канал молнии, который создается под влиянием ионизации воздуха и по которому происходит интенсивное встречное течение отрицательных зарядов, скопившихся в облаках, и положительных зарядов, скопившихся на земной поверхности, имеет диаметр от 3 до 60 см.

Молнии нередко причиняют большой ущерб; они разрушают здания, вызывают пожары, расплавляют электрические провода, раскалывают деревья и поражают людей. Для защиты зданий, промышленных сооружений, мостов, электростанций, линий электропередач и других сооружений от прямых ударов молний применяют молниеотводы (обычно их называют громоотводами).

Зарница это световое явление, при котором на короткое время освещаются молнией облака или горизонт. Сама молния не наблюдается. Причиной является далеко проходящая гроза (на расстоянии более двадцати километров). Гром при зарнице не слышен.

Задачи для самостоятельного решения.

  1. Крупный угорь вырабатывает напряжение до 600 В при токе до 1 А. Откуда угорь черпает такую невероятную мощность? Происходит ли непрерывный разряд угря через морскую воду? Почему угорь не поражает током сам себя?
  2. Вас «бьет током», когда вы идете по ковру, но ничего не случается, если вы стоите на нем? Почему эти эффекты зависят от времени года?
  3. Почему после удара молнии усиливается дождь?
  4. Почему удары молнии в автомобиль не причиняют пассажирам вреда?
  5. Почему в грозу нельзя ложиться на землю?
  6. В стакан с водой поместили стальную булавку так, что она плавает. Куда будет перемещаться булавка, если к ней поднести наэлектризованную эбонитовую палочку?
  7. Писатель Б. Житков рассказывает о таком случае: "Однажды в начале лета я ехал верхом поймой реки. Небо было одето тучами, собиралась гроза. И вдруг я увидел, что кончики ушей лошади начали светиться. Сейчас же над ними образовались будто пучки голубоватого огня с неясными очертаниями. Огоньки эти точно струились. Затем струи света побежали по гриве лошади и по ее голове. Все это продолжалось не более минуты. Хлынул дождик, и удивительные огни исчезли".
  8. Почему птицы безнаказанно садятся на провода высоковольтной передачи? Бывают случаи, когда птицу, сидящую на проводе линии электропередачи, убивает током. При каких обстоятельствах это может произойти?
  9. Молния чаще ударяет в деревья с глубоко проникающими в почву корнями. Почему?
  10. Почему из всех деревьев чаще всего молнией поражается дуб?
  11. Внутри ствола или снаружи его проходит электрический ток при ударе молнии в сосну?
  12. Почему в лесу молния чаще расщепляет лиственные деревья и значительно реже поражает хвойные?

refdt.ru

Реферат - Оптические, звуковые и электрические явления в атмосфере

Оптические явления.При прохождении лучей Солнца через атмосферу часть прямой солнечной радиации поглощается молекулами воздуха, рассеивается к отражается. В результате этого в атмосфере наблюдаются различные оптические явления, воспринимаемые непосредственно нашим глазом. К числу таких явлений относятся: цвет неба, рефракция, миражи, гало, радуга, ложное солнце, световые столбы, световые кресты и др.

Цвет неба. Всем хорошо известно, что цвет неба в зависимости от состояния атмосферы меняется. Ясное безоблачное небо днем имеет голубой цвет. Этот цвет неба обусловлен тем, что в атмосфере много рассеянной солнечной радиации, в составе которой преобладают короткие волны, воспринимаемые нами как голубые или синие. Если воздух запылен, то меняется спектральный состав рассеянной радиации, ослабляется синева неба; небо становится белесоватым. Чем больше мутность воздуха, тем слабее синева неба.

С высотой цвет неба меняется. На высоте от 15 до 20 км цвет неба черно-фиолетовый. С вершин высоких гор цвет неба кажется густо-синим, а с поверхности Земли — голубым. Это изменение цвета от черно-фиолетового до светло-голубого обусловливается все возрастающим рассеиванием сначала фиолетовых, потом синих и голубых лучей.

При восходе и заходе Солнца, когда солнечные лучи проходят сквозь наибольшую толщу атмосферы и теряют при этом почти все коротковолновые лучи (фиолетовые и синие), а до глаза наблюдателя доходят только длинноволновые лучи, цвет части неба у горизонта и само Солнце имеет красную или оранжевую окраску.

Рефракция. В результате отражения и преломления солнечных лучей при их прохождении через слои воздуха различной плотности их траектория подвергается некоторым изменениям. Это приводит к тому, что небесные тела и отдаленные предметы на земной поверхности мы видим в направлении, несколько отличающемся от того, в котором они действительно расположены. Например, если мы смотрим на вершину горы из долины, то гора нам кажется приподнятой; при визировании с горы в долину замечается повышение дна долины.

Угол, образованный прямой линией, идущей от глаза наблюдателя до какой-либо точки, и направлением, в котором глаз видит эту точку, называется рефракцией.

Величина рефракции, наблюдаемой у земной поверхности, зависит от распределения плотности нижних слоев воздуха и от расстояния от наблюдателя до предмета. Плотность же воздуха зависит от температуры и давления. В среднем величина земной рефракции в зависимости от расстояния до наблюдаемых предметов при обычных атмосферных условиях равна:

Миражи. Явления миражей связаны с аномальной рефракцией солнечных лучей, которая вызывается резким изменением плотности воздуха в нижних слоях атмосферы. При мираже наблюдатель видит, кроме предметов, еще их изображения ниже или выше действительного положения предметов, а иногда справа или слева от них. Нередко наблюдатель может видеть только изображение, не видя самих предметов.

Если плотность воздуха с высотой резко падает, то изображение предметов наблюдается выше их действительного местонахождения. Так, например, при подобных условиях можно видеть силуэт корабля над уровнем моря, когда корабль скрыт от наблюдателя за горизонтом.

Нижние миражи часто наблюдаются на открытых равнинах, в особенности в пустынях, где плотность воздуха резко увеличивается с высотой. Человек в этом случае нередко видит в отдалении как бы водную, слегка волнующуюся поверхность. Если при этом на горизонте имеются какие-либо предметы, то они как бы поднимаются над этой водой. И в этом водном пространстве видны перевернутые, как бы отраженные в воде их очертания. Видимость водной поверхности на равнине создается в результате большой рефракции, обусловливающей обратное изображение внизу у земной поверхности части неба, находящегося позади предметов.

Гало. Под явлением гало понимаются светлые или радужные круги, наблюдаемые иногда вокруг Солнца или Луны. Гало бывает в том случае, когда эти небесные тела приходится видеть через легкие перистые облака или через пелену тумана, состоящего из взвешенных в воздухе ледяных иголочек (рис. 63).

Явление гало происходит вследствие преломления в ледяных кристалликах и отражения от их граней солнечных лучей.

Радуга. Радуга представляет собой большую разноцветную дугу, наблюдаемую обычно после дождя на фоне дождевых облаков, находящихся против той части неба, где светит Солнце. Величина дуги бывает различна, иногда наблюдается полный радужный полукруг. Нередко мы видим одновременно две радуги. Интенсивность развития отдельных цветов в радуге и ширина их полос различны. В хорошо видимой радуге с одного края располагается красный цвет, а с другой — фиолетовый; остальные цвета в радуге находятся в порядке цветов спектра.

Явления радуги обусловлены преломлением и отражением солнечных лучей в капельках воды, находящихся в атмосфере.

Звуковые явления в атмосфере.Продольные колебания частиц материи, распространяясь по материальной среде (по воздуху, воде и твердым телам) и достигнув уха человека, вызывают ощущения, называемые «звуком».

В атмосферном воздухе всегда находятся звуковые волны различной частоты и силы. Часть этих волн создается искусственно человеком, а часть звуков имеет метеорологическое происхождение.

К звукам метеорологического происхождения относятся гром, завывание ветра, гудение проводов, шум и шелест деревьев, «голос моря», звуки и шумы, возникающие при передвижении песчаных масс в пустынях и над дюнами, а также снежинок над гладкой поверхностью снега, звуки при падении на земную поверхность твердых и жидких осадков, звуки прибоя у берегов морей иозер и др. Остановимся на некоторых из них.

Гром наблюдается при явлениях грозового разряда. Возникает он в связи с особыми термодинамическими условиями, которые создаются на пути движения молнии. Обычно гром мы воспринимаем в виде ряда ударов — так называемых раскатов. Раскаты грома объясняются тем, что звуки, порождаемые в одно время вдоль длинного и обычно извилистого пути молнии, доходят до наблюдателя последовательно и с различной интенсивностью. Гром, несмотря на большую силу звука, слышится на расстоянии не более 20—25 км (в среднем около 15 км).

Завывание ветра происходит при быстром движении воздуха сзавихриванием у каких-либо предметов. При этом бывает чередование накопления и оттока воздуха от предметов, что и дает начало звукам. Гудение проводов, шум и шелест деревьев, «голос моря» также связаны сдвижением воздуха.

«Голос моря» — своеобразное звуковое явление, наблюдаемое на морях. Эти звуковые явления бывают во время ветра и возникают от движения воздуха над гребнями и подошвами морских волн.

Скорость звука в атмосфере. На скорость распространения звука в атмосфере влияет температура и влажность воздуха, а также ветер (направление и его сила). В среднем скорость звука в атмосфере равна 333 м в секунду. С увеличением температуры воздуха скорость звука несколько возрастает. Изменение абсолютной влажности воздуха оказывает меньшее влияние на скорость звука. Ветер оказывает сильное влияние: скорость звука по направлению движения ветра увеличивается, против ветра — уменьшается.

Знание величины скорости распространения звука в атмосфере имеет большое значение при решении ряда задач по изучению верхних слоев атмосферы акустическим методом. Пользуясь средней скоростью звука в атмосфере, можно узнать расстояние от своего местонахождения до места возникновения грома. Для этого нужно определить число секунд между видимой вспышкой молнии и моментом прихода звука грома. Затем надо умножить среднее значение скорости звука в атмосфере — 333 м/сек. на полученное число секунд.

Эхо. Звуковые волны, подобно световым лучам, испытывают при переходе из одной среды в другую преломление и отражение. Звуковые волны могут отражаться от земной поверхности, от воды, от окружающих гор, облаков, от поверхности раздела воздушных слоев, имеющих различную температуру и влажность. Звук, отражаясь, может повториться. Явление повторения звуков вследствие отражения звуковых волн от различных поверхностей носит название «эхо».

Особенно часто эхо наблюдается в горах, вблизи скал, где громко произнесенное слово через некоторый промежуток времени повторяется один или несколько раз. Так, например, в долине Рейна имеется скала Лорелей, у которой эхо повторяется до 17—20 раз. Примером эхо являются и раскаты грома, которые возникают вследствие отражения звуков электрических разрядов от различных предметов на земной поверхности.

Электрические явления в атмосфере. Наблюдаемые в атмосфере электрические явления связаны с наличием в воздухе электрически заряженных атомов и молекул газов, носящих название ионов. Ионы бывают как с отрицательным, так и с положительным зарядом, а по величине массы делятся на легкие и тяжелые. Ионизация атмосферы происходит под воздействием коротковолновой части солнечной радиации, космических лучей и излучения радиоактивных веществ, содержащихся в земной коре и в самой атмосфере. Сущность ионизации заключается в том, что указанные ионизаторы передают нейтральной молекуле или атому газа воздуха энергию, под действием которой удаляется один из наружных электронов из сферы действия ядра. В результате этого атом, лишенный одного электрона, становится положительным легким ионом. Удалившийся из данного атома электрон быстро присоединяется к нейтральному атому и таким путем создается отрицательный легкий ион. Легкие ионы, встречаясь с взвешенными частицами воздуха, отдают им свой заряд и образуют таким образом тяжелые ионы.

Количество ионов в атмосфере с высотой увеличивается. В среднем на каждые 2 км высоты число их возрастает на тысячу ионов в одном куб. сантиметре. В высоких слоях атмосферы максимальная концентрация ионов наблюдается на высотах около 100 и 250 км.

Наличие в атмосфере ионов создает электропроводимость воздуха и электрическое поле в атмосфере.

Проводимость атмосферы создается благодаря большой подвижности главным образом легких ионов. Тяжелые ионы играют в этом отношении небольшую роль. Чем выше в воздухе концентрация легких ионов, тем больше его проводимость. И так как с высотой увеличивается число легких ионов, то и проводимость атмосферы с высотой возрастает. Так, например, на высоте 7—8 км проводимость, примерно, в 15—20 раз больше, чем у земной поверхности. На высоте около 100 км проводимость очень большая.

В чистом воздухе мало взвешенных частиц, поэтому в нем больше легких ионов и меньше тяжелых. В связи с этим проводимость чистого воздуха выше, чем проводимость запыленного. Поэтому при мгле и тумане проводимость имеет низкое значение, Электрическое поле в атмосфере впервые установил М. В. Ломоносов. При ясной безоблачной погоде напряженность поля считается нормальной. По отношению к земной поверхности атмосфера заряжена положительно. Под влиянием электрического поля атмосферы и отрицательного поля земной поверхности устанавливается вертикальный ток положительных ионов от земной поверхности вверх, а отрицательных ионов из атмосферы вниз. Электрическое поле атмосферы вблизи земной поверхности чрезвычайно изменчиво и зависит от проводимости воздуха. Чем меньше проводимость атмосферы, тем больше напряженность электрического поля атмосферы. Проводимость же атмосферы в основном зависит от количества взвешенных в ней твердых и жидких частиц. Поэтому во время мглы, при осадках и тумане напряженность электрического поля атмосферы увеличивается и это нередко приводит к электрическим разрядам.

