Реферат: Астрономические идеи во времена Птолемея. Реферат математика и астрономия


Статья "Связь математики с астрономией"

Статья

«Связь математики с астрономией»

В математике и астрономии, несмотря на лучшее положение дел, в основном наблюдается та же картина. Леонардо Фибоначчи(1202) ввел в христианском мире арабскую алгебру и индийское исчисление. Он сам был крупным математиком, но не создал школы, и математика не двинулась вперёд сколь –нибудь значительно до времён эпохи Возрождения. Средневековые астрономы, особенно школа Мертонского колледжа в14 веке, оказались способными сделать некоторые частные улучшения в астрономических вычислениях. Они так же сделали свои вклады в тригонометрию и конструкцию инструментов. Наиболее важный из них- распространение Леви бей Герсо-ном из Прованса (1288-1344) угломерной рейки, своего рода простейшего секстанта, который служил мореплавателям в их путешествиях в XV и XVI веках, приведших к открытию новых земель. (НТТР://WWW.OSVITA-PLAZA.IN.UA/PUBL/ _I_ASTRONOMIJA)

Аристарх Самосский, который жил примерно с 310 по 230 год до нашей эры , самый интересный из всех древних астрономов, потому что он выдвинул гипотезу (полностью сходную с гипотезой Коперника), согласно которой все планеты, включая Землю, вращаются по кругам вокруг солнца и Земля совершает оборот вокруг своей оси в течении 24 часов. Древние астрономы, вычисляя размеры Земли, Луны и Солнца и расстояние до Луны и Солнца пользовались теоретически правильными методами, но им недоставало точных измерительных приборов. Многие результаты, достигнутые ими, были необычайно точны. Эратосфен определил диаметр Земли в 7850 миль, то есть с ошибкой примерно лишь в 50 миль. Птолемей рассчитал, что среднее расстояние до Луны в 29,5 раза больше диаметра Земли. Никто из них не мог приблизиться к точному вычислению размеров Солнца и расстояния до него. По их расчетам , оно было равно: по Аристарху- 180, по Гиппарху -1245, по Посидонию – 6545 земным диаметрам. Правильная цифра 11726 земных диаметров. Большой вклад в развитие астрономии и математики внесли: польский астроном Николай Коперник (1473-15430, итальянский философ Джордано Бруно (1548-16000, Галилео Галилей (1564-1642), Иоганн Кеплер (1571-1630), Исаак Ньютон (1643-1727), М.В. Ломоносов (1711-1765). М.Ю. Ломоносов открыл атмосферу на Венере.

Мы не изучаем такой предмет как астрономия, но на уроках математики учитель часто приводит примеры и задачи из астрономии. И мы видим, что математика и астрономия тесно «связаны» между собой, т. к. на уроках математики и астрономии применяются одни и те же свойства тел и фигур, формулы, решения уравнений и задач.

При изучении системы координат в пространстве и свойств тел вращения наглядным примером может служить небесная сфера, ось мира, экваториальная система координат. На уроках используем единицы измерения, взятые из астрономии, которые нам раннее были неизвестны. Например, 1а.е. = 149600000км. 1 а.е. это среднее расстояние Земли от Солнца и принято в астрономии за единицу измерения расстояния, парсек 1 пк = 206265 а.е. это единица измерения расстояния от земли до небесных светил, один световой год - единица измерения расстояния между светилами. 1 с.г. =9, 46 *10 12км. Зная чему равна 1а.е. мы решаем такие задачи, например: выразить в а.е. расстояние между одним из спутников Юпитера (ИО) и Юпитером, если оно равно 422000км.; за какое время Марс, находящийся от Солнца примерно в 1,5 раза дальше, чем Земля, совершает полный оборот вокруг Солнца? Решая эти задачу, повторяем стандартный вид числа, свойства степени с целым показателем, закрепляем вычислительные навыки, основное свойство пропорции, закон Кеплера (физика) Т12/Т22=а13/а23,где а1=1,5 а.е., а2=1а.е., Т2=1год период вращения Земли вокруг солнца. Ответ Т1= 1,9 г.- время вращения Марса вокруг Солнца Такие задачи часто встречаются в КИМах при подготовке к итоговой аттестации. Много интересного материала учитель использует из астрономии, повторяем, чему равен радиус Земли, масса, плотность, первая и вторая космические скорости, общая площадь земной поверхности, сколько % занято сушей, сколько % занято морями и океанами.

Используя основные сведения о планетах, решаем задачи: выразить расстояние до Солнца в а. е., массу, радиус в радиусах Земли и т.п.

Название планеты

Среднее расстояние от солнца в а.е.

Орбитальная скорость

Км./с

Средний радиус в км.

Масса в массах Земли

(М=6*1024кг)

Число спутников

Меркурий

О,39

47,9

2440

0,6

-

Венера

0,72

35

6050

0,82

-

Земля

1,00

29,8

6371

1

1

Марс

1,52

24,1

3397

0,11

2

Юпитер

5,2

13.

69900

318

16

Сатурн

9,54

9,6

58000

95,2

17

Уран

19.19

6.8

25400

14.6

16

Нептун

30,07

5.4

24300

17,2

8

Плутон

39,52

4,7

1140

0,002

1

С большим интересом мы решаем задачи, связанные с астрономией. Нас интересует движение небесных тел, их природа, происхождение и развитие. Астрономия это наука о природе, она исследует не только настоящее, но и далекое прошлое окружающего нас мегамира, а также позволяет нарисовать научную картину будущего Вселенной, а математика позволяет давать точные ответы на вопросы астрономии.

kopilkaurokov.ru

Реферат - Астрономия наших далеких предков

Галина Михайлова, Константин Порцевский, Валентин Юревич

Овладение временем и пространством

Ни одно животное не станет

смотреть вверх… Только это

нелепое создание — человек

тратит время попусту, глазея

на небо.

Герберт Уэллс. «Это было в каменном веке»

Величественна картина звёздного неба. Тысячи звёзд, мерцая и переливаясь, манят к себе любознательные умы. Человек пытался и пытается осмыслить, какое место он занимает во Вселенной, что такое этот мир, как он устроен, всегда ли существовал и если нет, то возник ли сам или создан богами. Постижение звёздного мира бесконечно, но начало познания неба просто, потому что большинство небесных явлений повторяется совершенно одинаково несчётное количество раз. Однообразно повторяются суточный путь Солнца, порядок восхода и захода созвездий, лунные фазы, изменения на небе, связанные с временами года. Эти небесные явления настолько срослись с жизнью, что ими пользуются люди, животные и растения. Дуб «знает», когда его почки могут начать распускаться, а человек и без часов способен проснуться точно в намеченные им час и минуту. Птицы хорошо ориентируются по Солнцу, учитывая его дневное движение по небу; у них есть даже свои «навигационные» звёзды, по которым они находят путь в Африку и обратно. Североамериканская бабочка монарх, перелетая на зимовку в Центральную Америку, никогда не сбивается с дороги.

Всё это примеры астрономического ориентирования, выработанного живыми организмами бессознательно, в процессе эволюции. Когда же появился человек разумный, он стал осознанно ориентироваться во времени и пространстве и ради жизни, и ради трудовой деятельности, которая тогда занимала почти всё его время. Первобытные охотники и рыболовы должны были знать циклы жизни и пути миграции животных

Скотоводам нужно было вовремя перегонять стада на новые пастбища, как-то ориентироваться на местности, определять время наступления дождливых или засушливых сезонов, а в более северных местах — предвидеть наступление зимы или лета. Земледельцы оказались в ещё большей зависимости от сезонных изменений; их труд — посев и жатва — невозможен без календаря.

Именно практические потребности — ориентирование в пространстве и времени — привлекли внимание людей к небесным явлениям, к наблюдениям за перемещением Солнца, Луны, к суточному движению звёзд.

Тысячелетиями ночуя у костра и глядя на небо, человек усвоил, что от вечера к вечеру звёзды остаются одними и теми же и не меняют взаимного расположения. Он выделил несколько приметных фигур — созвездий. 40 тыс. лет назад они имели не такой вид, как сейчас. Большая Медведица была похожа на Большую Колотушку, не было привычной фигуры подпоясанного Ориона. Первые созвездия позволяли ориентироваться ночью, а главное, следить за движением ночного неба.

Сначала люди думали, что звёзды находятся только над плоской Землёй. Потом было открыто, что небо поворачивается вокруг нас, словно сфера с нарисованными на ней созвездиями. Большинство звёзд при этом так же, как Солнце и Луна, восходят и заходят, но в полуночной (северной) стороне, где Солнце никогда днём не бывает, есть звёзды, которые вообще не заходят. Надо только наблюдать за ними во время длинных зимних ночей. Если находиться на одном и том же месте и следить за восходом какой-нибудь яркой звезды из ночи в ночь, то станет ясно, что она всегда восходит в одном и том же месте горизонта. Это можно заметить, ориентируясь на далёкий предмет — дерево или гору. То же относится и к заходу звёзд.

А вот Луна меняет свои точки восхода и захода. Она не только движется вместе со звёздами слева направо, но ещё перемещается среди них от ночи к ночи справа налево. Если же заметить, что в какую-то ночь Луна была рядом с яркой звездой, то она вернётся к ней через 27,3 суток. Так был открыт период времени — лунный сидерический (от лат. sideis — «звезда») месяц, сказали бы мы сейчас. А смена лунных фаз — синодический (от греч. «синодос» — «соединение») месяц — завершается за 29,5 суток Она легла в основу первого — лунного календаря. Его появление относится к IX–III тысячелетиям до н. э. В эту эпоху возникают первые государства, усложняются мифология и язык, мышление в целом. В Мишне — сборнике толкований библейских текстов — говорится так: «Луна была создана для счёта дней».

Наблюдая за месячным движением Луны среди звёзд, люди открыли, что она движется в сравнительно узкой полосе небесной сферы, которую ныне называют поясом зодиака. Он был разделён на 27 или 28 «лунных станций». Это были небольшие группы звёзд, удалённые друг от друга примерно на 13°, так что Луна при движении по небосводу каждую ночь оказывалась в следующей группе. Среди них были приметные группы звёзд: сейчас это Голова Овна, Плеяды, Гиады с Альдебараном (Рога Тельца), Близнецы Кастор и Поллукс, Голова Льва с Регулом, выразительный Скорпион, а были и пустые, беззвёздные «станции».

Великим открытием стало и то, что по зодиаку кочуют ещё и «блуждающие звёзды«— планеты. Их выделили уже в глубокой древности. Первыми были открыты Вечерняя и Утренняя звёзды. Много веков спустя астрономы поняли, что это одна планета (Венера). Вероятно, первым догадался об этом Пифагор Самосский в VI в. до н. э. За несколько поколений до него Гомер упоминал обе эти «звезды» как разные светила. Затем, вероятно, был открыт Юпитер, а следом Марс — по степени яркости. Сатурн, по блеску едва выделяющийся среди ярких звёзд, и Меркурий — планету, которую трудно заметить, наверняка открыли люди, специально занимавшиеся наблюдениями неба (например, жрецы).

С движением Солнца дело обстояло сложнее: ведь днём звёзд не видно. Но люди догадались, что и Солнце перемещается относительно звёзд. Наблюдая за его восходом и заходом, люди видели, что место, где оно появляется над горизонтом, каждый день немного меняется. Замечая места восходов и закатов, они нашли в его движении новую важную закономерность. В дни летних солнцестояний светило вставало и садилось ближе всего к точке севера и несколько дней, самых длинных в году, не меняло мест заката и восхода. Потом точки восхода и заката день за днём удалялись от севера, пока через полгода не достигали мест, самых близких к югу, что означало наступление зимнего солнцестояния. В середине между «стояниями» по линии восток — запад располагались точки, где дважды в году Солнце восходило, чтобы отмерить день, равный ночи.

Когда лунный путь зодиак был разделён на созвездия, выяснилось, что какое-то из них обязательно оказывается на рассвете над местом восхода Солнца, а другое загорается вечером там, где оно закатилось. Зная созвездие, предшествующее Солнцу на рассвете, и созвездие, следующее за ним на закате, можно было легко определить, в каком созвездии между ними находится светило. Так было открыто годовое движение Солнца по зодиаку. Особенно важными на пути светила стали считаться те созвездия, в которых, судя по наблюдениям мест восходов, Солнце проходило четыре особые точки, деля свой годовой путь на почти равные отрезки.

Эти точки в средних климатических поясах отмечали и чередование сезонов. Весеннее равноденствие знаменовало возрождение природы. После него светило, поднимаясь по эклиптике из созвездия в созвездие, достигало к солнцестоянию наибольшего могущества. Потом оно начинало опускаться и в момент осеннего равноденствия пересекало границу Северного и Южного полушарий. С каждым днём вместе с увяданием природы Солнце оставалось на небе всё меньше времени. Наконец, в середине зимы, после зимнего солнцестояния, как бы преодолев усталость, оно начинало медленно возвращаться к «миру живых». Древние люди обожествляли Солнце. Совершая магические обряды, они старались «помочь» светилу благополучно преодолеть все трудности, которые могли встретиться ему на звёздной дороге.

