Проблема иррациональных чисел. Реферат на тему иррациональные числа


Реферат Иррациональные числа

скачать

Реферат на тему:

План:

Введение

Иррациона́льное число́ — это вещественное число, которое не является рациональным, то есть которое не может быть представленным в виде дроби \frac{m}{n}, где m — целое число, n — натуральное число. О существовании иррациональных чисел, точнее отрезков, несоизмеримых с отрезком единичной длины, знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа \sqrt 2.

Множество иррациональных чисел обычно обозначается заглавной латинской буквой «и» в полужирном начертании без заливки — \mathbb I. Таким образом: \mathbb I =\R\backslash \Q, т.е. множество иррациональных чисел есть разность множеств вещественных и рациональных чисел.

1. История

Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (ок. 750 г. до н. э. — ок. 690 г. до н. э.) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выражены.

Первое доказательство существования иррациональных чисел обычно приписывается Гиппасу из Метапонта (ок. 500 гг. до н. э.), пифагорейцу, который нашёл это доказательство, изучая длины сторон пентаграммы. Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезок. Однако Гиппас обосновал, что не существует единой единицы длины, поскольку предположение о её существовании приводит к противоречию. Он показал, что если гипотенуза равнобедренного прямоугольного треугольника содержит целое число единичных отрезков, то это число должно быть одновременно и четным, и нечетным. Доказательство выглядело следующим образом:

Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.

Феодор Киренский доказал иррациональность корней натуральных чисел до 17 (исключая, естественно, точные квадраты — 1, 4, 9 и 16), но остановился на этом, так как имевшаяся в его инструментарии алгебра не позволяла доказать иррациональность квадратного корня из 17. По поводу того, каким могло быть это доказательство, историками математики было высказано несколько различных предположений. Согласно наиболее правдоподобному предположению Жана Итара (1961), оно было основано на пифагорейской теории чётных и нечётных чисел, в том числе — на теореме о том, что нечётное квадратное число за вычетом единицы делится на восемь треугольных чисел.

Позже Евдокс Книдский (410 или 408 г. до н. э. — 355 или 347 г. до н. э.) развил теорию пропорций, которая принимала во внимание как рациональные, так и иррациональные отношения. Это послужило основанием для понимания фундаментальной сути иррациональных чисел. Величина стала считаться не числом, но обозначением сущностей, таких как отрезки прямых, углы, площади, объёмы, промежутки времени — сущностей, которые могут меняться непрерывно (в современном понимании этого слова). Величины были противопоставлены числам, которые могут меняться лишь «прыжками» от одного числа к соседнему, например, с 4 на 5. Числа составляются из наименьшей неделимой величины, в то время как величины можно уменьшать бесконечно.

Поскольку никакое количественное значение не сопоставлялось величине, Евдокс смог охватить и соизмеримые, и несоизмеримые величины при определении дроби как отношения двух величин, и пропорции как равенства двух дробей. Убрав из уравнений количественные значения (числа), он избежал ловушки, состоящей в необходимости назвать иррациональную величину числом. Теория Евдокса позволила греческим математикам совершить невероятный прогресс в геометрии, предоставив им необходимое логическое обоснование для работы с несоизмеримыми величинами. «Книга 10 Элементов» Евклида посвящена классификации иррациональных величин.

1.1. Средние века

Средние века ознаменовались принятием таких понятий как ноль, отрицательные числа, целые и дробные числа, сперва индийскими, затем китайскими математиками. Позже присоединились арабские математики, которые первыми стали считать отрицательные числа алгебраическими объектами (наряду и на равных правах с положительными числами), что позволило развить дисциплину, ныне называемую алгеброй.

Арабские математики соединили древнегреческие понятия «числа» и «величины» в единую, более общую идею вещественных чисел. Они критически относились к представлениям Евклида об отношениях, в противовес ей они развили теорию отношений произвольных величин и расширили понятие числа до отношений непрерывных величин. В своих комментариях на Книгу 10 Элементов Евклида, персидский математик Аль Махани (ок 800 гг. н. э.) исследовал и классифицировал квадратичные иррациональные числа (числа вида) и более общие кубические иррациональные числа. Он дал определение рациональным и иррациональным величинам, которые он и называл иррациональными числами. Он легко оперировал этими объектами, но рассуждал как об обособленных объектах, например:

Рациональной [величиной] является, например, 10, 12, 3%, 6% и так далее, поскольку эти величины произнесены и выражены количественно. Что не рационально, то иррационально, и невозможно произнести или представить соответствующую величину количественно. Например, квадратные корни чисел таких так 10, 15, 20 — не являющихся квадратами.