Огни Эльма. Во время гроз и шквалов летом или снежных бурь зимой можно иногда наблюдать электрические спокойные разряды на остриях предметов, выдающихся над земной поверхностью. Эти видимые разряды носят название «огней Эльма» (рис. 64). Чаще всего огни Эльма наблюдаются на мачтах, на вершинах гор; иногда они сопровождаются несильным потрескиванием.

Образуются огни Эльма при большой напряженности электрического поля. Напряженность бывает настолько велика, что ионы и электроны, двигаясь с большой скоростью, расщепляют на своем пути молекулы воздуха, отчего увеличивается число ионов и электронов в воздухе. В связи с этим возрастает проводимость воздуха и с острых предметов, где накапливается электричество, начинается истечение электричества и разрядка.

Молнии. В результате сложных термических и динамических процессов в грозовых облаках происходит разделение электрических зарядов: обычно отрицательные заряды располагаются в нижней части облака, положительные в верхней. В связи с таким разделением объемных зарядов внутри облаков создаются сильные электрические поля как внутри облаков, так и между ними. Напряженность поля у земной поверхности при этом может достигать нескольких сотен киловольт на 1 м. Большая напряженность электрического поля приводит к тому, что в атмосфере возникают электрические разряды. Сильные искровые электрические разряды, которые происходят между грозовыми облаками или между облаками и земной поверхностью, называются молниями.

Продолжительность вспышки молнии в среднем около 0,2 сек. Количество электричества, которое несет молния, составляет 10—50 кулонов. Сила тока бывает очень большой; иногда она достигает 100—150 тыс. ампер, но в большинстве случаев не превышает 20 тыс. ампер. Большинство молний с отрицательным зарядом.

По внешнему виду искровой вспышки молнии разделяют на линейные, плоские, шаровые, четочные.

Наиболее часто наблюдаются линейные молнии, среди которых различают ряд разновидностей: зигзагообразные, разветвленные, ленточные, ракетовидные и др. Если линейная молния образуется между облаком и земной поверхностью, то ее средняя длина равна 2—3 км; молния между облаками может достигать 15—20 км длины. Разрядный канал молнии, который создается под влиянием ионизации воздуха и по которому происходит интенсивное встречное течение отрицательных зарядов, скопившихся в облаках, и положительных зарядов, скопившихся на земной поверхности, имеет диаметр от 3 до 60 см.

Плоская молния представляет собой кратковременный электрический разряд, охватывающий значительную часть облака. Плоская молния не всегда сопровождается громом.

Шаровая молния — редкое явление. Образуется она в некоторых случаях после сильного разряда линейной молнии. Шаровая молния представляет собой огненный шар с диаметром обычно в 10—20 см (а иногда и до нескольких метров). По земной поверхности эта молния передвигается с умеренной скоростью и обладает тенденцией проникать внутрь зданий через дымоходы и другие небольшие отверстия. Не причинив вреда и проделав сложные движения, шаровая молния может спокойно уйти из здания. Иногда же она вызывает пожары и разрушения.

Еще более редкое явление представляют четочные молнии. Они бывают в том случае, когда электрический разряд состоит из ряда светящихся шаровидных или продолговатых тел.

Молнии нередко причиняют большой ущерб; они разрушают здания, вызывают пожары, расплавляют электрические провода, раскалывают деревья и поражают людей. Для защиты зданий, промышленных сооружений, мостов, электростанций, линий электропередач и других сооружений от прямых ударов молний применяют молниеотводы (обычно их называют громоотводами).

Наибольшее число дней с грозами наблюдается в тропических и экваториальных странах. Так, например, на о. Ява в году 220 дней с грозами, в Центральной Африке 150 дней, в Центральной Америке около 140. В СССР больше всего дней с грозами бывает на Кавказе (до 40 дней в году), на Украине и на юго-востоке Европейской части СССР. Грозовые явления обычно наблюдаются во второй половине дня, в особенности между 15 и 18 часами.

Полярные сияния. Полярные сияния представляют собой своеобразную форму свечения в высоких слоях атмосферы, наблюдаемого временами в ночное время преимущественно в полярных и приполярных странах северного и южного полушарий (рис. 65). Эти свечения являются проявлением электрических сил атмосферы и происходят на высоте от 80до 1000 км в сильно разреженном воздухе при прохождении через него электрических зарядов. Природа полярных сияний еще полностью не разгадана но точно установлено, что причиной их возникновения является воздействие на верхние сильно разреженные слои земной атмосферы заряженных частиц (корпускул), поступающих в атмосферу из активных областей Солнца (пятен, протуберанцев и других участков) во время вспышек солнечного излучения.

Максимальное число полярных сияний наблюдается вблизи магнитных полюсов Земли. Так, например, у магнитного полюса северного полушария в год бывает до 100 сияний.

По форме свечения полярные сияния весьма разнообразны, но обычно их делят на две основные группы: сияния безлучевой формы (однородные полосы, дуги, спокойные и пульсирующие светящиеся поверхности, диффузные свечения и др.) и сияния лучистой структуры (полосы, драпри, лучи, корона и др.). Полярные сияния безлучевой структуры отличаются спокойным свечением. Сияния же лучевой структуры, наоборот, подвижны, у них меняется как форма, так яркость и цвет свечения. Кроме этого, сияния лучистой формы сопровождаются магнитными возбуждениями.

www.ronl.ru

Электрические явления в атмосфере.

Тема: Электрические явления в атмосфере.

Цель и задачи: Научить учащихся видеть проявление изучаемых явлений в окружающей жизни. Воспитание бережного отношения к природной среде. Развивать умение применять знания в новой ситуации.

Тип: Комбинированный.

Методы: Словесный, частично- поисковый.

Оборудование: Презентация.

Ход: 1. Орг. момент.

2. Проверка Д/З

1. Когда тела электризуются? (При натирании тела электризуются)

2. Сколько тел участвует в электризации? ( 2)

3. Какие электрические заряды существуют? ( + - )

4. Что такое электрический ток? ( Упорядоченное( направленное) движение заряженных частиц)

5. Какие источники электрического тока вы знаете? ( гальванический элемент ( батарейка ) аккумулятор, генератор)

6. Назовите составные части электрической цепи. ( источник тока, потребители( лампочки, плитка и т.д.) замыкающие и размыкающие устройства ( ключи, кнопки, выключатели).

7. Где используется электричество?

3. Обобщение пройденного, подготовка к восприятию н.м.

4. Н.м.

1. Полярное сияние (лат. Aurora Borealis, Aurora Australis) — свечение (люминесценции) верхних слоёв атмосфер планет, обладающих магнитосферой, вследствие их взаимодействия с заряженными частицами солнечного ветра.

Полярные сияния возникают вследствие бомбардировки верхних слоёв атмосферы заряженными частицами, движущимися к Земле вдоль силовых линий геомагнитного поля из области околоземного космического пространства, называемой плазменным слоем. Проекция плазменного слоя вдоль геомагнитных силовых линий на земную атмосферу имеет форму колец, окружающих северный и южный магнитные полюса (авроральные овалы). Выявлением причин, приводящим к высыпаниям заряженных частиц из плазменного слоя, занимается космическая физика. Экспериментально установлено, что ключевую роль в стимулировании высыпаний играет ориентация межпланетного магнитного поля и величина давления плазмы солнечного ветра. В очень ограниченном участке верхней атмосферы сияния могут быть вызваны низкоэнергичными заряженными частицами солнечного ветра, попадающими в полярную ионосферу через северный и южный полярные каспы. В северном полушарии каспенные сияния можно наблюдать над Шпицбергеном в околополуденные часы.

Полярные сияния наблюдаются преимущественно в высоких широтах обоих полушарий в овальных зонах-поясах, окружающих магнитные полюса Земли — авроральных овалах. Диаметр авроральных овалов составляет ~ 3000 км во время спокойного Солнца, на дневной стороне граница зоны отстоит от магнитного полюса на 10—16°, на ночной — 20—23°. Поскольку магнитные полюса Земли отстоят от географических на ~12°, полярные сияния наблюдаются в широтах 67—70°, однако во времена солнечной активности авроральный овал расширяется и полярные сияния могут наблюдаться в более низких широтах — на 20—25° южнее или севернее границ их обычного проявления.

В спектре полярных сияний Земли наиболее интенсивно излучение основных компонентов атмосферы - азота и кислорода, при этом наблюдаются их линии излучения как в атомарном, так и молекулярном (нейтральные молекулы и молекулярные ионы) состоянии. Самыми интенсивными являются линии излучения атомарного кислорода и ионизированных молекул азота.

Свечение кислорода обусловлено излучением возбужденных атомов в метастабильных состояниях с длинами волн 557.7 нм (зеленая линия, время жизни 0.74 сек.) и дублетом 630 и 636.4 нм (красная область, время жизни 110 сек). Вследствие этого красный дублет излучается на высотах 150-400 км, где вследствие высокой разреженности атмосферы низка скорость гашения возбужденных состояний при столкновениях. Ионизированные молекулы азота излучают при 391.4 нм (ближний ультрафиолет) 427.8 нм (фиолетовый) и 522.8 нм (зеленый).

Спектр полярных сияний меняется с высотой и зависимости от преобладающих в спектре полярного сияния линий излучения полярные сияния делятся на два типа: высотные полярные сияния типа A с преобладанием атомарных линий и полярные сияния типа B на относительно небольших высотах (80-90 км) с преобладанием молекулярных линий в спектре вследствие столкновительного гашения атомарных возбужденных состояний в сравнительно плотной атмосфере на этих высотах.

Полярные сияния весной и осенью возникают заметно чаще, чем зимой и летом. Пик частотности приходится на периоды, ближайшие к весеннему и осеннему равноденствиям. Во время полярного сияния за короткое время выделяется огромное количество энергии. Так за одно из зарегистрированных в 2007 году возмущений выделилось 5·1014 джоулей, примерно столько же, сколько во время землетрясения магнитудой 5,5.

При наблюдении с поверхности Земли полярное сияние проявляется в виде общего быстро меняющегося свечения неба или движущихся лучей, полос, корон, «занавесей». Длительность полярных сияний составляет от десятков минут до нескольких суток.

2. Мо́лния — гигантский электрический искровой разряд в атмосфере, обычно происходит во время грозы, проявляющийся яркой вспышкой света и сопровождающим её громом. Молнии также были зафиксированы на Венере, Юпитере, Сатурне и Уране. Ток в разряде молнии достигает 10-100 тысяч ампер, напряжение — 1 000 000 вольт (иногда достигает 50 000 000 вольт, но напряжение молнии иногда достигает сотен миллионов вольт), тем не менее, погибает после удара молнией лишь 10,2 % людей.

Электрическая природа молнии была раскрыта в исследованиях американского физика Б. Франклина, по идее которого был проведён опыт по извлечению электричества из грозового облака. Широко известен опыт Франклина по выяснению электрической природы молнии. В 1750 году им опубликована работа, в которой описан эксперимент с использованием воздушного змея, запущенного в грозу. Опыт Франклина был описан в работе [[Джозеф Пристли

Средняя длина молнии 2,5 км, некоторые разряды простираются в атмосфере на расстояние до 20 км.

Наиболее часто молния возникает в кучево-дождевых облаках, тогда они называются грозовыми; иногда молния образуется в слоисто-дождевых облаках, а также при вулканических извержениях, торнадо и пылевых бурях.

Существует две заряженных области в облаках, положительная и отрицательная, это две половины электрической цепи, отрицательный разряд стремится к положительному, и этот заряд называется Лидером, практически не видимый глазом человека из-за огромной скорости протекания и слабой яркости. Другой положительный заряд, Стример, стремится к отрицательному лидеру, и этот заряд очень яркий и долгий по времени удара молнии. Электрический заряд Лидер исходит в основном из облака, а Стример исходит из поверхности земли или другого облака с положительно заряженной областью. Молния это не один разряд, а более несколько десятков пульсирующих разрядов, почему и видимое мерцание молнии считается одним разрядом ошибочно.

Обычно наблюдаются линейные молнии, которые относятся к так называемым безэлектродным разрядам, так как они начинаются (и заканчиваются) в скоплениях заряженных частиц. Это определяет их некоторые до сих пор не объяснённые свойства, отличающие молнии от разрядов между электродами. Так, молнии не бывают короче нескольких сотен метров; они возникают в электрических полях значительно более слабых, чем поля при межэлектродных разрядах; сбор зарядов, переносимых молнией, происходит за тысячные доли секунды с миллиардов мелких, хорошо изолированных друг от друга частиц, расположенных в объёме несколько км³. Наиболее изучен процесс развития молнии в грозовых облаках, при этом молнии могут проходить в самих облаках — внутриоблачные молнии, а могут ударять в землю — наземные молнии. Для возникновения молнии необходимо, чтобы в относительно малом (но не меньше некоторого критического) объёме облака образовалось электрическое поле (см. атмосферное электричество) с напряжённостью, достаточной для начала электрического разряда (~ 1 МВ/м), а в значительной части облака существовало бы поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~ 0,1-0,2 МВ/м). В молнии электрическая энергия облака превращается в тепловую, световую и звуковую, и самыми опасными продуктами молнии являются рентгеновское и гамма излучение.

Процесс развития наземной молнии состоит из нескольких стадий. На первой стадии, в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными зарядами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с молекулами, составляющими воздух, ионизуют их. По более современным представлениям, разряд инициируют высокоэнергетические космические лучи, которые запускают процесс, получивший название пробоя на убегающих электронах[1]. Таким образом возникают электронные лавины, переходящие в нити электрических разрядов — стримеры, представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью — ступенчатому лидеру молнии.