Первобытные народы знали, когда происходили солнцестояния или равноденствия, так как с ними были связаны разливы рек и наступления тех или иных сезонов. Например, у скотоводов был весенний праздник. Он определялся началом весны, т. е. прохождением Солнца через точку весеннего равноденствия и полнолунием. Праздник приходился на разные числа календаря. Его надо было вычислять.

Итак, астрономические наблюдения, связанные с необходимостью ориентироваться во времени и пространстве, возникли на заре человеческой культуры. Уже тогда, задолго до появления письменности и государств, были сделаны многие важные открытия, связанные с расположением и видимым движением светил по небу. Так возникла астрономия — древнейшая из наук.

В конце каменного века (VI–III тысячелетия до н. э.) в благоприятных климатических условиях вблизи великих рек Нила, Тигра и Евфрата, Инда, позднее — Ганга, Хуанхэ, ещё позднее — Янцзы — появились земледельческие племена. В тех местах и зародились древние цивилизации. Наблюдение за небом стало здесь важнейшим делом для жрецов. Проходили тысячелетия медленного накопления астрономических знаний. По уровню развития астрономии можно довольно верно судить об общем уровне древней цивилизации. Примечательно, однако, что первые цивилизованные народы относили свои астрономические знания к наиболее отдалённому, доисторическому, периоду своего существования.

Таким образом, задолго до того как человек научился ориентироваться на Земле и создал географию, он уже ориентировался во Вселенной, создав её первые модели. Овладение пространством началось с космоса и лишь впоследствии распространилось на Землю.

Ветхозаветная астрономия

Годовое изменение положения Солниа на небе отмечено в Библии. В Ветхом Завете в книге Иова сказано: «Давал ли ты когда в жизни своей приказания утру и указывал ли заре место её» (38.12). Здесь говорится, что утро наступает не в одно и то же время, и заря, т. е. место, где восходит Солнце, тоже меняет своё положение относительно сторон горизонта.

В книге Иова отражены и другие астрономические познания её авторов: «Можешь ли ты связать узел Хима и разрешить узы Кесиль?» (38.31), «Можешь ли выводить созвездия в своё время и вести Ас с её детьми?» (38.32). «Переводится» это так: «Можешь ли связать узел у Плеяд и развязать его у Ориона? Можешь ли ты вывести зодиакальные созвездия и Медведицу с детьми её водить?». Вероятно, записано это было в начале I тысячелетия до н. э., но здесь отразились и более древние представления кочевников, когда семитские племена ещё блуждали со своими стадами по Аравийскому полуострову.

Небесная дорога

Кроме дороги Солнца и Ауны ночное небо опоясано туманной полосой Млечного Пути. Для обитателей южных широт, в пределах которых располагались все древние цивилизации, скопление звёзд Млечного Пути предстаёт великолепной светлой и широкой лентой.

Серебристая полоса на небе представлялась древним именно в виде некоей дороги. Осенними вечерами Млечный Путь простирается высокой дорогой, перекинутой с севера на юг, и небесный Лебедь летит по нему к югу, указывая путь и время перелётным птицам. Для угрофиннов и славян это Птичий Путь. У молдаван это Дорога Рабов (в Крымское ханство), у русских — Мамаева Дорога, а у венгров и румын это Цыганский Путь. Чумацким Шляхом его называли украинцы (чумаки — перевозчики соли), Соломенной Дорогой — арабы.

В ряде названий Млечный Путь связывается с идеей переселения душ. В древней Индии его называли «Диватмойя» — Божественный Путь, в Ассирии — Рекой Великой Бездны. Норманны толковали Млечный Путь как Тропу Духов или Дорогу Одина, ведущую в небесную обитель верховного бога Одина — Валгаллу. В некоторых древнегреческих мифах Млечный Путь — это дорога богов или путь, по которому проходят души умерших.

Развитие христианства и ислама породило новые названия: Святая, Моисеева, Божья Дорога; Иисусов, Иерусалимский Путь — у христиан; Дорога Паломников (путь в Мекку) — у мусульман. Греческий миф, послуживший поводом к названию Млечного Пути, не связан с дорогой. Согласно мифу, Геракл — сын Зевса и смертной женщины — мог получить бессмертие, только вкусив молока Геры, супруги Зевса, которая Геракла ненавидела. Когда она спала, хитрый Гермес подложил малютку-Геракла к её груди. Проснувшись, Гера оттолкнула младенца, чудодейственное молоко брызнуло из её груди и разлилось по небу. Так и возник Млечный Путь. Миф, давший ему название, связан с идеей жизни и бессмертия и потому, вероятно, очень древний.

Обсерватории каменного века

Общеизвестно, что многие древние сооружения ориентированы по странам света, но только сравнительно недавно учёные обратили внимание на археологические памятники, одним из назначений которых было наблюдение небесных светил. Их изучает археоастрономия — молодое научное направление, лежащее на стыке астрономии и археологии. Исследуемые ею сооружения, как правило, являлись святилищами, но одновременно использовались и для наблюдения Солнца и Луны. Доисторические обсерватории были сооружениями-инструментами, так сказать, «горизонтной астрономии», т. е. отмечали места восходов и заходов светил (измерять высоту светила над горизонтом тогда ещё не умели). Такие сооружения обнаружены повсюду — в Европе, Азии, Америке, Африке. Многие из них обладают очень сходными чертами. Это позволяет думать, что развитие астрономических представлений у разных народов шло близкими путями. Но нельзя исключать и влияние каких-то общих, чрезвычайно древних традиций.

Солнцепоклонники верили: для того чтобы Солнце не перестало освещать Землю, его надо умилостивить, упросить. Так возник храм — священное место, откуда человек мог взывать к высшему божеству. Не случайно древние храмы обычно имели в плане форму круга. Однако Солнце было не только богом, но и первым надёжным ориентиром, поэтому к нему мог иметь отношение не только круг камней, но и отдельный установленный вертикально высокий камень или группа камней, расположенных определённым образом к сторонам горизонта. Такие камни были одновременно и первыми часами, и компасом, и календарём.

Археологи нашли довольно много каменных сооружений такого типа. Их называют мегалиты (от греч. «мегас» — «большой», «литоc» — «камень»). Они подразделяются на менгиры, дольмены, кромлехи и так называемые крытые аллеи — в зависимости от их архитектуры. Менгиры (бретонск. «высокие камни») — это одиноко стоящие камни до 20 м высотой, которые напоминают столпы или стелы. Дольмен (бретонск. «камень-стол») похож на ворота, сложенные из огромных каменных плит. Кромлех (бретонск. «круг из валунов») представляет собой круг из отдельных вертикально поставленных камней. Иногда кромлехи имеют более сложное строение — составляющие их камни могут быть попарно или по три разом перекрыты сверху горизонтальными плитами, как крышей. В середине круга может быть установлен дольмен или менгир.

Такие сооружения встречаются на территории Европы довольно часто. Особенно много их на Кавказе, Британских островах и во Франции, на полуострове Бретань. Таким образом, ещё в каменном веке по всей Европе жили племена, родственные друг другу, обладавшие достаточно развитой культурой и имевшие сходные религиозные представления. Эти племена иногда так и называют — строители мегалитов.

Долгое время учёные, следуя римским авторам, думали, что строителями мегалитов в Западной Европе были древние кельты — одно из индоевропейских племён, предки современных ирландцев, шотландцев и бретонцев, а мегалиты считались храмами кельтских жрецов-друидов. Теперь доказано, что сооружения эти возведены намного раньше, чем в Европе появились индоевропейцы, и говорить о кельтах как об их создателях не приходится. По-видимому, они лишь почитали эти каменные обсерватории, но использовать их уже не умели, как это было в Нью-Грейндже.

Один из шести «волшебных холмов» — самая старая обсерватория Европы

Наиболее древним в Европе мегалитическим памятником, который связан с астрономией, считается Нью-Грейндж. Он был найден в Ирландии, неподалёку от Дублина. Там располагался холм, которому местное население приписывало магические свойства. Говорили, что внутри него обитают феи и что каждый год в ночь на 1 ноября, считавшуюся у кельтов ночью «без времени», когда один год кончается и уступает своё место другому, они выходят наружу. Возле этого холма ирландцы в давние времена хоронили своих королей.

В 1963 г. начались раскопки. Холм был вскрыт, и результаты превзошли все ожидания. Под слоем земли было обнаружено странное сооружение из серых и белых камней, представлявшее собой сложенную прямо на земле каменную полусферу правильной формы около 85 м в диаметре, окружённую внешним кольцом из небольших, от 1,8 до 2,5 м, грубых каменных столбов-менгиров. Внутри «свод» оказался заполненным валунами. Посреди них находился узкий коридор длиной 12м, который вёл в небольшую комнату. Стены Нью-Грейнджа расписаны странными узорами из кругов и спиралей, скорее всего символизировавшими кольца времени.

Туннель ориентирован на юго-восток точно на место восхода Солнца в день зимнего солнцестояния. В течение нескольких дней, близких к 21 декабря, лучи восходящего Солнца проникают по нему во внутреннюю комнату и ярко освещают её.

Это эффектное зрелище длится сейчас всего 14 минут в год. Нью-Грейндж был храмом Солнца и времени. В отличие от возведённого гораздо позже Стоунхенджа в его функции входила лишь одна астрономическая операция: определение начала года, которое его строители связывали с 21 декабря. Жрецы Нью-Грейнджа, по-видимому, стремились «помочь» Солнцу в наиболее «трудном» месте его пути, когда оно достигало самой нижней точки и должно было начать подъём от зимы к весне и лету.

Датируется Нью-Грейндж примерно 3000 г. до н. э. Это лишь один из шести знаменитых «волшебных холмов» Ирландии! Другие ещё не раскопаны, и можно лишь гадать, какие в них скрываются сюрпризы.

Великий стоунхендж

Ни одному из гигантских сооружений древности не уделялось столько внимания, как знаменитому и загадочному Стоунхенджу. Он по справедливости может быть назван одним из первых памятников человеческой мысли.

Что же представляло собой это сооружение, возведённое на Солсберийской равнине Южной Англии? 30 вкопанных в землю обтёсанных вертикальных камней высотой около 5,5 м с положенными сверху плитами составляли кольцевую «колоннаду» диаметром 29,5 м. Внутри неё вокруг центрального камня подковой располагались пять трилитов в форме узких «трёхкаменных ворот». Сооружение было окружено тремя концентрическими кольцами лунок, заполненных мелом, а на северо-восток от него шла обозначенная валами «аллея», в конце которой возвышался шестиметровый каменный столб массой в 35 тонн — Пяточный камень.

В Средние века считалось, что Стоунхендж (от древнеангл. Stan Hengues — «Висячие Камни») воздвиг король кельтского племени бриттов в память о сражении с саксами. По преданию, его построил за одну ночь главный чародей бриттов Мерлин. Миф о кельтском происхождении Стоунхенджа продержался на удивление долго.

Король Яков I (1566–1625), посетив Стоунхендж, был поражён величием развалин и приказал архитектору Иниго Джонсу нарисовать план сооружения и выяснить, как именно и кем оно было создано. Джонс тщательно обследовал Стоунхендж и пришёл к выводу, что друиды воздвигнуть такое сооружение были не в состоянии.

Во второй половине XVII в. было произведено первое научное обследование Стоунхенджа. Его выполнил Джон Обри, историк и археолог. Он догадался, что некогда Стоунхендж представлял собой ещё более внушительное сооружение. Он начал раскапывать землю вокруг каменного кольца и обнаружил, что под землёй находятся странные ямы, заполненные дроблёным мелом. Располагаются они на равном расстоянии друг от друга, и всего их 56. Эти ямы, получившие впоследствии название «лунок Обри», сыграли большую роль в определении функций сооружения в целом.

Историк XVIII в. Уильям Стьюкли высказал предположение, что Стоунхендж как-то связан с Солнцем. Он обратил внимание, что главная линия всего сооружения указывает на северо-восток, туда, где встаёт Солнце в самые длинные дни года — в момент летнего солнцестояния. 30 лет спустя, в 1771 г., гипотеза Стьюкли была развита доктором Джоном Смитом, который тщательно измерил все камни и пришёл к выводу, что Стоунхендж — это не только храм Солнца, но и календарь. Он отметил, например, что количество камней в одном из кругов — 30 — равно числу дней в лунном месяце, а если его умножить на 12, т. е. на число месяцев, то получится 360, соответствующее количеству дней в древнем солнечном году.