В противовес концепции Евклида, что величины суть в первую очередь отрезки прямых, Аль Махани считал целые числа и дроби рациональными величинами, а квадратные и кубические корни — иррациональными. Он также ввел арифметический подход к множеству иррациональных чисел, поскольку именно он показал иррациональность следующих величин:

результат сложения иррациональной величины и рациональной, результат вычитания рациональной величины из иррациональной, результат вычитания иррациональной величины из рациональной.

Египетский математик Абу Камил (ок. 850 г. н. э. — ок. 930 г. н. э.) был первым, кто счел приемлемым признать иррациональные числа решением квадратных уравнений или коэффициентами в уравнениях — в основном, в виде квадратных или кубических корней, а также корней четвёртой степени. В X веке иракский математик Аль Хашими вывел общие доказательства (а не наглядные геометрические демонстрации) иррациональности произведения, частного и результатов иных математических преобразований над иррациональными и рациональными числами. Ал Хазин (900 г. н. э. — 971 г. н. э.) приводит следующее определение рациональной и иррациональной величины:

Пусть единична величина содержится в данной величине один или несколько раз, тогда эта [данная] величина соответствует целому числу… Каждая величина, которая составляет половину, или треть, или четверть единичной величины, или, сравненная с единичной величиной составляет три пятых от нее, это рациональная величина. И в целом, всякая величина, которая относится к единичной как одно число к другому, является рациональной. Если же величина не может быть представлена как несколько или часть (l/n), или несколько частей (m/n) единичной длины, она иррациональная, то есть невыразимая иначе как с помощью корней.

Многие из этих идей были позже переняты европейскими математиками после перевода на латынь арабских текстов в XII веке. Аль Хассар, арабский математик из Магриба, специализировавшийся на исламских законах о наследстве, в XII веке ввел современную символьную математическую нотацию для дробей, разделив числитель и знаменатель горизонтальной чертой. Та же нотация появилась затем в работах Фибоначчи в XIII веке. В течение XIV—XVI вв. Мадхава из Сангамаграмы и представители Керальской школы астрономии и математики исследовали бесконечные ряды, сходящиеся к некоторым иррациональным числам, например, к π, а также показали иррациональность некоторых тригонометрических функций. Джестадева привел эти результаты в книге Йуктибхаза.

1.2. Наше время

В XVII веке в математике прочно укрепились комплексные числа, вклад в изучение которых внесли Абрахам де Муавр (1667—1754) и Леонард Эйлер (1707—1783). Когда теория комплексных чисел в XIX веке стала замкнутой и чёткой, стало возможным классифицировать иррациональные числа на алгебраические и трансцендентные (доказав при этом существование трансцендентных чисел), тем самым переосмыслив работы Евклида по классификации иррациональных чисел. По этой теме в 1872 были опубликованы работы Вейерштрасса, Гейне, Кантора и Дедекинда. Хотя ещё в 1869 году Мерэ начал рассмотрения, схожие с Гейне, именно 1872 год принято считать годом рождения теории. Вейерштрасс, Кантор и Гейне обосновывали свои теории при помощи бесконечных рядов, в то время как Дедекинд работал с (ныне так называемым) Дедекиндовым сечением множества вещественных чисел, разделяя все рациональные числа на два множества с определёнными характеристическими свойствами.

Цепные дроби, тесно связанные с иррациональными числами (цепная дробь, представляющая данное число, бесконечна тогда и только тогда, когда число является иррациональным), были впервые исследованы Катальди в 1613 году, затем снова привлекли к себе внимание в работах Эйлера, а в начале XIX века — в работах Лагранжа. Дирихле также внёс значительный вклад в развитие теории цепных дробей.