Согласно Фейнмановским лекциям по физике[2] - качественно можно описать молнию следующим образом. Как показали фотоснимки, молния – это обычно повторные электрические разряды по одному и тому же пути.Потенциал нижней части тучи, висящей над равниной, гораздо более отрицателен, чем земная поверхность под ней. Отрицательный заряд (электроны) устремляются к Земле. Всё начинается со светящегося комка - «ступенчатого лидера». Он не такой яркий, как вспышка молнии. Вначале появляется небольшое светлое пятнышко, выходящее из тучи и очень быстро катящееся вниз со скоростью 1/ 6 скорости света. Оно проходит всего около 50 м и останавливается. Следует пауза около 50 мкс, а затем происходит следующий шаг. Снова остановка, а после новый шаг и т.д. Так, шаг за шагом, пятно движется к Земле. Лидер наполнен отрицательным зарядом. Воздух ионизуется быстро движущимися зарядами лидера и становится проводящим вдоль его пути. В момент, когда лидер коснётся поверхности земли, получается как бы проводящая проволока, которая тянется до самой тучи и полна отрицательного электричества. Теперь отрицательные заряды из тучи мчатся на землю: сначала соскакивают электроны нижней части лидера, оставляя позади себя положительный заряд. Он притягивает электроны из более верхнего участка лидера, они тоже падают на землю и т.д. В конце концов весь отрицательный заряд этой части тучи быстро и энергично сбегает по этому каналу вниз. Так что видимая нами молния (как будто движение положительного заряда) бъёт от земли вверх. Это и есть основной разряд – обратная вспышка. Она вызывает яркое свечение и выделение тепла, которое, приводя к быстрому расширению воздуха, производит громовой удар. Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью ~ 50 000 километров в секунду, после чего его движение приостанавливается на несколько десятков микросекунд, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров. Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 200 000 метров в секунду.

По мере продвижения лидера к земле напряжённость поля на его конце усиливается, и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример, соединяющийся с лидером. Эта особенность молнии используется для создания молниеотвода.

В заключительной стадии по ионизованному лидером каналу следует обратный (снизу вверх), или главный, разряд молнии, характеризующийся токами от десятков до сотен тысяч ампер, яркостью, заметно превышающей яркость лидера, и большой скоростью продвижения, вначале доходящей до ~ 100 000 километров в секунду, а в конце уменьшающейся до ~ 10 000 километров в секунду. Температура канала при главном разряде может превышать 25 000 °C. Длина канала молнии может быть от 1 до 10 км, диаметр — несколько сантиметров. После прохождения импульса тока ионизация канала и его свечение ослабевают. В финальной стадии ток молнии может длиться сотые и даже десятые доли секунды, достигая сотен и тысяч ампер. Такие молнии называют затяжными, они наиболее часто вызывают пожары. Но земля не является заряженной, поэтому принято считать, что разряд молнии происходит от облака по направлению к земле (сверху вниз).

Главный разряд разряжает нередко только часть облака. Заряды, расположенные на больших высотах, могут дать начало новому (стреловидному) лидеру, движущемуся непрерывно со скоростью в тысячи километров в секунду. Яркость его свечения близка к яркости ступенчатого лидера. Когда стреловидный лидер доходит до поверхности земли, следует второй главный удар, подобный первому. Обычно молния включает несколько повторных разрядов, но их число может доходить и до нескольких десятков. Длительность многократной молнии может превышать 1 сек. Смещение канала многократной молнии ветром создаёт так называемую ленточную молнию — светящуюся полосу.

Согласно ранним оценкам, частота ударов молний на Земле составляет 100 раз в секунду. По современным данным, полученным с помощью спутников, которые могут обнаруживать молнии в местах, где не ведётся наземное наблюдение, эта частота составляет в среднем 44 ± 5 раз в секунду, что соответствует примерно 1,4 миллиарда молний в год.75 % этих молний ударяет между облаками или внутри облаков, а 25 % — в землю.

Молнии — серьёзная угроза для жизни людей. Но в основном увеличение числа молний, дело самих рук человеческих, а именно, загрязнения окружающей среды в основном воздуха, площади автомобильных дорог мегаполисов способствуют нагреву воздуха и образования восходящих потоков, и поставка пара-конденсата в атмосферу мегазаводами, все это увеличивает интенсивность электрических зарядов в облачной зоне. Поражение человека или животного молнией часто происходит на открытых пространствах, так как электрический ток идёт по кратчайшему пути «грозовое облако-земля», и в основном электрический заряд проходит по поверхности тела животного или человека, чему способствует наружный потовый слой кожи, с наименьшим сопротивлением и лучшей проводимостью. Часто молния попадает в деревья и трансформаторные установки на железной дороге, вызывая их возгорание. Поражение обычной линейной молнией внутри здания невозможно, однако бытует мнение, что так называемая шаровая молния может проникать через щели и открытые окна. Обычный грозовой разряд опасен для телевизионных и радиоантенн, расположенных на крышах высотных зданий, а также для сетевого оборудования.В организме пострадавших отмечаются такие же патологические изменения, как при поражении электротоком. Жертва теряет сознание, падает, могут отмечаться судороги, часто останавливается дыхание и сердцебиение. На теле обычно можно обнаружить «метки тока», места входа и выхода электричества. В случае смертельного исхода причиной прекращения основных жизненных функций является внезапная остановка дыхания и сердцебиения, от прямого действия молнии на дыхательный и сосудодвигательный центры продолговатого мозга. На коже часто остаются так называемые знаки молнии, древовидные светло-розовые или красные полосы, исчезающие при надавливании пальцами (сохраняются в течение 1 — 2 суток после смерти). Они — результат расширения капилляров в зоне контакта молнии с телом.При поражении молнией первая медицинская помощь должна быть неотложной. В тяжёлых случаях (остановка дыхания и сердцебиения) необходима реанимация, её должен оказать, не ожидая медицинских работников, любой свидетель несчастья. Реанимация эффективна только в первые минуты после поражения молнией, начатая через 10 — 15 минут она, как правило, уже не эффективна. Экстренная госпитализация необходима во всех случаях.

Жертвы молний

  1. В мифологии и литературе:

    1. Асклепий, Эскулап — сын Аполлона — бог врачей и врачебного искусства, не только исцелял, но и оживлял мёртвых. Чтобы восстановить нарушенный мировой порядок Зевс поразил его своей молнией[12].

    2. Фаэтон — сын бога Солнца Гелиоса — однажды взялся управлять солнечной колесницей своего отца, но не сдержал огнедышащих коней и едва не погубил в страшном пламени Землю. Разгневанный Зевс пронзил Фаэтона молниями. Общий список см. Молния Зевса.

  2. Исторические личности:

    1. Казанский губернатор Сергей Голицын — 1 (12) июля 1738 года погиб во время охоты от удара молнии.

    2. Российский академик Г. В. Рихман — в 1753 году погиб от удара молнии во время проведения научного эксперимента.

    3. Народный депутат Украины, экс-губернатор Ровненской области В. Червоний 4 июля 2009 года погиб от удара молнией.

Интересные факты

5.Закрепление.

6. Д/З

7. Итоги урока

ГУ Краснокиевская СШ

Тема: Электрические явления в атмосфере.

Открытый урок по естествознанию

Учитель истории и географии

Жизницкая Л.С.

с Краснокиевка

www.metod-kopilka.ru

Электрические и плазменные явления в атмосфере

Электрические и плазменные явления в атмосфере.

Строение земной атмосферы. Общие характеристики.

Состояние атмосферы определяется множеством физических факторов и процессов, химическим составом и преобразований веществ, синоптическими и климатическими характеристиками, процессами взаимодействия с внешними факторами и антропогенным взаимодействием.

Масса атмосферы составляет 5.2·1015т и практически неизменна и в основном состоит из газа. Удерживается эта газовая оболочка за счет гравитационного взаимодействия. До высоты 60 – 8 км от поверхности земли атмосфера находится в перемещенном состоянии и выполняется условие термодинамического равновесия, выше эти условия нарушаются. От поверхности Земли можно выделить основные слои атмосферы: тропосфера, тропопауза, стропосфера, стропопауза, мезосфера, мезопауза, ионосфера, термосфера, магнитосфера.

Магнитная сфера – внешний слой атмосферы, удерживается за счет взаимодействия с магнитным полем Земли.

Тропосфера занимает слой атмосферы до 10км.

В тропосфере температура убывает с высотой с градиентом 6.5 º/км. В тропосфере происходит основное преобразование солнечной энергии в кинетическую энергию молекул.

Распределение энергии спектра по λ

Солнечное излучение такое же, но есть линии фраунгофера, т.е. нет излучения в этой области.

λmaxT=const, Т≈6000К – на поверхности Солнца.

Излучение Солнца нагревает поверхность Земли, через поверхность Земли нагревает тропосферу. Частично атмосфера нагревается за счет поглощения солнечного излучения. Тропосфера в основном состоит из N2, O2, Ar. 99,96% приходится на три газа. Все остольные газы составляют 0,04%. Атмосфера пронизана электрическим полем приблизительно 50км. Это электрическое поле приводит……….

E=100В/м – электрическое поле в атмосфере.

В результате возникает электрический ток с плотностью j=10-12А/м2.

Для существования такого электрического поля необходим заряд Земли q=105Кл. это электрическое поле должно постоянно поддерживаться. При отсутствии ее – зарядка за 10 мин. Носителями заряда являются положительные и отрицательные ионы, которые классифицируются по массе и по их подвижности:

1. Легкие ионы: b≥10-4м2/сВ – подвижность.

b – скорость, которую они приобретают в электрическом поле. Размер таких частиц – r ≤ 6.6 10-8см.

2. Легкие промежуточные ионы: 10-6м2/сВ≤b≤10-4м2/сВ.

Раз мер – 6.6 10-8≤r≤8 108см.

3. Тяжелые промежуточные ионы: 8 10-8≤r≤2.5 10-6см.

4. Ионы Ланжевена: 2.5 10-6≤r<5.7 10-6см.

5. Ультра тяжелые: r>5.7 10-6см.

Ионы в основном берутся в результате ионизации молекул атмосферы за счет солнечного или космического излучения.

λ – электропроводность (изменяется с высотой по экспоненциальному закону).

λ=λ0exp(r-r0)α

λ0– у поверхности Земли. r0– радиус Земли.

Экспоненциальная зависимость нарушается только до высоты 2 км.

α – характерный размер, который определяется как величина

α-1= 6.4км

Нарушение экспоненциальной зависимости объясняется наличием газотурбулентного течения, а также запыленностью.

Первая электронная модель атмосферы – модель Вильсона. Согласно этой модели поверхность Земли имеет отрицательный заряд, а атмосфера – положительный.

В таком случае имеется возможность рассматривать сферический конденсатор, через который протекает ток разрядки

Iр– ток разрядки.

Для поддержки разности потенциала электрического поля должен протекать ток зарядки Iзв обратном направлении

Iз– ток молнии (заряд между атмосферой и поверхностью Земли).

Грозовые облака у поверхности Земли носят отрицательный заряд и разряд молнии переносит отрицательный заряд на поверхность Земли. это равносильно тому, что внешняя оболочка атмосферы приобретает положительный заряд.

Для описания модели Вильсона используется уравнения Максвелла

λЕ – обусл. электропровод. атмосферы,

ρv – гидродинамическая скорость среды, т.е. электрический ток, возникающий за счет переноса ветром, т.е. скорость облака,

Dт– коэффициент турбулентной диффузии.

E – напряженность сферического конденсатора.

- сопротивление единичного столба атмосферы.

Из пропорции

λ=λ0expα (r-r0)

Ip=1000A – ток разрядки

φ∞=278кВ

Re∞=1.3·107Ом·м2

J=2·10-12А/м2.

Учитывая то, что Jp= Jзмы должны определить какие силы приводят к такому мощному Jз, работу сторонних источников.

Классификация газовых разрядов. Таундсовский пробой газа.

Электрический пробой газа – образование высоко ионизированного канала в межэлектродном пространстве, по которому протекает электрический заряд с одного электрода на другой.

Предположим, что с поверхности катода К эмитируют, т.е. вылетают с поверхности электроны концентрации n0в единицу времени. Тогда электрический ток еn0=i – ток, протекает с поверхности К. Допустим, что 1 электрон на пути в 1см производит α ионизаций.

В электрическом поле электрон ускоряется и его кинетическая энергия увеличивается. Если на расстоянии равному длине свободного пробега электрон приобретает кинетическую энергию Ек=φ ионизации атома, то при столкновении атом ионизируется.

Число ионизаций на пути dx=αdx. В этом случае dn=ndx.

Предположим 1) что объемной рекомбинацией можно принебречь,

2) скорость ионизации во всем объеме одинакова,

3) длина свободного пробега λ<<L.

Задача: Определить критические условия, при которых ток лавинообразно растет, т.е. это и есть условие пробоя.

α – первый потенциал Таундсена

Надо решить уравнение с граничными условиям

из интегрирования n=n0eαx.

Учитывая то, что n~i мы можем записать

i=i0eαx.

α играя роль параметра в экспоненте, определяющий темп ионизации атомов.

i=i0eαL– на расстоянии L между электродами.

Учтем следущее:

Сколько атомов ионизируется в межэлектродном пространстве

n=n0eαL-n0=n’– концентрация атомов, которые ионизируются в межэлектродном пространстве.

Представим себе, что положительный ион, который образуется в межэлектродном пространстве двигается в сторону катода и соударяясь с ним выбивает 1 электрон. Не каждый ион может выбить электрон при соударении с катодом. Поэтому введем коэффициент γ – второй коэффициент Таундсена, который характеризует вероятность выбивания вторичного электрона ионом.

n1- концентрация электронов с учетом вторичной эмиссии.

γ≈ 10-1¸10-4– вероятность.

В лучшем случае при столкновении 10 ионов выбивается 1 электрон.

n1=n0+γ(eαL-1)

Если выполняется условие пробоя 1+γ=γеαL, i1→∞.

Частота ионизации и связь с первым коэффициентом Таундсена.