Современные учёные пришли к единодушному мнению, что Стоунхендж был построен между 1900 и 1600 гг. до н. э., т. е. примерно на тысячу лет позже египетских пирамид, причём строился он в три этапа. Заложили его на исходе каменного века. Тогда был вырыт кольцевой ров с двумя валами и установлены «прицельные» деревянные столбы и вертикальные камни, которые до нашего времени не сохранились, а также были устроены «лунки Обри». Все 56 лунок расположены по кругу вдоль внутреннего вала. В конце «аллеи», метрах в 30 от входа в кольцо был поставлен огромный Пяточный камень. Как показали наблюдения, в день летнего солнцестояния точно над ним восходит Солнце. До наших дней от Стоунхенджа I не дошло почти ничего, кроме Пяточного камня, следов лунок и рва.

Строительство Стоунхенджа II относится примерно к 1750 г. до н. э. Тогда были установлены первые мегалиты. Ещё лет через сто началось строительство Стоунхенджа III. Вокруг центра была установлена подкова из пяти «ворот» — трилитов от б до 7 м высотой, состоявших из двух вертикальных камней, поверх которых горизонтально лежал третий. Они были окружены кольцевой колоннадой из 30 вертикальных камней, покрытых горизонтальными плитами. Ориентирован Стоунхендж III был всё так же на северо-восток, к Пяточному камню, который по-прежнему, видимо, оставался главным в этом грандиозном сооружении. Завершено строительство было примерно в 1бОО г. до н. э.

Назначение и «устройство» Стоунхенджа в общих чертах стало понятным благодаря проведённым на нём астрономическим наблюдениям и анализу направлений, на которые нацелены каменные «визиры». Выяснилось, что Стоунхендж был гигантской обсерваторией, построенной для того, чтобы следить за движением Солнца и Луны. С его помощью решалась важнейшая задача — определение дня летнего солнцестояния, когда Солнце восходило на северо-востоке максимально близко к точке севера. От него можно было начинать вести счёт времени на целый год вперёд до тех пор, пока Солнце вновь не поднимется точно над Пяточным камнем, знаменуя завершение годового цикла. Скорее всего момент этот отмечался каким-то торжественным ритуалом.

Конечно, наблюдение за движением Солнца не было единственной целью, ради которой древние люди возвели это огромное сооружение. Ведь для того чтобы увидеть восход Солнца над Пяточным камнем в день летнего солнцестояния, достаточно было установить сам этот камень и отметить определённую точку в поле, с которой проводились бы наблюдения. Зачем же были нужны остальные камни?

Учёные обратили внимание на устройство трилитов. Вертикальные камни в них были поставлены очень близко друг к другу, на расстоянии всего 30 см. Таким образом, смотря сквозь бойницу, человек неизбежно очень сильно ограничивал поле своего зрения, причём каждый раз «луч» взгляда, пройдя сквозь трилит, попадал в определённый проём внешней колоннады. Также фиксировались другие важные направления. Как показали исследования, сквозь один из трилитов открывается вид на Солнце, встающее в день зимнего солнцестояния. Два других трилита предназначались для наблюдения заходов Солнца в дни летнего и зимнего солнцестояний.

Два трилита использовались для наблюдений Луны. Проёмы внешней колоннады делали их более точными и совершенными. Луна движется по зодиакальным созвездиям вдоль эклиптики так, что оказывается то выше неё (до 5°), то ниже. Это называется «высокая и низкая Луна». Закаты Луны, максимально удалённой от эклиптики к северу и югу, просматривались через один трилит, но через разные арки колоннады.

В дни, когда Луна пересекает эклиптику, возникает возможность лунного или солнечного затмения. Чтобы предупреждать об этой «опасности», и был построен Стоунхендж, оказавшийся не только обсерваторией-календарём. Согласно гипотезе Джеральда Хокинса, он использовался и в качестве некоей «вычислительной машины», позволявшей следить за приближением Луны к эклиптике и предсказывать солнечные и лунные затмения.

Хокинс показал, что во II тысячелетии до н. э. затмения Луны и Солнца происходили тогда, когда зимняя Луна восходила над Пяточным камнем. Кроме того, лунные затмения могли происходить и осенью. Каждый раз этому предшествовало совпадение точки восхода Луны с определённым камнем внешнего круга. Интервал, через который она вновь должна будет оказаться в этой точке, составляет 18 лет. Через три цикла — это почти 56 лет. Но ведь 56 как раз число «лунок Обри»! Вероятно, именно для этого они и служили: пользуясь лунками, можно было предсказывать наиболее «опасные» моменты при сближении Солнца и Луны. Достаточно было через определённое количество дней перекладывать камень по кругу из одной лунки в соседнюю.

По мысли Хокинса, создатели Стоунхенджа, используя шесть перекладных камней, могли предвидеть не только год, но и сезон, в который произойдёт затмение.

Интересно название главного камня Стоунхенджа: «Пяточным» окрестил его Обри, как считалось, потому, что заметил на нём небольшую выемку, напоминающую след от пятки. Однако учёный скорее всего записал со слов местных жителей старинное название, сохранившееся от древних бриттов, которые именовали камень «солнечным» (кельтское слово haol — «солнце» — звучит похоже на английское heel — «пятка»).

Обсерватория «висячие деревья»

Стоунхендж не был единственным сооружением такого типа. Например, в 3 км от него были найдены остатки древней постройки, по своей планировке напоминающей Стоунхендж. Будучи деревянным, это сооружение, получившее название Вудхендж (англ. wood — «дерево»), практически не сохранилось. На его месте археологи обнаружили лишь ров и множество лунок, в которые в своё время были вкопаны деревянные столбы. Вероятно, Вудхендж был прообразом Стоунхенджа, выполняя те же астрономические функции. Опираясь именно на эту «натурную модель», строители могли, не опасаясь крупных ошибок, возвести грандиозный астрономический храм — великолепный Стоунхендж.

Конь-камень на красивой мечи

Камень этот лежит на вершине Красного холма на берегу Красивой Мечи, что течёт по тульской земле к Дону. Дурная молва ходила о нём, будто бывают от него засухи, неурожаи и падёж скота. Опахивали его сохами да тракторами, и попа звали, и вроде бы в реке топили, да только он снова тут!

Это глыба песчаника длиной больше 3 ми весом 30–35 т. Родом он из каменоломни километра за два-три отсюда. Неизвестно, кто и когда притащил Конь-камень, положил на три опоры и вырубил в нём прямой аккуратный жёлоб. Посмотришь в этот «прицел» с одного конца и увидишь место на горизонте, где Солнце восходит в самый короткий день; посмотришь с другого — увидишь, где оно заходит в день летнего солнцестояния.

И не один такой камень есть в наших землях. На древнем Куликовом поле — свой «Конь-камень», на многих Ярилиных горках еще стоят эти пассажные инструменты каменного века, эти солнечные календари, российские «Стоунхенджи».

Так и видится бородатый мудрец, безвестный Галилей в звериных шкурах, который размечает свежую глыбу каменным резцом с верой во что-то своё, уже не доступное нам, его далёким предкам.

Первобытные обсерватории нового света

На равнинах Северной Америки обнаружено огромное количество археологических памятников в виде каменных кругов на вершинах холмов. Наибольший возраст имеет круг в Махорвилле, Канада. Он был сооружён около 2500 г. до н. э. и является современником египетских пирамид. Некоторые из кругов, безусловно, имеют астрономический смысл.

Биг Хорн (англ. Вig Hot — «Большой Рог»), один из самых важных памятников этого типа, находится на горе Медицина в штате Вайоминг, США. Потому, вероятно, каменные круги получили неожиданное название «медицинских кругов». Впрочем, всё могло быть наоборот. Европейское слово тесИсте у индейцев означает также «волшебство», и гора стала называться «Медицина» из-за колдовского каменного круга.

Биг Хорн представляет собой большую группу камней, из которой выходят «лучи» длиной в среднем по 12м. По концам их проведена каменная окружность. Снаружи, на конце каждого из шести лучей, насыпаны каменные груды поменьше, причём пять из них касаются окружности, а шестая, юго-западная, расположена на конце луча, выходящего за пределы круга, как «аллея» Стоунхенджа. Направление от неё на центр круга совпадает с направлением восхода Солнца в день летнего солнцестояния.

Ещё три направления лучей можно связать со звёздами — это восходы Альдебарана, Ригеля и Сириуса. Пункт наблюдения во всех случаях один и тот же — северо-западная груда камней, а «мушкой» служат две восточных и центральная груды.

Около 1500 г. до н. э. гелиакический восход Альдебарана (т. е. наступление его видимости перед восходом Солнца) происходил вблизи даты летнего солнцестояния и мог быть использован в течение нескольких веков как дополнительное событие, предшествующее солнцестоянию и подтверждающее его. Две другие звезды имели гелиакические восходы в такой последовательности: Ригель через 28 дней после Альдебарана, а Сириус через 28 дней после Ригеля. Прямо какая-то магия цифр, особенно если учесть, что 27,3 суток —время лунного пути по всему зодиаку.

Можно предположить, что круги строились для календарных и ритуальных целей. «Медицинские круги» Северной Америки показывают, что для её обитателей летнее солнцестояние служило началом года.

Астрономия на Руси

Все известные источники содержат очень скудную информацию о том, насколько хорошо древние славяне знали звёздное небо. Причины этого в обшем понятны. Почти полгода небо на Руси закрыто облаками и туманами. Кроме того, в летнее время ночи очень светлые. И наконец, славяне долгое время были изолированы от народов, накопивших богатый наблюдательный материал. Прежде всего речь идёт о греках и римлянах, от которых восприняли свои представления о звёздном небе кельты и германцы. Кочевые же народы, хорошо знавшие звёзды, часто со славянами воевали.

Большая и Малая Медведицы с Полярной Звездой в славянской народной традиции назывались: «Ковш», «Лось», «Сохатый», «Воз», «Телега», «Повозка» и т. д. Названия «Лось», «Сохатый», по-видимому, пришли от угро-финских народов, северо-восточных соседей древних славян, охота для которых была главным занятием. «Телега», «Повозка», «Воз» пришли от древних германцев или были общими названиями для двух народов ешё в период глубокой древности (коней II — I тысячелетие до н. э.), когда они не были ешё разделены. Полярную звезду славяне представляли как «Кол», вокруг которого движутся звёзды. Впрочем, такое же понимание было и у других народов.

Весьма популярными у славян были Плеяды. Именовались они по-разному: «Волосыны», «Волоса», «Стожары», «Волосожары» и т. д. Возможно, так представлялся им бог Белее, или «скотий» бог. Плеяды, которые были видны только зимой, отмечали как бы вынужденный простой в хозяйственной деятельности.

Название «Стожары» происходит от слова «стог». Восточные славяне называли «стожаром» кол, воткнутый в землю, чтобы укрепить стог сена. Правда, возможна обратная связь: когда уходят с небосвода Плеяды, наступает время выводить скот в поле на выпас. В созвездии Ориона славяне обращали внимание на три центральные звезды, так называемый Пояс Ориона, и устная традиция сохранила их название — «Три плуга». Венеру славяне, как и другие народы, воспринимали как две звезды — Вечернюю и Утреннюю: «Зарница», «Зарянка», «Денница» — Утренняя звезда; «Вечерица», «Вечёрка» — Вечерняя. Есть у Венеры и «звериные» названия: «Волчья звезда» — время вечернего выхода на охоту волка; «Воларииа» (от слова «вол») — время утреннего вывода скота на пастбище.

Известны народные названия и других созвездий, но их давность определить трудно. Славяне жили в основном в лесах и по берегам рек, которые давали массу вспомогательных ориентиров по сторонам горизонта: по растениям, по рельефу местности, по направлениям ветров (по сезонам) и т. д. Они иначе воспринимали мир, чем, например, жители южных широт с их открытым небом и пространством пустынь и степей или народы, населявшие морские берега, которые использовали знания звёздного неба в навигационных целях.

«Звёздные» пирамиды Эквадора

В 40 км от столицы Эквадора Кито, в местности Кочаски, расположен комплекс из 15 усечённых пирамид различных высот и площадей. Строились они в разное время и относились, по-видимому, к культуре Каранки, которая возникла около 800 г. н. э, в 700— 1200 гг. достигла расцвета, а исчезла через два столетия.

Широкие площадки на пирамидах, вероятно, использовались для религиозных обрядов. Долгое время казались непонятными пологие пандусы, которые ведут к верхним площадкам девяти пирамид. Однако выяснилось, что они имеют определённый астрономический смысл. Все пандусы подходят к пирамидам с северо-востока, и самый большой из них достигает в длину 300 м. Расчёты показали, что в этом направлении несколько веков назад можно было видеть восход звезды, расположенной на конце хвоста Большой Медведицы. Звезда, которую мы называем Бенетнаш, восходит последней из семи звёзд, и это означает, что весь Ковш Большой Медведицы красуется на небосклоне.