В 1761 году Ламберт показал, что π не может быть рационально, а также что en иррационально при любом ненулевом рациональном n. Хотя доказательство Ламберта можно назвать незавершённым, принято считать его достаточно строгим, особенно учитывая время его написания. Лежандр в 1794 году, после введения функции Бесселя-Клиффорда, показал, что π² иррационально, откуда иррациональность π следует тривиально (рациональное число в квадрате дало бы рациональное). Существование трансцендентных чисел было доказано Лиувиллем в 1844—1851 годах. Позже Георг Кантор (1873) показал их существование, используя другой метод, и обосновал, что любой интервал вещественного ряда содержит бесконечно много трансцендентных чисел. Шарль Эрмит доказал в 1873 году, что e трансцендентно, а Фердинанд и Линдеманн в 1882 года, основываясь на этом результате, показали трансцендентность π. Доказательство Линдеманна было затем упрощено Вейерштрассом в 1885 году, ещё более упрощено Давидом Гильбертом в 1893 году и, наконец, доведено до почти элементарного Адольфом Гурвицем и Паулем Горданом.

2. Свойства

3. Теоремы

3.1. Корень из 2 — иррациональное число

Допустим противное: \sqrt{2} рационален, то есть представляется в виде несократимой дроби \frac{m}{n}, где m и n — целые числа. Возведём предполагаемое равенство в квадрат:

\sqrt{2} = \frac{m}{n} \Rightarrow 2 = \frac{m^2}{n^2} \Rightarrow m^2 = 2n^2.

Отсюда следует, что m2 чётно, значит, чётно и m. Пускай m = 2r, где r целое. Тогда

(2r)^2=2n^2 \Rightarrow n^2=2r^2

Следовательно, n2 чётно, значит, чётно и n. Мы получили, что m и n чётны, что противоречит несократимости дроби \frac{m}{n}. Значит, исходное предположение было неверным, и \sqrt{2} — иррациональное число.

3.2. log23 — иррациональное число

Допустим противное: log23 рационален, то есть представляется в виде дроби \frac{m}{n}, где m и n — целые числа. Поскольку log23 > 0, m и n могут быть выбраны положительными. Тогда

\log_2 3 = \frac{m}{n} \Rightarrow m = n \log_2 3 \Rightarrow 2^m = 2^{n \log_2 3} = \left (2^{\log_2 3}\right )^n = 3^n

Но 2m чётно, а 3n нечётно. Получаем противоречие.

3.3. e — иррациональное число

См. раздел «Доказательство иррациональности» в статье «e».

4. Другие иррациональные числа

Иррациональными являются:

www.wreferat.baza-referat.ru

Реферат на тему Решение иррациональных уравнений

Министерство образования и науки РФ. МОУ “Ульканская средняя общеобразовательная школа №2”. ТЕМА: Решение иррациональных уравнений.                                                                           Реферат выполнен:                                                                   Верхошанской Светланой Александровной,                                                                   ученица 9”Г” класса.                                                                           Руководитель:                                                                   Высоцкая Лидия Степановна,                                                                    учитель математики. Улькан 2005 СОДЕРЖАНИЕ: Глава I.  Историческая справка ………………………………….………………..2 Глава II §1. Решение иррациональных уравнений ………………………..……..3                §2. Преобразование иррациональных выражений ………………….….5               §3. Уравнения с радикалом третьей степени …………………………...6               §4. Введение нового неизвестного …………………………………...…7 Литература …………………………………………………………………………9               Историческая справка об иррациональных уравнениях. “Источником алгебраических иррациональностей является двузначность или многозначность задачи; ибо было бы невозможно выразить одним и тем же вычислением многие значения, удовлетворяющие одной и той же задаче, иначе, чем при помощи корней…; они же разве только в частных случаях могут быть сведены к рациональностям”.                                                                                                              (Лейбниц Г.)          Одной из конкретных причин появления математических теорий явилось открытие иррациональностей. Вначале это произошло в пределах геометрических изысканий в виде установления факта несоизмеримости двух отрезков прямой. Значение этого открытия в математике трудно переоценить. В математику, едва ли не впервые, вошла сложная теоретическая абстракция, не имеющая аналога в донаучном общечеловеческом опыте. Вероятно, самой первой иррациональностью, открытой древнегреческими математиками, было число . Можно с определённой уверенностью считать, что исходным пунктом этого открытия были попытки найти общую меру с помощью алгоритма попеременного вычитания, известного сейчас как алгоритм Евклида. Возможно также, что некоторую роль сыграла задача математической теории музыки: деление октава, приводящее к пропорции 1:п=п:2. Не последнюю роль сыграл и характерный для пифагорейской школы общий интерес к теоретико-числовым проблемам.           Древние математики нашли довольно быстро логически строгое доказательство иррациональности числа  путём сведения этого доказательства к формальному противоречию. Пусть , где m и n – взаимно простые числа. Тогда m2=2n2, откуда следует, что т2 чётное и, следовательно, п2 чётное. Чётно, следовательно и п. Получающееся противоречие (п не может быть одновременно и чётным и нечётным) указывает на неверность посылки, что число  рационально.          Для исследования вновь открываемых квадратичных иррациональностей сразу же оказалось необходимым разрабатывать теорию делимости чисел. В самом деле, пусть , где p и g - взаимно просты, а п является произведением только первых степеней сомножителей отсюда р2=пg2. Если t – простой делитель п, то р2(а значит, и р) делится на t. Следовательно, р2 делится на t2. Но в п содержится только первая степень t. Значит g2 (равно как и g) делится на t. Но этот результат формально противоречит предположению, что р и g взаимно просты.          Вслед за иррациональностью числа  были открыты многие другие иррациональности. Так, Архит (около 428-365 до н.э.) доказал иррациональность чисел вида . Теодор из Кирены (V в. до н.э.) установил иррациональность квадратного корня из чисел 3,5,6,…,17, которые не являются полным квадратом. Теэтет (410-369 до н.э.) дал одну из первых классификаций иррациональностей.          С появлением иррациональностей в древнегреческой математике возникли серьёзные трудности как в теоретико-числовом, так и в геометрическом плане. Решение иррациональных уравнений.          Уравнения, в которых под знаком корня содержится переменная, называют иррациональными. Таково, например, уравнение . При решении иррациональных уравнений полученные решения требуют проверки, потому, например, что неверное равенство при возведении в квадрат может дать верное равенство. В самом деле, неверное равенство  при возведении в квадрат даёт верное равенство 12= (-1)2, 1=1.          Иногда удобнее решать иррациональные уравнения, используя равносильные переходы. Пример 1. Решим уравнение . Возведём обе части этого уравнения в квадрат и получим , откуда следует, что , т.е. .          Проверим, что полученные числа являются решениями уравнения. Действительно, при подстановке их в данное уравнение получаются верные равенства:           и            Следовательно, x=3 или x=-3 – решение данного уравнения.          Пример 2. Решим уравнение . Возведя в квадрат обе части уравнения, получим . После преобразований приходим к квадратному уравнению , корни которого и .          Проверим, являются ли найденные числа решениями данного уравнения. При подстановке в него числа 4 получим верное равенство , т.е. 4 - решение данного уравнения. При подстановке же числа 1 получаем в правой части   -1, а в левой части число 1. Следовательно, 1 не является решением уравнения; говорят, что это посторонний корень, полученный в результате принятого способа решения. Ответ: .          Пример 3. Решим уравнение . Возведём обе части этого уравнения в квадрат: , откуда получаем уравнение , корни которого  и . Сразу ясно, что число -1 не является корнем данного уравнения, т.к. обе части его не определены при . При подстановке в уравнение числа 2 получаем верное равенство , следовательно, решением данного уравнения является только число 2.          