Частота ионизации – параметр, характеризующий скорость образования электронов.

f(ε) – функция распределения электронов по энергиям, т.е. в интервале (ε1, ε+dε) будет количество электронов равное f(ε)dε.

Нормировка будет проведена следующим образом

ε≥I – чтобы осуществилась ионизация.

ε*≥I.

ε* - энергия электрона должна быть больше либо равна энергии ионизации атома или электрона, чтобы произошла ионизация.

,

σi– сечение ионизации.

- если пренебречь рекомбинацией.

.

Закон подобия Пашена. Минимальное пробивное натяжение.

Критические условия пробоя в межэлектродном пространстве.

; гдеА,В –экспериментальные коэффициенты.

;

;;

;;

;- зависимостьЕотрL

, гдеV-разность;

.

Какие минимальные (pL) необходимы, чтобы возник пробой между электродами.

Для воздуха А=15; В=365;, С=1,18;

;

При концентрациинапряженность между носителями заряда сравнима с напряженностью внешнего электрического поля.

, гдеR-среднее расстояние между заряженными частицами.

Для теории Таундсена есть предельное значение pL<1000

L~1/5 см, если L>5 – теория не работает.

Стримеры

Стример – умеренный, слабоионизированный, тонкий канал, который произрастает из первичной лавины и может быть направлен в обе стороны, как к положительному, так и отрицательному электроду.

Между К и А возникает разность потенциалов. Электроны эмитируют с поверхности К и т.к. поле достаточно сильно, то его энергии достаточно, чтобы ионизировать атом на расстоянии равном средней длине свободного пробега.

В этом случае возможно возникновение лавины – процесса нарастания концентрации заряженных частиц. Необходимо большое электрическое поле.

С увеличением концентрации заряженных частиц увеличивается внутреннее электрическое поле в лавине обусловленное тем, что положительные ионы все смещаются в сторону К.

E1 – поле внутри лавины.

E – поле между К и А.

Распространение лавины останавливается, т.к. Е1и Е направлены в различные стороны, т.е. если. Теперь развитие канала может происходить только по новому сценарию. Необходимо образование новой лавины.

Предположим, что какой – то фотон из головки лавины сталкивается с атомом и ионизирует его. Тогда новообразованный электрон может основать новую лавину.

Образование лавины происходит до тех пор, пока ионизационный канал не замкнется на А. Этот канал и называетсястримером.

, где- скорость распределения зарядов.

- подвижность.

;.

Допустим, что лавина распространяется во все стороны в следствии диффузии электронов. За время t она может распространиться на расстояние

;;

Допустим, что каждая лавина происходит от одного электрона. Если она развивается, то будет коническое расширение. В головке лавины будут образовываться в слоеdxколичество ионов;

Если мы его приравняем или проинтегрируем (- объем слоя, если- количество ионов в лавине);;.

Для простоты расчетов предположим, что все положительные ионы сосредоточены в головке лавины ис радиусомr.

;;

;.

Из этого условия получим:

;;

;.

Из графика видно, еслиpL>200, то в этом случае кривые практически совпадают. При меньших значенияхpL–проявляется вторичная ионизация наKи коэффициентначинает изменяться. Мы должны пользоваться теорией Таундсена для пробоя. Рассмотрим второе условие, необходимое для роста стримера:

;- некоторое критическое значение концентрации ионовголовки, при которомвозможно развитие стримера.

Только в таких случаях будет развиваться стример. Из головки будет излучаться фотон, который дает толчок для развития лавины.

ЕслиpL=200 тор*см, то. При атмосферном давленииP=760 мм.рт.ст. иL=10 см..

Условие Мика;

Условие Леба.

+ стример катодонаправленный

- стример анодонаправленный.

Лидер

Развитие электрического разряда в межэлектродном пространстве. Можно отметить следующий этап развития после стримера, который называетсялидером.

Лидер представляет собой сильно ионизированный канал, который распространяется между электродами в значительной мере переносит потенциал одного электрода к другому.

Этот сильно ионизированный канал представляет собой электронейтральную плазму, которая имеет острие в сторону противоположенного электрода. На этом острие сосредоточен потенциал катода. Это острие с большой скоростью распространяется в направлении анода, тем самым как бы приближая электроды друг к другу. В результате напряженностьЕэлектрического поля между электродами с развитием лидера резко возрастает, потому чтоЕ– это разность потенциалов на расстоянии =1 E=U/L.

Этот высокоионизированный канал со временем замыкает электроды.

За счет высокой ионизации плазмы электропроводность ее имеет высокое значение. По лидерному каналу протекает большой ток. Ток в свою очередь разогревает плазму, температура столба резко возрастает, следовательно, возрастает давление, канал начинает расширяться создавая акустическую волну, Мы ее фиксируем в виде грома.

Когда лидер достигает противоположного электрода, в обратном направлении начинает распространяться обратная волна. Обратная волна кладет начало развитию непрерывного разряда. Распространение обратной волны можно характеризовать следующим образом. По мере приближения головки к катоду или аноду резко возрастает напряженность в непроводящем зазоре.

Когда головка лидера касается противоположного электрода, возрастает эмиссия электронов, резко увеличивается концентрация электронов.

Обратная волна приводит к стеканию заряда между электродами.

ЛидерI=100 A.

E=100 В/см.

d=1 мм.

=10 КА/.

- проводимость плазмы.

- скорость распространения лидера.

- скорость расширения.

Стример распространяется перед лидером, примерно на расстоянии 1м., если расстояние между электродами 10 м.

Для лидера не обязательна высокая напряженность, как для стримера. Для этого достаточно 200-500 В/см.

Молния. Грозовое облако.

Первопричиной электрических разрядов в атмосфере, является разделение электрический заряд. Как правило облака имеют положительный заряд в верхней части и отрицательный в верхней части по отношению к земле.

Только в 10 % случаях бывают другие распределения зарядов.

Разность потенциалов в облаках достигаютВ. Электрический заряд грозового облака = 4Кл. Расстояние между зарядами в облаке примерно 2¸5км. При этом средняя напряженность достаточна для пробоев.

Механизм ионизации в грозовом облаке:

1. Фотоионизация.

2. Электризация капель при дроблении, при этом отрываемые капли имеют “-“ заряд.

3. Двойной электрический слой на поверхности капли.=0,26 В.

Двойной электрический слой возникает за счет того, что молекулы воды, являясь диполями имеют пространственную ориентацию.

В этом случае капля воды будет преимущественно захватывать отрицательные ионы из атмосферы, приобретая избыточный отрицательный заряд. Пока не достигнута разность потенциалов двойного электрического слоя.

Исследование зарядки капель провели в нашей лаборатории. Размер капли воды;; N – количество поглощенных ионов поверхностью частицы. Если, то.

4. Оседание отрицательных капель под действием силы тяжести.

Положительный заряд сохраняется в виде ионовв атмосфере.

Все эти процессы создают нижнюю часть облака, верхнюю -.

Световая вспышка молний длится в среднем 200 мс с интервалом 40мс. Каждый импульс начинается с прорастанием к земле лидерного канала, который светит достаточно слабо. Ток в этом канале приблизительно 100 А. Приближаясь к земле канал начинает ветвиться.

После столкновения лидера с землей, обратно к облаку распространяется яркий световой канал.

Главная стадия возвращения удара проходит при I=100 кА. Далее, через этот искровой канал, в течении 40 мс. и при I=200 A. на землю стекает весь “–“ заряд.

Основные параметры внутриоблачных разрядов.

Длительные вспышки – от 0,01 до 2 секунд. Число импульсов от 1 до 26. Интервал от 3 до 100 мс. Заряд облака от 3 до 80 Кл.

Ступенчатый лидер:

L– от 3 до 200 м.

Пауза – от 30 до 125 мс.

– отдосм/с.

q– от 3 до 20 Кл.

Стреловидный лидер:

- отдосм/с.

Возвратный удар:

L–от 2 до 14 км.

- отдосм/с.

=120 кА.

Длительность пика – до 200 мкс.

q– до 20 Кл.

Шаровая молния.

Усредненные параметры шаровой молнии:

d=28 ± 4 см.

- от 8 до 15 с.

- от 3 до 5 м/с.

Энергия – приблизительно 20 кДж.

Плотность энергии – от 15 до 40.

Световой поток – 1000 до 2000 люмен.

Цвет: белый 24 %, желтый 24 %, красный 18 %, оранжевый 14 %, голубой и фиолетовый 12 %.

В 80 % случаях молния наблюдается в грозовую погоду.

В 50 – 70 % случайный распад происходит со взрывом. Вероятность появления.

Вероятность сферической формы 89 %.

Одиночная электронная лавина

Индивидуальная лавина является первичным и неотъемлемым элементом какого либо механизма пробоя. Рассмотрим лавину в одномерном внешнем полемежду плоскими электродами. Пусть она начинается от 1-го электрона, вылетевшего из катода вt=0. OX направим от этого места в сторону А.

Числа и диффузионные пространственные распределения зарядов.

С учетом возможного образования иполные числа электронов иiнарастает по мере продвижения лавины, как

(1);

;

.

(2);

;

, где,a– коэффициенты ионизации и прилипания.

Все нарождающиеся электроны летят к аноду одной группой со скоростью дрейфа. Однако, в следствии диффузии, электронное облако расплывается около центральной точки,r=0. Плотность электронов в облакеподчиняется общему уравнению диффузии, в котором должны быть приняты во внимание дрейфовое движение и рождение. Решение уравнения имеет вид

(3)

Не падает с расстоянием от движущегося центра (по гауссову закону). Радиус сферы, на которой плотность рывков вeраз больше плотности в центре, растет с течением времени или по мере продвижения лавины по характерному для диффузии закону

(4)

где- средняя хаотическая энергия электронов.

За время пролета лавины до анода ионпрактически не успевает сдвинуться с места, поэтому в каждом месте они накапливаются. Плотность +ионов составляет.

Чтобы получить, надо вместопоставитьа.в формуле задается (3). В отсутствии прилипания в пределеи не слишком далеко от оси приближенное вычисление интеграла дает

(5)

Этот результат имеет наглядный физический смысл. Плотность ионовв следе лавины растет с расстояниемxотk. В соответствии с законом размножения. В радиальном же направлении она в каждом сеченииxспадает от оси по тому же закону, что и плотность рождающихi-ы-ой. В тот момент, когда центр электронного облака проходит через данное сечение.

Видимые очертания лавины.Каким бы мы способом не фиксировали на опыте изображения лавины, границы его будут соответствовать более или менее определенной величине абсолютной, а не относительной плотности активных частиц. Величина эта в общем определяется чувствительностью регистрационной аппаратуры. Поскольку чувствительность подбирается достаточно высокойminплотность, которая еще регистрируется, <<плотности частиц на оси далеко отk, где. Поэтому низкой плотности частиц на видимом контуре лавиныотвечает наибольшее значение показателя экспоненты, <<-ee. Следовательно, контур соответствует приближенному обращению показателя в нуль и является не параболическим~, а клиновидным.

.

В области головки клин переходит в закругление. Пространственное распространение зарядов в лавине в два последовательных момента времени показано на рисунке.

Ассоциации сферических аэрозолей в газе и плазме.При диффузии аэрозолей в воздухе наступает такой момент, когда их поверхности соприкасаются. Тогда за счет взаимодействия, а также за счет химических процессов на поверхности, аэрозоли не слипаются, т.е. происходит их ассоциация. Пусть радиус одного сорта аэрозолей равняется, радиус второго. В начале рассмотрим случай, когда один аэрозоль первого сорта покоится, так что на его поверхность приходит диффузионный поток аэрозолей второго сорта. Полный ток аэрозолей на расстоянииrот центра пробного аэрозоля равняется, гдеD– коэффициент диффузии аэрозолей второго типа- их плотность. Так как аэрозоли не поглощаются в объеме, то и ток не зависит от расстоянияr, т.е.i=const:

, где- плотность аэрозолей второго типа вдали от поглощающего центра припроходит ассоциация аэрозолей, т.е.от.. Уравнение баланса для ассоциационных аэрозолей имеет вид:

,

где- плотность аэрозолей первого типа,- константа скорости ассоциации, которая равна.

При диффузном характере движения каждого из аэрозолей для среднего квадрата относительного расстояния между аэрозолями имеем

.

Еслиrмного больше- длина свободного пробега, тогда сила сопротивления аэрозоли будет определяться функцией стокса и при движении аэрозолей радиуссо скоростью, где- вязкость воздуха. Придадим аэрозолю зарядe,тогда подвижность, гдеt– температура воздуха, гдеE– напряженность электрического поля(3). Вводя число Клудсена. Для воздуха при атмосферном давлении температуре равной 300К эта формула имеет вид,из (3) в (2). Для воздуха при температуреt=300K.kне зависит от сорта аэрозолей.

Рассмотрим теперь заряженные аэрозоли. Пусть 1-, 2-. При расстоянииrмежду ними сила их взаимодействия равна. Эта сила уравновешена с силой Стокса, так что + аэрозоли движутся на встречу – заряду со скоростью, где- радиус положительной аэрозоли.

.

За пробный возьмем положительный аэрозоль и проведем вокруг него сферу радиусаr.Частота ассоциаций для рассматриваемого положительного аэрозоля есть произведение площади выбранной сферы на поток отрицательно заряженных частиц, пересекает ее. Введем константу скорости ассоциации заряженной аэрозоли в соответствии с уравнением баланса

(7)

Сравнив (6) и (7) => диффузионный механизм существен для аэрозолей больших размеров:. В этом случае энергия кулоновского взаимодействия двух аэрозолей при соприкосновении << их тепловой энергии.