Наблюдающему восход на линии искусственного горизонта, образованного краем пирамиды, значительно легче зафиксировать момент появления звезды, и, самое главное, на него не влияет «угол затухания». Обычно звёзды можно различить только на высотах больше 6–8° над горизонтом. Здесь же звезда появляется сразу на высоте 10°. Такой практически одинаковый угол наклона имеют пандусы всех пирамид.

Чем же восход Бенетнаша был так интересен индейцам, что для его наблюдения они воздвигали пирамиды? В древности гелиакический (перед восходом Солнца) восход этой звезды происходил в конце октября — начале ноября, что совпадало с наступлением сезона дождей и началом сельскохозяйственного года. Сезон этот в тропической зоне, как правило, приходит внезапно и бурно, грозя застать врасплох земледельцев. Потому жителям Кочаски были так важны астрономические методы предупреждения стихии.

Список литературы

«Энциклопедия для детей» Аванта+, «Астрономия» под ред. М. Д. Аксёнова. стр. 14

www.ronl.ru

Дипломная работа - Астрономия. Что такое астрономия?

Астрономия — наука о расположении, строении, свойствах, происхождении, движении и развитии космических тел(звезд, планет, метеоритов и т.п.) образованных ими систем ((звездные скопления, галактики и т.п.) и всей Вселенной в целом.

Как наука, астрономия основывается прежде всего на наблюдениях. В отличие от физиков астрономы лишены возможности ставить эксперименты. Практически всю информацию о небесных телах приносит нам электромагнитное излучение. Только в последние сорок лет отдельные миры стали изучать непосредственно: зондировать атмосферы планет, изучать лунный и марсианский грунт.

Астрономия тесно связана с другими науками, прежде всего с физикой и математикой, методы которых широко применяются в ней. Но и астрономия является незаменимым полигоном, на котором проходят испытания многие физические теории. Космос — единственное место, где вещество существует при температурах в сотни миллионов градусов и почти при абсолютном нуле, в пустоте вакуума и в нейтронных звездах. В последнее время достижения астрономии стали использоваться в геологии и биологии, географии и истории. Что изучает астрономия

Астрономия изучает Солнце и звезды, планеты и их спутники, кометы и метеорные тела, туманности, звездные системы и материю, заполняющую пространство между звездами и планетами, в каком бы состоянии эта материя ни находилась. Изучая строение и развитие небесных тел, их положение и движение в пространстве, астрономия в конечном итоге дает нам представление о строении и развитии Вселенной в целом. Слово «астрономия» происходит от двух греческих слов: «астрон» — звезда, светило и «номос» — закон. При изучении небесных тел астрономия ставит перед собой три основные задачи, требующие последовательного решения:

1. Изучение видимых, а затем и действительных положений и движений небесных тел в пространстве, определение их размеров и формы.

2. Изучение физического строения небесных тел, т.е. исследование химического состава и физических условий (плотности, температуры и т.п.) на поверхности и в недрах небесных тел.

3. Решение проблем происхождения и развития, т.е. возможной дальнейшей судьбы отдельных небесных тел и их систем.

Вопросы первой задачи решаются путем длительных наблюдений, начатых еще в глубокой древности, а также на основе законов механики, известных уже около 300 лет. Поэтому в этой области астрономии мы располагаем наиболее богатой информацией, особенно для небесных тел, сравнительно близких к Земле.

О физическом строении небесных тел мы знаем гораздо меньше. Решение некоторых вопросов, принадлежащих второй задаче, впервые стало возможным немногим более ста лет назад, а основных проблем — лишь в последние годы.

Что изучает астрономия

Астрономия изучает Солнце и звезды, планеты и их спутники, кометы и метеорные тела, туманности, звездные системы и материю, заполняющую пространство между звездами и планетами, в каком бы состоянии эта материя ни находилась. Изучая строение и развитие небесных тел, их положение и движение в пространстве, астрономия в конечном итоге дает нам представление о строении и развитии Вселенной в целом. Слово «астрономия» происходит от двух греческих слов: «астрон» — звезда, светило и «номос» — закон. При изучении небесных тел астрономия ставит перед собой три основные задачи, требующие последовательного решения:

1. Изучение видимых, а затем и действительных положений и движений небесных тел в пространстве, определение их размеров и формы.

2. Изучение физического строения небесных тел, т.е. исследование химического состава и физических условий (плотности, температуры и т.п.) на поверхности и в недрах небесных тел.

3. Решение проблем происхождения и развития, т.е. возможной дальнейшей судьбы отдельных небесных тел и их систем.

Вопросы первой задачи решаются путем длительных наблюдений, начатых еще в глубокой древности, а также на основе законов механики, известных уже около 300 лет. Поэтому в этой области астрономии мы располагаем наиболее богатой информацией, особенно для небесных тел, сравнительно близких к Земле.

О физическом строении небесных тел мы знаем гораздо меньше. Решение некоторых вопросов, принадлежащих второй задаче, впервые стало возможным немногим более ста лет назад, а основных проблем — лишь в последние годы.

Подразделение астрономии

Современная астрономия подразделяется на ряд отдельных разделов, которые тесно связаны между собой, и такое разделение астрономии, в известном смысле, условно. Главнейшими разделами астрономии являются:

1. Астрометрия — наука об измерении пространства и времени. Она состоит из: а) сферической астрономии, разрабатывающей математические методы определения видимых положений и движений небесных тел с помощью различных систем координат, а также теорию закономерных изменений координат светил со временем; б) фундаментальной астрометрии, задачами которой являются определение координат небесных тел из наблюдений, составление каталогов звездных положений и определение числовых значений важнейших астрономических постоянных, т.е. величин, позволяющих учитывать закономерные изменения координат светил; в) практической астрономии, в которой излагаются методы определения географических координат, азимутов направлений, точного времени и описываются применяемые при этом инструменты.

2. Теоретическая астрономия дает методы для определения орбит небесных тел по их видимым положениям и методы вычисления эфемерид (видимых положений) небесных тел по известным элементам их орбит (обратная задача).

3. Небесная механика изучает законы движений небесных тел под действием сил всемирного тяготения, определяет массы и форму небесных тел и устойчивость их систем. Эти три раздела в основном решают первую задачу астрономии, и их часто называют классической астрономией.

4. Астрофизика изучает строение, физические свойства и химический состав небесных объектов. Она делится на: а) практическую астрофизику, в которой разрабатываются и применяются практические методы астрофизических исследований и соответствующие инструменты и приборы; б) теоретическую астрофизику, в которой на основании законов физики даются объяснения наблюдаемым физическим явлениям. Ряд разделов астрофизики выделяется по специфическим методам исследования. О них будет сказано в § 101,

5. Звездная астрономия изучает закономерности пространственного распределения и движения звезд, звездных систем и межзвездной материи с учетом их физических особенностей. В этих двух разделах в основном решаются вопросы второй задачи астрономии.

6. Космогония рассматривает вопросы происхождения и эволюции небесных тел, в том числе и нашей Земли.

7. Космология изучает общие закономерности строения и развития Вселенной.

На основании всех полученных знаний о небесных телах последние два раздела астрономии решают ее третью задачу.

История

Астрономия — наиболее древняя среди естественных наук. Она была высоко развита вавилонянами и греками — гораздо больше, нежели физика, химия и техника. В древности и средние века не одно только чисто научное любопытство побуждало производить вычисления, копирование, исправления астрономических таблиц, но прежде всего тот факт, что они были необходимы для астрологии. Вкладывая большие суммы в построение обсерваторий и точных инструментов, власть имущие ожидали отдачи не только в виде славы покровителей науки, но также в виде астрологических предсказаний. Сохранилось лишь очень небольшое число книг тех времен, свидетельствующих о чисто теоретическом интересе учёных к астрономии; большинство книг не содержит ни наблюдений, ни теории, а лишь таблицы и правила их использования. Одно из немногих исключений — «Альмагест» Птолемея, написавшего, однако, также и астрологическое руководство «Тетрабиблос».

Первые записи астрономических наблюдений, подлинность которых несомненна, относятся к VIII в. до н.э. Однако известно, что еще за 3 тысячи лет до н. э. египетские жрецы подметили, что разливы Нила, регулировавшие экономическую жизнь страны, наступали вскоре после того, как перед восходом Солнца на востоке появлялась самая яркая из звезд, Сириус, скрывавшаяся до этого около двух месяцев в лучах Солнца. Из этих наблюдений египетские жрецы довольно точно определили продолжительность тропического года.

В Древнем Китае за 2 тысячи лет до н.э. видимые движения Солнца и Луны были настолько хорошо изучены, что китайские астрономы могли предсказывать наступление солнечных и лунных затмений. Астрономия, как и все другие науки, возникла из практических потребностей человека. Кочевым племенам первобытного общества нужно было ориентироваться при своих странствиях, и они научились это делать по Солнцу, Луне и звездам. Первобытный земледелец должен был при полевых работах учитывать наступление различных сезонов года, и он заметил, что смена времен года связана с полуденной высотой Солнца, с появлением па ночном небе определенных звезд. Дальнейшее развитие человеческого общества вызвало потребность в измерении времени и в летосчислении (составлении календарей).

Все это могли дать и давали наблюдения над движением небесных светил, которые велись в начале без всяких инструментов, были не очень точными, но вполне удовлетворяли практические нужды того времени. Из таких наблюдений и возникла паука о небесных телах — астрономия.

С развитием человеческого общества перед астрономией выдвигались все новые и новые задачи, для решения которых нужны были более совершенные способы наблюдений и более точные методы расчетов. Постепенно стали создаваться простейшие астрономические инструменты и разрабатываться математические методы обработки наблюдений.

В Древней Греции астрономия была уже одной из наиболее развитых наук. Для объяснения видимых движений планет греческие астрономы, крупнейший из них Гиппарх (II в. до н.э.), создали геометрическую теорию эпициклов, которая легла в основу геоцентрической системы мира Птолемея (II в. н.э.). Будучи принципиально неверной, система Птолемея тем не менее позволяла предвычислять приближенные положения планет на небе и потому удовлетворяла, до известной степени, практическим запросам в течение нескольких веков.

Системой мира Птолемея завершается этап развития древнегреческой астрономии. Развитие феодализма и распространение христианской религии повлекли за собой значительный упадок естественных наук, и развитие астрономии в Европе затормозилось на многие столетия. В эпоху мрачного средневековья астрономы занимались лишь наблюдениями видимых движений планет и согласованием этих наблюдений с принятой геоцентрической системой Птолемея.

Рациональное развитие в этот период астрономия получила лишь у арабов и народов Средней Азии и Кавказа, в трудах выдающихся астрономов того времени — Аль-Баттани (850-929 гг.), Бируни (973-1048 гг.), Улугбека (1394-1449 гг.) и др. В период возникновения и становления капитализма в Европе, который пришел на смену феодальному обществу, началось дальнейшее развитие астрономии. Особенно быстро она развивалась в эпоху великих географических открытий (XV-XVI вв.). Нарождавшийся новый класс буржуазии был заинтересован в эксплуатации новых земель и снаряжал многочисленные экспедиции для их открытия. Но далекие путешествия через океан требовали более точных и более простых методов ориентировки и исчисления времени, чем те, которые могла обеспечить система Птолемея. Развитие торговли и мореплавания настоятельно требовало совершенствования астрономических знаний и, в частности, теории движения планет. Развитие производительных сил и требования практики, с одной стороны, и накопленный наблюдательный материал, — с другой, подготовили почву для революции в астрономии, которую и произвел великий польский ученый Николай Коперник (1473-1543), разработавший свою гелиоцентрическую систему мира, опубликованную в год его смерти.

Учение Коперника явилось началом нового этапа в развитии астрономии. Кеплером в 1609-1618 гг. были открыты законы движений планет, а в 1687 г. Ньютон опубликовал закон всемирного тяготения.

Новая астрономия получила возможность изучать не только видимые, но и действительные движения небесных тел. Ее многочисленные и блестящие успехи в этой области увенчались в середине XIX в. открытием планеты Нептун, а в наше время — расчетом орбит искусственных небесных тел.

Следующий, очень важный этап в развитии астрономии начался сравнительно недавно, с середины XIX в., когда возник спектральный анализ и стала применяться фотография в астрономии. Эти методы дали возможность астрономам начать изучение физической природы небесных тел и значительно расширить границы исследуемого пространства. Возникла астрофизика, получившая особенно большое развитие в XX в. и продолжающая бурно развиваться в наши дни. В 40-х гг. XX в. стала развиваться радиоастрономия, а в 1957 г. было положено начало качественно новым методам исследований, основанным на использовании искусственных небесных тел, что в дальнейшем привело к возникновению фактически нового раздела астрофизики — рентгеновской астрономии (см. § 160).