Пример 4. Решим уравнение . Возведя в квадрат обе части этого уравнения, получаем , , . Подстановкой убеждаемся, что число 5 не является корнем данного уравнения. Поэтому уравнение не имеет решений.          Пример 5. Решим уравнение . По определению  - это такое неотрицательное число, квадрат которого равен подкоренному выражению. Другими словами, уравнение равносильно системе:                       Решая первое уравнение системы, равносильное уравнению , получим корни 11 и 6, но условие   выполняется только для . Поэтому данное уравнение имеет один корень .          Пример 6. Решим уравнение . В отличие от рассмотренных ранее примеров данное иррациональное уравнение содержит не квадратный корень, а корень третьей степени. Поэтому для того, чтобы “избавиться от радикала”, надо возвести обе части уравнения не в квадрат, а в куб: . После преобразований получаем: Итак, , .          Пример 7. Решим систему уравнений:   Положив  и , приходим к системе   Разложим левую часть второго уравнения на множители:  - и подставим в него из первого уравнения . Тогда получим систему, равносильную второй:   Подставляя во второе уравнение значение v, найденное из первого , приходим к уравнению , т.е. . Полученное квадратное уравнение имеет два корня:  и . Соответствующие значения v таковы:  и . Переходя к переменным х и у, получаем: , т.е. , , , . Преобразование иррациональных выражений.          Если знаменатель дроби содержит иррациональное выражение, то часто целесообразно избавиться от последнего.          Рассмотрим некоторые типичные случаи:              Пример:          При непосредственном возведении в квадрат обеих частей уравнения уравнение должно быть сначала преобразовано так, чтобы в одной части стояли только радикалы, а в другой – остальные члены исходного уравнения. Так поступают, если радикалов в уравнении два. Если же их три, то два из них оставляют в одной части уравнения, а третий переносят в другую. Затем обе части уравнения возводят в квадрат и проводятся необходимые преобразования (приведение подобных и т.п.). Далее все члены уравнения, не содержащие радикалов, снова переносятся в одну сторону уравнения, а оставшийся радикал (теперь он будет только один!) – в другую. Полученное уравнение вновь возводят в квадрат, и в итоге получается уравнение, не содержащее радикалов.          Пример. Введение новой переменной:   .          Решение: Обозначим , тогда   Уравнение примет вид: Возведём его в квадрат: Это уравнение так же возводим в квадрат:                   Проверка: полученные значения t мы должны проверить в уравнении (1), так как именно оно возводилось в квадрат. Проверка показывает, что  - посторонний корень, а   - действительно корень уравнения (1). Отсюда получим:   Ответ: 0;-1. Уравнения с радикалом третьей степени.          При решении уравнений, содержащих радикалы 3-й степени, бывает полезно пользоваться сложением тождествами:          Пример 1. . Возведём обе части этого уравнения в 3-ю степень и воспользуемся выше приведённым тождеством: Заметим, что выражение стоящее в скобках равно 1, что следует из первоначального уравнения. Учитывая это и приводя подобные члены, получим:   Раскроем скобки, приведём подобные члены и решим квадратное уравнение. Его корни  и . Если считать (по определению), что корень нечётной степени можно извлекать и из отрицательных чисел, то оба полученных числа являются решениями исходного уравнения. Ответ: .          Решение 2 Возведём две новые переменные  и , тогда , . Заметим, что . В итоге получим систему уравнений:        Используя первоначальные уравнения системы, преобразуем вторые, заменив первую скобку единицей, а вторую подставим вместо неизвестного у выражение , также полученное из первого . Приведём подобные члены, раскрыв предварительно скобки и решив полученное квадратное уравнение. Его корни  и . Вернёмся теперь к начальной подстановке и получим искомые решения: Введение нового неизвестного.          Решив эти уравнения, найдём радикалы более высоких степеней, но наиболее часто использовавшийся способ их решения – введение нового(новых) неизвестного.          Пример 2.   Обозначим , тогда а) Уравнение примет вид: Корень  не удовлетворяет условию   Ответ: 76. Методы решения иррациональных уравнений.          Методы решения иррациональных уравнений, как правило основаны на возможности замены (с помощью некоторых преобразований) иррационального уравнения рациональным уравнением, которое либо равносильно исходному, либо является его следствием. Поэтому существуют два пути при решении иррациональных уравнений: 1) переход к выводным уравнениям (следствиям) с последующей проверкой корней; 2) переход к равносильным системам.          Второй подход избавляет от подстановки полученных корней в исходное уравнение (иногда такую проверку осуществить нелегко) и, вообще говоря, является более предпочтительным. Однако если в ходе решения оказалось, что проверка полученных корней не представляет труда, то можно не выяснять источники появления посторонних корней и не переходить к равносильным системам.          Пример 1. Возведём в 6 степень: Проверка: , т.е.  - верное равенство. Ответ: 67.          Пример 2.   Преобразуем уравнение к виду:  и возведём обе части в квадрат: , т.е. Ещё раз возведём обе части в квадрат: , т.е. , .          Проверка: 1) При     2)   Ответ: .          Пример 3. Положим . Тогда  и мы получаем уравнение , откуда , . Теперь задача свелась к решению двух уравнений: ; . Возводя обе части уравнения  в 5-ю степень, получим , откуда . Уравнение  - не имеет корней, поскольку под знаком возведения в дробную степень может содержаться неотрицательное число, а любая степень неотрицательного числа неотрицательна. Ответ: 34. Список используемой литературы: 1) Справочник по математике.      В.А. Гусев, А.Г. Мордкович.: 1986г. 2) Углублённое изучение курса алгебры и математического анализа.      М.Л. Галицкий, М.М. Мошкович, С.И. Шварцабурд.: 1992г.  3) Возникновение и развитие математической науки.      К.А. Рыбников.: 1987г. 4) Ученикам о математике.      М.К. Гриненко.: 1993г.