Рассмотрим ассоциационный аэрозоль во внешнем электрическом поле. Электрическое поле наводит на аэрозоль дополнительные моменты, а взаимодействие этих дипольных моментов при некоторых их пространственных конфигурациях отвечает притяжение частиц. В этом случае взаимодействие приводит к сближению и ассоциации аэрозолей.

Потенциал взаимодействия двух частиц с дипольной молекулойи.

,

гдеr– расстояние между частицами,n– единичный вектор вдоль направления соединения частиц.

Поскольку в рассматриваемом случае дипольные моменты аэрозолей наводятся внешним полем, то(- компонента тензора поляризуемости аэрозолей в направлении электрического поля). В соответствии с условием задачи, направлениеEиDсовпадают. Тогда,- угол между направлениями соединений аэрозолей (0<<- притяжение).

Для силы, действующей на взаимодействие аэрозолей при больших расстояниях между ними запишем

;

;

изменяется меньшеи в области притяжения стремится его уменьшить, тем самыму3скоряет ассоциацию аэрозолей. При=0, когда притяжение аэрозолей максимально,=0, т.е., при которой ассоциация проходит наиболее эффективно,не существенно, т.е. ею можно пренебречь

;

;

выделяем элементарный объемVвблизи проб. аэрозоли. ПоверхностьVобеспечивает одинаковое значениеtассоциационной аэрозоли.,, где- расстояние до поверхности при=0.

dW– вероятность того, что вdSнаходится аэрозоль, тогда количество в объеме его нет

;

;.

(9)

Для сферической аэрозоли рассчитывается;

(10)

Сравним (6) и (10).

.

Образование нитевидных аэрозолей.

Нитевидные аэрозоли более эффективно образуются при ассоциации во внешнем электрическом поле, ибо в этом случае направление взаимного сближения при ассоциации аэрозолей выделено и определено направление внешнего поля.

Пусть в воздухе имеется набор сферических аэрозолей радиусаи пусть среди них находится простейший нитевидный аэрозоль – цилиндрический. Сравним их скорости ассоциации. Если скорее идет ассоциация за счет диффузионного движения аэрозолей, то прилипание сферических аэрозолей будет происходить по всей поверхности, и, в итоге, цилиндрический аэрозоль потеряет свою форму. Если же внешним полем – к концам.

В случае цилиндрических аэрозолей длиной 2L и радиусоми сферических аэрозолей радиусомемкость равна.

Тогда(12)

(13)

;;;

при(14)

x– количество сферических аэрозолей в воздухе в граммах аэрозолей на 1кг воздуха,- плотность вещества аэрозолей,,а=1мкм,.

(13) справедливо при.

На рисунке показано положение границы области пространства вокруг цилиндрической аэрозоли. Области соприкосновения сходятся к концам цилиндра аэрозолей следовательно, что при действии во внешнем электромагнитном поле сферические аэрозоли будут попадать на концы. Это ведет к росту цилиндрической аэрозоли.

Фрактальные кластеры.

Активное вещество шаровой молнии представляет собой сгусток нитевидных аэрозолей. Такая структура не разрушается под действием конвективных потоков воздуха. Кроме того, присутствие заряда на концах такого образования создает поверхностное натяжение, которое не позволяет ему схлопнуться, и придает ему форму, близкую к сферической.

Более внимательный анализ показывает, что при релаксации паров металла, которые имеют промежуточную фазу – образования твердых частичек, - возникает структура фрактальных кластеров. Фрактальный кластер представляет собой систему жестко связанных макрочастиц. Хотя обычно под кластером понимают связанное состояние атомов или молекул. Слово «фрактальный» отличает дробную размерность кластера. По мере роста размера фрактального кластера его масса изменяется не пропорционально объему; сами частицы занимают малую часть объема – он в основном приходиться на пустоту. Такой физический смысл вложен в термин «фрактальный».

Этот вид кластера образуется в процессе ассоциации твердых аэрозолей, частиц дыма при гелеобразовании в коллоидных растворах.

Фрактальный кластер имеет рыхлую структуру, причем основной параметр, характеризующий его, - фрактальная размерностьD. Если фрактальный кластер собирается из твердых частиц со средним размеромаи средней массой, то масса кластера m при его размереRзадается формулой, гдеА– числовой множитель порядка..

Dопределяет способность его образования. Кластер состоит из сферических частиц одинакового размера. Если кластер образуется путем последовательного присоединения к нему отдельных частиц, совершается броуновское движение в пространствеD=246±0.05.

При движении частиц по линейным траекториям в этом случае возникает компактная структура (P=3) . Наличие фрактальной структуры определенную симметрию системы. Именно если вокруг отдельных точек кластера проводить одинаковые поверхности с размерами >> размер частиц кластера, то массы частей кластера, которые оказываются внутри этих поверхностей, в среднем будет одинаковыми. Если увеличитьVповерхности, то средняя плотность материала кластера в этомVбудет падать

a- среднее р-е частиц кластера

а<<V,~материала кластера.

Таким образом фрактальный кластер – система по своей природе и способу образования беспорядочная – обладает (средней внутренней симметрией).

Фрактальные кластеры реально представляют собой единственное образование, обеспечивающее легкую и жесткую активного вещества шаровой молнии. Из характера такой структуры вытекает ряд следствий. Одним из них – возникновение у шаровой молнии подъемной силы за счет протекающих в ней процессов выделения тепла. Нагревание воздуха в области шаровой молнии вызывает конвективное движение воздуха вверх, подобное движение клубов дыма над трубой. Направленное движение воздуха, проходящего сквозь шаровую молнию и создает подъемную силу. Для оценки ее, учитывая подобие, с движением дыма над трубой, можно использовать т.Я.Б.

Для опыта был изготовлен из очень тонкой вольфрамовой проволки набор комков радиусом от 0,1 до 2 см. и весом 20 – 150 мг., которые подвешены на тонкой кварцевой нити. По прогибу нити определялась сила, действующая на нее со стороны комка. Комок нагревался лазерным излучением. Условие всплывания шаровой молнии – когда подъемная сила уравновешивает вес конструкции, для оптически толстого (где больше двух) и оптически тонкого (где меньше двух) имеет вид:

;.

T– температура окружающего воздуха,- повышение температуры воздуха внутри комка по сравнению сT,m– масса комка,M– масса, находящегося внутри его воздуха,- плотность материала комка.

Из этих формул следует, что всплывание может происходить при небольшихgrad(T).

Скорость потока воздуха сквозь молнию, согласно теореме Зельдовича равна.А=3±1.

Кластеры.

Рассмотрим случай, когда кластер растет при последовательном присоединении к нему отдельных частиц. Этот процесс происходит как за счет движения кластера, так и за счет диффузионного движения частиц. Скорость кластера мала по сравнению с тепловой скоростью частиц, так что в итоге присоединение частиц происходит за счет диффузии и фрактальная размерность кластера в обоих случаях одинаковаD=2.5

С учетом обоих процессов в уравнении балансов для числа частиц в кластере и, где- частота прилипших частиц к кластеру,- учитывает движение кластера по линейной траектории. Радиус кластера достаточно велик;, где– скорость движения кластера под действием силы тяжести. Следовательно, что каждая частица, попадая в область нахождения кластера, прилипает к нему, хотя и совершенно диффузионное движение.

(20)

(21)

- плотность металла.

;;

;;.

Рассмотрим случай, когда(это выполняется при.

вклады обоих механизмов сравнимы.

D=2.5,,,,t=11c,,t=2.8с,,- зависимость от содержания пыли.

Рассмотрим другой случай, когда образование кластера происходит из кластера с меньшим размером в результате их последовательной ассоциации. (за счет диффузионного, линейного движения) (,):D=1.85R– радиус кластера.kдля ассоциации кластеров с радиусамии

(26)- функция распределения кластеров по числу частиц, в них=среднему числу частиц,- для атмосферного воздействия при комнатной температуре

,,;

задаются формулой (21)

умножим это выражение наи проинтегрируем поdn.Получим (с учетом

,

используя (26) и (20):

,

,

,

,,I=2.7 – выполняя усреднение (26).

Т.о., для среднего числа частиц в кластере.

Если. Начиная с момента, когда число частиц в кластере равнокластер растет с ускорением

(28)

Для атмосферного воздуха при комнатной температуре,и содержание пыли в воздухена основе (28) имеем дляt=4.7cи дляt=1.9c,причемt~иt~1/x.

Если процесс протекает в электрическом поле и с участием заряженных частиц, то на первой стадии это приводит к образованию цилиндрических аэрозолей, что отразится как на строении образующего кластера, так и на скорости процесса.

Формула (28) справедлива в случае, если максимальный радиус коррекции кластераR>>. Характерные размеры кластераr~;- средняя плотность вещества в объеме кластера. Нарушение этого условия при выполнении, означает, что ассоциация кластера заканчивается до того, как начинает работать второй механизм ассоциации. В этом случае характерное время сборки кластера оценивается по формуле

t~~.

superbotanik.net

Курсовая работа - Оптические, звуковые и электрические явления в атмосфере

Оптические явления.При прохождении лучей Солнца через атмосферу часть прямой солнечной радиации поглощается молекулами воздуха, рассеивается к отражается. В результате этого в атмосфере наблюдаются различные оптические явления, воспринимаемые непосредственно нашим глазом. К числу таких явлений относятся: цвет неба, рефракция, миражи, гало, радуга, ложное солнце, световые столбы, световые кресты и др.

Цвет неба. Всем хорошо известно, что цвет неба в зависимости от состояния атмосферы меняется. Ясное безоблачное небо днем имеет голубой цвет. Этот цвет неба обусловлен тем, что в атмосфере много рассеянной солнечной радиации, в составе которой преобладают короткие волны, воспринимаемые нами как голубые или синие. Если воздух запылен, то меняется спектральный состав рассеянной радиации, ослабляется синева неба; небо становится белесоватым. Чем больше мутность воздуха, тем слабее синева неба.

С высотой цвет неба меняется. На высоте от 15 до 20 км цвет неба черно-фиолетовый. С вершин высоких гор цвет неба кажется густо-синим, а с поверхности Земли — голубым. Это изменение цвета от черно-фиолетового до светло-голубого обусловливается все возрастающим рассеиванием сначала фиолетовых, потом синих и голубых лучей.

При восходе и заходе Солнца, когда солнечные лучи проходят сквозь наибольшую толщу атмосферы и теряют при этом почти все коротковолновые лучи (фиолетовые и синие), а до глаза наблюдателя доходят только длинноволновые лучи, цвет части неба у горизонта и само Солнце имеет красную или оранжевую окраску.

Рефракция. В результате отражения и преломления солнечных лучей при их прохождении через слои воздуха различной плотности их траектория подвергается некоторым изменениям. Это приводит к тому, что небесные тела и отдаленные предметы на земной поверхности мы видим в направлении, несколько отличающемся от того, в котором они действительно расположены. Например, если мы смотрим на вершину горы из долины, то гора нам кажется приподнятой; при визировании с горы в долину замечается повышение дна долины.

Угол, образованный прямой линией, идущей от глаза наблюдателя до какой-либо точки, и направлением, в котором глаз видит эту точку, называется рефракцией.

Величина рефракции, наблюдаемой у земной поверхности, зависит от распределения плотности нижних слоев воздуха и от расстояния от наблюдателя до предмета. Плотность же воздуха зависит от температуры и давления. В среднем величина земной рефракции в зависимости от расстояния до наблюдаемых предметов при обычных атмосферных условиях равна:

Миражи. Явления миражей связаны с аномальной рефракцией солнечных лучей, которая вызывается резким изменением плотности воздуха в нижних слоях атмосферы. При мираже наблюдатель видит, кроме предметов, еще их изображения ниже или выше действительного положения предметов, а иногда справа или слева от них. Нередко наблюдатель может видеть только изображение, не видя самих предметов.

Если плотность воздуха с высотой резко падает, то изображение предметов наблюдается выше их действительного местонахождения. Так, например, при подобных условиях можно видеть силуэт корабля над уровнем моря, когда корабль скрыт от наблюдателя за горизонтом.

Нижние миражи часто наблюдаются на открытых равнинах, в особенности в пустынях, где плотность воздуха резко увеличивается с высотой. Человек в этом случае нередко видит в отдалении как бы водную, слегка волнующуюся поверхность. Если при этом на горизонте имеются какие-либо предметы, то они как бы поднимаются над этой водой. И в этом водном пространстве видны перевернутые, как бы отраженные в воде их очертания. Видимость водной поверхности на равнине создается в результате большой рефракции, обусловливающей обратное изображение внизу у земной поверхности части неба, находящегося позади предметов.

Гало. Под явлением гало понимаются светлые или радужные круги, наблюдаемые иногда вокруг Солнца или Луны. Гало бывает в том случае, когда эти небесные тела приходится видеть через легкие перистые облака или через пелену тумана, состоящего из взвешенных в воздухе ледяных иголочек (рис. 63).

Явление гало происходит вследствие преломления в ледяных кристалликах и отражения от их граней солнечных лучей.

Радуга. Радуга представляет собой большую разноцветную дугу, наблюдаемую обычно после дождя на фоне дождевых облаков, находящихся против той части неба, где светит Солнце. Величина дуги бывает различна, иногда наблюдается полный радужный полукруг. Нередко мы видим одновременно две радуги. Интенсивность развития отдельных цветов в радуге и ширина их полос различны. В хорошо видимой радуге с одного края располагается красный цвет, а с другой — фиолетовый; остальные цвета в радуге находятся в порядке цветов спектра.

Явления радуги обусловлены преломлением и отражением солнечных лучей в капельках воды, находящихся в атмосфере.

Звуковые явления в атмосфере.Продольные колебания частиц материи, распространяясь по материальной среде (по воздуху, воде и твердым телам) и достигнув уха человека, вызывают ощущения, называемые «звуком».