Значение этих достижений астрономии трудно переоценить. Запуск искусственных спутников Земли. (1957 г., СССР), космических станций (1959 г., СССР), первые полеты человека в космос (1961 г., СССР), первая высадка людей на Луну (1969 г., США), — эпохальные события для всего человечества. За ними последовали доставка на Землю лунного грунта, посадка спускаемых аппаратов на поверхности Венеры и Марса, посылка автоматических межпланетных станций к более далеким планетам Солнечной системы.

www.ronl.ru

Доклад - Астрономия - наука о вселенной

Из всех картин природы, развертывающихся перед нашими глазами, самая величественная — картина звездного неба. Мы можем облететь или объехать весь земной шар, наш мир, в котором мы живем. Звездное же небо — это необозримое, бесконечное пространство, заполненное другими мирами. Каждая звездочка, даже еле заметно мерцающая в темном небе, представляет собой огромное светило, часто более горячее и яркое, чем Солнце. Только все звезды находятся очень далеко от нас и потому светятся слабо. Что это за миры, как они движутся? Как далеки они от нас? Как произошли небесные Светила? Как устроены звезды? Что было с ними в прошлом и что произойдет с ними в будущем? Все эти вопросы изучает астрономия — наука о Вселенной. Ученые смогли определить расстояния до звезд, узнать вес Солнца и его химический состав, предсказать будущие затмения Луны и Солнца, время появления хвостатых светил — комет. Но прошли многие века, прежде чем это удалось сделать.

Когда же и как зародилась наука о Вселенной?

Уже в глубокой древности люди следили за появлением Солнца над горизонтом, за движением его по небу, чтобы знать, скоро ли оно опять опустится к горизонту и наступит ночь. По положению Солнца и звезд человек научился определять время суток. Давно человек подметил на небе группы звезд, ориентируясь по которым можно найти верное направление пути на суше и на море. Эти знания оказались нужными, когда люди уходили, например, далеко от своих жилищ во время охоты и вообще при всяком другом передвижении по Земле. Для пастушеских кочевых народов большое значение имело предугадывание наступления полнолуния (когда Луна видна полным диском): в такие очень светлые ночи можно было успешно перегонять скот на новые пастбища, избегая дневной жары. Древнейшие народы считали Землю плоской, а небо полушарием, опрокинутым над Землей. Саму Землю они считали неподвижной и думали, что все небесные светила каждые сутки обходят вокруг Земли. Не умея объяснить различные явления природы, люди стали обожествлять силы природы. Весь мир казался им полным чудес, творимых богами. Задумываясь над вопросом, откуда взялся окружающий мир, люди стали считать, что мир создан сверхъестественными существами — богами. Появились служители богов — жрецы, которые в своих корыстных интересах поддерживали в невежественных массах веру в богов. Жрецы утверждали, что мир создан богами и ими управляется. Но в то же время, наблюдая небесные явления, человечество постепенно накапливало все больше знаний о мире небесных светил. Люди заметили на небе несколько особенно ярких светил, которые передвигаются среди созвездий то вперед, то назад, то неподвижно стоят на месте. Древние греки назвали эти блуждающие светила планетами в отличие от обычных звезд. Не понимая сложной картины явлений на небе, не зная истинных причин движения планет, люди пришли к ошибочным заключениям. Каждому из этих светил, в зависимости от его вида, цвета и особенностей движения, приписывались различные свойства. Планеты принимались за вестников богов, будто бы влияющих на земные события и на судьбы людей. А господствующие классы общества вместе с жрецами пользовались суевериями в своих интересах, чтобы держать в страхе и покорности трудовой народ. Жрецы и прорицатели предсказывали разные события по расположению планет на небе. Шли века. Все точнее делались наблюдения над небесными явлениями, в том числе и над движением планет. Ученые, наблюдавшие звездное небо, подмечали закономерности в изменении расположения небесных светил. Они старались понять и объяснить причины видимого движения звезд, Луны, Солнца, планет. Становилось ясно, что объяснить эти явления невозможно, если считать Землю неподвижной. За такие мысли, противоречившие тому, что проповедовала церковь, ученых жестоко преследовали. Особенно в этом усердствовали церковники, отстаивавшие все старое и боровшиеся с открытиями науки. Как тяжким сном, было сковано сознание человека, пока он не узнал истинного места Земли во Вселенной и не опроверг ошибочного представления о мире, центром которого якобы является Земля. Четыре века назад гениальный польский астроном Николай Коперник доказал, что земной шар — лишь одна из планет, обращающихся вокруг Солнца. Землю освещает Солнце. а она отражает солнечный свет в пространство. Все другие планеты также не имеют собственного света и тоже отражают лучи Солнца. Луна — ближайшее к нам небесное тело: она обращается вокруг Земли и является ее спутником, сопровождающим Землю в ее движении вокруг Солнца. Такие же спутники позже были открыты и у многих других планет. Все планеты и Солнце представляют собой единую солнечную систему, в центре которой находится раскаленное, самосветящееся Солнце.

Бесчисленные звезды не укреплены на поверхности небесного купола, как думали древние ученые. Звезды находятся на различных расстояниях от Земли, далеко за пределами солнечной системы. Каждая звезда — это другое солнце, как доказали астрономы. Русский ученый В. Я. Струве, основатель Пулковской обсерватории, около 120 лет назад впервые измерил расстояние до одной из ближайших звезд. Оно оказалось громадным. Об этом расстоянии можно составить представление, если взять самую большую в природе скорость — скорость света. Луч света проходит за секунду 300 000 км. От Солнца он к нам доходит за 8.5 минут, а от ближайшей звезды — более чем за четыре года. Во Вселенной есть звезды, свет от которых идет к Земле миллионы и даже сотни миллионов лет! На некоторых планетах может быть жизнь. На планете Марс усматриваются признаки растительности. За этой планетой ученые ведут наблюдения очень давно. Изучая небо, каждый может убедиться, что оно полно движения и постоянно изменяется. Вот вспыхнула новая звезда и на несколько дней затмила своим светом другие звезды. Какая мировая катастрофа породила вспышку ее блеска? Вот появилось в пределах солнечной системы новое небесное тело — комета с большим, как бы огненным хвостом, охватившим полнеба. Пролетая быстро сквозь строй планет, комета плавно огибает Солнце и удаляется в неизвестность. А иная комета, кружась вокруг Солнца, подобно планетам, рассыпается на рой мельчайших невидимых камешков. Камешки эти несутся с огромной скоростью и, влетая в атмосферу Земли, раскаляются и светятся. Тогда в темном небе сверкают «падающие звезды» — метеоры. По большей части они превращаются в пар, но некоторые, покрупнее, долетают до Земли. Камень с неба! Это вестник далеких миров. Его можно увидеть в музейной витрине. Астрономы и любители астрономии заботливо собирают осколки упавших с неба камней. Маленький кусочек, упавший с неба, состоит из тех же веществ, что и наш земной шар. А это значит, что и вообще небесные тела по своему химическому составу не отличаются от Земли. Но, конечно, те же вещества на этих небесных телах могут находиться совсем в другом состоянии, чем на Земле. Иногда на небе в зимнюю ночь, как лучи цветных прожекторов, ходят, перекрещиваясь, лучи полярных сияний. В это же время сильно колеблется магнитная стрелка, а радиоприемник начинает громко трещать. Какова причина этих явлений?

Ученые очень много сделали для выяснения всех этих и других грандиозных и сложных явлений. Постепенно человек все глубже познавал Вселенную. Больше двух веков назад царь Петр 1 открыл в Москве в Сухаревой башне школу, где обучали астрономии. Позже в Петербурге открылась обсерватория при Академии наук. Благодаря трудам М. В. Ломоносова и других выдающихся ученых, его современников и продолжателей, астрономия в нашей стране давно уже достигла высокого уровня развития. Составление точных карт страны требовало точного определения положения городов на Земле, а оно возможно лишь по звездам. Для из учения точного расположения звезд на небе и других исследований в 1839 г. под Петербургом была построена крупнейшая обсерватория на Пулковских холмах. Пулково ученые прозвали астрономической столицей мира. Сюда приезжали учиться точным наблюдениям астрономы из Западной Европы и Америки. Кроме Пулковской, у нас теперь имеется много других обсерваторий, на которых ведется изучение неба, необходимое людям в их практической деятельности и помогающее им в борьбе с религиозными суевериями и в выработке правильного миропонимания. Российские астрономы занимали и занимают ведущее место в мировой науке. 4 октября 1957 г. в России был произведен впервые в мире успешный запуск искусственного спутника Земли. За первым спутником последовали второй, третий, последовали и другие, пролагая путь к межпланетным путешествиям, к осуществлению давнишней мечты человечества — проникнуть в глубины Вселенной. Российские астрономы разрабатывают науку о Вселенной в сотрудничестве с передовыми учеными других стран. В капиталистических странах правящие круги стремятся использовать достижения науки, и в частности астрономии, в своих интересах. Некоторые буржуазные ученые, находясь в плену религиозных представлений, делают ошибочные выводы из своих исследований, неправильно толкуют научные открытия. В августе 1958 г. в Москве состоялся Международный съезд астрономов, в котором приняли участие ученые почти 40 государств. На съезде российские астрономы и астрономы других стран рассказали о своих достижениях, обсудили наиболее сложные и волнующие вопросы дальнейшего проникновения в глубины мироздания. Астрономия не только раскрывает тайны глубин Вселенной, но и помогает людям в их практической деятельности: в составлении точных карт поверхности Земли, правильном определении направления пути кораблей и самолетов, Службе точного времени и во многом другом.

www.ronl.ru

Реферат - Астрономы древних веков

Сергей Житомирский

Аристарх — Коперник античного мира

Аристарх (около 310–250 гг. — III в. до н. э.) родился на острове Самос. Он был учеником физика Стратона из Лампсака. Его учитель принадлежал к школе Аристотеля и в конце жизни даже руководил Ликеем. Он был одним из основателей знаменитой Александрийской библиотеки и Мусейона -главного научного центра поздней античности. По-видимому, здесь, среди первого поколения учёных Александрии, учился и работал Аристарх.

Всё это, однако, не объясняет личности Аристарха, которая кажется совершенно выпадающей из своей эпохи. До него теории неба строились чисто умозрительно, на основе философских аргументов. Иначе и быть не могло, поскольку небо рассматривалось как мир идеального, вечного, божественного. Аристарх же попытался определить расстояния до небесных тел с помощью наблюдений. Когда у него это получилось, он сделал второй шаг, к которому не были готовы ни его современники, ни учёные много веков позднее.

Как Аристарх решил первую задачу, известно точно. Единственная сохранившаяся его книга «О размерах Солнца и Луны и расстояниях до них» как раз посвящена этой проблеме. Сначала Аристарх определил, во сколько раз Солнце дальше Луны. Для этого он измерил угол между Луной, находившейся в фазе четверти, и Солнцем (это можно сделать при заходе или восходе Солнца, когда Луна иногда видна одновременно с ним). Если, по словам Аристарха, «Луна кажется нам рассечённой пополам», угол, имеющий Луну своей вершиной, прямой. Аристарх измерил угол между Луной и Солнцем, в вершине которого находилась Земля. Он получился у него равным 87° (в действительности 89° 5 2′). В прямоугольном треугольнике с таким углом гипотенуза (расстояние от Земли до Солнца) в 19 раз длиннее катета (расстояния до Луны). Для знающих тригонометрию отметим, что 1/19 к cos 87°. На этом выводе — Солнце в 19 раз дальше Луны — Аристарх и остановился. На самом деле Солнце дальше в 400 раз, однако с инструментами того времени найти верное значение было невозможно.

Аристарх знал, что видимые диски Солнца и Луны примерно одинаковы. Он сам наблюдал солнечное затмение, когда диск Луны полностью закрыл диск Солнца. Но если видимые диски равны, а расстояние до Солнца в 19 раз больше, чем расстояние до Луны, то диаметр Солнца в 19 раз больше диаметра Луны. Теперь осталось главное: сравнить Солнце и Луну с самой Землёй. Вершиной научной смелости тогда была идея, что Солнце очень велико, возможно даже почти так же велико, как вся Греция.

Наблюдая лунные затмения, когда Луна проходит через тень Земли, Аристарх установил, что диаметр Луны в два раза меньше земной тени. С помощью довольно хитроумных рассуждений он доказал, что Луна меньше Земли в 3 раза. Но Солнце больше Луны в 19 раз, а значит, её диаметр в 6 с лишним раз больше земного (в действительности в 109 раз). Главным в работе Аристарха был не результат, а сам факт выполнения, доказавший, что недостижимый мир небесных тел может быть познан с помощью измерений и расчётов.