bukvasha.ru

Реферат: Проблема иррациональных чисел

А.И. Сомсиков

Проблема иррациональности впервые обнаружена в геометрии при извлечении корня. Она известна еще в эпоху “античности”, связываемую с именем Пифагора.

Выявленное логическое противоречие состоит в следующем. С одной стороны имеется доказательство того, что все точки на прямой являются целыми или дробными, т.е. “рациональными” числами.

Это доказательство таково.

Берется отрезок прямой с координатами его концов 0 и 1. Обе эти координаты являются целыми числами.

Отрезок делится пополам и рассматриваются каждый из вновь полученных отрезков.

Концы этих отрезков имеют координаты 0 и 0,5 или 0,5 и 1, являющиеся целыми или дробными, т.е. “рациональными” числами.

Продолжается повторное разбиение пополам, сближающее края последующих отрезков при их сохранении каждый раз заведомо рациональными числами.

В пределе, при бесконечном разбиении, края отрезков сливаются в точку, оставаясь при этом рациональными числами.

Логический вывод гласит, что исходный отрезок оказывается заполненным одними лишь рациональными числами, иными словами ни для какой "иррациональности" места не остается.

Другое доказательство наоборот приводит к тому, что некоторые точки на прямой не могут быть заданы ни целыми, ни дробными числами, т.е. не являются рациональными.

Это доказательство таково: берется равнобедренный прямоугольный треугольник с длиной каждого катета равной 1. Согласно теореме Пифагора длина гипотенузы при этом составляет . Это не может быть ни целым числом, ни несократимой дробью , поскольку в этом случае a2 = 2b2. Следовательно, a есть четное число представимое как a = 2k. Но тогда a2=(2k)2=4k2=2b2. А значит и b2 = 2k2, т.е. b – тоже четное число. Получаем логическое противоречие: с одной стороны дробь должна быть несократима (в противном случае ее можно сократить на общий множитель), с другой же стороны обе ее части a и b - четные числа, т.е. имеют общий множитель 2, а значит, дробь является сократимой.

Итак, первому логически не противоречивому доказательству противостоит второе - логически противоречивое доказательство.

Поскольку первое доказательство не содержит логического противоречия, оно не может вызывать никаких сомнений и должно считаться безусловно верным.

Второе же доказательство напротив содержит внутри себя логическое противоречие. А значит, во-первых, оно ни в коем случае не может служить опровержением первого - логически непротиворечивого доказательства. И, во-вторых, именно оно, как содержащее внутри себя логическое противоречие, должно считаться крайне сомнительным и требующим дополнительного рассмотрения.

Предлагаемое рассмотрение таково.

Прежде всего, что означает это приравнивание длины катетов числу 1? А вот что: это значит, что оба катета измерены с помощью некоторого эталона, и что результат этого измерения равен единице. Естественный вопрос для любого измерения: с какой точностью? Ответ такой: при измерении любым эталоном абсолютная погрешность измерения равна самому эталону, а точность измерения, определяется отношением абсолютной погрешности (величины эталона) к самой измеряемой величине - относительной погрешностью.