В атмосферном воздухе всегда находятся звуковые волны различной частоты и силы. Часть этих волн создается искусственно человеком, а часть звуков имеет метеорологическое происхождение.

К звукам метеорологического происхождения относятся гром, завывание ветра, гудение проводов, шум и шелест деревьев, «голос моря», звуки и шумы, возникающие при передвижении песчаных масс в пустынях и над дюнами, а также снежинок над гладкой поверхностью снега, звуки при падении на земную поверхность твердых и жидких осадков, звуки прибоя у берегов морей иозер и др. Остановимся на некоторых из них.

Гром наблюдается при явлениях грозового разряда. Возникает он в связи с особыми термодинамическими условиями, которые создаются на пути движения молнии. Обычно гром мы воспринимаем в виде ряда ударов — так называемых раскатов. Раскаты грома объясняются тем, что звуки, порождаемые в одно время вдоль длинного и обычно извилистого пути молнии, доходят до наблюдателя последовательно и с различной интенсивностью. Гром, несмотря на большую силу звука, слышится на расстоянии не более 20—25 км (в среднем около 15 км).

Завывание ветра происходит при быстром движении воздуха сзавихриванием у каких-либо предметов. При этом бывает чередование накопления и оттока воздуха от предметов, что и дает начало звукам. Гудение проводов, шум и шелест деревьев, «голос моря» также связаны сдвижением воздуха.

«Голос моря» — своеобразное звуковое явление, наблюдаемое на морях. Эти звуковые явления бывают во время ветра и возникают от движения воздуха над гребнями и подошвами морских волн.

Скорость звука в атмосфере. На скорость распространения звука в атмосфере влияет температура и влажность воздуха, а также ветер (направление и его сила). В среднем скорость звука в атмосфере равна 333 м в секунду. С увеличением температуры воздуха скорость звука несколько возрастает. Изменение абсолютной влажности воздуха оказывает меньшее влияние на скорость звука. Ветер оказывает сильное влияние: скорость звука по направлению движения ветра увеличивается, против ветра — уменьшается.

Знание величины скорости распространения звука в атмосфере имеет большое значение при решении ряда задач по изучению верхних слоев атмосферы акустическим методом. Пользуясь средней скоростью звука в атмосфере, можно узнать расстояние от своего местонахождения до места возникновения грома. Для этого нужно определить число секунд между видимой вспышкой молнии и моментом прихода звука грома. Затем надо умножить среднее значение скорости звука в атмосфере — 333 м/сек. на полученное число секунд.

Эхо. Звуковые волны, подобно световым лучам, испытывают при переходе из одной среды в другую преломление и отражение. Звуковые волны могут отражаться от земной поверхности, от воды, от окружающих гор, облаков, от поверхности раздела воздушных слоев, имеющих различную температуру и влажность. Звук, отражаясь, может повториться. Явление повторения звуков вследствие отражения звуковых волн от различных поверхностей носит название «эхо».

Особенно часто эхо наблюдается в горах, вблизи скал, где громко произнесенное слово через некоторый промежуток времени повторяется один или несколько раз. Так, например, в долине Рейна имеется скала Лорелей, у которой эхо повторяется до 17—20 раз. Примером эхо являются и раскаты грома, которые возникают вследствие отражения звуков электрических разрядов от различных предметов на земной поверхности.

Электрические явления в атмосфере. Наблюдаемые в атмосфере электрические явления связаны с наличием в воздухе электрически заряженных атомов и молекул газов, носящих название ионов. Ионы бывают как с отрицательным, так и с положительным зарядом, а по величине массы делятся на легкие и тяжелые. Ионизация атмосферы происходит под воздействием коротковолновой части солнечной радиации, космических лучей и излучения радиоактивных веществ, содержащихся в земной коре и в самой атмосфере. Сущность ионизации заключается в том, что указанные ионизаторы передают нейтральной молекуле или атому газа воздуха энергию, под действием которой удаляется один из наружных электронов из сферы действия ядра. В результате этого атом, лишенный одного электрона, становится положительным легким ионом. Удалившийся из данного атома электрон быстро присоединяется к нейтральному атому и таким путем создается отрицательный легкий ион. Легкие ионы, встречаясь с взвешенными частицами воздуха, отдают им свой заряд и образуют таким образом тяжелые ионы.

Количество ионов в атмосфере с высотой увеличивается. В среднем на каждые 2 км высоты число их возрастает на тысячу ионов в одном куб. сантиметре. В высоких слоях атмосферы максимальная концентрация ионов наблюдается на высотах около 100 и 250 км.

Наличие в атмосфере ионов создает электропроводимость воздуха и электрическое поле в атмосфере.

Проводимость атмосферы создается благодаря большой подвижности главным образом легких ионов. Тяжелые ионы играют в этом отношении небольшую роль. Чем выше в воздухе концентрация легких ионов, тем больше его проводимость. И так как с высотой увеличивается число легких ионов, то и проводимость атмосферы с высотой возрастает. Так, например, на высоте 7—8 км проводимость, примерно, в 15—20 раз больше, чем у земной поверхности. На высоте около 100 км проводимость очень большая.

В чистом воздухе мало взвешенных частиц, поэтому в нем больше легких ионов и меньше тяжелых. В связи с этим проводимость чистого воздуха выше, чем проводимость запыленного. Поэтому при мгле и тумане проводимость имеет низкое значение, Электрическое поле в атмосфере впервые установил М. В. Ломоносов. При ясной безоблачной погоде напряженность поля считается нормальной. По отношению к земной поверхности атмосфера заряжена положительно. Под влиянием электрического поля атмосферы и отрицательного поля земной поверхности устанавливается вертикальный ток положительных ионов от земной поверхности вверх, а отрицательных ионов из атмосферы вниз. Электрическое поле атмосферы вблизи земной поверхности чрезвычайно изменчиво и зависит от проводимости воздуха. Чем меньше проводимость атмосферы, тем больше напряженность электрического поля атмосферы. Проводимость же атмосферы в основном зависит от количества взвешенных в ней твердых и жидких частиц. Поэтому во время мглы, при осадках и тумане напряженность электрического поля атмосферы увеличивается и это нередко приводит к электрическим разрядам.

Огни Эльма. Во время гроз и шквалов летом или снежных бурь зимой можно иногда наблюдать электрические спокойные разряды на остриях предметов, выдающихся над земной поверхностью. Эти видимые разряды носят название «огней Эльма» (рис. 64). Чаще всего огни Эльма наблюдаются на мачтах, на вершинах гор; иногда они сопровождаются несильным потрескиванием.

Образуются огни Эльма при большой напряженности электрического поля. Напряженность бывает настолько велика, что ионы и электроны, двигаясь с большой скоростью, расщепляют на своем пути молекулы воздуха, отчего увеличивается число ионов и электронов в воздухе. В связи с этим возрастает проводимость воздуха и с острых предметов, где накапливается электричество, начинается истечение электричества и разрядка.

Молнии. В результате сложных термических и динамических процессов в грозовых облаках происходит разделение электрических зарядов: обычно отрицательные заряды располагаются в нижней части облака, положительные в верхней. В связи с таким разделением объемных зарядов внутри облаков создаются сильные электрические поля как внутри облаков, так и между ними. Напряженность поля у земной поверхности при этом может достигать нескольких сотен киловольт на 1 м. Большая напряженность электрического поля приводит к тому, что в атмосфере возникают электрические разряды. Сильные искровые электрические разряды, которые происходят между грозовыми облаками или между облаками и земной поверхностью, называются молниями.

Продолжительность вспышки молнии в среднем около 0,2 сек. Количество электричества, которое несет молния, составляет 10—50 кулонов. Сила тока бывает очень большой; иногда она достигает 100—150 тыс. ампер, но в большинстве случаев не превышает 20 тыс. ампер. Большинство молний с отрицательным зарядом.

По внешнему виду искровой вспышки молнии разделяют на линейные, плоские, шаровые, четочные.

Наиболее часто наблюдаются линейные молнии, среди которых различают ряд разновидностей: зигзагообразные, разветвленные, ленточные, ракетовидные и др. Если линейная молния образуется между облаком и земной поверхностью, то ее средняя длина равна 2—3 км; молния между облаками может достигать 15—20 км длины. Разрядный канал молнии, который создается под влиянием ионизации воздуха и по которому происходит интенсивное встречное течение отрицательных зарядов, скопившихся в облаках, и положительных зарядов, скопившихся на земной поверхности, имеет диаметр от 3 до 60 см.

Плоская молния представляет собой кратковременный электрический разряд, охватывающий значительную часть облака. Плоская молния не всегда сопровождается громом.

Шаровая молния — редкое явление. Образуется она в некоторых случаях после сильного разряда линейной молнии. Шаровая молния представляет собой огненный шар с диаметром обычно в 10—20 см (а иногда и до нескольких метров). По земной поверхности эта молния передвигается с умеренной скоростью и обладает тенденцией проникать внутрь зданий через дымоходы и другие небольшие отверстия. Не причинив вреда и проделав сложные движения, шаровая молния может спокойно уйти из здания. Иногда же она вызывает пожары и разрушения.

Еще более редкое явление представляют четочные молнии. Они бывают в том случае, когда электрический разряд состоит из ряда светящихся шаровидных или продолговатых тел.

Молнии нередко причиняют большой ущерб; они разрушают здания, вызывают пожары, расплавляют электрические провода, раскалывают деревья и поражают людей. Для защиты зданий, промышленных сооружений, мостов, электростанций, линий электропередач и других сооружений от прямых ударов молний применяют молниеотводы (обычно их называют громоотводами).

Наибольшее число дней с грозами наблюдается в тропических и экваториальных странах. Так, например, на о. Ява в году 220 дней с грозами, в Центральной Африке 150 дней, в Центральной Америке около 140. В СССР больше всего дней с грозами бывает на Кавказе (до 40 дней в году), на Украине и на юго-востоке Европейской части СССР. Грозовые явления обычно наблюдаются во второй половине дня, в особенности между 15 и 18 часами.

Полярные сияния. Полярные сияния представляют собой своеобразную форму свечения в высоких слоях атмосферы, наблюдаемого временами в ночное время преимущественно в полярных и приполярных странах северного и южного полушарий (рис. 65). Эти свечения являются проявлением электрических сил атмосферы и происходят на высоте от 80до 1000 км в сильно разреженном воздухе при прохождении через него электрических зарядов. Природа полярных сияний еще полностью не разгадана но точно установлено, что причиной их возникновения является воздействие на верхние сильно разреженные слои земной атмосферы заряженных частиц (корпускул), поступающих в атмосферу из активных областей Солнца (пятен, протуберанцев и других участков) во время вспышек солнечного излучения.

Максимальное число полярных сияний наблюдается вблизи магнитных полюсов Земли. Так, например, у магнитного полюса северного полушария в год бывает до 100 сияний.

По форме свечения полярные сияния весьма разнообразны, но обычно их делят на две основные группы: сияния безлучевой формы (однородные полосы, дуги, спокойные и пульсирующие светящиеся поверхности, диффузные свечения и др.) и сияния лучистой структуры (полосы, драпри, лучи, корона и др.). Полярные сияния безлучевой структуры отличаются спокойным свечением. Сияния же лучевой структуры, наоборот, подвижны, у них меняется как форма, так яркость и цвет свечения. Кроме этого, сияния лучистой формы сопровождаются магнитными возбуждениями.

www.ronl.ru

Реферат Электрические и плазменные явления в атмосфере

РефератРабота добавлена на сайт bukvasha.ru: 2015-10-28 Электрические и плазменные явления в атмосфере.

Строение земной атмосферы. Общие характеристики.

         Состояние атмосферы определяется множеством физических факторов и процессов, химическим составом и преобразований веществ, синоптическими и климатическими характеристиками, процессами взаимодействия с внешними факторами и антропогенным взаимодействием.

         Масса атмосферы составляет 5.2·1015т и практически неизменна и в основном состоит из газа. Удерживается эта газовая оболочка за счет гравитационного взаимодействия. До высоты 60 – 8 км от поверхности земли атмосфера находится в перемещенном состоянии и выполняется условие термодинамического равновесия, выше  эти условия нарушаются. От поверхности Земли можно выделить основные слои атмосферы: тропосфера, тропопауза, стропосфера, стропопауза, мезосфера, мезопауза, ионосфера, термосфера, магнитосфера.

         Магнитная сфера – внешний слой атмосферы, удерживается за счет взаимодействия с магнитным полем Земли.

         Тропосфера занимает слой атмосферы до 10км.

         В тропосфере температура убывает с высотой с градиентом 6.5 º/км. В тропосфере происходит основное преобразование солнечной энергии в кинетическую энергию молекул.

            Распределение энергии спектра по λ

Солнечное излучение такое же, но есть линии фраунгофера, т.е. нет излучения в этой области.

λmaxT=const, Т≈6000К – на поверхности Солнца.

         Излучение Солнца нагревает поверхность Земли, через поверхность Земли нагревает тропосферу. Частично атмосфера нагревается за счет поглощения солнечного излучения. Тропосфера в основном состоит из N2, O2, Ar. 99,96% приходится на три газа. Все остольные газы составляют 0,04%. Атмосфера пронизана электрическим полем приблизительно 50км. Это электрическое поле приводит……….E=100В/м – электрическое поле в атмосфере.

         В результате возникает электрический ток с плотностью j=10-12А/м2.

         Для существования такого электрического поля необходим заряд Земли q=105Кл. это электрическое поле должно постоянно поддерживаться. При отсутствии ее – зарядка за 10 мин. Носителями заряда являются положительные и отрицательные ионы, которые классифицируются по массе и по их подвижности:

1.     Легкие ионы: b≥10-4м2/сВ – подвижность.

b – скорость, которую они приобретают в электрическом поле. Размер таких частиц – r ≤ 6.6  10-8см.