По-видимому, всё это и подтолкнуло Аристарха к его великому открытию. Его идея дошла до нас только в пересказе Архимеда. Аристарх догадался, что большое Солнце не может обращаться вокруг маленькой Земли. Вокруг Земли вращается только Луна. Солнце есть центр Вселенной. Вокруг него обращаются и планеты. Эта теория получила название гелиоцентрической. Смену дня и ночи на Земле Аристарх объяснял тем, что Земля вращается вокруг своей оси. Его гелиоцентрическая модель объясняла многое, например заметное изменение блеска Марса. Судя по некоторым данным, Аристарх догадался и о том, что его теория естественно объясняет и петлеобразное движение планет, вызванное обращением Земли вокруг Солнца.

Свои теории Аристарх продумал хорошо. Он учёл, в частности, тот факт, что наблюдатель на движущейся Земле должен заметить изменение положений звёзд — параллактическое смещение. Аристарх объяснял кажущуюся неподвижность звёзд тем, что они очень далеки от Земли, и её орбита бесконечно мала по сравнению с этим расстоянием. Теория Аристарха не могла быть принята его современниками. Слишком многое нужно было менять. Невозможно было поверить, что наша опора не покоится, а вращается и движется и осознать все последствия того факта, что Земля тоже небесное тело, подобное Венере или Марсу. Ведь в этом случае рухнула бы тысячелетняя идея Неба, величественно взирающего на земной мир. Современники Аристарха отвергли гелиоцентризм. Его обвинили в богохульстве и изгнали из Александрии. Через несколько веков Клавдий Птолемей найдёт и убедительные теоретические доводы, опровергающие движение Земли. Потребуется смена эпох, чтобы гелиоцентризм смог войти в сознание людей.

Платон утверждал, что Солнце ровно вдвое дальше от Земли, чем Луна. «Посмотрим, так ли это», — подумал Аристарх и начертил треугольник. Наблюдатель смотрит с Земли на Солнце и Луну. Луна в фазе первой четверти. Это бывает, когда угол ∟TLS прямой. По Платону, TS = 2TL, значит, угол ∟TLS = 60°. Но такого не может быть, ведь во время фазы первой четверти Луна отделена от Солнца примерно на 90°. А если померить? Точно Аристархпомерил ∟TLS в момент первой четверти и получил угол в 87°.

Гиппарх

«Этот Гиппарх, который не может не заслужить достаточной похвалы, более чем кто-либо доказал родство человека со звёздами и то, что наши души являются частью неба. Он решился на дело, смелое даже для богов, — переписать для потомства звёзды и пересчитать светила. Он определил места и яркость многих звёзд, чтобы можно было разобрать, не исчезают ли они, не появляются ли вновь, не движутся ли они, меняются ли в яркости. Он оставил потомкам небо в наследство, если найдётся тот, кто примет это наследство» — так писал римский историк и естествоиспытатель Плиний Старший о величайшем астрономе Древней Греции. Годы рождения и смерти Гиппарха неизвестны. Известно только, что он родился в городе Никее, в Малой Азии. Большую часть жизни (1бО— 125 гг. до н. э.) Гиппарх провёл на острове Родос в Эгейском море. Там он построил обсерваторию.

Из трудов Гиппарха почти ничего не сохранилось. До нас дошло лишь одно его сочинение — «Комментарии к Арату и Евдоксу». Другие погибли вместе с Александрийской библиотекой. Она просуществовала более трёх столетий — с конца IV в. до н. э. и до 47 г. до н. э., когда войска Юлия Цезаря взяли Александрию и разграбили библиотеку. В 391 г. н. э. толпа христианских фанатиков сожгла большинство рукописей, чудом уцелевших во время нашествия римлян. Полное уничтожение довершили арабы. Когда в 641 г. войска халифа Омара взяли Александрию, он приказал сжечь все рукописи. Лишь случайно спрятанные или ранее переписанные манускрипты сохранились и позднее попали в Багдад.

Гиппарх занимался систематическими наблюдениями небесных светил. Он первым ввёл географическую сетку координат из меридианов и параллелей, позволявшую определить широту и долготу места на Земле так же, как до того астрономы определяли звёздные координаты (склонение и прямое восхождение) на воображаемой небесной сфере.

Многолетние наблюдения за движением дневного светила позволили Гиппарху проверить утверждения Ев-ктемона (V в. до н. э.) и Каллиппа (IV в. до н. э.) о том, что астрономические времена года имеют неодинаковую продолжительность. Они начинаются в день и даже в момент наступления равноденствия или солнцестояния: весна — с весеннего равноденствия, лето — с летнего солнцестояния и т. д. Гиппарх обнаружил, что весна длится примерно 94,5 суток, лето −92,5 суток, осень — 88 суток и, наконец, зима продолжается приблизительно 90 суток. Отсюда следовало, что Солнце движется по эклиптике неравномерно — летом медленнее, а зимой быстрее. Это нужно было как-то согласовать с античными представлениями о совершенстве небесных движений: Солнце должно двигаться равномерно и по окружности.

Гиппарх предположил, что Солнце обращается вокруг Земли равномерно и по окружности, но Земля смещена относительно её центра. Такую орбиту Гиппарх назвал эксцентриком, а величину смещения центров (в отношении к радиусу) — эксцентриситетом. Он нашёл, что для объяснения разной продолжительности времён года надо принять эксцентриситет равным 1/24. Точку орбиты, в которой Солнце находится ближе всего к Земле, Гиппарх назвал перигеем, а наиболее удалённую точку — апогеем. Линия, соединяющая перигей и апогей, была названа линией апсид (от греч. «апсидос» -«свод», «арка»).

В 133 г. до н. э. в созвездии Скорпиона вспыхнула новая звезда. По сообщению Плиния, это событие побудило Гиппарха составить звёздный каталог, чтобы зафиксировать изменения в сфере «неизменных звёзд». Он определил координаты 850 звёзд относительно эклиптики — эклиптические широту и долготу. Одновременно Гиппарх оценивал и блеск звёзд с помощью введённого им понятия звёздной величины. Самым ярким звёздам он приписал 1-ю звёздную величину, а самым слабым, едва видным, — 6-ю.

Сравнив свои результаты с координатами некоторых звёзд, измеренными Аристилом и Тимохарисом (современниками Аристарха Самосского), Гиппарх обнаружил, что эклиптические долготы увеличились одинаково, а широты не изменились. Из этого он сделал вывод, что дело не в движении самих звёзд, а в медленном смещении небесного экватора.

Так Гиппарх открыл, что небесная сфера кроме суточного движения ещё очень медленно поворачивается вокруг полюса эклиптики относительно экватора (точный период 26 тыс. лет). Это явление он назвал прецессией (предварением равноденствий).

Гиппарх установил, что плоскость лунной орбиты вокруг Земли наклонена к плоскости эклиптики под углом 5°. Поэтому у Луны изменяется не только эклиптическая широта, но и долгота. Лунная орбита пересекается с плоскостью эклиптики в двух точках — узлах. Затмения могут происходить, только если Луна находится в этих точках своей орбиты. Пронаблюдав в течение своей жизни несколько лунных затмений (они происходят в полнолуние), Гиппарх определил, что синодический месяц (время между двумя полнолуниями) длится 29 суток 12 ч 44 мин 2,5 с. Это значение всего на 0,5 с меньше истинного.

Гигшарх впервые начал широко использовать древние наблюдения вавилонских астрономов. Это позволило ему очень точно определить длину года. В результате своих изысканий он научился предсказывать лунные и солнечные затмения с точностью до одного часа. Попутно он составил первую в истории тригонометрическую таблицу, в которой приводились значения хорд, соответствующие современным синусам.

Гиппарх вторым после Аристарха сумел найти расстояние до Луны, оценив также расстояние до Солнца. Он знал, что во время солнечного затмения 129 г. до н. э. оно было полным в районе Геллеспонта (современные Дарданеллы). В Александрии Луна закрыла лишь 4/5 солнечного диаметра. Иначе говоря, видимое место Луны не совпадало в этих городах на 0,1°. Зная расстояние между городами, Гиппарх легко нашёл расстояние до Луны, используя метод, введённый ещё Фалесом. Он вычислил, что расстояние Земля — Луна составляет около 60 радиусов Земли (результат, очень близкий к действительному). Расстояние Земля — Солнце, по Гиппарху, равно 2 тыс. радиусов Земли.

Гиппарх обнаружил, что наблюдаемые движения планет очень сложны и не описываются простыми геометрическими моделями. Здесь он впервые столкнулся с задачей, разрешить которую был не в силах. Только спустя три века «небесное наследство» великого астронома было принято Птолемеем, который смог построить систему мира, согласующуюся с наблюдателями.

Клавдий Птоломей — создатель теории неба

«Пусть никто, глядя на несовершенство наших человеческих изобретений, не считает предложенные здесь гипотезы слишком искусственными. Мы не должны сравнивать человеческое с божественным. Небесные явления нельзя рассматривать с точки зрения того, что мы называем простым и сложным. Ведь у нас всё произвольно и переменно, а у небесных существ всё строго и неизменно». Этими словами последний из выдающихся греческих учёных Клавдий Птолемей завершает свой астрономический трактат. Они как бы подводят итог античной науки. В них слышны отзвуки её достижений и разочарований. Полтора тысячелетия до Коперника — они будут звучать в стенах средневековых университетов и повторяться в трудах учёных.

Клавдий Птолемей жил и работал в Александрии, расположенной в устье Нила. Город был основан Александром Македонским. В течение трёх веков здесь была столица государства, в котором правили цари из династии Птолемеев — преемников Александра. В 30 г. до н. э. Египет был завоёван Римом и стал частью Римской империи.

В Александрии жили и работали многие выдающиеся учёные древности: математики Евклид, Эратосфен, Аполлоний Пергский, астрономы Аристилл и Тимохарис. В III в. до н. э. в городе была основана знаменитая Александрийская библиотека, где были собраны все основные научные и литературные сочинения той эпохи — около 700 тыс. папирусных свитков. Этой библиотекой постоянно пользовался и Клавдий Птолемей.

Он жил в пригороде Александрии Канопе, целиком посвятив себя занятиям наукой. Астроном Птолемей не имеет никакого отношения к династии Птолемеев, он просто их тёзка. Точные годы его жизни неизвестны, но по косвенным данным можно установить, что он родился, вероятно, около 100 г. н. э. и умер около 165 г. Зато точно известны даты (и даже часы) его астрономических наблюдений, которые он вёл в течение 15 лет: со 127 по 141 год.

Птолемей поставил перед собой трудную задачу: построить теорию видимого движения по небосводу Солнца, Луны и пяти известных тогда планет. Точность теории должна была позволить вычислять положения этих небесных светил относительно звёзд на много лет вперёд, предсказывать наступление солнечных и лунных затмений.

Для этого нужно было составить основу для отсчёта положений планет — каталог положений неподвижных звёзд. В распоряжении Птолемея был такой каталог, составленный за два с половиной века до него его выдающимся предшественником -древнегреческим астрономом Гиппархом. В этом каталоге было около 850 звёзд. Птолемей соорудил специальные угломерные инструменты для наблюдений положений звёзд и планет: астролябию, армиллярную сферу, трикветр и некоторые другие. С их помощью он выполнил множество наблюдений и дополнил звёздный каталог Гиппарха, доведя число звёзд до 1022.

Используя наблюдения своих предшественников (от астрономов Древнего Вавилона до Гиппарха), а также собственные наблюдения, Птолемей построил теорию движения Солнца, Луны и планет. В этой теории предполагалось, что все светила движутся вокруг Земли, которая является центром мироздания и имеет шарообразную форму. Чтобы объяснить сложный характер движения планет, Птолемею пришлось ввести комбинацию двух и более круговых движений. В его системе мира вокруг Земли по большой окружности — деференту (от лат. deferens — «несущий») — движется не сама планета, а центр некоей другой окружности, называемой эпициклом (от греч. «эпи» — «над», «киклос» -«круг»), а уже по нему обращается планета. В действительности движение по эпициклу является отражением реального движения Земли вокруг Солнца.

Для более точного воспроизведения неравномерности движения планет на эпицикл насаживались ещё меньшие эпициклы. Птолемею удалось подобрать такие размеры и скорости вращения всех «колёс» своей Вселенной, что описание планетных движений достигло высокой точности. Эта работа потребовала огромной математической интуиции и громадного объёма вычислений. Он был не вполне удовлетворён своей теорией. Расстояние от Земли до Луны у него сильно (почти вдвое) менялось, что должно было привести к бросающимся в глаза изменениям угловых размеров светила; не были понятны и сильные колебания яркости Марса и т. п. Но лучшего ни он, ни тем более его последователи предложить не могли. Все эти проблемы представлялись Птолемею меньшим злом, чем «нелепое» допущение движения Земли.