Величина эталона относительно себя самой равна единице с бесконечной степенью точности, что может быть выражено в виде десятичной дроби: э =1,(0). А вот величины обоих катетов а и b, измеренных таким эталоном должны выглядеть так: а =1= 1, b =1= 1, где э – величина эталона.

В данном случае получим: абсолютная погрешность , , a = 11, b =11. А относительная погрешность, определяющая точность каждого измерения, равна соответственно

a(%) = и .

И даже если принять в качестве эталона один из катетов, например, а, что означает a(%) = 0,(0), т.е. бесконечную точность его измерений и равенства нулю его относительной погрешности, то все равно относительная погрешность измерения второго катета останется 100%.

Вот что означает на практике это небрежное брошенное условие равенства единице длин обоих катетов.

И что мы получим при измерении гипотенузы таким эталоном э?

Вариантов ответа два: с = 1 или с =.

В первом случае погрешность измерения гипотенузы равна 100%, как и в случае катета, а во втором случае – 50%. Ясно, что второй ответ более точен, хотя тоже не очень хорош.

Что мы теперь имеем по теореме Пифагора? Катеты равны 11, т.е. их можно считать равными 1 или 2, а гипотенуза и вовсе может быть равной 1 или 2, или даже 3. Причем каждый из этих ответов по-своему верен с известной степенью точности.

Но в то же время 12+1212 или 22 и уж тем более 32.

И второй возможный вариант тоже дает: 22+2212 или 22 или 32.

И даже принятие в качестве эталона одного из катетов тоже дает: 12+2212 или 22, или 32. Другими словами требуемое равенство не достигается ни при каком варианте таких измерений.

Точность повышается при уменьшении величины эталона э, например, в 10 раз.

В этом случае а = 10 1, b = 10 1, c = 14 1, a = 10%, b = 10%, c = =7%.

Или в 100 раз, когда а = 1001, b = 1001, c = 1411, a = 1%, b = 1%, c = =0,7%, и т.д.

При этом однако все еще остается: а2+b2c2, т.е. теорема Пифагора по-прежнему не выполняется.

Это достигается только при бесконечной точности измерений, когда величина эталона э = 0,(0), а = 10000…=, b = 10000…=, c = 14142135623730950488016887242097141…=,

Или при выражении через исходный эталон э: а = 1,(0), и b = 1,(0), c = 1,4142135623730950488016887242097141…

В этом и только в этом случае теорема Пифагора справедлива, принимая однако вид: а2 + b2 = c2 .

В обычном понимании это может выглядеть сложновато, однако уже не содержит более никакого логического противоречия.

И что же все это значит?

А вот что: теорема Пифагора, как и вообще все теоремы геометрии без всякого исключения справедливы при условии выполнения еще одной теоремы.

Ввиду ее всеобщности и исключительной важности, она может быть названа Великой Геометрической Теоремой (ВГТ).

Ее содержание таково: все геометрические теоремы верны при одном обязательном условии - бесконечной точности измерений.

А значит, в рассматриваемом нами частном случае никаких таких целых чисел 1 обоих катетов нет и быть не может, а может быть только лишь бесконечная десятичная дробь вида: а = 1,(0), и b =1,(0).

При этом все рассуждения о сократимости или несократимости бесконечных дробей и соответственно четности или нечетности с необходимостью сразу же отпадают, т.к. это возможно только в одном единственном случае: когда рассматриваемая нами дробь является конечной. Это легко достигается простым обрывом бесконечности, т.е. нарушением бесконечной точности. Но именно в этом случае теорема Пифагора тотчас же нарушается, т.е. перестает выполняться.

А значит и вся рассматриваемая проблема сразу и бесповоротно снимается!

Из всего этого следует, что, во-первых, любая точка на геометрической прямой задается в виде бесконечной дроби, и здесь нет никакой разницы или особенности ни у катета, ни у гипотенузы.

И что, во-вторых, все числа без исключения, задающие положение любых геометрических точек, должны считаться “иррациональными” ввиду простой бесконечности их дробей, либо же нужно принять, что никаких иррациональных чисел вовсе не существует.

Именно потому, что выполненное рассмотрение приводит к полному снятию логического противоречия, вынудившее некогда их измыслить.

Список литературы

www.neuch.ru


Смотрите также