2.     Легкие промежуточные ионы: 10-6м2/сВ≤b≤10-4м2/сВ.

Раз мер – 6.6  10-8≤r≤8  108 см.

3.     Тяжелые промежуточные ионы: 8  10-8≤r≤2.5  10-6 см.

4.     Ионы Ланжевена: 2.5  10-6≤r<5.7  10-6 см.

5.     Ультра тяжелые: r>5.7  10-6 см.

Ионы в основном берутся в результате ионизации молекул атмосферы за счет солнечного или космического излучения.

        

λ – электропроводность (изменяется с высотой по экспоненциальному закону).

λ=λ0exp(r-r0)α

λ0 – у поверхности Земли. r0 – радиус Земли.

         Экспоненциальная зависимость нарушается только до высоты 2 км.

α – характерный размер, который определяется как величина

α -1= 6.4км

Нарушение экспоненциальной зависимости объясняется наличием газотурбулентного течения, а также запыленностью.

         Первая электронная модель атмосферы – модель Вильсона. Согласно этой модели поверхность Земли имеет отрицательный заряд, а атмосфера – положительный.   В таком случае имеется возможность рассматривать сферический конденсатор, через который протекает ток разрядки

Iр – ток разрядки.

Для поддержки разности потенциала электрического поля должен протекать ток зарядки Iз в обратном направлении

Iз – ток молнии (заряд между атмосферой и поверхностью Земли).

         Грозовые облака у поверхности Земли носят отрицательный заряд и разряд молнии переносит отрицательный заряд на поверхность Земли. это равносильно тому, что внешняя оболочка атмосферы приобретает положительный заряд.

         Для описания модели Вильсона используется уравнения Максвелла

λЕ – обусл. электропровод. атмосферы,

ρv – гидродинамическая скорость среды, т.е. электрический ток, возникающий за счет переноса ветром, т.е. скорость облака,

Dт – коэффициент турбулентной диффузии.

    E – напряженность сферического конденсатора.

 - сопротивление единичного столба атмосферы.

         Из пропорции  

λ=λ0expα (r-r0)

Ip=1000A – ток разрядки

φ∞=278кВ

Re∞=1.3·107 Ом·м2

J=2·10-12А/м2.

            Учитывая то, что Jp= Jз мы должны определить какие силы приводят к такому мощному Jз, работу сторонних источников.

Классификация газовых разрядов. Таундсовский пробой газа.

         Электрический пробой газа – образование высоко ионизированного канала в межэлектродном пространстве, по которому протекает электрический заряд с одного электрода на другой.

Предположим, что с поверхности катода К эмитируют, т.е. вылетают с поверхности электроны концентрации n0 в единицу времени. Тогда электрический ток еn0=i – ток, протекает с поверхности К. Допустим, что 1 электрон на пути в 1см производит α ионизаций.

В электрическом поле электрон ускоряется и его кинетическая энергия увеличивается. Если  на расстоянии равному длине свободного пробега электрон приобретает кинетическую энергию Ек=φ ионизации атома, то при столкновении атом ионизируется.

Число ионизаций на пути dx=αdx. В этом случае dn=ndx.

Предположим 1) что объемной рекомбинацией можно принебречь,

                         2) скорость ионизации во всем объеме одинакова,

                        3) длина свободного пробега λ<<L.

Задача: Определить критические условия, при которых ток лавинообразно растет, т.е. это и есть условие пробоя.

α – первый потенциал Таундсена

Надо решить уравнение с граничными условиям

из интегрирования n=n0eαx.

Учитывая то, что n~i мы можем записать

i=i0eαx.

α играя роль параметра в экспоненте, определяющий темп ионизации атомов.

i=i0eαL – на расстоянии L между электродами.

Учтем следущее:

Сколько атомов ионизируется в межэлектродном пространстве

n=n0eαL-n0=n’ – концентрация атомов, которые ионизируются в межэлектродном пространстве.

Представим себе, что положительный ион, который образуется в межэлектродном пространстве двигается в сторону катода и соударяясь с ним выбивает 1 электрон. Не каждый ион может выбить электрон при соударении с катодом. Поэтому введем коэффициент γ – второй коэффициент Таундсена, который характеризует вероятность выбивания вторичного электрона ионом.

n1  - концентрация электронов с учетом вторичной эмиссии.

         γ≈ 10-1¸10-4 – вероятность.

В лучшем случае при столкновении 10 ионов выбивается 1 электрон.

n1=n0+γ(eαL-1)

                    

Если выполняется условие пробоя 1+γ=γеαL, i1→∞.

Частота ионизации и связь с первым коэффициентом Таундсена.

Частота ионизации – параметр, характеризующий скорость образования электронов.

f(ε) –  функция распределения электронов по энергиям, т.е. в интервале (ε1, ε+dε) будет количество электронов равное f(ε)dε.

Нормировка будет проведена следующим образом

ε≥I – чтобы осуществилась ионизация.

ε*≥I.

ε* - энергия электрона должна быть больше либо равна энергии ионизации атома или электрона, чтобы произошла ионизация.

,

σi – сечение ионизации.

 - если пренебречь рекомбинацией.

.

Закон подобия Пашена. Минимальное пробивное натяжение.Критические условия пробоя в межэлектродном пространстве.

; где А,В – экспериментальные коэффициенты.

;

; ;

; ;

;  - зависимость Е от рL

, где V- разность  ;

.

Какие минимальные (pL) необходимы, чтобы возник пробой между электродами.

Для воздуха А=15; В=365; , С=1,18;

; При концентрации  напряженность между носителями заряда сравнима с напряженностью внешнего электрического поля.

, где R-среднее расстояние между заряженными частицами.

Для теории Таундсена есть предельное значение pL<1000

L~1/5 см, если L>5 – теория не работает.Стримеры

         Стример – умеренный, слабоионизированный, тонкий канал, который произрастает из первичной лавины и может быть направлен в обе стороны, как к положительному, так и отрицательному  электроду.

Между К и А возникает разность потенциалов. Электроны эмитируют с поверхности К и т.к. поле достаточно сильно, то его энергии достаточно, чтобы ионизировать атом на расстоянии равном средней длине свободного пробега.

В этом случае возможно возникновение лавины – процесса нарастания концентрации заряженных частиц. Необходимо большое электрическое поле.

С увеличением концентрации заряженных частиц увеличивается внутреннее электрическое поле в лавине обусловленное тем, что положительные ионы все смещаются в сторону К.

E1 – поле внутри лавины.

E – поле между К и А.

Распространение лавины останавливается, т.к. Е1 и Е направлены в различные стороны, т.е. если . Теперь развитие канала может происходить только по новому сценарию.  Необходимо образование новой лавины.

         Предположим, что какой – то фотон из головки лавины сталкивается с атомом и ионизирует  его. Тогда новообразованный электрон может основать новую лавину.

         Образование лавины происходит до тех пор, пока ионизационный канал не замкнется на А. Этот канал и называется стримером.

         , где - скорость распределения зарядов.

- подвижность.

; .

         Допустим, что лавина распространяется во все стороны в следствии диффузии электронов. За время t она может распространиться на расстояние

          

; ;

         Допустим, что каждая лавина происходит от одного электрона. Если она развивается, то будет коническое расширение. В головке лавины будут образовываться в слое dx количество ионов  ;

         Если мы его приравняем или проинтегрируем ( - объем слоя, если  - количество ионов в лавине) ; ; .

         Для простоты расчетов предположим, что все положительные ионы сосредоточены в головке лавины и  с радиусом r.

; ;

; .

Из этого условия получим:

; ;

; .

         Из графика видно, если pL>200, то в этом случае кривые практически совпадают. При меньших значениях pL – проявляется вторичная ионизация на K и коэффициент  начинает изменяться. Мы должны пользоваться теорией Таундсена для пробоя. Рассмотрим второе условие, необходимое для роста стримера:

         ;        - некоторое критическое значение концентрации ионов головки, при котором  возможно развитие стримера.

         Только в таких случаях будет развиваться стример. Из головки будет излучаться фотон, который дает толчок для развития лавины.

 Если pL=200 тор*см, то . При атмосферном давлении P=760 мм.рт.ст. и L=10 см. .

         Условие Мика ;

         Условие Леба .

+ стример катодонаправленный

- стример анодонаправленный.

Лидер

         Развитие электрического разряда в межэлектродном пространстве. Можно отметить следующий этап развития после стримера, который называется лидером.

         Лидер представляет собой сильно ионизированный канал, который распространяется между электродами в значительной мере переносит потенциал одного электрода к другому.

Этот сильно ионизированный канал представляет собой электронейтральную плазму, которая имеет острие в сторону противоположенного электрода. На этом острие сосредоточен потенциал катода. Это острие с большой скоростью распространяется в направлении анода, тем самым как бы приближая электроды друг к другу. В результате напряженность Е электрического поля между электродами с развитием лидера резко возрастает, потому что Е – это разность потенциалов на расстоянии =1 E=U/L.         Этот высокоионизированный канал со временем замыкает электроды.

         За счет высокой ионизации плазмы электропроводность ее имеет высокое значение. По лидерному каналу протекает большой ток. Ток в свою очередь разогревает плазму, температура столба резко возрастает, следовательно, возрастает давление, канал начинает расширяться создавая акустическую волну, Мы ее фиксируем в виде грома.

         Когда лидер достигает противоположного электрода, в обратном направлении начинает распространяться обратная волна. Обратная волна кладет начало развитию непрерывного разряда. Распространение обратной волны можно характеризовать следующим образом. По мере приближения головки к катоду или аноду резко возрастает напряженность в непроводящем зазоре.

         Когда головка лидера касается противоположного электрода,  возрастает эмиссия электронов, резко увеличивается концентрация электронов.

         Обратная волна приводит к стеканию заряда между электродами.

Лидер I=100 A.

           E=100 В/см.

           d=1 мм.

          =10 КА/.

           - проводимость плазмы.

          

           - скорость распространения лидера.

           - скорость расширения.

         Стример распространяется перед лидером, примерно на расстоянии 1м., если расстояние между электродами 10 м.

         Для лидера не обязательна высокая напряженность, как для стримера. Для этого достаточно 200-500 В/см.Молния. Грозовое облако.

         Первопричиной электрических разрядов в атмосфере, является разделение электрический заряд. Как правило облака имеют положительный заряд в верхней части и отрицательный в верхней части по отношению к земле.

         Только в 10 % случаях бывают другие распределения зарядов.

         Разность потенциалов в облаках достигают  В. Электрический заряд грозового облака = 4Кл. Расстояние между зарядами в облаке примерно 2¸5км. При этом средняя напряженность достаточна для пробоев.

         Механизм ионизации в грозовом облаке:

1.     Фотоионизация.

2.     Электризация капель при дроблении, при этом отрываемые капли имеют “-“ заряд.

3.     Двойной электрический слой на поверхности капли. =0,26 В.

Двойной электрический слой возникает за счет того, что молекулы воды, являясь диполями имеют пространственную ориентацию.

В этом случае капля воды будет преимущественно захватывать отрицательные ионы из атмосферы, приобретая избыточный отрицательный заряд. Пока не достигнута разность потенциалов двойного электрического слоя.

Исследование зарядки капель провели в нашей лаборатории. Размер капли воды ; ; N – количество поглощенных ионов поверхностью частицы. Если , то .

4.     Оседание отрицательных капель под действием силы тяжести.

Положительный заряд сохраняется в виде ионов в атмосфере.

Все эти процессы создают нижнюю часть облака , верхнюю - .

Световая вспышка молний длится в среднем 200 мс с интервалом 40мс. Каждый импульс начинается с прорастанием к земле лидерного канала, который светит достаточно слабо. Ток в этом канале приблизительно 100 А. Приближаясь к земле канал начинает ветвиться.

После столкновения лидера с землей, обратно к облаку распространяется яркий световой канал .

Главная стадия возвращения удара проходит при I=100 кА. Далее, через этот искровой канал, в течении 40 мс. и при I=200 A. на землю стекает весь “–“ заряд. Основные параметры внутриоблачных разрядов.

         Длительные вспышки – от 0,01 до 2 секунд. Число импульсов от 1 до 26. Интервал от 3 до 100 мс. Заряд облака от 3 до 80 Кл.

Ступенчатый лидер:

         L – от 3 до 200 м.

         Пауза – от 30 до 125 мс.

          – от  до  см/с.

         q – от 3 до 20 Кл.

Стреловидный лидер:

          - от  до  см/с.

Возвратный удар:

         L – от 2 до 14 км.

          - от  до  см/с.

         =120 кА.

         Длительность пика – до 200 мкс.

         q – до 20 Кл.Шаровая молния.

Усредненные параметры шаровой молнии:

         d=28 ± 4 см.

          - от 8 до 15 с.

          - от 3 до 5 м/с.

         Энергия – приблизительно 20 кДж.

         Плотность энергии – от 15 до 40 .

         Световой поток – 1000 до 2000 люмен.

         Цвет: белый 24 %, желтый 24 %, красный 18 %, оранжевый 14 %, голубой и фиолетовый 12 %.

         В 80 % случаях молния наблюдается в грозовую погоду.

         В 50 – 70 % случайный распад происходит со взрывом. Вероятность появления .

         Вероятность сферической формы 89 %.Одиночная электронная лавина

         Индивидуальная лавина является первичным и неотъемлемым элементом какого либо механизма пробоя. Рассмотрим лавину в одномерном внешнем поле  между плоскими электродами. Пусть она начинается от 1-го электрона, вылетевшего из катода в t=0. OX направим от этого места в сторону А.

         Числа и диффузионные пространственные распределения зарядов.

         С учетом возможного образования и  полные числа электронов и i нарастает по мере продвижения лавины, как

(1)               ;

;

.

(2)               ;

;

, где ,a – коэффициенты ионизации и прилипания.