Все астрономические исследования Птолемея были им подытожены в капитальном труде, который он назвал «Мегалесинтаксис» (Большое математическое построение). Но переписчики этого труда заменили слово «большое» на «величайшее» (мэгисте), и арабские учёные стали называть его «Аль-Мэгисте», откуда и произошло его позднейшее название «Альмагест». Этот труд был написан около 150 г. н. э. В течение 1500 лет это сочинение Клавдия Птолемея служило основным учебником астрономии для всего научного мира. Оно было переведено с греческого языка на сирийский, среднеперсидский, арабский, санскрит, латынь, а в Новое время -почти на все европейские языки, включая русский.

После создания «Альмагеста» Птолемей написал небольшое руководство по астрологии — «Тетрабиблос» (Четверокнижие), а затем второе по значению своё произведение — «Географию». В нём он дал описания всех известных тогда стран и координаты (широты и долготы) многих городов. «География» Птолемея также была переведена на многие языки и уже в эпоху книгопечатания выдержала более 40 изданий. Клавдий Птолемей написал также монографию по оптике и книгу по теории музыки («Гармония»). Ясно, что он был весьма разносторонним учёным. «Альмагест» и «Географию» относят к числу важнейших книг, созданных за всю историю науки.

Армиллярная сфера.

Через 500 лет после Аристотеля Клавдий Птолемей писал: «Существуют люди, которые утверждают, будто бы ничто не мешает допустить, что Земля вращается вокруг своей оси, с запада на восток, делая один оборот в сутки. И правда, ничто не мешает для большей простоты, хоть этого и нет, допустить это, если принять в расчёт только видимые явления. Но эти люди не сознают, что Земля из-за своего вращения имела бы скорость, значительно большую тех, какие мы можем наблюдать. В результате все предметы, не опирающиеся на Землю, должны казаться совершающими такое же движение в обратном направлении; ни облака, ни другие летающие или парящие объекты никогда не будут видимы движущимися на восток, поскольку движение Земли к востоку будет всегда отбрасывать их в обратном направлении». Выбирая между подвижной и неподвижной Землёй, Птолемей, исходя из физики Аристотеля, выбрал неподвижную. По этой же причине он, вероятно, принял и геоцентрическую систему мира.

«Знаю, что я смертен, знаю, что дни мои сочтены; но, когда я в мыслях неустанно и жадно прослеживаю пути светил, тогда я не касаюсь ногами Земли: на пиру Зевса наслаждаюсь амброзией, пишей богов.»—Клавдий Птолемей. «Альмагест».

Список литературы

«Энциклопедия для детей Аванта+, Астрономия» под ред. М.Д. Аксёнова

www.ronl.ru

Реферат - Астрономические идеи во времена Птолемея

Астрономические идеи во времена Птолемея

Знаменитый александрийский астроном, математик и географ II века н. э. Клавдий Птолемей – одна из крупнейших фигур в истории науки эпохи позднего эллинизма. В истории же астрономии Птолемею не было равных на протяжении целого тысячелетия – от Гиппарха (II в. до н. э.) до Бируни (X-XI в. н. э.).

Почти все его основные сочинения сохранились и были по достоинству оценены потомками, начиная от его младших современников и кончая астрономами наших дней. Основной труд Птолемея, широко известный ныне под названием «Альмагест», вплоть до начала XVII в. был основным учебником астрономии.

С именем Птолемея обычно связывают так называемую «систему мира Птолемея» (геоцентрическую систему), где в центре расположена Земля, а вокруг нее по круговым орбитам обращаются Луна, Меркурий, Венера, Солнце, Марс, Юпитер и Сатурн. При этом пять планет движутся не непосредственно вокруг Земли, а по малым кругам – эпициклам, центры которых обращаются вокруг Земли по другим кругам – деферентам.

Коперник и Кеплер в своих работах исходили из построений Птолемея. Первый превратил геоцентрическую систему Птолемея в гелиоцентрическую (центр – Солнце), но сохранил принцип равномерного движения по кругам и широко использовал математический аппарат Птолемея. Второй, отказавшись от этого принципа, тем не менее использовал построения Птолемея, чтобы найти истинную форму планетных орбит.

Кроме «Альмагеста» Птолемей оставил ряд других сочинений, причем не только по астрономии, но и по математике, оптике, географии, музыке. Ему принадлежит разработка основ математической картографии и составление списка координат 8000 географических пунктов (определенных, правда, весьма приближенно).

В своем мировоззрении Птолемей почти точно следует Аристотелю. И дело, разумеется, не столько в геоцентризме обоих, сколько в их взгляде на основные категории бытия. Вслед за Аристотелем Птолемей считает все сущее состоящим из материи, формы и движения, причем ни одна из этих категорий не может существовать без двух других. Это значит, что материя не может существовать без движения и движение нельзя себе представить без материи.

Птолемей допускал (вместе с Аристотелем) «первый толчок», допускал существование Божества. Но это Божество играет во взглядах Птолемея весьма ограниченную роль: оно только создало и пустило в ход «небесный механизм», управляющий движениями светил небесных. Больше о Боге и о его влиянии на процессы во Вселенной в «Альмагесте» не говорится ничего.

Рассмотрим геоцентризм Птолемея, опираясь на его собственное изложение в I книге «Альмагеста». Доказав, что небесный свод подобен сфере, а также, что и Земля имеет форму шара, Птолемей переходит к доказательству того, что Земля находится в середине небесного свода, в центре небесной сферы.

Птолемей доказывает это утверждение от противного. Если Земля не находится в центре небесной сферы, то она должна быть либо смещена к одному из полюсов мира, либо вообще не должна находиться на оси мира. В первом случае горизонт делил бы небесную сферу на две неравные части (та, что прилегает к ближайшему полюсу, была бы меньше), во втором случае звезды при вращении небесной сферы то приближались бы к Земле, то удалялись бы, меняя свой блеск, а Солнце и Луна – видимые размеры. Поскольку ни то, ни другое не наблюдается, значит, Земля находится в центре небесной сферы. Дальше Птолемей доказывает (совершенно правильно), что размеры Земли ничтожно малы по сравнению хотя бы со сферой «неподвижных звезд», что ее по сравнению с этой сферой можно принимать за точку. Доказательство состоит в том, что из разных мест земного шара небесные светила кажутся одинаковых размеров в любое время. Это означает, что размеры Земли действительно ничтожно малы по сравнению с расстояниями до небесных тел.

После доказательства центрального положения Земли Птолемей доказывает ее неподвижность в пространстве. В самом деле, утверждает он, если бы Земля имела какое-либо движение, она бы смещалась со своего центрального положения, и тогда имели бы место те же эффекты, как и в случае нецентрального положения Земли относительно небесной сферы. Но так как эти эффекты не наблюдаются, значит, Земля неподвижна.

Вторым доказательством неподвижности Земли, которое приводит Птолемей, является вертикальное свободное падение тел во всех местах Земли. Все тела стремятся к центру, и поскольку они падают вертикально вниз на всех широтах Земли, значит, она и есть этот центр. И если бы земная поверхность не преграждала путь падающим телам, они падали бы дальше вниз, до самого центра Земли. И хотя Земля велика и тяжела, не следует удивляться тому, что она никуда не падает и не требует опоры. Ведь Земля мала по сравнению с Вселенной, которая оказывает на нее равномерное давление со всех сторон, а потому Земля и не может никуда сдвинуться. Земля тяжелее известных нам падающих тел, а потому, если бы она тоже могла куда-нибудь падать, она падала бы быстрее, и мы не могли бы этого не заметить.

Здесь же Птолемей объясняет понятия верха и низа: низ – это направление к центру Земли, верх – направление, ему противоположное. Тяжелые, плотные тела стремятся вниз, легкие, разреженные – вверх. Направления «вверх» и «вниз» различны в разных пунктах Земли.

Теория движения планет

Рассмотрим планетную теорию Птолемея, его знаменитую «систему мира». Теория движения планет охватывает книги IX – XIV «Альмагеста».

Основные свойства планетных движений, деферентов и эпициклов в системе Птолемея таковы:

1. Земля, центры эпициклов Меркурия и Венеры и Солнце всегда лежат на одной прямой. Следовательно, период обращения центров эпициклов Меркурия и Венеры вокруг Земли равен в точности одному году.

2. Периоды обращения Меркурия и Венеры по эпициклам различны; они меньше года и составляют соответственно для Меркурия 88 сут, для Венеры 225 сут.

3. Центры эпициклов Марса, Юпитера и Сатурна обращаются по своим деферентам за различные промежутки времени: от 687 сут для Марса до почти 30 лет у Сатурна.

4. Марс, Юпитер и Сатурн обращаются по эпициклам ровно за один год.

5. Плоскости деферентов Меркурия и Венеры совпадают с плоскостью эклиптики; плоскости эпициклов Марса, Юпитера и Сатурна параллельны плоскости эклиптики.

6. Плоскости эпициклов Меркурия и Венеры, деферентов Марса, Юпитера и Сатурна наклонены к плоскости эклиптики на малые углы (не более 7' в случае Меркурия).

7. Радиусы эпициклов Марса, Юпитера и Сатурна, соединяющие центр эпицикла с планетой, всегда параллельны направлению Земля – Солнце.

Эти свойства ясно показывают, что, во-первых, условия движения нижних и верхних планет существенно различны. Во-вторых, определяющую роль в движении и тех и других планет играет Солнце.

Тщательный анализ этих свойств планетарных движений привел бы Птолемея к простому выводу, что Солнце, а не Земля — центр планетарной системы.

Птолемей нашел способ выяснить, хотя бы приблизительно, размеры планет в сравнении с Землей. В своем сочинении «Планетные гипотезы», написанном после «Альмагеста», оценивает видимый диаметр Венеры в 1/10 солнечного, Юпитера – в 1/12, Марса – в 1/20, Меркурия – в 1/15, Сатурна – в 1/18. Эти видимые размеры отнесены к средним расстояниям планет от Земли.

Размеры планет у Птолемея близки к реальным. Он, так же как и мы, считал самой большой планетой (после Солнца) Юпитер, потом шел Сатурн, но они превосходили Землю по диаметру в 4,4 – 4,3 раза, тогда как на самом деле они больше Земли в 11 и 9 раз. Марс, по Птолемею, был чуть больше Земли (в действительности он вдвое меньше). Для Луны получилось почти правильное соотношение, но Венеру Птолемей считал чуть меньше Луны, а Меркурий – почти в 8 раз меньше (его размеры преуменьшены в 10 раз). Тем не менее и размеры планет по порядку величины Птолемей представлял себе правильно.

Отсюда был один шаг до признания Земли рядовой планетой, но и этого шага Птолемей не решился сделать. Переход к гелиоцентрической системе был невозможен для Птолемея. Он считал Землю находящейся в центре мира, приводил ряд доводов в пользу этого взгляда и не мог от него отказаться. Такой шаг был под силу только Копернику. И только через четырнадцать веков.

www.ronl.ru

Доклад - Астрономия - Математика

/>

Доклад по Астрономии.

 

                                       Ученика11 класса “Б”

                                                    ЛомтеваНиколая                      

/>         

                                       Астрономия в древности.

            Трудно точносказать, когда именно зародилась астрономия: до нас почти не дошли сведения,относящиеся к доисторическим временам. В ту отдаленную эпоху, когда люди былисовершенно бессильны перед природой, возникла вера в могущественные силы,которые будто бы создали мир и управляют им, на протяжении многих вековобожествлялась Луна, Солнце, планеты. Об этом мы узнаем из мифов всех народовмира.

            Первые представленияо мироздании были очень наивными, они тесно переплетались с религиознымиверованиями, в основу которых было положено разделение мира на две части — земную и небесную. Если сейчас каждый школьник

знает, что Земля самаявляется небесным телом, то раньше “земное” противопоставлялось “небесному”.Думали, что существует “твердь небесная”, к которой прикреплены звезды, а Землюпринимали за неподвижный центр мироздания.

                                      Геоцентрическая система мира.

 

            Гиппарх, александрийскийученый, живший во 2 веке до н. э., и другие астрономы его времени уделялимного внимания наблюдениям за движением планет.

Эти движения представлялисьим крайне запутанными. В самом деле, направления движения планет по небу какбы  описывают по небу петли. Эта кажущаяся сложность в движении планетвызывается движением Земли вокруг Солнца — ведь мы наблюдаем планеты с Земли,которая сама движется. И когда Земля “ догоняет” другую планету, то кажется,что планета как бы останавливается, а потом движется назад. Но древниеастрономы думали, что планеты действительно совершают такие сложные движениявокруг Земли.

            Во 2 веке н.э.александрийский астроном Птолемей выдвинул свою “систему

мира”. Он пытался объяснитьустройство Вселенной с учетом видимой сложности движения планет.

            Считая Землюшарообразной, а размеры ее ничтожными по сравнению с расстоянием до планет итем более звезд. Птолемей, однако, вслед за Аристотелем утверждал, что Земля — неподвижный центр Вселенной. Так как Птолемей считал Землю центром Вселенной,его система мира была названа геоцентрической.

            Вокруг земли поПтолемею, движутся ( в порядке удаленности от Земли) Луна,

Меркурий, Венера, Солнце,Марс, Юпитер, Сатурн, звезды. Но если движение Луны, Солнца, звезд круговое, тодвижение планет гораздо сложнее. Каждая из планет, по мнению Птолемея, движетсяне вокруг Земли, а вокруг некоторой точки. Точка эта в свою очередь движется покругу, в центре которого находится Земля. Круг, описываемый планетой вокругдвижущейся точки, Птолемей назвал  эпициклом , а круг, по которомудвижется точка около Земли ,- деферентом.

            Труднопредставить, чтобы в природе совершались такие запутанные движения, да ещевокруг воображаемых точек. Такое искусственное построение потребовалосьПтолемею для того чтобы, основываясь на ложном представлении о неподвижностиЗемли, расположенной в центре Вселенной, объяснить видимую сложность движенияпланет.

            Птолемей былблестящим для своего времени математиком. Но он разделял взгляд Аристотеля,который считал, что Земля неподвижна и только она может быть центром Вселенной.

            Система мираАристотеля-Птолемея казалась современникам правдоподобной. Она давалавозможность заранее вычислять движение планет на будущее время — это былонеобходимо для ориентировки в пути во время путешествий и для календаря. Этуложную систему признавали почти полторы тысячи лет.

            Также эту системупризнавало Христианская религия. В основу своего миропонимания христианствоположило библейскую легенду о сотворении мира Богом за шесть дней. По этойлегенде Земля является “сосредоточием” Вселенной, а небесные светила созданыдля того, чтобы освещать Землю и украшать небесный свод. Всякое отступление отэтих взглядов христианство беспощадно преследовало. Система мира Аристотеля — Птолемея, ставившая Землю в центр мироздания, как нельзя лучше отвечалахристианскому вероучению.

            Таблицы,составленные Птолемеем, позволяли определить заранее положение планет на небе.Но с течением времени астрономы обнаружили расхождение наблюдаемых положенийпланет с предвычисленными. На протяжении веков думали, что система мираПтолемея просто недостаточно совершенна и пытаясь усовершенствовать ее, вводилидля каждой планеты новые и новые комбинации круговых движений.

                                               Гелиоцентрическая система мира.

            Свою систему миравеликий польский астроном Николай Коперник (1473-1543)

изложил в книге “О вращенияхнебесных сфер”, вышедшей в год его смерти. В этой книге он доказал, чтоВселенная устроена совсем не так, как много веков утверждала религия.

            Во все странахпочти полтора тысячелетия владело умами людей ложное учение Птолемея, которыйутверждал, что Земля неподвижно покоится в центре Вселенной. ПоследователиПтолемея в угоду церкви придумывали все новые “разъяснения” и “доказательства”движения планет вокруг Земли, чтобы сохранить “истинность” и “святость” еголожного учения. Но от этого система Птолемея становилась все более надуманной иискусственной.

            Задолго доПтолемея греческий ученый Аристарх утверждал, что Земля движется вокруг Солнца.Позже, в средние века, передовые ученые разделяли точку зрения Аристарха остроении мира и отвергали ложное учение Птолемея. Незадолго до Коперникавеликие итальянские ученые Николай Кузанский и Леонардо да Винчи утверждали,что Земля движется, что она совсем не находится в центре Вселенной и незанимает в ней исключительного положения.

            Почему же,несмотря на это, система Птолемея продолжала господствовать?

Потому, что она опиралась навсесильную церковную власть, которая подавляла свободную мысль, мешала развитиюнауки. Кроме того, ученые, отвергавшие учение Птолемея и высказывавшиеправильный взгляды на устройство Вселенной, не могли еще их убедительнообосновать.

            Это удалосьсделать только Николаю Копернику. После тридцати лет упорнейшего труда, долгихразмышлений и сложных математических вычислений он показал, что Земля — толькоодна из планет, а все планеты обращаются вокруг Солнца.

            Своей книгой онбросил вызов церковным авторитетам, разоблачая их полное невежество в вопросахустройства Вселенной.

            Коперник не дожилдо того времени, когда его книга распространилась по всему свету, открываялюдям правду о Вселенной. Он был при смерти, когда друзья принесли и вложили вего холодеющие руки первый экземпляр книги.

            Коперник родилсяв 1473 г. в польском городе Торуни. Он жил в трудное время, когда Польша и еесосед — Русское государство — продолжало вековую борьбу с захватчиками — тевтонскими рыцарями и татаро-монголами, стремившимися поработить славянскиенароды.

            Коперник ранолишился родителей. Его воспитал дядя по матери Лукаш Ватцельроде — выдающийсяобщественно-политический деятель того времени. Жажда знаний владела Коперникомс детства, Сначала он учился у себя на родине. Потом продолжал образование витальянских университетах, Конечно, астрономия там изучалась по Птолемею, ноКоперник тщательно изучал и все сохранившиеся труды  великих математиков иастрономию древности. У него уже тогда возникли мысли о правоте догадокАристарха, о ложности системы Птолемея. Но неодной астрономией занимался Коперник.Он изучал философию, право, медицину и вернулся на родину всестороннеобразованным, для своего времени, человеком.

            По возвращении изИталии Коперник поселился в Вармии — сначала в городе Лицбарке, потом вФромборке, Деятельность его была необычайно разнообразно. Он принимал самоеактивное участие в управлении областью: ведал ее финансовыми, хозяйственными идругими делами. В то же время Коперник неустанно размышлял над истиннымустройством солнечной системы и постепенно пришел к своему великому открытию.

            Что же заключаетв себе книга Коперника “ О вращении небесных сфер” и почему она нанесла такойсокрушительный удар по системе птолемея, которая со всеми изъянами  держаласьчетырнадцать веков под покровительством всесильной в ту эпоху церковной власти? В этой книге Николай Коперник утверждал, что Земля и другие планеты — спутникисолнца. Он показал, что именно движение Земли вокруг солнца и ее суточнымвращением вокруг своей оси объясняется видимое движение Солнца, страннаязапутанность в движении планет и видимое вращение небесного свода.

            Гениально простоКоперник объяснял, что мы воспринимаем движение далеких небесных тел так же,как и перемещение различных предметов на Земле, когда сами находимся вдвижении.

            Мы скользим влодке по спокойно текущей реке, и нам кажется, что лодка и мы в ней неподвижны,а берега “плывут” в обратном направлении. Точно так же нам только кажется, чтоСолнце движется вокруг Земли. А на самом деле Земля со всем, что на нейнаходится, движется вокруг Солнца и в течение года совершает полный оборот посвоей орбите.

            И точно так же,когда Земля в своем движении вокруг Солнца обгоняет другую планету, намкажется, что планета движется назад, описывая петлю на небе. В действительностипланеты движутся вокруг Солнца по орбитам правильной, хотя и не идеальнокруговой формы, не делая никаких петель. Коперник, как и древнегреческиеученые, что орбиты, по которым движутся планеты, могут быть только круговыми.

            Спустя тричетверти века немецкий астроном Иоганн Кеплер, продолжатель дела Коперника,доказал, что орбиты всех планет представляют собой вытянутые окружности — эллипсы.

            Звезды Коперниксчитал неподвижными. Сторонники Птолемея настаивали на неподвижности Земли,утверждали, что если бы Земля двигалась в пространстве, то при наблюдении небав разное время нам должно было бы казаться, что звезды смещаются, меняют своеположение на небе. Но таких смещений звезд за много веков не заметил ни одинастроном. Именно в этом сторонники учения Птолемея хотели видеть доказательствонеподвижности Земли.

            Однако Коперникутверждал, что звезды находятся на невообразимо огромных расстояниях. Поэтомуничтожные смещения их не могли быть замечены. Действительно, расстояния от насдаже до ближайших звезд оказались настолько большими, что еще спустя три векапосле Коперника они поддавались точному определению. Только в 1837 г. русскийастроном Василий Яковлевич Струве положил начало точному определению расстоянийдо звезд.

            Понятно, какоепотрясающее впечатление должна была произвести книга, в которой Коперникобъяснил мир, не считаясь с религией и даже отвергая всякий авторитет церкви вделах науки. Деятели церкви не сразу поняли, какой удар по религии наноситнаучный труд Коперника, в котором он низвел Землю на положение одной из планет.Некоторой время книга свободно распространялась среди ученых. Прошло не многолет, и революционное значение великой книги проявилось

в полной мере. Выдвинулисьдругие крупные ученые — продолжатели дела Коперника. Они развивали ираспространяли идею бесконечности Вселенной, в которой Земля — как бы песчинка,а миров — бесчисленное множество. С этого времени церковь начала ожесточенноепреследование сторонников учения Коперника.

            Новое учение осолнечной системе -гелиоцентрическое — утверждалось в жесточайшей борьбес религией. Учение Коперника подрывало самые основы религиозного мировоззренияи открывало широкий путь к материалистическому, подлинно научному познаниюявлений природы.

            Во второйполовине 16 века учение Коперника нашло своих сторонников среди передовых ученыхразных стран. Выдвинулись и такие ученые, которые не только пропогандировалиучение Коперника, но углубляли и расширяли его.

            Коперник полагал,что Вселенная ограничена сферой неподвижных звезд, которые расположены наневообразимо огромных, но все-таки конечных расстояниях от нас и от Солнца. Вучении Коперника утверждалась огромность Вселенной и бесконечность ее. Коперниктакже впервые в астрономии не только дал правильную схему строения Солнечнойсистемы, но и определил относительные расстояния планет от солнца и вычислилпериод их обращения вокруг него.

                              Становление гелиоцентрического мировоззренния. 

            Учение Коперникабыло признано не сразу. Мы знаем: что по приговору инквизиции в 1600 году  былсожжен в Риме выдающийся итальянский философ, последователь Коперника ДжорданоБруно (1548-1600). Бруно, развивая учение Коперника, утверждал, что воВселенной нет и не может быть центра, что Солнце — это только центр Солнечнойсистемы. Он также высказывал гениальную догадку о том, что звезды — такие жесолнца, как наше, причем вокруг бесчисленных звезд движутся планеты, на многихиз которых существует разумная жизнь. Ни пытки, ни костер инквизиции не сломиливолю Джордано Бруно, не заставили его отречься от нового учения.

            В 1609 году ГалилеоГалилей (1564-1642) впервые направил на небо телескоп и сделал открытия,наглядно подтверждающие открытия Коперника. На Луне он увидел горы. Значит,поверхность Луны в какой-то степени сходна с земной и не существуетпринципиального различия между “земным” и “небесным”. Галилей открыл четыреспутника Юпитера. Их движение вокруг Юпитера опровергло ошибочное представлениео том, что только Земля может быть центром небесных тел. Галилей обнаружил, чтоВенера, подобно Луне, меняет свои фазы. Следовательно, Венера — шарообразноетело, которое светит отраженным солнечным светом. Изучая особенности изменениявида Венеры, Галилей сделал правильный вывод о том, что она движется не вокруг Земли, а вокруг Солнца. НА Солнце, олицетворявшем “небесную чистоту”, Галилейоткрыл пятна и, наблюдая за ними, установил, что Солнце вращается вокруг своейоси. Значит, различным небесным  телам, например Солнцу, присуще осевоевращение. Наконец, он обнаружил, что Млечный путь — это множество слабых звезд,не различимых невооруженным глазом. Следовательно, Вселенная значительнограндиознее, чем думали раньше, и крайне наивно было предполагать, что она засутки совершает полный оборот вокруг маленькой Земли.

            Открытие Галилеяумножили число сторонников гелиоцентрической системы мира и одновременнозаставили церковь усилить преследования коперниканцев. В 1616 году книгаКоперника “ О вращениях небесных сфер” была внесена в список  запрещенных книг,а изложенное в ней противоречащим Священному Писанию. Галилею запретилипропагандировать учение Коперника. Однако в 1632 году ему все-таки удалосьопубликовать книгу “Диалог о двух главнейших системах мира — птолемеевой икоперниковой”, в которой он сумел убедительно показать истинностьгелиоцентрической системы, чем и навлек на себя гнев католической церкви. В1633 году Галилей предстал перед судом инквизиции. Престарелого ученогозаставили подписать “отречение” от своих взглядов и до конца жизни держали поднадзором инквизиции. Лишь в 1992 году католическая церковь окончательнооправдала Галилея.

            Казнь Бруно,официальный запрет учения Коперника, суд над Галилеем не смогли остановитьраспространение коперничества. В Австрии Иоганн Кеплер (1571-1630)развил учение Коперника, открыв законы движения планет. В Англии ИсаакНьютон (1643-1727) опубликовал свой знаменитый закон всемирного тяготения.В России учение Коперника смело поддерживал М.В.Ломоносов (1711-1765),который открыл атмосферу на Венере, защищал идею о множественности обитаемыхмиров.

www.ronl.ru


Смотрите также