Все нарождающиеся электроны летят к аноду одной группой со скоростью дрейфа . Однако, в следствии диффузии, электронное облако расплывается около центральной точки , r=0. Плотность электронов в облаке  подчиняется общему уравнению диффузии, в котором должны быть приняты во внимание дрейфовое движение и рождение. Решение уравнения имеет вид

               (3)

         Не падает с расстоянием от движущегося центра (по гауссову закону). Радиус сферы, на которой плотность рывков в e раз больше плотности в центре , растет с течением времени или по мере продвижения лавины по характерному для диффузии закону

                         (4)

где  - средняя хаотическая энергия электронов.

         За время пролета лавины до анода ион практически не успевает сдвинуться с места, поэтому в каждом месте они накапливаются. Плотность +ионов составляет                  .

         Чтобы получить , надо вместо  поставить а.  в формуле задается (3). В отсутствии прилипания в пределе  и не слишком далеко от оси приближенное вычисление интеграла дает

             (5)

Этот результат имеет наглядный физический смысл. Плотность ионов в следе лавины растет с расстоянием x от k. В соответствии с законом размножения . В радиальном же направлении она в каждом сечении x спадает от оси по тому же закону, что и плотность рождающих i-ы -ой. В тот момент, когда центр электронного облака проходит через данное сечение.

Видимые очертания лавины. Каким бы мы способом не фиксировали на опыте изображения лавины, границы его будут соответствовать более или менее определенной величине абсолютной, а не относительной плотности активных частиц. Величина эта в общем определяется чувствительностью регистрационной аппаратуры. Поскольку чувствительность подбирается достаточно высокой min плотность, которая еще регистрируется, <<плотности частиц на оси далеко от k, где . Поэтому низкой плотности частиц на видимом контуре лавины  отвечает наибольшее значение показателя экспоненты, <<-ee . Следовательно, контур соответствует приближенному обращению показателя в нуль и является не параболическим ~, а клиновидным.

.

В области головки клин переходит в закругление. Пространственное распространение зарядов в лавине в два последовательных момента времени показано на рисунке.

         Ассоциации сферических аэрозолей в газе и плазме. При диффузии аэрозолей в воздухе наступает такой момент, когда их поверхности соприкасаются. Тогда за счет взаимодействия, а также за счет химических процессов на поверхности, аэрозоли не слипаются, т.е. происходит их ассоциация. Пусть радиус одного сорта аэрозолей равняется , радиус второго . В начале рассмотрим случай, когда один аэрозоль первого сорта покоится, так что на его поверхность приходит диффузионный поток аэрозолей второго сорта. Полный ток аэрозолей на расстоянии r от центра пробного аэрозоля равняется , где D – коэффициент диффузии аэрозолей второго типа  - их плотность. Так как аэрозоли не поглощаются в объеме, то и ток не зависит от расстояния r, т.е. i=const:

, где  - плотность аэрозолей второго типа вдали от поглощающего центра при  проходит ассоциация аэрозолей, т.е.  от . . Уравнение баланса для ассоциационных аэрозолей имеет вид:

,

где  - плотность аэрозолей первого типа,  - константа скорости ассоциации, которая равна .

При диффузном характере движения каждого из аэрозолей для среднего квадрата относительного расстояния между аэрозолями имеем

 

.

Если r много больше  - длина свободного пробега, тогда сила сопротивления аэрозоли будет определяться функцией стокса и при движении аэрозолей радиус  со скоростью  , где  - вязкость воздуха. Придадим аэрозолю заряд e, тогда подвижность , где t – температура воздуха  , где E – напряженность электрического поля  (3). Вводя число Клудсена  . Для воздуха при атмосферном давлении температуре равной 300К эта формула имеет вид ,    из (3) в (2) . Для воздуха при температуре t=300K . k не зависит от сорта аэрозолей.

         Рассмотрим теперь заряженные аэрозоли. Пусть 1-, 2-. При расстоянии r между ними сила их взаимодействия равна . Эта сила уравновешена с силой Стокса, так что + аэрозоли движутся на встречу – заряду со скоростью , где  - радиус положительной аэрозоли.

.

За пробный возьмем положительный аэрозоль и проведем вокруг него сферу радиуса r. Частота ассоциаций для рассматриваемого положительного аэрозоля есть произведение площади выбранной сферы на поток отрицательно заряженных частиц, пересекает ее . Введем константу скорости ассоциации заряженной аэрозоли в соответствии с уравнением баланса

                                      (7)

         Сравнив (6) и (7) => диффузионный механизм существен для аэрозолей больших размеров: . В этом случае энергия кулоновского взаимодействия двух аэрозолей при соприкосновении << их тепловой энергии.

         Рассмотрим ассоциационный аэрозоль во внешнем электрическом поле. Электрическое поле наводит на аэрозоль дополнительные моменты, а взаимодействие этих дипольных моментов при некоторых их пространственных конфигурациях отвечает притяжение частиц. В этом случае взаимодействие приводит к сближению и ассоциации аэрозолей.

         Потенциал взаимодействия двух частиц с дипольной молекулой  и .

,

где r – расстояние между частицами, n – единичный вектор вдоль направления соединения частиц.

         Поскольку в рассматриваемом случае дипольные моменты аэрозолей наводятся внешним полем, то  ( - компонента тензора поляризуемости аэрозолей в направлении электрического поля ). В соответствии с условием задачи, направление E и D совпадают. Тогда ,  - угол между направлениями соединений аэрозолей (0<< - притяжение).

         Для силы, действующей на взаимодействие аэрозолей при больших расстояниях между ними запишем

;

                                      ;      

          изменяется меньше  и в области притяжения стремится его уменьшить, тем самым  у3скоряет ассоциацию аэрозолей. При =0, когда притяжение аэрозолей максимально, =0, т.е., при которой ассоциация проходит наиболее эффективно,  не существенно, т.е. ею можно пренебречь

;

                            ;

                             выделяем элементарный объем V вблизи проб. аэрозоли. Поверхность V обеспечивает одинаковое значение t ассоциационной аэрозоли. , , где  - расстояние до поверхности при =0.

dW – вероятность того, что в dS находится аэрозоль, тогда количество в объеме его нет

;

; .

                                             (9)

Для сферической аэрозоли рассчитывается ;

                                               (10)

Сравним (6) и (10).

.

Образование нитевидных аэрозолей.

         Нитевидные аэрозоли более эффективно образуются при ассоциации во внешнем электрическом поле, ибо в этом случае направление взаимного сближения при ассоциации аэрозолей выделено и определено направление внешнего поля.

         Пусть в воздухе имеется набор сферических аэрозолей радиуса  и пусть среди них находится простейший нитевидный аэрозоль – цилиндрический. Сравним их скорости ассоциации. Если скорее идет ассоциация за счет диффузионного движения аэрозолей, то прилипание сферических аэрозолей будет происходить по всей поверхности, и, в итоге, цилиндрический аэрозоль потеряет свою форму. Если же внешним полем – к концам.

         В случае цилиндрических аэрозолей длиной 2L и радиусом  и сферических аэрозолей радиусом  емкость равна .

Тогда                                                 (12)

                                                                    (13)

; ; ;

 при                                    (14)

x – количество сферических аэрозолей в воздухе в граммах аэрозолей на 1кг воздуха,  - плотность вещества аэрозолей, , а=1мкм, .

(13) справедливо при .         На рисунке показано положение границы области пространства вокруг цилиндрической аэрозоли. Области соприкосновения сходятся к концам цилиндра аэрозолей следовательно, что при действии во внешнем электромагнитном поле сферические аэрозоли будут попадать на концы. Это ведет к росту цилиндрической аэрозоли.Фрактальные кластеры.

         Активное вещество шаровой молнии представляет собой сгусток нитевидных аэрозолей. Такая структура не разрушается под действием конвективных потоков воздуха. Кроме того, присутствие заряда на концах такого образования создает поверхностное натяжение, которое не позволяет ему схлопнуться, и придает ему форму, близкую к сферической.

         Более внимательный анализ показывает, что при релаксации паров металла, которые имеют промежуточную фазу – образования твердых частичек, - возникает структура фрактальных кластеров. Фрактальный кластер представляет собой систему жестко связанных макрочастиц. Хотя обычно под кластером понимают связанное состояние атомов или молекул. Слово «фрактальный» отличает дробную размерность кластера. По мере роста размера фрактального кластера его масса изменяется не пропорционально объему; сами частицы занимают малую часть объема – он в основном приходиться на пустоту. Такой физический смысл вложен в термин «фрактальный».

         Этот вид кластера образуется в процессе ассоциации твердых аэрозолей, частиц дыма при гелеобразовании в коллоидных растворах.

         Фрактальный кластер имеет рыхлую структуру, причем основной параметр, характеризующий его, - фрактальная размерность D. Если фрактальный кластер собирается из твердых частиц со средним размером а и средней массой , то масса кластера m при его размере R задается формулой , где А – числовой множитель порядка. .

         D определяет способность его образования. Кластер состоит из сферических частиц одинакового размера. Если кластер образуется путем последовательного присоединения к нему отдельных частиц, совершается броуновское движение в пространстве D=246±0.05.

При движении частиц по линейным траекториям в этом случае возникает компактная структура (P=3) . Наличие фрактальной структуры определенную симметрию системы. Именно если вокруг отдельных точек кластера проводить одинаковые поверхности с размерами >> размер частиц кластера, то массы частей кластера, которые оказываются внутри этих поверхностей, в среднем будет одинаковыми. Если увеличить V поверхности, то средняя плотность материала кластера в этом V будет падать

                                    a- среднее р-е частиц кластера

                                                                  а<< V, ~материала кластера.

Таким образом фрактальный кластер – система по своей природе и способу образования беспорядочная – обладает (средней внутренней  симметрией).

Фрактальные кластеры реально представляют собой единственное образование, обеспечивающее легкую и жесткую активного вещества шаровой молнии. Из характера такой структуры вытекает ряд следствий. Одним из них – возникновение у шаровой молнии подъемной силы за счет протекающих в ней процессов выделения тепла. Нагревание воздуха в области шаровой молнии вызывает конвективное движение воздуха вверх, подобное движение клубов дыма над трубой. Направленное движение воздуха, проходящего сквозь шаровую молнию и создает подъемную силу. Для оценки ее, учитывая подобие, с движением дыма над трубой, можно использовать т.Я.Б.

         Для опыта был изготовлен из очень тонкой вольфрамовой проволки набор комков радиусом от 0,1 до 2 см. и весом 20 – 150 мг., которые подвешены на тонкой кварцевой нити. По прогибу нити определялась сила, действующая на нее со стороны комка. Комок нагревался лазерным излучением. Условие всплывания шаровой молнии – когда подъемная сила уравновешивает вес конструкции, для оптически толстого (где больше двух) и оптически тонкого (где меньше двух) имеет вид:

;             .

T – температура окружающего воздуха,  - повышение температуры воздуха внутри комка по сравнению с T, m – масса комка, M – масса, находящегося внутри его воздуха,  - плотность материала комка.

         Из этих формул следует, что всплывание может происходить при небольших grad(T).

         Скорость потока воздуха сквозь молнию, согласно теореме Зельдовича равна          . А=3±1.Кластеры.

         Рассмотрим случай, когда кластер растет при последовательном присоединении к нему отдельных частиц. Этот процесс происходит как за счет движения кластера, так и за счет диффузионного движения частиц. Скорость кластера мала по сравнению с тепловой скоростью частиц, так что в итоге присоединение частиц происходит за счет диффузии и фрактальная размерность кластера в обоих случаях одинакова D=2.5

         С учетом обоих процессов в уравнении балансов для числа частиц в кластере и , где  - частота прилипших частиц к кластеру,  - учитывает движение кластера по линейной траектории. Радиус кластера достаточно велик  ; , где  – скорость движения кластера под действием силы тяжести. Следовательно, что каждая частица, попадая в область нахождения кластера, прилипает к нему, хотя и совершенно диффузионное движение.

                       (20)

            (21)

 - плотность металла.

                            ; ;

; ; .

Рассмотрим случай, когда  (это выполняется при .

 вклады обоих механизмов сравнимы.

D=2.5, , , , t=11c, , t=2.8с, ,  - зависимость от содержания пыли.

Рассмотрим другой случай, когда образование кластера происходит из кластера с меньшим размером в результате их последовательной ассоциации. (за счет диффузионного, линейного движения) (, ): D=1.85 R – радиус кластера. k для ассоциации кластеров с радиусами  и  

(26)             - функция распределения кластеров по числу частиц, в них =среднему числу частиц,  - для атмосферного воздействия при комнатной температуре

 , , ;

  задаются формулой (21)

 

умножим это выражение на  и проинтегрируем по dn. Получим (с учетом

,

 

используя (26) и (20):

,

,

 ,

 , ,  I=2.7 – выполняя усреднение (26).

Т.о., для среднего числа частиц в кластере .

Если . Начиная с момента, когда число частиц в кластере равно  кластер растет с ускорением

                        (28)

Для атмосферного воздуха при комнатной температуре,  и содержание пыли в воздухе  на основе (28) имеем для t=4.7c и для  t=1.9c, причем t~ и t~1/x.

         Если процесс протекает в электрическом поле и с участием заряженных частиц, то на первой стадии это приводит к образованию цилиндрических аэрозолей, что отразится как на строении образующего кластера, так и на скорости процесса.

         Формула (28) справедлива в случае, если максимальный радиус коррекции кластера R>>. Характерные размеры кластера r~;  - средняя плотность вещества в объеме кластера. Нарушение этого условия при выполнении , означает, что ассоциация кластера заканчивается до того, как начинает работать второй механизм ассоциации. В этом случае характерное время сборки кластера оценивается по формуле

t~~.

bukvasha.ru


Смотрите также